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ABSTRACT

RNA plays a critical role across numerous biological functions. Recent advances
in language modeling show promise with representing RNA, but the possibility of
large-scale RNA design and optimization has not been fully explored. We propose
EvoFlow-RNA, a bidirectional non-coding RNA language model leveraging a
masked discrete diffusion model (MDM) formulation for both generative modeling
and representation learning. EvoFlow-RNA bridges the gap between RNA sequence
representation and design. It outperforms leading RNA models on three BEACON
tasks critical to understanding RNA function, spanning from structure prediction to
gene editing. For unconditional generation, it synthesizes diverse RNA sequences
with native-like structural and binding properties. Additionally, EvoFlow-RNA
can globally redesign aptamer sequences around preserved binding recognition
sites with enhanced functionality. Our results demonstrate the effectiveness of
EvoFlow-RNA in RNA modeling, highlighting the capability and potential of
masked discrete diffusion for both recapitulating and enhancing existing RNAs.

1 INTRODUCTION

Deep learning has revolutionized biomolecular design, serving as a foundational
technology that drives innovation in biotechnology and medicine. Recent break-
throughs such as RFDiffusion (Watson et al., 2023), ProteinMPNN (Dauparas et al.,
2022), and RosettaFold (Baek et al., 2021) exemplify the potential of computational
approaches in protein representation with unprecedented in silico to in vitro, and in
vivo success in modeling functional proteins. However, the majority of deep learn-
ing efforts are concentrated solely on protein understanding. By comparison, de
novo RNA design — a field with immense application potential —has experienced
less innovation. The ability to design novel RNAs has opened new frontiers in
therapeutic applications, including RNA-based drug delivery (e.g., gene therapies)
and immune modulation (Coller and Ignatova, 2024; Hu et al., 2020; Kanasty et al.,
2013; Morrow et al., 2024). Synthetic RNA constructs, such as RNA aptamers,
have shown significant potential in precision medicine, offering high-affinity and
specific target binding for disease treatment and biomolecular recognition (Ng et al.,
2006; Zhou et al., 2012). As RNA-based technologies continue to evolve, their
diverse functional repertoire underscores the need for advanced models tailored to
enhancing RNA sequence and structure design.
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Figure 1: General framework of EvoFlow-RNA. A) Pre-training, modeling and unconditional
generation. B) Non-coding RNA representation learning for structure, functional and engineering
design tasks. C) Conditional generation of RNAs via motif scaffolding.

Recent efforts in RNA modeling have begun integrating structural information to
enhance generative and predictive capabilities. One such approach is a diffusion-
based model (Wong et al., 2024). Despite their effectiveness, structure-based
approaches are often constrained by the limited number of solved structures.

Sequence-based methods have also shown promise. BERT-style masked language
models have gained traction for RNA representation learning, excelling in tasks
such as functional annotation and mutation effect prediction (Penić et al., 2024;
Chen et al., 2022; Zhang et al., 2024a; Chen et al., 2024; Akiyama and Sakakibara,
2022). While powerful for prediction tasks, these models are not explicitly de-
signed for sequence generation. By comparison, autoregressive language models
have demonstrated several advantages in RNA design, achieving high fidelity in
generating sequences with biologically meaningful properties (Zhang et al., 2024b;
Zhao et al., 2024). However, these models are inherently constrained by their
left-to-right generation mechanism (Berglund et al., 2023).

Masked discrete diffusion models, also known as masked diffusion models
(MDMs), have emerged as a promising alternative to autoregressive models for
the generative modeling of discrete data while also maintaining the bidirectional
context formulation of BERT-like models. This approach has been shown to be
effective in various applications, including language modeling and biological se-
quence generation (Shi et al., 2024; He et al., 2022; Wang et al., 2024; Peng et al.,
2025). In biological contexts, MDMs have comparable performance with leading
BERT-based models in representation learning tasks (Hayes et al., 2025) in addition
to improved generation quality compared to autoregressive language models (Peng
et al., 2025; Sahoo et al., 2024; Manocha et al., 2021).

