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Abstract
Diffusion models exhibit powerful generative ca-
pabilities enabling noise mapping to data via re-
verse stochastic differential equations. However,
in image restoration, the focus is on the map-
ping relationship from low-quality to high-quality
images. Regarding this issue, we introduce the
Generalized Ornstein-Uhlenbeck Bridge (GOUB)
model. By leveraging the natural mean-reverting
property of the generalized OU process and fur-
ther eliminating the variance of its steady-state
distribution through the Doob’s h–transform, we
achieve diffusion mappings from point to point
enabling the recovery of high-quality images from
low-quality ones. Moreover, we unravel the fun-
damental mathematical essence shared by vari-
ous bridge models, all of which are special in-
stances of GOUB and empirically demonstrate
the optimality of our proposed models. Addi-
tionally, we present the corresponding Mean-
ODE model adept at capturing both pixel-level
details and structural perceptions. Experimen-
tal outcomes showcase the state-of-the-art per-
formance achieved by both models across di-
verse tasks, including inpainting, deraining, and
super-resolution. Code is available at https:
//github.com/Hammour-steak/GOUB.

1. Introduction
Image restoration involves the restoring of high-quality
(HQ) images from their low-quality (LQ) version (Ban-
ham & Katsaggelos, 1997; Zhou et al., 1988; Liang et al.,
2021; Luo et al., 2023b), which is often characterized as an
ill-posed inverse problem due to the loss of crucial infor-
mation during the degradation from high-quality images to
low-quality images. It encompasses a suite of classical tasks,
including image deraining (Zhang & Patel, 2017; Yang et al.,
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2020; Xiao et al., 2022), denoising (Zhang et al., 2018a; Li
et al., 2022; Soh & Cho, 2022; Zhang et al., 2023a), de-
blurring (Yuan et al., 2007; Kong et al., 2023), inpainting
(Jain et al., 2023; Zhang et al., 2023b), and super-resolution
(Dong et al., 2015; Zamfir et al., 2023; Wei et al., 2023),
among others.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019; Song et al., 2021b; Karras et al.,
2022) have also been applied to image restoration, yielding
favorable results (Ho & Salimans, 2021; Wang et al., 2023;
Su et al., 2022; Shi et al., 2024). They mainly follow the
standard forward process, diffusing images to pure noise and
using low-quality images as conditions to facilitate the gen-
eration process of high-quality images (Dhariwal & Nichol,
2021; Ho & Salimans, 2021; Kawar et al., 2021; Saharia
et al., 2022; Kawar et al., 2022; Chung et al., 2022b;a; Wang
et al., 2023). However, these approaches require the inte-
gration of substantial prior knowledge specific to each task
such as degradation matrices, limiting their universality.

Furthermore, some studies have attempted to establish a
point-to-point mapping from low-quality to high-quality
images, learning the general degradation and restoration
process and thus circumventing the need for additional prior
information for modeling specific tasks (Chen et al., 2022;
Cui et al., 2023; Lee et al., 2024). In terms of diffusion mod-
els, this mapping can be realized through the bridge (Liu
et al., 2022; Su et al., 2022; Liu et al., 2023a), a stochastic
process with fixed starting and ending points. By assign-
ing high-quality and low-quality images to the starting and
ending points, and initiating with the low-quality images,
high-quality images can be obtained by applying the re-
verse diffusion process, thereby enabling image restoration.
However, some bridge models face challenges in learning
likelihoods (Liu et al., 2022), necessitating reliance on cum-
bersome iterative approximation methods (De Bortoli et al.,
2021; Su et al., 2022; Shi et al., 2024), which pose sig-
nificant constraints in practical applications; others do not
consider the selection of diffusion process and ignore the
optimality of diffusion process (Liu et al., 2023a; Li et al.,
2023; Zhou et al., 2024), thus may introducing unnecessary
costs and limiting the performance of the model.

This paper proposed a novel image restoration bridge model,
the Generalized Ornstein-Uhlenbeck Bridge (GOUB), de-
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picted in Figure 1. Owing to the mean-reverting proper-
ties of the Generalized Ornstein-Uhlenbeck (GOU) process,
it gradually diffuses the HQ image into a noisy LQ state
(denoted as xT + λϵ in Figure 1). By applying Doob’s
h-transform on GOU, we modify the diffusion process to
eliminate noise on xT to directly bridge the HQ image and
its LQ counterpart. The model initiates a point-to-point for-
ward diffusion process and learns its reverse through maxi-
mum likelihood estimation, thereby ensuring it can restore
a low-quality image to the corresponding high-quality im-
age avoiding the limitation of generality and costly iterative
approximation. Our main contributions can be summarized
as follows:

• We introduce a novel image restoration bridge model
GOUB which eliminates variance of the ending point
on the GOU process, directly connecting the high and
low-quality images and is particularly expressive in
deep visual features and diversity.

• Benefiting from the distinctive features of the parame-
terization mechanism, we introduce the corresponding
Mean-ODE model, demonstrating a strong ability to
capture pixel-level details and structural perceptions.

• We uncover the mathematical essence of several bridge
models, all of which are special cases of the GOUB,
and empirically demonstrate the optimality of our pro-
posed models.

• Our model has achieved state-of-the-art results on nu-
merous image restoration tasks, such as inpainting,
deraining, and super-resolution.

2. Preliminaries
2.1. Score-based Diffusion Model

The score-based diffusion model (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021b) is a category of
generative model that seamlessly transitions data into noise
via a diffusion process and generates samples by learning
and adapting the reverse process (Anderson, 1982). As-
suming a dataset consists of n dimensional independent
identically distributed (i.i.d.) samples, following an un-
known distribution denoted by p(x0). The time-dependent
forward process of the diffusion model can be described by
the following SDE:

dxt = f (xt, t) dt+ gtdwt, (1)

where f : Rn → Rn is the drift coefficient, gt : R → R is
the scalar diffusion coefficient and wt denotes the standard
Brownian motion. Typically, p(x0) evolves over time t
from 0 to a sufficiently large T into p(xT ) through the

SDE, such that p(xT ) will approximate a standard Gaussian
distribution pprior(x). Meanwhile, the forward SDE has a
corresponding reverse time SDE (Anderson, 1982) whose
closed form is given by:

dxt =
[
f (xt, t)− g2t∇xt

log p(xt)
]
dt+ gtdwt. (2)

Starting from time T , p(xT ) can progressively transform
to p(x0) by traversing the trajectory of the reverse SDE.
The score ∇xt

log p(xt) can generally be parameterized as
sθ(xt, t) and employ conditional score matching (Vincent,
2011) as the loss function for training:

L =
1

2

∫ T

0

Ext

[
λ (t)

∥∥∇xt log p (xt) − sθ (xt, t)
∥∥2

]
dt

∝
1

2

∫ T

0

Ex0,xt

[
λ (t)

∥∥∇xt log p (xt | x0) − sθ (xt, t)
∥∥2

]
dt,

(3)

where λ(t) serves as a weighting function, and if selected as
g2t that yields a more optimal upper bound on the negative
log-likelihood (Song et al., 2021a). The second line is actu-
ally the most commonly used, as the conditional probability
p(xt | x0) is generally accessible. Ultimately, one can sam-
ple xT from the prior distribution p(xT ) ≈ pprior(x) and
obtain the x0 through the numerical solution of Equation
(2) via iterative steps, thereby completing the generation
process.

