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Abstract: Cloth manipulation is challenging due to its highly complex dynamics,
near-infinite degrees of freedom, and frequent self-occlusions, which complicate
both state estimation and dynamics modeling. Inspired by recent advances in gen-
erative models, we hypothesize that these expressive models can effectively cap-
ture intricate cloth configurations and deformation patterns from data. Therefore,
we propose a diffusion-based generative approach for both perception and dynam-
ics modeling. Specifically, we formulate state estimation as reconstructing full
cloth states from partial observations and dynamics modeling as predicting future
states given the current state and robot actions. Leveraging a transformer-based
diffusion model, our method achieves accurate state reconstruction and reduces
long-horizon dynamics prediction errors by an order of magnitude compared to
prior approaches. We integrate our dynamics models with model predictive con-
trol and show that our framework enables effective cloth folding on real robotic
systems, demonstrating the potential of generative models for deformable object
manipulation under partial observability and complex dynamics.

Keywords: Deformable Object Manipulation, Dynamics Model Learning, State
Estimation, Generative Models, Cross-Embodiment Generalization

1 Introduction

Textile deformable objects, such as clothing, are ubiquitous in daily life. Yet, manipulating these
objects is a long-standing challenge in robotics [1, 2], due to their complex geometric structures
and dynamics. Effective cloth manipulation requires accurately estimating the state of cloth despite
severe self-occlusions, as well as reasoning over its complex, continuous dynamics to optimize
actions. These difficulties highlight the need for advancements in both (i) state estimation and (ii)
dynamics modeling to enable robust robotic cloth manipulation.

State estimation for cloth is particularly challenging due to frequent self-occlusions arising from its
highly deformable structure. While humans intuitively infer full object shapes from partial observa-
tions using prior experience, most existing methods are unable to fully capture the complex mapping
between highly partial observations and high-dimensional object states [3–5]. A promising direc-
tion is to develop perception models that can “imagine” full states from partial observations by
leveraging extensive prior experience, akin to human reasoning.

Modeling cloth dynamics poses another significant challenge due to its highly nonlinear nature.
Current approaches typically represent cloth using particle- or mesh-based structures and model
their interactions with graph neural networks (GNNs) [4, 6–8]. GNNs offer advantages in data-
scarce domains through spatial equivariance and locality, but they scale inefficiently with the number
of graph nodes [9]. Moreover, the locality inherent to graph structures often limits their ability to
capture long-range dependencies, which is crucial for accurate dynamics modeling.

In this work, we formulate state estimation and dynamics prediction as conditional generation pro-
cesses. State estimation reconstructs full states from partial observations, while dynamics prediction
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generates future states conditioned on the current state and robot actions. To model these complex
high-dimensional mappings, we employ diffusion-based models, inspired by their recent successes
in capturing complex data distributions in computer vision [10, 11], science [12], and robotics [13].
We hypothesize that diffusion models with scalable architecture (e.g., Transformer [14]) can enable
accurate state reconstruction and dynamics modeling.

Building on these insights, we introduce UniClothDiff, a unified framework that integrates a Diffu-
sion Perception Model (DPM), a Diffusion Dynamics Model (DDM), and model predictive control
for cloth manipulation. Conceptually, DPM leverages diffusion models and Transformers to recon-
struct full cloth states from sparse and occluded RGB-D observations, while DDM predicts long-
horizon dynamics conditioned on current states and actions. Trained on a large-scale cloth inter-
action dataset with 500K transitions in simulation and evaluated in both simulation and real-world,
our models achieve substantial performance gains: DPM achieves superior performance compared
to prior approaches in cloth state estimation, and DDM reduces long-horizon prediction error by an
order of magnitude compared to GNN-based baselines. With an embodiment-agnostic action repre-
sentation, our framework can be deployed on both parallel grippers and dexterous hands. Real-world
experiments demonstrate superior manipulation performance over previous approaches, highlighting
the potential of generative modeling in deformable object manipulation.

2 Related Work

Deformable Object Manipulation. Manipulating deformable objects such as garments remains a
long-standing challenge in robotics, due to their high-dimensional state space and complex, nonlin-
ear dynamics. Model-free approaches, including reinforcement learning (RL) [15, 16] and imitation
learning (IL) [13, 17–20], learn direct observation-to-action mappings through end-to-end training.
However, these methods struggle with precise shape control due to the lack of explicit dynamics
reasoning. Model-based approaches require accurate state estimation [21–26], which is highly chal-
lenging with partial observations. Further, learning dynamics models demands extensive training
data to cover large state and action spaces. Thus, we propose to learn expressive generative models
for state estimation and dynamics modeling using large-scale simulation data.