In this work, we propose EvoFlow-RNA (Figure 1), an RNA language modeling
with bidirectional generative capabilities and representation learning. EvoFlow-
RNA is an MDM, providing a unified framework for RNA generation and repre-
sentation by combining bidirectional attention and discrete flow matching. We
evaluate EvoFlow-RNA in three key areas: representation learning, unconditional
RNA generation, and RNA scaffold design.
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2 METHODS

2.1 DIFFUSION TRAINING

We take two-stage training as described in Manocha et al. (2021), which involves
the initial training of a masked language model (MLM) followed by continuing
that training with a masked diffusion modeling (MDM) objective. We truncate all
RNAs to 1022 tokens and have no further data processing. Our model is trained for
100K updates, with the batch size set at 320K for the 33M and 150M parameter
models and 1M for the 650M parameter model. We additionally utilize a batch
sampler to construct batches using sequences of similar lengths. Practically, we
did not implement the first-stage training. Instead, we employed RiNALMo, an
RNA language model that is trained on MLM loss. We finetune RiNALMo using
the MDM objective with the weighted cross-entropy loss where the weight is

1
mask ratio , and the mask ratio is uniformly sampled from 0 to 1 and clamped to
[ 1
500 , 1]. Additional details can be found in the Appendix.

2.2 SAMPLING

We follow the P2 sampling scheme from Peng et al. (2025), specifically self-
planning. In P2, the denoiser makes predictions and the planner selects positions
to update (unmask to the prediction or remask an existing token). In self-planning,
the planner is the denoiser itself where we leverage the denoiser’s predicted proba-
bilities to score positions and unmask the mask tokens that have the top predicted
probabilities and remask the unmasked tokens that have the lowest. The overall
sampling scheme is depicted in Algorithm A1.

3 RESULTS

3.1 REPRESENTATION BENCHMARKING

We evaluate EvoFlow-RNA representations using the BEACON benchmark suite
(Ren et al., 2024). Accordingly, the model is fine-tuned and assessed for perfor-
mance across 13 related tasks spanning three categories: structure, function and
engineering. We compare our model’s performance against leading pretrained
large-language models (LLMs) and supervised models. The supervised models
include a convolutional neural network (CNN), ResNET, and LSTM. The pre-
trained LLMs include RNA-FM (Chen et al., 2022), RNA-BERT (Akiyama and
Sakakibara, 2022), RNA-MSM (Zhang et al., 2024a), SpliceBERT (Chen et al.,
2024), 3UTRBert (Yang et al., 2024), UTR-LM (Chu et al., 2024), BEACON-B
(Ren et al., 2024), RNAGenesis, and (Zhang et al., 2024b). We also include results
for RiNALMo (Penić et al., 2024) for direct comparison to EvoFlow-RNA. They
are also pretrained on different data sources, including but not limited to ncRNA,
pre-mRNA, mRNA-3’UTR, and mRNA-5’UTR. For EvoFlow-RNA, we utilize the
exact configurations listed in (Ren et al., 2024) for each task to ensure consistency.
The only exceptions are secondary structure prediction, contact map prediction
and distance map prediction, where we were not able to train with a batch size of
32 due to hardware limitations. We instead trained with a batch size of 2, with all
other hyperparameters held constant.

In Table 1, we show the performance of EvoFlow-RNA against all models evaluated
against the BEACON benchmark, pulled across BEACON (Ren et al., 2024) and
RNAGenesis (Zhang et al., 2024b). Evidently, we observe that EvoFlow-RNA
achieves state-of-the-art performance on 3 of the 13 evaluation tasks, reflecting
the quality of masked diffusion model representations in the context of ncRNA.
Interestingly, EvoFlow-RNA’s benchmarking scores nearly parallel those of its
RiNALMo predecessor, showing that masked diffusion fine-tuning does not result
in representation learning performance deterioration. Additionally, these models
collectively appear to outperform RNAGenesis across several tasks, which is nearly
6 times as large.
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Table 1: BEACON Representation Learning. Benchmarking across 13 downstream RNA-related tasks
across structure, function and engineering. EvoFlow-RNA is compared with both naive supervised
methods and pretrained RNA language models.
Task SIZE SSP CMP DMP SSI SPL APA NcRNA Modif MRL VDP PRS CRI-On CRI-Off
Metric - F1 (%) P@L (%) R2 (%) R2 (%) ACC@K (%) R2 (%) ACC (%) AUC (%) R2 (%) MCRMSE↓ R2 (%) SC (%) SC (%)