2.2. Generalized Ornstein-Uhlenbeck process

The Generalized Ornstein-Uhlenbeck (GOU) process is the
time-varying OU process (Ahmad, 1988). It is a station-
ary Gaussian-Markov process, whose marginal distribution
gradually tends towards a stable mean and variance over
time. The GOU process is generally defined as follows:

dxt = θt (µ− xt) dt+ gtdwt, (4)

where µ is a given state vector, θt denotes a scalar drift
coefficient and gt represents the diffusion coefficient. At
the same time, we require θt, gt to satisfy the specified
relationship 2λ2 = g2t /θt, where λ2 is a given constant
scalar. As a result, its transition probability possesses a
closed-form analytical solution:

p (xt | xs) = N(m̄s:t, σ̄
2
s:tI) =

N

(
µ+ (xs − µ) e−θ̄s:t ,

g2t
2θt

(
1− e−2θ̄s:t

)
I

)
,

θ̄s:t =

∫ t

s

θzdz.

(5)

A simple proof is provided in Appendix C. For the sake
of simplicity in subsequent representations, we denote θ̄0:t
and σ̄0:t as θ̄t and σ̄t respectively. Consequently, p(xt)
will steadily converge towards a Gaussian distribution with
the mean of µ and the variance of λ2 as time t progresses
meaning that it exhibits the mean-reverting property.
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Figure 1. Overview of the proposed GOUB for image restoration. The GOU process is capable of transferring an HQ image into a noisy
LQ image. Additionally, through the application of h-transform, we can eliminate the noise on LQ, enabling the GOUB model to precisely
bridge the gap between HQ and LQ.

2.3. Doob’s h-transform

Doob’s h-transform (Särkkä & Solin, 2019) is a mathemat-
ical technique applied to stochastic processes. It involves
transforming the original process by incorporating a specific
h-function into the drift term of the SDE, modifying the pro-
cess to pass through a predetermined terminal point. More
precisely, given the SDE (1), if it is desired to pass through
the given fixed point xT at t = T , an additional drift term
must be incorporated into the original SDE:

dxt =
[
f(xt, t) + g2th(xt, t,xT , T )

]
dt+ gtdwt, (6)

where h(xt, t,xT , T ) = ∇xt log p(xT | xt) and x0 starts
from p (x0 | xT ). A simple proof can be found in Appendix
D. In comparison to (1), the marginal distribution of (6) is
conditioned on xT , with its forward conditional probabil-
ity density given by p(xt | x0,xT ) satisfying the forward
Kolmogorov equation that is defined by (6). Intuitively,
p(xT | x0,xT ) = 1 at t = T , ensuring that the SDE invari-
ably passes through the specified point xT for any initial
state x0.

3. GOUB
The GOU process (4) is characterized by mean-reverting
properties that if we consider the initial state x0 to represent
a high-quality image and the corresponding low-quality
image xT = µ as the final condition, then the high-quality
image will gradually converge to a Gaussian distribution
with the low-quality image as its mean and a stable variance

λ2. This naturally connects some information between high
and low-quality images, offering an inherent advantage in
image restoration. However, the initial state of the reverse
process necessitates the artificial addition of noise to low-
quality images, resulting in certain information loss and thus
affecting the performance (Luo et al., 2023a).

In actuality, we are more focused on the connections be-
tween points (Liu et al., 2022; De Bortoli et al., 2021; Su
et al., 2022; Li et al., 2023; Zhou et al., 2024) in image
restoration. Coincidentally, the Doob’s h-transform tech-
nique can modify an SDE such that it passes through a
specified xT at terminal time T . Accordingly, it is crucial
to note that the application of the h-transform to the GOU
process effectively eliminates the impact of terminal noise,
directly bridging a point-to-point relationship between high-
quality and low-quality images.

3.1. Forward and backward process

Applying the h-transform, we can readily derive the forward
process of the GOUB, leading to the following proposition:
Proposition 3.1. Let xt be a finite random variable describ-
ing by the given generalized Ornstein-Uhlenbeck process
(4), suppose xT = µ, the evolution of its marginal distribu-
tion p(xt | xT ) satisfies the following SDE:

dxt =

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)dt+ gtdwt. (7)

Additionally, the forward transition p(xt | x0,xT ) is given
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by:

p(xt | x0,xT ) = N(m̄′
t, σ̄

′2
t I),

m̄′
t = e−θ̄t

σ̄2
t:T

σ̄2
T

x0 +

[(
1− e−θ̄t

) σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T
σ̄2
t

σ̄2
T

]
xT

σ̄′2
t =

σ̄2
t σ̄

2
t:T

σ̄2
T

(8)

The derivation of the proposition is provided in the Ap-
pendix A.1. With Proposition 3.1, there is no need to per-
form multi-step forward iteration using the SDE; instead,
we can directly use its closed-form solution for one-step
forward sampling.

Similarly, applying the previous SDE theory enables us to
easily derive the reverse process, which leads to the follow-
ing Proposition 3.2:

Proposition 3.2. The reverse SDE of equation (7) has a
marginal distribution p(xt | xT ), and is given by:

dxt =

[(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)

− g2t∇xt
log p(xt | xT )

]
dt+ gtdwt,

(9)

and exists a probability flow ODE:

dxt =

[(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)

− 1

2
g2t∇xt log p(xt | xT )

]
dt.

(10)

We are capable of initiating from a low-quality image xT

and proceeding to utilize Euler sampling solving the reverse
SDE or ODE for restoration purposes.

3.2. Training object

The score term ∇xt
log p(xt | xT ) can be parameterized

by a neural network sθ(xt,xT , t) and can be estimated us-
ing the loss function (3). Unfortunately, training the score
function for SDEs generally presents a significant challenge.
Nevertheless, since the analytical form of GOUB is directly
obtainable, we will introduce the use of maximum likeli-
hood for training, which yields a more stable loss function.