Learning-Based Dynamics Models. Learning-based dynamics models [27] predict state transitions
from interaction data, where the choice of state representation is crucial. Pixel-based models view
the problem as action-conditioned video prediction [28, 29], but they are often sample-inefficient,
vulnerable to occlusions, and lack physical realism for contact-rich scenarios [30]. Structured rep-
resentations, such as particles or meshes, provide stronger physical priors and are typically coupled
with graph neural networks (GNNs) that perform inference via message passing [4, 6, 8, 22–24].
While sample-efficient, GNNs often struggle with scalability and long-range interactions. In con-
trast, we find diffusion models offer greater expressiveness and scalability, enabling accurate dy-
namics prediction from large-scale data and improving modeling of deformable object behavior.

Diffusion Models. Diffusion models [31], a class of generative models with expressive capabil-
ity of capturing complex, high-dimensional data distributions precisely, have emerged as a power-
ful paradigm and been applied across diverse domains, including generation of images [32, 33],
videos [10, 34], 3D shapes [35], as well as robot policy learning [13, 19] and world model-
ing [36, 37]. In this work, we adapt diffusion models for deformable objects manipulation, lever-
aging their superior data distribution modeling capability for (i) estimating full cloth configurations
from partial point cloud observations, and (ii) modeling state transitions to enable accurate future
prediction and model-based planning for cloth manipulation.

3 Method

3.1 Overview

We address the challenge of manipulating cloth with significant self-occlusions into target configu-
rations. Our problem formulation comprises three key spaces: observation space O, state space S,
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Figure 1: Overview. (a) Perception: Our Diffusion Perception Model (DPM) reconstructs the full
cloth state from a partial point cloud. Using a denoising process parameterized by ϵpθ , DPM refines
the cloth state over K denoising steps, starting from random noise. (b) Dynamics Prediction: Our
Diffusion Dynamics Model (DDM) generates future cloth states based on the current estimated state
and robot actions, using a transformer-based architecture.

and action spaceA. The objective is to learn two essential components: a state estimator g : O → S
and a transition function T : S ×A → S for model-based control.

At each timestep, the system processes multiview RGB-D observations ot ∈ O, represented as
ot = {I0t , I1t , . . . , I l−1

t }with l camera views, to estimate the cloth’s 3D state st ∈ S given canonical
state of the template mesh sc. The state of the cloth is defined by a mesh st = {Vt, Et}, where Et

represents the invariant edge connectivity and Vt ∈ RNv×3 denotes the positions of vertices in 3D
space where Nv denotes the number of vertices. We propose that generative models can effectively
infer unobserved patterns in partial RGB-D observations, enabling robust state estimation.

Given the estimated state, a learned dynamics model f predicts the future state st+1 ∈ S based
on state history st−i:t ∈ S and planned action at ∈ A. This dynamics model is integrated with
model-predictive control to optimize action sequences for achieving the target state sg:

(a0, ..., aH−1) = argmin
a0,...,aH−1∈A

J (T (s0, (a0, .., aH−1)), sg)

3.2 State Estimation

We first address the problem of inferring cloth configurations from partial observations. Despite
using four multi-view RGB-D cameras, severe self-occlusions make accurate state estimation infea-
sible. Inspired by the human ability to infer hidden object states from partial views, we propose
using diffusion models to generate full cloth configurations from limited observations.

Conditional Diffusion Process. We formulate cloth state estimation as a conditional denoising
diffusion process, using the object point cloud as the conditioning input. Conditioning on point
clouds helps minimize the sim-to-real gap due to their nature as a mid-level visual representation
and maintains geometric invariance [38, 39].

Specifically, we model the conditional distribution p(s|sc, epc) using standard denoising diffusion
probabilistic model (DDPM) [31], where sc represents the state of the canonical cloth mesh and epc
denotes the embedding of the conditional point cloud. To get point cloud embedding, we partition
the point cloud into patches by first sampling M center points using farthest point sampling (FPS)
and performing K-Nearest Neighbors (KNN) clustering. Then each resulting patch is processed
through a PointNet [40] to obtain its embedding representation epc ∈ RB×M×D1 . where B is the
batch size and D1 is the dimension of the point cloud embedding.