CNN 5.4M 49.95 43.89 27.76 34.36 8.43 50.93 88.62 70.87 74.13 0.361 45.40 29.69 11.40
ResNet 11M 57.26 59.59 30.26 37.74 21.15 56.45 88.33 71.03 74.34 0.349 55.21 28.55 11.50
LSTM 26.7M 58.61 40.41 44.77 35.44 36.66 67.03 88.78 94.83 83.94 0.329 55.45 26.83 8.60
RNA-FM 99.52M 68.50 47.56 51.45 42.36 34.84 70.32 96.81 94.98 79.47 0.347 55.98 31.62 2.49
RNABERT 0.48M 57.27 45.21 48.19 31.62 0.18 57.66 68.95 82.82 29.79 0.378 54.60 29.77 4.27
RNA-MSM 95.92M 57.98 57.26 37.49 39.22 38.33 70.40 84.85 94.89 83.48 0.330 56.94 34.92 3.85
Splice-H510 19.45M 64.93 45.80 55.56 38.91 44.80 58.65 95.92 62.57 83.49 0.321 54.90 26.61 4.00
Splice-MS510 19.45M 43.24 52.64 10.27 38.58 50.55 52.46 95.87 55.87 84.98 0.315 50.98 27.13 3.49
Splice-MS1024 19.72M 68.26 47.32 55.89 39.22 48.52 60.03 96.05 53.45 67.15 0.313 57.72 27.59 5.00
UTR-LM-MRL 1.21M 59.71 45.51 55.21 39.52 36.20 64.99 89.97 56.41 77.78 0.325 57.28 28.49 4.28
UTR-LM-TE&EL 1.21M 59.57 60.32 54.94 40.15 37.35 72.09 81.33 59.70 82.50 0.319 53.37 32.49 2.91
UTRBERT-3mer 86.14M 60.37 51.03 50.95 34.31 44.24 69.52 92.88 95.14 83.89 0.337 56.83 29.92 4.48
UTRBERT-4mer 86.53M 59.41 44.91 47.77 33.22 42.04 72.71 94.32 95.10 82.90 0.341 56.43 23.20 3.11
UTRBERT-5mer 86.45M 47.92 44.71 48.67 31.27 39.19 72.70 93.04 94.78 75.64 0.343 57.16 25.74 3.93
UTRBERT-6mer 98.05M 38.56 51.56 50.02 29.93 38.58 71.17 93.12 95.08 83.60 0.340 57.14 28.60 4.90
BEACON-B 87M 64.18 60.81 56.28 38.78 37.43 70.59 94.63 94.74 72.29 0.320 54.67 26.01 4.42
BEACON-B512 87M 58.75 61.20 56.82 39.13 37.24 72.00 94.99 94.92 72.35 0.320 55.20 28.17 3.82
RNAGenesis 866M 73.72 71.16 70.31 - 37.70 89.15 97.81 95.14 85.75 - 58.12 35.55 -
RiNALMo 150M 75.02 74.03 53.11 42.70 38.49 81.03 91.89 95.04 85.91 0.281 56.02 40.99 5.44
EvoFlow-RNA 150M 74.51 74.05 47.72 42.52 32.66 72.61 86.46 71.06 86.28 0.47 55.03 41.48 5.34

Notably, EvoFlow-RNA performs well at the structure-related tasks, such as
secondary-structure prediction (SSP) and contact map prediction (CMP). The
latter requires an understanding of the three-dimensional representation of an RNA,
showing that this property can be learned to a degree from sequence. Interestingly,
though the model performs well at contact map prediction, it does not perform
as well at distance map prediction (DMP), another task requiring a precise un-
derstanding of RNA tertiary structure. Though, this drop-off is not a significant
departure from the general trend exhibited by all other models. Regardless, we
maintain that EvoFlow-RNA retains the rich latent representations inherited from
its pretrained BERT checkpoint, in addition to its knack for assessing the func-
tional capabilities of ncRNAs such as single-guide RNAS for CRISPR on-target
gene editing (CRI-On) and predicting the mean ribosomal load of a given mRNA
sequence (MRL).
Lastly, we also show that model performance on secondary structure prediction
scales with complexity as in Table A2.