We first discretize the continuous time interval [0, T ] into
N sufficiently fine-grained intervals in a reasonable man-
ner, denoted as {xt}t∈[0,N ],xN = xT . We are concerned
with maximizing the log-likelihood, which leads us to the
following proposition:

Proposition 3.3. Let xt be a finite random variable de-
scribing by the given generalized Ornstein-Uhlenbeck pro-
cess (4), for a fixed xT , the expectation of log-likelihood
Ep(x0)[log pθ(x0 | xT )] possesses an Evidence Lower
Bound (ELBO):

ELBO = Ep(x0)

[
Ep(x1|x0) [log pθ (x0 | x1,xT )]−

T∑
t=2

Ep(xt|x0)[KL (p (xt−1 | x0,xt,xT ) ||pθ (xt−1 | xt,xT ))]

]
(11)

Assuming pθ (xt−1 | xt,xT ) is a Gaussian distribution with
a constant variance N(µθ,t−1, σ

2
θ,t−1I), maximizing the

ELBO is equivalent to minimizing:

L = Et,x0,xt,xT

[
1

2σ2
θ,t−1

∥µt−1 − µθ,t−1∥2
]
, (12)

where µt−1 represents the mean of p (xt−1 | x0,xt,xT ):

µt−1 =
1

σ̄′2
t

[
σ̄′2
t−1(xt − bxT )a+ (σ̄′2

t − σ̄′2
t−1a

2)m̄′
t

]
, (13)

where,

a =
e−θ̄t−1:t σ̄2

t:T

σ̄2
t−1:T

,

b =
1

σ̄2
T

{
(1− e−θ̄t)σ̄2

t:T + e−2θ̄t:T σ̄2
t

−
[
(1− e−θ̄t−1)σ̄2

t−1:T + e−2θ̄t−1:T σ̄2
t−1

]
a
}

The derivation of the proposition is provided in the Ap-
pendix A.2. With Proposition 3.3, we can easily construct
the training objective. In this work, we try to parameterized
µθ,t−1 from differential of SDE which can be derived from
equation (9):

xt−1 =xt −

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)

+ g2t∇xt log p(xt | xT )− gtϵt,

(14)

where ϵt ∼ N(0,dtI), therefore:

µθ,t−1 =xt −

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)

+ g2t∇xt
log pθ(xt | xT ),

σθ,t−1 =gt.

(15)

Inspired by conditional score matching, we can parameterize
noise as ϵθ(xt,xT , t), thus the score ∇xt

log pθ(xt | xT )
can be represented as −ϵθ(xt,xT , t)/σ̄

′
t. In addition, dur-

ing our empirical research, we found that utilizing L1 loss
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yields enhanced image reconstruction outcomes (Boyd &
Vandenberghe, 2004; Hastie et al., 2009). This approach
enables the model to learn pixel-level details more easily,
resulting in markedly improved visual quality. Therefore,
the final training object is:

L = Et,x0,xt,xT

[
1

2g2t

∥∥∥∥∥ 1

σ̄′2
t

[
σ̄′2
t−1(xt − bxT )a

+(σ̄′2
t − σ̄′2

t−1a
2)m̄′

t

]
− xt

+

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)

+
g2t
σ̄′
t

ϵθ(xt,xT , t)

∥∥∥∥∥
]

(16)

Consequently, if we obtain the optimal ϵ∗θ(xt,xT , t),
we can compute the score ∇xt log p(xt | xT ) ≈
−ϵ∗θ(xt,xT , t)/σ̄

′
t for reverse process. Starting from a low-

quality image xT , we can recover x0 by using Equation (9)
to perform reverse iteration.

3.3. Mean-ODE

Unlike normal diffusion models, our parameterization of the
mean µθ,t−1 is derived from the differential of SDE which
effectively combines the characteristics of discrete diffusion
models and continuous score-based generative models. In
the reverse process, the value of each sampling step will
approximated to the true mean during training. Therefore,
we propose a Mean-ODE model, which omits the Brownian
drift term:

dxt =

[(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)

− g2t∇xt
log p(xt | xT )

]
dt,

(17)

To simplify the expression, we use GOUB to represent the
GOUB (SDE) sampling model and Mean-ODE to represent
the GOUB (Mean-ODE) sampling model. Our following
experiments have demonstrated that the Mean-ODE is more
effective than the corresponding Score-ODE at capturing the
pixel details and structural perceptions of images, playing
a pivotal role in image restoration tasks. Concurrently, the
SDE model (9) is more focused on deep visual features and
diversity.

4. Experiments
We conduct experiments under three popular image restora-
tion tasks: image inpainting, image deraining, and image
super-resolution. Four metrics are employed for the model

Table 1. Image Inpainting. Qualitative comparison with the rele-
vant baselines on CelebA-HQ.

METHOD PSNR↑ SSIM↑ LPIPS↓ FID↓
PromptIR 30.22 0.9180 0.068 32.69
DDRM 27.16 0.8993 0.089 37.02
IR-SDE 28.37 0.9166 0.046 25.13

GOUB 28.98 0.9067 0.037 4.30
Mean-ODE 31.39 0.9392 0.052 12.24

evaluation, i.e., Peak Signal-to-Noise Ratio (PSNR) for as-
sessing reconstruction quality, Structural Similarity Index
(SSIM) (Wang et al., 2004) for gauging structural percep-
tion, Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018b) for evaluating the depth and quality
of features, and Fréchet Inception Distance (FID) (Heusel
et al., 2017) to measure the diversity in generated images.
More experiment details are present in Appendix E.

Image Inpainting. Image inpainting involves filling in
missing or damaged parts of an image, to restore or enhance
the overall visual effect of the image. We have selected the
CelebA-HQ 256×256 datasets (Karras et al., 2018) for both
training and testing with 100 thin masks. We compare our
models with several current baseline inpainting approaches
such as PromptIR (Potlapalli et al., 2023), DDRM (Kawar
et al., 2022) and IR-SDE (Luo et al., 2023a). The relevant
experimental results are shown in the Table 1 and Figure 2.
It is observed that the two proposed models achieved state-
of-the-art results in their respective areas of strength and
also delivered highly competitive outcomes on other metrics.
From a visual perspective, our model excels in capturing
details such as eyebrows, eyes, and image backgrounds.