In the forward process, starting from the initial state s0, gaussian noise is gradually added at levels
t ∈ {1, ..., T} to get noisy state as:st =

√
ᾱts0+

√
1− ᾱtϵ , where ϵ ∼ N (0, I), ᾱt :=

∏t
s=1 1−βs,

and {β1, . . . , βT } is the variance schedule of a process with T steps. In the reverse process, starting
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from a noisy state st sampled from the normal distribution, the conditional denoising network ϵpθ
gradually denoises from st to st−1 and finally constructs s0.

Model Architecture. We adopt vanilla Vision Transformer (ViT) architecture [41] as our backbone,
which has been shown to be highly scalable in image and video generation [10, 33]. The model
takes a point cloud and a canonical template mesh as input, in addition to the noisy mesh state that
requires denoising. We detail our network architecture and training objective below.

Tokenization. We tokenize the input mesh as non-overlapping vertex patches in canonical space.
We first use farthest point sampling (FPS) to sample a fixed number of points as patch centers
C ∈ RN×3. To patchify the mesh vertices, we use the N centers obtained from FPS to construct
a Voronoi diagram in the 3D points space. This tessellation divides the point cloud into N distinct
regions, where each region contains all points closer to its associated center than to any other center.
Each Voronoi cell is treated as a distinct patch, encompassing a local neighborhood of points which
will then go through a PointNet [40] layer for feature extraction.

Conditioning. Following the tokenization process, the input token is directly subjected to a se-
quence of transformer blocks for processing. To effectively condition the point cloud embedding, we
adopt two approaches. First, the conventional layer normalization is replaced with an adaptive layer
normalization (AdaLN) [42] to better incorporate conditional information, which modulates the
normalization parameters based on the point cloud condition embedding for effective feature modu-
lation. Then, we incorporate conditional information through a cross-attention layer positioned after
the multi-head self-attention (MHSA). In this cross-attention operation, the hidden states x serve
as the query vector, while the conditional information acts as both the key and value vectors. The
computation proceeds as x = CrossAttention(W (c)

Q x,W
(c)
K epc,W

(c)
V epc) where W (c) are learnable

parameters, enabling effective conditioning during the learning process.

Decoding. Finally, the decoding process transforms the hidden states x into 3D vertex coordinates
through a two-stage process. First, we employ distance-weighted interpolation to upsample the
hidden states, where interpolation weights are computed from canonical-space distances between
vertices and their corresponding patch centers. This operation produces an intermediate representa-
tion x ∈ RB×Nv×D2 . A Multi-Layer Perceptron (MLP) then maps this representation to the final
output xout ∈ RB×Nv×3, yielding the predicted noise added onto the 3D coordinates for each vertex
during the diffusion forward process. Details of our model are presented in Appendix C.2.

Training. We train the denoising model ϵpθ(s
(k)|sc, epc) to minimize the loss:

L(θ) = Es,sc,epc∼pdata

[∥∥∥ϵ− ϵpθ

(√
1− β(k)s+

√
β(k)ϵ

∣∣∣sc, epc

)∥∥∥2]
where ϵ ∼ N (0, I) and β(k) ∈ R are K different noise levels for k ∈ [1,K]. Details of the training
process are available in Appendix C.3.

3.3 Dynamics Prediction

Given the estimated state, the goal of dynamics prediction is to reason about future states of the cloth
given robot actions. We extend our state estimation architecture to model dynamics by modifying the
condition input to incorporate robot actions and enhancing the temporal modeling capability with
additional temporal attention layers. The remaining components, including tokenization, training
objective, and decoding of the model, are identical to those in the state estimation framework.

Conditional Diffusion Process. To learn the conditional posterior distribution
p(st+1:t+j+1|at, st−i:t), we parameterize it using diffusion models. Here, at represents the
robot action, st−i:t denotes the historical states, and st+1:t+j+1 is the j frame future states to
be predicted at timestep t. Following prior work [6, 30], we heuristically set i = 3 and j = 5.
The diffusion reverse process construct st conditioned on history frames and action by gradually
denoising from a normal distribution with the denoising network ϵdθ . Since we use delta end-effector
position as action representation, to effectively encode the action space, we employ a Fourier
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Figure 2: Qualitative results on state estimation. Row (a) shows raw point cloud of the work
space. Row (b) shows the segmented point clouds of real-world clothes, all of which are highly
crumpled. Row (c) shows the predicted cloth states.

feature-based embedding following NeRF [43] to represent continuous spatial information, with
detailed formulation in Appendix C.2.