3.2 NCRNA DE NOVO GENERATION EVALUATION

3.2.1 UNCONDITIONAL GENERATION

Synthetic ncRNAs - viable tools in therapeutics, diagnostics and biotechnology -
can encompass engineered tRNAs, codon-optimized mRNAs, or siRNA therapeu-
tics. Moreover, RNA aptamers specifically have a long history of utility as short
RNA molecules that can bind to specific biomolecules with high affinity, selectivity,
and specificity. We evaluated EvoFlow-RNA’s ability to design ncRNAs that align
with key properties computed from the ncRNA training dataset. This would allow
for the generation of a diverse library of potential RNA aptamers, each exhibiting
unique structure-stability profiles.
To evaluate the model’s generative capability, we compared EvoFlow-RNA with
GenerRNA (Zhao et al., 2024), a 350M parameter autoregressive model, and
two RiNALMo checkpoints (150M and 650M). We generated aptamers from
RiNALMo using RDM sampling. Lastly, we also featured native ncRNAs as a
baseline for comparing key properties of the generated sequences. Native ncRNAs
refer to ncRNAs found in living organisms, which were randomly drawn from the
training dataset. To facilitate comparisons, we computed sequence pLDDT, GC
content, minimum free energy, and sequence entropy. Libraries of size 50, 100,
200 and 400 were generated to faciliate this study. 100 sequences are generated per
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Figure 2: Unconditional generation evaluation with P2 (RDM, η = 1.0). Distributions for pLDDT,
predicted minimum free energy, GC content, and sequence entropy for libraries generated from
five sources. Featured are EvoFlow-RNA, a masked diffusion model, GenerRNA, an autoregressive
model, two models of varying size for RiNALMo, a BERT model, and native ncRNA sequences from
nature. (A-D) Metrics for sequences of length 100. E) Average pLDDT, F) MFE, G) GC content, and
H) sequence entropy computed for libraries of size 100 as a function of library sequence length. De
novo, unconditionally-generated sequences of I) length 100 and J) 200. Bases are colored according to
their pLDDT and the AlphaFold2 color scheme. Additional library analysis and predicted structures
can be found in Figures A1 and A2, respectively.

library size and per model. Per Figure 2, we report that EvoFlow-RNA designed
ncRNAs exhibit similar biophysical profiles as native sequences than either of the
RiNALMo base models. In comparison to GenerRNA, EvoFlow-RNA produces
more ’foldable’ ncRNAs, as exhibited by the higher pLDDT distribution at the
same level of sequence diversity. The EvoFlow-RNA pLDDT distribution is also
relatively higher than the native sequence library, which may be a byproduct of
oversampling particular sequences with higher foldability. More extensive results
across library sizes are shown in Figure A1.
Most notably, we show that the consistency in alignment between EvoFlow-RNA
and native ncRNAs holds across all evaluated sequence lengths, regardless of
metric. All models converge to low average pLDDT values as the sequence length
increases, which is likely a product of the folding model. De novo designs also
exhibit a variety of tertiary structures, with several exhibiting tRNA-like structures
per Figures 2 I,J and A2.
To assess sampling quality, we performed an ablation using various P2-derived
strategies using three generation sources: EvoFlow-RNA (denoted as MDM),
RiNALMo-150M and RiNALMo-650M in Table A3. We compared four sampling
cases: ancestral (P2, η = 0), RDM (P2, η = 1), P2 with a calibrated η, and P2 with
a dedicated BERT planner (RiNALMo-150M). Moreover, we also demonstrate that
P2 sampling with a supervisory planner yields sequences with ’best’ performance
across all metrics, though we note the additional deviation from native sequences
in the training dataset.

3.2.2 CONDITIONAL GENERATION

A noteworthy ability of masked diffusion models, as opposed to their autoregressive
counterparts, is the ability to inform generation using bidirectional context. This
property is, in theory, useful for building scaffolds around key binding motifs. In
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this task, we fix one or more key motif subsequences within an experimentally
validated aptamer with a crystal structure as a prompt and use EvoFlow-RNA to
build around it.

Figure 3: Conditionally generating scaffolds for RNA aptamers. A) 1ULL (Left), an RNA
aptamer/HIV-1 rev peptide complex, is taken as a simpler study with several bases contributing
to the binding recognition site (salmon) on the aptamer. (Right) Two conditionally-generated scaffold
RNA aptamers sharing the binding recognition site (salmon) of the original aptamer. B) 1RAW (Left),
an RNA aptamer/AMP molecule complex, is a more complicated study with fewer bases contributing
to the binding recognition site (salmon) on the aptamer. (Right) Two conditionally-generated scaffold
RNA aptamers sharing the binding recognition site (salmon) of the original aptamer.