Image Deraining. We have selected the Rain100H
datasets (Yang et al., 2017) for our training and testing,
which includes 1800 pairs of training data and 100 images
for testing. It is important to note that in this task, similar
to other deraining models, we present the PSNR and SSIM
scores specifically on the Y channel (YCbCr space). We
report state-of-the-art approaches for comparison: MPRNet
(Zamir et al., 2021), M3SNet-32 (Gao et al., 2023), MAXIM
(Tu et al., 2022), MHNet (Gao & Dang, 2023), IR-SDE (Luo
et al., 2023a). The relevant experimental results are shown
in the Table 2 and Figure 3. Similarly, both models achieved
SOTA results respectively in the deraining task. Visually,
it can be also observed that our model excels in capturing
details such as the moon, the sun, and tree branches.

Image Super-Resolution. Single image super-resolution
aims to recover a higher resolution and clearer version from
a low-resolution image. We conducted training and evalua-
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Figure 2. Qualitative comparison of the visual results of different
inpainting methods on the CelebA-HQ dataset with thin mask.

tion on the DIV2K validation set for 4× upscaling (Agusts-
son & Timofte, 2017) and all low-resolution images were
bicubically rescaled to the same size as their corresponding
high-resolution images. To show that our models are in line
with the state-of-the-art, we compare to the DDRM (Kawar
et al., 2022) and IR-SDE (Luo et al., 2023a). The relevant
experimental results are provided in Table 3 and Figure 4.
As can be seen, our GOUB is superior to benchmarks in
various indicators and handles visual details better such as
edges and hair.

Superiority of Mean-ODE. Additionally, we conduct
ablation experiments using the corresponding Score-ODE
(10) model to demonstrate the superiority of our proposed
Mean-ODE model in image restoration. From Table 4, it is
evident that the performance of Mean-ODE is significantly
superior to that of the corresponding Score-ODE. This is
because the sampling results of each sampling step of Mean-
ODE directly approximate the true mean during the training
process, as opposed to the parameterized approach such as
DDPM, which relies on expectations. Consequently, our
proposed Mean-ODE demonstrates better reconstruction
effects and is more suitable for image restoration tasks.

Table 2. Image Deraining. Qualitative comparison with the rele-
vant baselines on Rain100H.

METHOD PSNR↑ SSIM↑ LPIPS↓ FID↓
MPRNet 30.41 0.8906 0.158 61.59
M3SNet-32 30.64 0.8920 0.154 60.26
MAXIM 30.81 0.9027 0.133 58.72
MHNet 31.08 0.8990 0.126 57.93
IR-SDE 31.65 0.9041 0.047 18.64

GOUB 31.96 0.9028 0.046 18.14
Mean-ODE 34.56 0.9414 0.077 32.83

Table 3. Image 4× Super-Resolution. Qualitative comparison
with the relevant baselines on DIV2K.

METHOD PSNR↑ SSIM↑ LPIPS↓ FID↓
DDRM 24.35 0.5927 0.364 78.71
IR-SDE 25.90 0.6570 0.231 45.36

GOUB 26.89 0.7478 0.220 20.85
Mean-ODE 28.50 0.8070 0.328 22.14

5. Analysis
The Doob’s h-transform of the generalized Ornstein-
Uhlenbeck process, also known as the conditional GOU
process has been an intriguing topic in previous applied
mathematical research (Salminen, 1984; Cheridito et al.,
2003; Heng et al., 2021). On account of the mean-reverting
property of the GOU process, applying the h-transform
makes it most straightforward to eliminate the variance and
drive it towards a Dirac distribution in its steady state which
is highly advantageous for its applications in image restora-
tion. In previous research on diffusion models, there has
been limited focus on the cases of f or g, and generally
used the VE process (Song et al., 2021b) represented by
NCSN (Song & Ermon, 2019) or the VP process (Song
et al., 2021b) represented by DDPM (Ho et al., 2020).

In this section, we demonstrate that the mathematical
essence of several recent meaningful diffusion bridge mod-
els is the same (Li et al., 2023; Zhou et al., 2024; Liu et al.,
2023a) and they all represent Brownian bridge (Chow, 2009)
models, details are provided in the Appendix B.1. Then, we
also found that the VE and VP processes are special cases
of GOU, leading to the following proposition:

Proposition 5.1. For a given GOU process (4), there exists
relationships:

lim
θt→0

GOU = VE

lim
µ→0,λ→1

GOU = VP
(18)

Details are provided in the Appendix B.2. Therefore, we
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Table 4. Qualitative comparison with the corresponding Score-ODE on various tasks.

METHOD Image Inapinting Image Deraining Image 4× Super-Resolution

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
Score-ODE 18.23 0.6266 0.389 161.54 13.64 0.7404 0.338 191.15 28.14 0.7993 0.344 25.51
Mean-ODE 31.39 0.9392 0.052 12.24 34.56 0.9414 0.077 32.83 28.50 0.8070 0.328 22.14

Table 5. Qualitative comparison with the different bridge models on CelebA-HQ, Rain100H, and DIV2K datasets.

METHOD Image Inapinting Image Deraining Image 4× Super-Resolution

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
VEB 27.75 0.8943 0.056 13.70 30.39 0.8975 0.059 28.54 24.21 0.5808 0.384 36.55
VPB 27.32 0.8841 0.049 11.87 30.89 0.8847 0.051 23.36 25.40 0.6041 0.342 29.17

GOUB 28.98 0.9067 0.037 4.30 31.96 0.9028 0.046 18.14 26.89 0.7478 0.220 20.85
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Figure 3. Qualitative comparison of the visual results of different
deraining methods on the Rain100H dataset.

conduct experiments on VE Bridge (VEB) (Li et al., 2023;
Zhou et al., 2024; Liu et al., 2023a) and VP Bridge (VPB)
(Zhou et al., 2024) to demonstrate the optimality of our
proposed GOUB model in image restoration. We keep all
the model hyperparameters consistent and results are shown
in Table 5 and Figure 5.

It can be seen that under the same configuration of model
hyperparameters, the performance of the GOUB is notably
superior to the other two types of bridge models, which

Bicubic

IR-SDE

GOUB

GOUB

(Mean-ODE)

GT

DDRM

Figure 4. Qualitative comparison of the visual results of different
4x super-resolution methods on the DIV2K dataset.

demonstrates the optimality of GOUB and also highlights
the importance of the choice of diffusion process in diffusion
models.