3.4 Model-Based Planning

We integrate our diffusion dynamics model with Model Predictive Control (MPC) for robotic cloth
manipulation. Given a current cloth state sequence st−i:t ∈ S and target state sg , we optimize an
action sequence {at}T−1

t=0 over horizon T by minimizing:

min
{at}T−1

t=0

ϕ (sT , sg) +

T−1∑
t=0

ℓ (st, at) , (1)

where ϕ combines weighted mean squared error (MSE) and chamfer distance (CD), and ℓ enforces
action smoothness. We use Model Predictive Path Integral (MPPI) [44] for sampling-based op-
timization. Actions are defined as relative end-effector displacements applied to a selected cloth
grasp point. To improve planning efficiency, we introduce an informed action sampling strategy
and a probabilistic grasp point selection mechanism. Specifically, the grasp point is selected using
a temperature-controlled softmax distribution based on vertex displacements between the current
and target states, while action sampling is guided by a weighted direction computed from high-
displacement vertices. After each action, the robot updates its state estimate using DPM before
replanning. Refer to Appendix C.4 for details on the planning algorithm and hyperparameters.

4 Experiments

We investigate three key research questions: (1) How effectively does the Diffusion Perception
Model handle self-occlusions inherent in cloth manipulation? (2) How does the Diffusion Dynamics
Model improve dynamics prediction compared to prior approaches? (3) How do these enhanced
perception and dynamics models translate to overall system performance? We study these questions
by evaluating state estimation accuracy (Section 4.2), assessing dynamics modeling performance
(Section 4.3), and real-world deployment across two system setups(Section 4.4).

4.1 Experiments Setup

We evaluate our method in both simulation and real-world environments. Specifically, we use
SAPIEN [45] as the simulation platform for data collection and training, and demonstrate effec-
tive sim-to-real transfer in the real-world setting. Additional details of the pipeline implementation
and experimental setup are provided in Appendix B.
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4.2 State Estimation Results

Baselines. We compare our perception module against four baselines: GarmentNets [3] which
formulates cloth pose estimation problem as a shape completion task in the canonical space;
MEDOR [4] which improves GarmentNets by introducing test-time fine-tuning for mesh refine-
ment; TRTM [5] which employs a template-based approach for explicit mesh reconstruction;
and Transformer, an ablated version of our model that retains the original architecture but with-
out diffusion training. These baselines systematically comprise both optimization-based and non-
optimization-based prior works on cloth pose estimation, along with ablation studies for our model..

Results. We evaluate our method and baselines in both simulation and the real world using MSE,
CD, and Earth Mover’s Distance (EMD). The results are presented in Table 1. In the T-shirt set-
ting, TRTM and Transformer greatly outperform GarmentNets and MEDOR, demonstrating that the
topological information provided by the template cloth mesh significantly enhances the perception
capabilities. Leveraging the cloth modeling prior during the learning process, TRTM demonstrates
better performance compared to Transformer. Our approach achieves further performance gains
over both TRTM and Transformer, highlighting the significant contributions of diffusion models to
the task. We provide qualitative results in Figure 2.

Category Method Simulation Real World
↓MSE (10−1) ↓ CD (10−1) ↓ EMD (10−1) ↓ CD (10−1) ↓ EMD (10−1)

Cloth
TRTM [5] 5.07 ± 0.22 2.67 ± 0.61 1.65 ± 0.71 1.85 ± 0.15 0.86 ± 0.23

Transformer 5.44 ± 0.41 2.17 ± 0.19 1.61 ± 0.45 1.72 ± 0.22 0.78 ± 0.33
DPM 2.32 ± 0.21 1.95 ± 0.25 1.48 ± 0.47 1.13 ± 0.25 0.54 ± 0.49

T-shirt

GarmentNets [3] 18.6 ± 1.35 6.23 ± 0.79 2.79 ± 0.64 7.18 ± 0.51 2.86 ± 0.46
MEDOR [4] 21.0 ± 1.54 6.87 ± 0.95 2.24 ± 0.29 5.01 ± 0.48 2.49 ± 0.32
TRTM [5] 6.30 ± 0.45 5.15 ± 0.96 2.15 ± 0.29 3.18 ± 0.44 1.99 ± 0.29

Transformer 9.12 ± 0.57 5.56 ± 0.63 1.99 ± 0.62 2.34 ± 0.37 1.91 ± 0.33
DPM 2.76 ± 0.19 3.22 ± 0.41 1.95 ± 0.56 2.17 ± 0.28 1.88 ± 0.61

Table 1: Quantitative results on state estimation. We report estimation errors in both simulated
and real-world scenarios, with 95% confidence intervals. Lower values indicate better performance.