To test this capability, we investigated two known RNA aptamers from the protein
data bank: 1ULL (Ye et al., 1996) and 1RAW (Dieckmann et al., 1996). Within
their respective depositions, we identified the key recognition sites of each aptamer
that participate in the binding complex with the intended target. The remainder of
the sequence was masked and infilled using EvoFlow-RNA. Generated aptamers
from these scaffolds were of the same length as the original.
Using this procedure, we designed a library of model-scaffolded aptamers. The
result is shown in Figure 3, where we feature two conditionally-generated aptamers
for each original aptamer. All scaffolded aptamers maintain similar MFE and GC
content profiles as the original aptamer. Notably, the scaffolded aptamers for HIV-1
Rev peptide align fairly well with the original aptamers, with motif-specific RMSDs
of approximately 1 Å and whole-structure RMSDs of approximately 4 Å, following
a least-squares fit. The common motif RMSDs for the scaffolded and original
AMP aptamers are below 1 Å, highlighting that the key recognition elements do
not deviate substantially from their original locations using a scaffolding approach.
However, we do note that the whole-structure RMSDs following a least-squares fit
are well above 10 Å. Additional scaffolds for the HIV-1 Rev peptide system can be
found in Figure A3.

3.2.3 DOCKING

Molecular docking is a valuable tool for the rapid evaluation of protein-ligand
binding interactions as it provides us with the ability to compare binding poses
and elucidate the molecular fingerprints at binding interfaces. In this study, we
demonstrate that docking with HADDOCK 3.0 enabled us to recapitulate binding
of the target to the RNA aptamer in the same binding pocket observed in the
crystal structure, albeit with slightly different conformations in some instances. We
used associated binding energy (kcal/mol) to compare our generated aptamers to
wild-type analogs in Figure 4.
EvoFlow-RNA-designed aptamers with the lowest RMSDs compared to wild-type
aptamer analogs were selected for analysis. In each instance, designed aptamers
bound to their small molecule (Figure 4 A-C) or peptide (Figure 4 D-F) targets.
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Figure 4: Haddock 3.0 binding scores. WT aptamers are shown in gray and model-scaffolded mutants
are in cyan. Docking results are shown for three aptamer-small molecule systems (7FHI, 2L94,
1RAW, A-C) and three aptamer-peptide systems (1ETG, 1I9F, 1ULL, D-F).

Unlike the similar binding interactions observed between designed and wild-type
aptamers in the 7FHI and 1RAW systems, we observed a more significant binding
disparity in the HIV small molecular inhibitor system (PDB ID: 2L94) despite the
high structural homology between the aptamers (Fig 4B). We attributed this to
sequence variations between the designed and wild-type aptamers that impacted
pairwise binding interactions. We observed a similar phenomenon when analyzing
aptamers designed against RSG peptide (Figure 4E). However, for HIV-rev peptide
aptamers (Figure 4D,F), we observed that high structural homology to the wild-type
aptamer resulted in more similar binding scores.

4 DISCUSSION

We introduced EvoFlow-RNA, a bidirectional RNA language model based on
masked discrete diffusion that unifies representation learning and sequence gen-
eration. Trained on 30M ncRNA sequences, it achieves comparable performance
with the leading BERT models, excelling in secondary structure prediction, and
generating diverse, native-like RNA sequences. For RNA design, EvoFlow-RNA
globally redesigns aptamer scaffolds while preserving functional motifs with sub-
1Å RMSDs. Our results demonstrate the effectiveness of masked diffusion for
RNA modeling, providing a scalable alternative to existing methods.
Despite these results, we observed a few key limitations that could be items for
future work. First, we observed that successful performance was not observed
across all representation learning tasks, with EvoFlow-RNA performing below ex-
pectations on mRNA-related tasks. Though this was expected given that the model
was trained entirely on ncRNA, its subpar performance on distance map prediction
(DMP) is peculiar given its excellent ability on secondary structure and contact map
prediction. Second, though we observed that EvoFlow-RNA-generated libraries
most closely mirrored native ncRNAs across metrics for sequence composition
and biophysical properties, the pLDDT distributions did not always align closely.
Often, EvoFlow-RNA generated sequences with pLDDT’s above those computed
for native sequences. We note that this may be a consequence of the folding model.
Lastly, we acknowledge that experimental validation for any generated RNAs,
particularly the scaffolds, has yet to be done. Our motif scaffolding experiments
demonstrated a possible application of EvoFlow-RNA with a tractable validation
method. If such results hold true experimentally, the possibility of ncRNA op-
timization can be seamlessly applied to the growing field of aptamer and tRNA
therapeutics.
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6 APPENDIX

6.1 TRAINING

Here, we provide more details regarding our dataset and model architecture.