6. Related Works
Conditional Generation. As previously highlighted, in
the work of image restoration using diffusion models, the fo-
cus of some research has predominantly been on using low-

7
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Deraining Super-ResolutionInpainting

LQ

GT

GOUB

VPB

VEB

Figure 5. Qualitative comparison with the different bridge models
in many tasks.

quality images as conditional inputs y to guide the genera-
tion process. They (Kawar et al., 2021; Saharia et al., 2022;
Kawar et al., 2022; Chung et al., 2022a;b; 2023; Zhao et al.,
2023; Murata et al., 2023; Feng et al., 2023) all endeavor to
solve or approximate the classifier log∇xt

p(y | xt), neces-
sitating the incorporation of additional prior knowledge to
model specific degradation processes which both complex
and lacking in universality.

Diffusion Bridge. This segment of work obviates the need
for prior knowledge, constructing a diffusion bridge model
from high-quality to low-quality images, thereby learning
the degradation process. The previously mentioned ap-
proach (Liu et al., 2022; De Bortoli et al., 2021; Su et al.,
2022; Liu et al., 2023a; Shi et al., 2024; Li et al., 2023; Zhou
et al., 2024; Albergo et al., 2023) fall into this class and are
characterized by the issues of significant computational ex-
pense in solution seeking and also not the optimal model
framework. Additionally, some models of flow category
(Lipman et al., 2023; Liu et al., 2023b; Tong et al., 2023;

Albergo & Vanden-Eijnden, 2023; Delbracio & Milanfar,
2023) also belong to the diffusion bridge models and face
the similar issue.

7. Conclusion
In this paper, we introduced the Generalized Ornstein-
Uhlenbeck Bridge (GOUB) model, a diffusion bridge model
that applies the Doob’s h-transform to the GOU process.
This model can address general image restoration tasks
without the need for specific prior knowledge. Furthermore,
we have uncovered the mathematical essence of several
bridge models and empirically demonstrated the optimality
of our proposed model. In addition, considering our unique
mean parameterization mechanism, we proposed the Mean-
ODE model. Experimental results indicate that both models
achieve state-of-the-art results in their respective areas of
strength on various tasks, including inpainting, deraining,
and super-resolution. We believe that the exploration of
diffusion process and bridge models holds significant im-
portance not only in the field of image restoration but also
in advancing the study of generative diffusion models.
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A. Proof
A.1. Proof of Proposition 3.1

Proposition 3.1. Let xt be a finite random variable describing by the given generalized Ornstein-Uhlenbeck process (4),
suppose xT = µ, the evolution of its marginal distribution p(xt | xT ) satisfies the following SDE:

dxt =

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)dt+ gtdwt, (7)

additionally, the forward transition p(xt | x0,xT ) is given by:

p(xt | x0,xT ) = N(m̄′
t, σ̄

′2
t I)

= N

(
e−θ̄t

σ̄2
t:T

σ̄2
T

x0 +

[(
1− e−θ̄t

) σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T
σ̄2
t

σ̄2
T

]
xT ,

σ̄2
t σ̄

2
t:T

σ̄2
T

I

) (8)

Proof : Based on (5), we have:
p (xt | x0) = N

(
xT + (x0 − xT ) e

−θ̄t , σ̄2
t I
)

(19)

p (xT | xt) = N
(
xT + (xt − xT ) e

−θ̄t:T , σ̄2
t:T I

)
(20)

p (xT | x0) = N
(
xT + (x0 − xT ) e

−θ̄T , σ̄2
T I
)

(21)

Firstly, the h function can be directly compute:

h(xt, t,xT , T ) = ∇xt log p(xT | xt)

= −∇xt

(xt − xT )
2
e−2θ̄t:T

2σ2
t:T

= (xT − xt)
e−2θ̄t:T

σ̄2
t:T

(22)

Therefore, followed by Doob’s h-transform (6), the SDE of marginal distribution p(xt | xT ) satisfied is :

dxt =
[
f(xt, t) + g2th(xt, t,xT , T )

]
dt+ gtdwt

=

(
θt + g2t

e−2θ̄t:T

σ̄2
t:T

)
(xT − xt)dt+ gtdwt

(23)

Furthermore, we can derive the following transition probability of xt using Bayes’ formula:

p(xt | x0,xT ) =
p(xT | xt,x0)p(xt | x0)

p(xT | x0)

=
p(xT | xt)p(xt | x0)

p(xT | x0)

(24)

Since each component is independently and identically distributed (i.i.d), by considering a single dimension, we have:

p(xt | x0,xT ) ∝
1√

2πσ̄tσ̄t:T /σ̄T

exp−

{
(xt − [xT + (x0 − xT ) e

−θ̄t ])2

2σ̄2
t

+
(xT − [xT + (xt − xT ) e

−θ̄t:T ])2

2σ̄2
t:T

}

=
1√

2πσ̄tσ̄t:T /σ̄T

exp−

{
(xt − [xT + (x0 − xT ) e

−θ̄t ])2

2σ̄2
t

+
(xt − xT )

2
e−2θ̄t:T

2σ̄2
t:T

}

∝ 1√
2πσ̄tσ̄t:T /σ̄T

exp−

{(
1

2σ̄2
t

+
e−2θ̄t:T

2σ̄2
t:T

)
x2
t −

(
xT − (x0 − xT ) e

−θ̄t

σ̄2
t

+
xT e

−2θ̄t:T

σ̄2
t:T

)
xt

} (25)
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Notice that:
1

2σ̄2
t

+
e−2θ̄t:T

2σ̄2
t:T

=
σ2
t:T + σ̄2

t e
−2θ̄t:T

2σ̄2
t σ̄

2
t:T

=
λ2
[
(1− e−2θ̄t:T ) + (1− e−2θ̄t)e−2θ̄t:T

]
2σ̄2

t σ̄
2
t:T

=
λ2
[
(1− e−2θ̄t:T ) + (e−2θ̄t:T − e−2θ̄T )

]
2σ̄2

t σ̄
2
t:T

=
σ̄2
T

2σ̄2
t σ̄

2
t:T

(26)

Bringing it back to (25), squaring the terms and reorganizing the equation, we obtain:

p(xt | x0,xT ) ∝
1√

2πσ̄tσ̄t:T /σ̄T

exp−

{
σ̄2
T

2σ̄2
t σ̄

2
t:T

x2
t −

(
xT − (x0 − xT ) e

−θ̄t

σ̄2
t

+
xT e

−2θ̄t:T

σ̄2
t:T

)
xt

}

=
1√

2πσ̄tσ̄t:T /σ̄T

exp−

x2
t −

([
xT − (x0 − xT ) e

−θ̄t
]

2σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T 2σ̄2
t

σ̄2
T
xT

)
xt

2(σ̄tσ̄t:T /σ̄T )2


∝ 1√

2πσ̄tσ̄t:T /σ̄T

exp−

{
xt − e−θ̄t σ̄2

t:T

σ̄2
T
x0 −

[(
1− e−θ̄t

)
σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T σ̄2
t

σ̄2
T

]
xT

}2

2(σ̄tσ̄t:T /σ̄T )2

= N

(
e−θ̄t

σ̄2
t:T

σ̄2
T

x0 +

[(
1− e−θ̄t

) σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T
σ̄2
t

σ̄2
T

]
xT ,

σ̄2
t σ̄

2
t:T

σ̄2
T

I

)
(27)

This concludes the proof of the Proposition 3.1.