4.3 Dynamics Prediction Results

Baselines. We evaluated our diffusion dynamics models against three baseline approaches: a GNN-
based method [6] which is the most widely adopted approach for modeling dynamics; an Analytical
Simulator specifically for configurations using the DPM’s output; and an ablated version of our
model with dynamics module trained directly with MSE loss supervision termed Transformer. For
each baseline model, we analyze the MSE across different timesteps on clothes and T-shirts.

Results. Our evaluation compares the proposed approach against three baselines using MSE across
two experimental scenarios: (1) using ground truth states from the simulator and (2) using perception
states estimated by DPM. The second scenario, which includes a direct comparison with Analytical
Simulator, demonstrates the robustness of our method to noisy states that typically degrade the
performance of the analytical simulator.

Error analysis over time in Figure 3 shows that DDM consistently outperforms all baselines. GNN
exhibits the weakest performance, particularly for complex objects like T-shirts. Transformer im-
proves over GNN by leveraging transformer architectures, but still suffers from error accumulation.
In contrast, DDM achieves the lowest MSE across all timesteps with minimal temporal error accu-
mulation, benefiting from the diffusion model’s expressive distribution modeling. Qualitative results
in Figure 4 further highlight the physical plausibility of DDM’s predictions.

When using estimated states with perception noise, we introduce Analytical Simulator as an addi-
tional baseline. Although Analytical Simulator initially achieves low error on cloth objects, it is
highly sensitive to inconsistent inputs, leading to rapid error accumulation and worse long-horizon
performance than DDM. This degradation is even more pronounced for T-shirt objects due to their
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Figure 3: Long-horizon dynamics prediction error over time. MSE in dynamics prediction over
time under two scenarios: (a) using oracle simulation states, and (b) using DPM perception esti-
mates, evaluated on clothes and T-shirts. Error bars represent 95% confidence intervals.
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Figure 4: Qualitative results on dynamics prediction. Visualization of predicted clothes configu-
rations with each vertex color-coded by its point-wise L2 error from ground truth.

complex topology. Under these realistic conditions, both GNN and Transformer exhibit even larger
gaps, demonstrating that DDM provides the most robust and accurate dynamics predictions for plan-
ning with noisy observations. We provide additional quantitative results in Appendix A.1.

4.4 Real World Planning Results

Method Cloth T-shirt Long-sleeve

Self Ext. Comb. Self Ext. Comb. Self Ext. Comb.

GNN 6/10 4/10 3/10 1/10 2/10 2/10 2/10 2/10 0/10
Ours 9/10 8/10 6/10 9/10 7/10 6/10 7/10 6/10 4/10

Table 2: Quantitative results of real-world manipu-
lation. We repeat each scenario for 10 trials, with ran-
domized initial and target states.

Method (Dynamics + Perception) Cloth SR↑ T-shirt SR↑

DDM + DPM (Ours) 9/10 8/10
Transformer + DPM 3/10 5/10
GNN + DPM 6/10 1/10
DDM + Transformer 5/10 3/10
Transformer + Transformer 2/10 1/10
GNN + Transformer 5/10 0/10

Table 3: Success rates of system variants with different
combinations of dynamics and perception modules.