6.1.1 DATASET

RNAcentral is a comprehensive database that consolidates ncRNA sequences from
over 40 expert databases, providing a unified platform for ncRNA data. As of its
latest release, RNAcentral encompasses more than 30 million ncRNA sequences
spanning a diverse range of organisms and RNA types. We take our pretraining
data from RNACentral (Consortium, 2021), which has a processed dataset of over
30 million ncRNAs. We made no further preprocessing adjustments.

6.1.2 TOKENIZATION

Each nucleotide is treated as a single token, following a character-level tokenization
scheme specifically designed for RNA sequences. During tokenization, all uracil
(U) bases are replaced with thymine (T) to maintain consistency across sequence
representations, resulting in a primary vocabulary of four nucleotides: ”A”, ”C”,
”T”, and ”G”. Additionally, we include IUPAC degenerate nucleotide codes such
as ”I”, ”R”, ”Y”, ”K”, ”M”, ”S”, ”W”, ”B”, ”D”, ”H”, ”V”, ”N”, and ”-” to
account for sequence ambiguities commonly found in biological datasets. To align
with standard masked language modeling (MLM) practices, we incorporate the
special tokens [CLS], [EOS], [MASK], and [PAD], which respectively denote
sequence classification, end-of-sequence markers, masked tokens for pretraining,
and padding for fixed-length sequences. EvoFlow-RNA processes sequences of
up to 1022 tokens, dynamically truncating or padding them as needed. Random
sequence cropping is applied during training to ensure the model observes diverse
sequence contexts across epochs, which enhances its ability to generalize across
RNA families.

6.1.3 ENCODER ARCHITECTURE

EvoFlow-RNA is a BERT-style encoder-only transformer that extends the
RiNALMo-150M model (Penić et al., 2024) and is trained on a masked diffu-
sion modeling objective while leveraging the same tokenization scheme and ar-
chitectural framework. Given an input sequence x = (x1, x2, ..., xL) of length
L, the model maps it to a sequence of context-aware token embeddings of shape
(L×Memb). The architecture consists of several transformer blocks, where each
block contains a multi-head self-attention (MHSA) module with 20 attention heads,
a feed-forward network (FFN) using the SwiGLU activation function (Shazeer,
2020), and Layer Normalization (LayerNorm) within residual connections to sta-
bilize training dynamics. EvoFlow-RNA adopts Rotary Positional Embeddings
(RoPE) (Su et al., 2024) to encode both absolute and relative positional information,
thereby improving its ability to model long-range dependencies in RNA sequences.
To enhance computational efficiency, we employ FlashAttention-2 (Dao, 2024),
a memory-optimized exact attention mechanism that significantly reduces peak
activation memory without compromising precision, enabling training on long
RNA sequences with high batch throughput.
EvoFlow-RNA is initialized from all three available pretrained RiNALMo check-
points (33M, 150M, 650M) and continues training using a masked diffusion ob-
jective with a token corruption strategy where t ∼ U(0, 1) of the input sequence
is masked, namely, replaced by [MASK]. This approach ensures that the model
retains the strong representation learning capacity of RiNALMo while being effec-
tively adapted for diffusion-based sequence generation. Compared to GELU-based
architectures, the incorporation of SwiGLU activation improves gradient stability,
while RoPE enables better positional encoding compared to conventional abso-
lute position embeddings. Notably, we observe significant memory savings with
FlashAttention-2 while maintaining model convergence, making EvoFlow-RNA
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computationally efficient for large-scale RNA sequence modeling. Configurations
can be found in Table A1.

6.2 EVALUATION

Here, we elaborate on tools and metrics used for evaluating the representations and
generation quality of EvoFlow-RNA.

6.2.1 IN SILICO VALIDATION

An evaluation of the generative capability of the EvoFlow RNA model was per-
formed by comparing the binding capabilities of 6 designer RNA aptamers to
wild type variants. Here we used three aptamers that were able to bind to fluoro-
quinolone derivatives (PDB ID: 7FHI), AMP (PDB ID: 1RAW), and HIV inhibitor
(PDB ID: 2L94). We also used three aptamers that bind to HIV-1 peptide (PDB
IDs: 1ULL, 1ETG), and the RSG peptide (PDB ID: 1I9F). To evaluate binding
of both wild type and designer aptamers to these targets we used HADDOCK
version 3.0 (M.C. Teixeira et al., 2024). Structures were retrieved from the PDB,
and missing residues were analyzed and refined using Swiss-PdbViewer version
4.1.0. The simulations generated multiple binding poses across several clusters,
each with an associated docking score that is representative of the strength of the
binding interaction between the ligand (small molecule, and peptide) and the RNA
aptamers. In this study we used the calculated binding energy of the wild type
structures as the baseline to compare against out designed candidates. Poses and
binding energies calculated for cluster 1 of each simulation were used for this
comparison as they represented conformations of the ligand in the wild-type and
generated aptamers in similar binding pockets.