A.2. Proof of Proposition 3.3

Proposition 3.3. Let xt be a finite random variable describing by the given generalized Ornstein-Uhlenbeck process (4), for
a fixed xT , the expectation of log-likelihood Ep(x0)[log pθ(x0 | xT )] possesses an Evidence Lower Bound (ELBO):

ELBO = Ep(x0)

[
Ep(x1|x0) [log pθ (x0 | x1,xT )]−

T∑
t=2

KL (p (xt−1 | x0,xt,xT ) ||pθ (xt−1 | xt,xT ))

]
(11)

Assuming pθ (xt−1 | xt,xT ) is a Gaussian distribution with a constant variance N(µθ,t−1, σ
2
θ,t−1I), maximizing the

ELBO is equivalent to minimizing:

L = Et,x0,xt,xT

[
1

2σ2
θ,t−1

∥µt−1 − µθ,t−1∥2
]
, (12)

where µt−1 represents the mean of p (xt−1 | x0,xt,xT ):

µt−1 =
1

σ̄′2
t

[
σ̄′2
t−1(xt − bxT )a+ (σ̄′2

t − σ̄′2
t−1a

2)m̄′
t

]
, (13)

where,

a =
e−θ̄t−1:t σ̄2

t:T

σ̄2
t−1:T

,

b =
1

σ̄2
T

{
(1− e−θ̄t)σ̄2

t:T + e−2θ̄t:T σ̄2
t −

[
(1− e−θ̄t−1)σ̄2

t−1:T + e−2θ̄t−1:T σ̄2
t−1

]
a
}

13
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Proof : Firstly, followed by the theorem in DDPM (Ho et al., 2020):

Ep(x0) [log pθ(x0)] ≥Ep(x0)

[
−KL(p(xT | x0)||p(xT )) + Ep(x1|x0) [log pθ (x0 | x1)]

−
T∑

t=2

Ep(xt|x0)[KL (p (xt−1 | x0,xt) ||pθ (xt−1 | xt))]

] (28)

Similarly, we have:

Ep(x0)[log pθ(x0 | xT )] ≥ Ep(x0)

[
−KL(p(xT | x0,xT )||p(xT | xT )) + Ep(x1|x0) [log pθ (x0 | x1,xT )]

−
T∑

t=2

Ep(xt|x0)[KL (p (xt−1 | x0,xt,xT ) ||pθ (xt−1 | xt,xT ))]

]

= Ep(x0)

[
Ep(x1|x0) [log pθ (x0 | x1,xT )]

−
T∑

t=2

Ep(xt|x0)[KL (p (xt−1 | x0,xt,xT ) ||pθ (xt−1 | xt,xT ))]

]
= ELBO

(29)

From Bayes’ formula, we can infer that:

p (xt−1 | x0,xt,xT ) =
p(xt | x0,xt−1,xT )p(xt−1 | x0,xT )

p(xt | x0,xT )

=
p(xt | xt−1,xT )p(xt−1 | x0,xT )

p(xt | x0,xT )

(30)

Since p(xt−1 | x0,xT ) and p(xt | x0,xT ) are Gaussian distributions (8), by employing the reparameterization technique:

xt−1 = e−θ̄t−1
σ̄2
t−1:T

σ̄2
T

x0 +

[(
1− e−θ̄t−1

) σ̄2
t−1:T

σ̄2
T

+ e−2θ̄t−1:T
σ̄2
t−1

σ̄2
T

]
xT + σ̄′

t−1ϵt−1

= m(t− 1)x0 + n(t− 1)xT + σ̄′
t−1ϵt−1

xt = e−θ̄t
σ̄2
t:T

σ̄2
T

x0 +

[(
1− e−θ̄t

) σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T
σ̄2
t

σ̄2
T

]
xT + σ̄′

tϵt

= m(t)x0 + n(t)xT + σ̄′
tϵt

(31)

Therefore,

xt =
m(t)

m(t− 1)
xt−1 +

[
n(t)− m(t)

m(t− 1)
n(t− 1)

]
xT +

√
σ̄′2
t − m(t)2

m(t− 1)2
σ̄′2
t−1ϵ

= axt−1 + [n(t)− an(t− 1)]xT +
√
σ̄′2
t − a2σ̄′2

t−1ϵ

= axt−1 + bxT +
√
σ̄′2
t − a2σ̄′2

t−1ϵ

(32)

Thus, p(xt | xt−1,xT ) = N(axt−1 + bxT ,
(
σ̄′2
t − a2σ̄′2

t−1

)
I) is also a Gaussian distribution. Bring it back to equation

(30) we can easily obtain :

µt−1 =
1

σ̄′2
t

[
σ̄′2
t−1(xt − bxT )a+ (σ̄′2

t − σ̄′2
t−1a

2)m̄′
t

]
, (13)

14
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Accordingly,

KL (p (xt−1 | x0,xt,xT ) ||pθ (xt−1 | xt,xT ))

=Ep(xt−1|x0,xt,xT )

log 1√
2πσt−1

e−(xt−1−µt−1)
2/2σ2

t−1

1√
2πσθ,t−1

e−(xt−1−µθ,t−1)2/2σ2
θ,t−1


=Ep(xt−1|x0,xt,xT )

[
log σθ,t−1 − log σt−1 − (xt−1 − µt−1)

2/2σ2
t−1 + (xt−1 − µθ,t−1)

2/2σ2
θ,t−1

]
= log σθ,t−1 − log σt−1 −

1

2
+

σ2
t−1

2σ2
θ,t−1

+
(µt−1 − µθ,t−1)

2

2σ2
θ,t−1

(33)

Ignoring unlearnable constant, the training object that involves minimizing the negative ELBO is :

L = Et,x0,xt,xT

[
1

2σ2
θ,t−1

∥µt−1 − µθ,t−1∥2
]
, (34)

This concludes the proof of the Proposition 3.3.

B. Theoretical Results
B.1. Brownian Bridge

In this section, we will show the mathematical essence of some other bridge models, some of which are all equivalent.
Proposition B.1. The mathematical essence of BBDM (Li et al., 2023), DDBM (VE) (Zhou et al., 2024) and I2SB (Liu
et al., 2023a) are all equivalent to the Brownian bridge.