6.2.2 EVALUATION METRICS

Across both representation learning and unconditional generation, we utilize a wide
array of metrics for assessing the performance of EvoFlow-RNA. Metrics used
in BEACON representation learning are defined as the yare in BEACON (Ren
et al., 2024). pLDDT is the predicted local distance difference test, a per-residue
measure of local confidence from 0 to 100 (or normalized to span from 0 to 1)
(Tunyasuvunakool et al., 2021). pLDDT values are computed via RhoFold (Shen
et al., 2024). Higher scores indicate a more confident and, typically, accurate
prediction. GC content is the percentage of guanine (G) or cytosine (C) nucleotides
within a nucleic acid sequence. MFE, or minimum free energy, is the predicted
minimum free energy of an RNA which indicates the most stable state of a system
at equilibrium. MFE computations are taken from ViennaRNA (Lorenz et al.,
2011). Sequence entropy is the Shannon entropy of a sequence, a measure of
predictability or, consequently, diversity (Shannon, 1948).

6.3 BACKGROUND ALGORITHMS

In this section, we describe the key components of the Discrete Flow Model
(DFM) that underlies EvoFlow-RNA. We first introduce the notation and problem
formulation, then describe the construction of the generative flow using continuous-
time Markov chains (CTMCs). We detail our method formulation with special
emphasis on the mask formulation, and finally explain the sampling procedure and
training objective.

6.3.1 NOTATION

Let x ∈ {1, . . . , S}D denote a discrete sequence with D dimensions, where each
element takes one of S possible states. For ease of exposition, we assume D = 1;
the extension to higher dimensions follows by appropriate factorization.
We define p0(x) as the initial (noise) distribution, pdata(x) as the target data
distribution, and pt(x) as the time-dependent marginal distribution for t ∈ [0, 1]
that interpolates between p0 at t = 0 and pdata at t = 1. The dynamics of pt(x) are
generated by a time-dependent rate matrix Rt ∈ RS×S , whose off-diagonal entries
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are non-negative. In the context of continuous-time Markov chains (CTMCs), the
transition probability for an infinitesimal time step ∆t is given by

pt+∆t(j | x) = δ {x, j}+Rt(x, j)∆t, (1)

where δ {x, j} is the Kronecker delta, and Rt(x, x) is defined so that the row
sums are equal to 1. We also introduce a conditional noise flow pt|1(xt | x1) that
interpolates from a prescribed noise distribution pnoise(x) at t = 0 to a data point
x1 at t = 1.

6.3.2 PROBLEM FORMULATION

Our objective is to design a generative model that transforms noise samples into
samples from the data distribution. More precisely, we seek a generative flow
{pt(x)}t∈[0,1] satisfying

p0(x) = pnoise(x) and p1(x) = pdata(x).

The evolution of the marginal pt(x) is governed by the Kolmogorov forward (or
continuity) equation:

∂tpt(x) =
∑
j ̸=x

Rt(j, x)pt(j)−
∑
j ̸=x

Rt(x, j)pt(x). (2)

In our approach, the generative flow is constructed via an expectation over condi-
tional flows:

pt(xt) = Ex1∼pdata

[
pt|1(xt | x1)

]
, (3)

which decomposes the global evolution into simpler, datapoint-conditional pro-
cesses.

6.3.3 METHOD FORMULATION

A key component of our approach is the explicit construction of the conditional
flow pt|1(xt | x1). We consider two variants: a uniform corruption flow and a
mask-based flow. In this work, we focus on the mask formulation, which has been
found effective for discrete data.

Mask Formulation The mask formulation defines the conditional flow as

pmask
t|1 (xt | x1) = Cat

(
t δ {x1, xt}+ (1− t) δ {M,xt}

)
, (4)

where M is an artificially introduced mask state. This construction satisfies the
following limits: at t = 0, pmask

t|1 (xt | x1) = δ {M,xt}, so that all probability
mass is on the mask state, and at t = 1, pmask

t|1 (xt | x1) = δ {x1, xt}, thereby
recovering the true data point. Using equation 4, the overall generative flow in
equation 3 becomes

pt(xt) = Ex1∼pdata

[
pmask
t|1 (xt | x1)

]
. (5)

In order to sample from pt(xt), we require a rate matrix Rt(xt, j) that generates
this flow. One strategy is to first derive a conditional rate matrix Rt(xt, j | x1)
that produces the desired pt|1(xt | x1) and then aggregate it via the denoising
distribution:

Rt(xt, j) = Ex1∼p(x1|xt) [Rt(xt, j | x1)] , (6)

with

p(x1 | xt) =
pt|1(xt | x1)pdata(x1)

pt(xt)
.

This formulation decouples the design of the conditional dynamics (which can be
chosen in closed form) from the unconditional generative process.
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6.3.4 SAMPLING

To sample from the data distribution, we simulate the CTMC defined by the rate
matrix Rt(xt, j). Starting from an initial sample x0 ∼ p0(x), we discretize the
time interval [0, 1] with a step size ∆t and update the state according to

xt+∆t ∼ Cat
(
δ {xt, xt+∆t}+Rt(xt, xt+∆t)∆t

)
. (7)

This process is repeated iteratively until t = 1, at which point the final state is a
sample from pdata(x).

6.3.5 TRAINING OBJECTIVE

The parameters of our model are learned by training a neural network pθ1|t(x1 | xt)

to approximate the denoising distribution p(x1 | xt). The training objective is a
standard cross-entropy loss:

Lce = −E x1∼pdata

t∼U(0,1)
xt∼pt|1(xt|x1)

[
log pθ1|t(x1 | xt)

]
. (8)

Here, t is sampled uniformly from [0, 1] and xt is generated using the conditional
flow (e.g., via the mask formulation in equation 4). Importantly, this loss does not
depend on the choice of the conditional rate matrix Rt(xt, j | x1), which allows
flexibility in designing the sampling dynamics.

Algorithm A1 Sampling Scheme.
1: Initialize: t← 0, x0 ← (M, . . . ,M), planner Gθ , denoiser Dθ , scheduler K
2: for t = 1 : L do
3: Plan:
4: Sample y ∼ Dθ(xt)

5: UpdatePos← TopPosκ(t)
(
G̃θ

· (y, xt)
)

6: Denoise:
7: for j ∈ UpdatePos do
8: if [xt]j = M then
9: [xt]j ← yj

10: end if
11: end for
12: for j /∈ UpdatePos do
13: if [xt]j ̸= M then
14: [xt]j ←M
15: end if
16: end for
17: end for
18: return xL

7 SUPPLEMENTARY FIGURES

Table A1: EvoFlow-RNA model configurations.

Hyperparameter EvoFlow-RNA-33M EvoFlow-RNA-150M EvoFlow-RNA-650M

Layers 12 30 33
Embed. dim. 480 640 1280
Attention heads 20 20 20
RoPE TRUE TRUE TRUE

Attention dropout 0.1 0.1 0.1
Residual dropout 0.1 0.1 0.1
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Figure A1: Unconditional generation evaluation with P2 (RDM, η = 1.0) for libraries of several
lengths. Metric distributions are shown for libraries of length A) 50, B) 200, and C) 400.

Figure A2: Additional structures for ncRNAs generated unconditionally by EvoFlow-RNA of length
A) 100 and B) 200.
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Table A2: Ablation of EvoFlow-RNA model sizes and associated performance on bpRNA secondary
structure prediction.

Model F-1 Score (↑)

EvoFlow-RNA-33M 68.92
EvoFlow-RNA-150M 74.51
EvoFlow-RNA-650M 76.17

Table A3: RNA Sequence Generation Benchmark. The ”Native” row represents subsampled natural
RNA sequences.

Sequence Source pLDDT (↑)MFE (kcal/mol)EntropyGC Content (%)

Native 48.26 -35.83 1.96 49.64
RiNALMo-150M 59.01 -30.12 1.29 29.50
RiNALMo-650M 46.99 -31.90 1.33 28.06
EvoFlow-RNA + Ancestral 68.12 -48.46 1.93 60.84
EvoFlow-RNA + RDM 67.35 -47.54 1.89 59.42
EvoFlow-RNA + P2 (self-planning) 69.41 -48.21 1.89 59.84
EvoFlow-RNA + P2 + RiNALMo-150M Planner 73.28 -51.91 1.86 65.47

Figure A3: Additional scaffolds generated from the 1ULL HIV-1 Rev peptide binding aptamer.
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