Proof : Firstly, it is easy to understand that BBDM uses the Brownian bridge as its fundamental model architecture.

The DDBM (VE) model is derived as the Doob’s h–transform of VE-SDE, and we begin by specifying the SDE:

dxt = dwt (35)

Its transition probability is given by:
p (xt | xs) = N(xs, t− s) (36)

Since, the h–function of SDE (35) is:
h(xt, t,xT , T ) = ∇xt

log p(xT | xt)

=
xT − xt

T − t

(37)

Therefore, the Doob’s h–transform of (35) is:

dxt =
xT − xt

T − t
dt+ dwt (38)

That is the definition of Brownian bridge. Hence, DDBM (VE) is a Brownian bridge model.

Furthermore, the transition kernel of (38) is:

p(xt | x0,xT ) =
p(xT | xt,x0)p(xt | x0)

p(xT | x0)

=
p(xT | xt)p(xt | x0)

p(xT | x0)

=
N(xt, T − t)N(x0, t)

N(x0, T )

= N

((
1− t

T

)
x0 +

t

T
xT ,

t(T − t)

T
I

)
(39)

This precisely corresponds to the sampling process of I2SB, thus confirming that I2SB also represents a Brownian bridge.

This concludes the proof of the Proposition B.1.
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B.2. Connections Between GOU, VE and VP

The following proposition will show us that both VE and VP processes are special cases of GOU process:

Proposition 5.1. For a given GOU process (4), there exists relationships:

lim
θt→0

GOU = VE

lim
µ→0,λ→1

GOU = VP
(18)

Proof : It’s easy to know:
lim
θt→0

GOU = lim
θt→0

{dxt = θt (µ− xt) dt+ gtdwt}

= lim
θt→0

{dxt = gtdwt}

= VE,

(40)

where gt will be controlled by λ2.

Besides, we have:
lim

µ→0,λ→1
GOU = lim

µ→0,λ→1
{dxt = θt (µ− xt) dt+ gtdwt}

= lim
µ→0,λ→1

{dxt = θtµdt− θtxtdt+ gtdwt}

= lim
µ→0,λ→1

{
dxt = −1

2
g2t xtdt+ gtdwt

}
= VP,

(41)

where gt will be controlled by θt.

This concludes the proof of the Proposition 5.1.

C. GOU Process
Theorem C.1. For a given GOU process:

dxt = θt (µ− xt) dt+ gtdwt (4)

where µ is a given state vector, θt denotes a scalar drift coefficient and gt represents the diffusion coefficient. It possesses a
closed-form analytical solution:

p (xt | xs) = N

(
µ+ (xs − µ) e−θ̄s:t ,

g2t
2θt

(
1− e−2θ̄s:t

)
I

)
, θ̄s:t =

∫ t

s

θzdz (5)

Proof : Writing:
f(xt, t) = xte

θ̄t (42)

Using Ito differential formula, we get:

df(xt, t) = xtθte
θ̄tdt+ eθ̄tdxt

= xtθte
θ̄tdt+ eθ̄t [θt (µ− xt) dt+ gtdwt]

= eθ̄tθtµ+ eθ̄tgtdwt

(43)

Integrating from s to t we get:

xte
θ̄t − xse

θ̄s =

∫ t

s

eθ̄zθzµdz +

∫ t

s

eθ̄zgzdwz

=
(
eθ̄t − eθ̄s

)
µ+

∫ t

s

eθ̄zgzdwz

(44)
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It’s obvious that the transition kernel is a Gaussian distribution. Since dwz ∼ N(0,dzI), we have:

∫ t

s

eθ̄zgzdwz = N

(
0,

∫ t

s

e2θ̄zg2zdzI

)
= N

(
0, λ2

∫ t

s

e2θ̄z2θtdzI

)
= N

(
0, λ2

(
e2θ̄t − e2θ̄s

)
I
) (45)

Therefore:

xte
θ̄t − xse

θ̄s =
(
eθ̄t − eθ̄s

)
µ+N

(
0, λ2

(
e2θ̄t − e2θ̄s

)
I
)

xt = µ+ (xs − µ) e−θ̄s:t +N

(
0,

g2t
2θt

(
1− e−2θ̄s:t

)
I

) (46)

This concludes the proof of the Theorem C.1.

D. Doob’s h–transform
Theorem D.1. For a given SDE:

dxt = f (xt, t) dt+ gtdwt, x0 ∼ p (x0) , (1)

For a fixed xT , the evolution of conditional probability p(xt | xT ) follows:

dxt =
[
f(xt, t) + g2th(xt, t,xT , T )

]
dt+ gtdwt, x0 ∼ p (x0 | xT ) , (6)

where h(xt, t,xT , T ) = ∇xt log p(xT | xt).

Proof : p(xt | x0) satisfies Kolmogorov Forward Equation (KFE) also called Fokker-Planck equation (Risken & Risken,
1996):

∂

∂t
p(xt | x0) = −∇xt · [f(xt, t)p(xt | x0)] +

1

2
g2t∇xt · ∇xtp(xt | x0) (47)

Similarly, p(xT | xt) satisfies Kolmogorov Backward Equation (KBE) (Risken & Risken, 1996):

− ∂

∂t
p(xT | xt) = f(xt, t) · ∇xt

p(xT | xt) +
1

2
g2t∇xt

· ∇xt
p(xT | xt) (48)

Using Bayes’ rule, we have:

p(xt | x0,xT ) =
p(xT | xt,x0)p(xt | x0)

p(xT | x0)

=
p(xT | xt)p(xt | x0)

p(xT | x0)

(49)
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Therefore, the derivative of conditional transition probability p(xt | x0,xT ) with time follows:

∂

∂t
p(xt | x0,xT ) =

p(xt | x0)

p(xT | x0)

∂

∂t
p(xT | xt) +

p(xT | xt)

p(xT | x0)

∂

∂t
p(xt | x0)

=
p(xt | x0)

p(xT | x0)

[
−f(xt, t) · ∇xtp(xT | xt)−

1

2
g2t∇xt · ∇xtp(xT | xt)

]
+

p(xT | xt)

p(xT | x0)

{
−∇xt

· [f(xt, t)p(xt | x0)] +
1

2
g2t∇xt

· ∇xt
p(xt | x0)

}
= −

[
p(xt | x0)

p(xT | x0)
f(xt, t) · ∇xt

p(xT | xt) +
p(xT | xt)

p(xT | x0)
f(xt, t)∇xt

p(xt | x0)

+
p(xT | xt)

p(xT | x0)
p(xt | x0)∇xt

· f(xt, t)

]
+

1

2
g2t

[
p(xT | xt)

p(xT | x0)
∇xt

· ∇xt
p(xt | x0)−

p(xt | x0)

p(xT | x0)
∇xt

· ∇xt
p(xT | xt)

]
= − [f(xt, t) · ∇xt

p(xt | x0,xT ) + p(xt | x0,xT ) · ∇xt
f(xt, t)]

+
1

2
g2t

[
p(xT | xt)

p(xT | x0)
∇xt

· ∇xt
p(xt | x0)−

p(xt | x0)

p(xT | x0)
∇xt

· ∇xt
p(xT | xt)

]
= −∇xt

· [f(xt, t)p(xt | x0,xT )]

+
1

2
g2t

[
p(xT | xt)

p(xT | x0)
∇xt · ∇xtp(xt | x0)−

p(xt | x0)

p(xT | x0)
∇xt · ∇xtp(xT | xt)

]

(50)

For the second term, we have:

1

2
g2t

[
p(xT | xt)

p(xT | x0)
∇xt

· ∇xt
p(xt | x0)−

p(xt | x0)

p(xT | x0)
∇xt

· ∇xt
p(xT | xt)

]
=
1

2
g2t

[
p(xT | xt)

p(xT | x0)
∇xt · ∇xtp(xt | x0) +

1

p(xT | x0)
∇xtp(xT | xt) · ∇xt p(xt | x0)

+
1

p(xT | x0)
∇xt

p(xT | xt) · ∇xt
p(xt | x0) +

p(xt | x0)

p(xT | x0)
∇xt

· ∇xt
p(xT | xt)

]
− g2t

[
1

p(xT | x0)
∇xtp(xT | xt) · ∇xt p(xt | x0) +

p(xt | x0)

p(xT | x0)
∇xt · ∇xtp(xT | xt)

]
=
1

2
g2t

[
1

p(xT | x0)
∇xt

· [p(xT | xt)∇xt
p(xt | x0)] +

1

p(xT | x0)
∇xt

· [p(xt | x0)∇xt
p(xT | xt)]

]
− g2t

1

p(xT | x0)
∇xt

· [p(xt | x0)∇xt
p(xT | xt)]

=
1

2
g2t [∇xt

· [p(xt | x0,xT )∇xt
log p(xt | x0)] +∇xt

· [p(xt | x0,xT )∇xt
log p(xT | xt)]]

− g2t∇xt · [p(xt | x0,xT )∇xt log p(xT | xt)]

=
1

2
g2t [∇xt · [p(xt | x0,xT )∇xt log p(xt | x0,xT )]]− g2t∇xt · [p(xt | x0,xT )∇xt log p(xT | xt)]

=
1

2
g2t∇xt · ∇xtp(xt | x0,xT )− g2t∇xt · [p(xt | x0,xT )∇xt log p(xT | xt)]

(51)

Bring it back to (50):

∂

∂t
p(xt | x0,xT ) = −∇xt · [f(xt, t)p(xt | x0,xT )] +

1

2
g2t∇xt · ∇xtp(xt | x0,xT )

− g2t∇xt
· [p(xt | x0,xT )∇xt

log p(xT | xt)]

= −∇xt
·
[
[f(xt, t) + g2t∇xt

log p(xT | xt)]p(xt | x0,xT )
]
+

1

2
g2t∇xt

· ∇xt
p(xt | x0,xT )

(52)
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This is the definition of FP equation of conditional transition probability p(xt | x0,xT ), which represents the evolution
follows the SDE:

dxt =
[
f(xt, t) + g2t∇xt log p(xT | xt)

]
dt+ gtdwt (53)

This concludes the proof of the Theorem D.1.

E. Experimental Details
For all experiments, we use the same noise network, with the network architecture and mainly training parameters consistent
with the paper (Luo et al., 2023a). This network is similar to a U-Net structure but without group normalization layers and
self-attention layers. The steady variance level λ2 was set to 30 (over 255), and the sampling step number T was set to 100.
In the training process, we set the patch size = 128 with batch size = 8 and use Adam (Kingma & Ba, 2015) optimizer with
parameters β1 = 0.9 and β2 = 0.99. The total training steps are 900 thousand with the initial learning rate set to 10−4, and
it decays by half at iterations 300, 500, 600, and 700 thousand. For the setting of θt, we employ a flipped version of cosine
noise schedule (Nichol & Dhariwal, 2021), enabling θt to change from 0 to 1 over time. Notably, to address the issue of
θt being too smooth when t closed to 1, we let the coefficient e−θ̄T to be a small enough value δ = 0.005 instead of zero,
which represents θ̄T ≈

∑T
i=0 θidt = − log δ, as well as dt = − log δ/

∑T
i=0 θi. Our models are trained on a single 3090

GPU with 24GB memory for about 2.5 days.

F. Additional Experiments

Table 6. Image Inpainting. Qualitative comparison with the relevant baselines on CelebA-HQ with thick mask.

METHOD PSNR↑ SSIM↑ LPIPS↓ FID↓
DDRM 19.48 0.8154 0.1487 26.24
IRSDE 21.12 0.8499 0.1046 11.12

GOUB 22.27 0.8754 0.0914 5.64

Table 7. Image Deraining. Qualitative comparison with the relevant baselines on Rain100L.

METHOD PSNR↑ SSIM↑ LPIPS↓ FID↓
PRENET 37.48 0.9792 0.020 10.9
MAXIM 38.06 0.9770 0.048 19.0
IRSDE 38.30 0.9805 0.014 7.94

GOUB 39.79 0.9830 0.009 5.18

Table 8. Image 8× Super-Resolution. Qualitative comparison with the relevant baselines on DIV2K.

METHOD PSNR↑ SSIM↑ LPIPS↓ Training Datasets

SRFlow 23.05 0.57 0.272 DIV2K + Flickr2K
IRSDE 22.34 0.55 0.331 DIV2K

GOUB 23.17 0.60 0.310 DIV2K

G. Additional Visual Results
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GT MPRNetLQ M3SNet-32 MHNetMAXIM GOUBIR-SDE
   GOUB

（Mean-ODE）

Figure 6. Additional visual results on deraining with Rain100H datasets.
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      GOUB
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Figure 7. Additional visual results on thin mask inpainting with CelebA-HQ datasets.
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Bicubic IR-SDE GOUB
GOUB

(Mean-ODE)
GT DDRM

Figure 8. Additional visual results on 4x super-resolution with DIV2K datasets.
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