Comparative Analysis. We demonstrate the
seamless integration of DPM and DDM within
an MPC framework for complex cloth folding
tasks. Our approach is benchmarked against
GNN as a dynamics module. We categorize our
tasks into folding and unfolding scenarios, all
of which involve long-horizon challenges and
require multi-step prediction, with three dis-
tinct occlusion types: self-occlusion, external
occlusion by other objects (e.g., a robotic arm),
and combined occlusion, which poses chal-
lenges for accurate perception in cloth manip-
ulation. We report the success rates (SR) of the
quantitative results in Table 2. A trial is deemed
successful if the geometric metric (EMD) is be-
low a certain threshold (Appendix A.2). Our
method consistently outperforms GNN across
all occlusion scenarios. In simpler tasks, such as folding clothes, our model achieves an improve-
ment of approximately 30% points in SR. When manipulating more challenging objects, such as
a dual-level topology T-shirt where GNN struggles to accurately model dynamics, our approach
achieves up to a 50% increase in SR. Qualitative results are shown in Figure 5, illustrating challeng-
ing initial and target configurations with severe self-occlusion, representing substantially more diffi-
cult setups than those considered in many prior works [4, 6, 17, 25]. By leveraging an embodiment-
agnostic action space design, our approach enables effective cross-embodiment transfer. We demon-
strate a successful transfer of the embodiment from a parallel gripper to a dexterous hand in Figure 6.
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Figure 5: Qualitative results on real-world cloth manipulation. We evaluate our system on three
types of garment: square clothes, long-sleeve shirts and T-shirts. For each garment, the first row
corresponds to folding and the second row to unfolding.

Ablation. The ablation study results presented in Table 3 demonstrate the critical contributions of
both DPM and DDM to the system’s overall performance, with their combination yielding signifi-
cantly higher success rates than either component alone. For objects with simpler topology, such as
cloth, accurate perception is most critical since the dynamics are relatively straightforward and easy
to model. However, for objects with more complex topologies, having an accurate dynamics model
becomes equally important for effective planning.

5 Conclusion

𝑡 Target state
Process

(a)

(b)

Target stateProcess t

Figure 6: Cross-embodiment generalization results.

We introduce UniClothDiff, a unified
framework that tackles key challenges in
state estimation and dynamics prediction
in cloth manipulation with Transformer-
based diffusion models. Our approach re-
constructs full cloth configurations from
partial RGB-D observations and predicts
long-horizon dynamics with significantly
lower error than prior GNN-based methods. Integrated with model-based control, it enables cloth
manipulation in various scenarios, significantly outperforming existing approaches. Through exten-
sive experiments, we demonstrate the potential of generative models for deformable object manipu-
lation, paving the way for more robust and versatile robotic systems.

6 Limitations

One limitation of our method is the substantial computational cost associated with training large
transformer-based diffusion models. Second, our experiments primarily focus on cloth manipula-
tion; extending the framework to contact-rich rigid body tasks is a promising future direction. Given
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the generality of the model design, we expect feasible adaptation with suitable training data. Addi-
tionally, our model currently lacks explicit uncertainty estimates. Incorporating uncertainty quan-
tification into perception and dynamics models, and combining them with control methods with
theoretical guarantees, could improve robustness in safety-critical scenarios.
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Appendices
A Additional Results

A.1 Dynamics Prediction

Quantitative Results We provide additional quantitative results of forward dynamics prediction
for both ground truth state and perception noisy input in Table 4 and Table 5. Our dynamics model
consistently outperforms all baselines across both evaluation scenarios. When using ground-truth
states from the simulator as input, DDM achieves approximately 10× lower error than the best-
performing baseline, highlighting the superiority of diffusion models in capturing long-horizon dy-
namics. When using estimated states from DPM, which introduces additional noise, DDM still
achieves 2× lower error than all baselines, demonstrating that the diffusion-based training paradigm
significantly enhances noise tolerance through its expressive data distribution modeling capacity.

Type Method ↓ MSE ↓ CD ↓ EMD
(10−3) (10−2) (10−2)

Cloth
GNN 0.75 ± 0.23 3.89 ± 0.80 6.13 ± 2.96

Transformer 0.61 ± 0.23 1.85 ± 0.33 5.47 ± 1.50
DDM 0.05 ± 0.04 0.63 ± 0.28 3.47 ± 0.60

T-shirt
GNN 6.36 ± 1.45 8.57 ± 1.06 7.89 ± 1.79

Transformer 3.22 ± 0.30 2.80 ± 0.23 7.57 ± 0.52
DDM 0.35 ± 0.13 0.73 ± 0.07 2.84 ± 0.47

Table 4: Quantitative results on dynamics pre-
diction with ground truth input. Errors repre-
sent a 95% confidence interval.

Type Method ↓ MSE ↓ CD ↓ EMD
(10−3) (10−2) (10−2)

T-shirt
GNN 6.36 ± 1.30 8.88 ± 1.12 8.29 ± 1.94

Transformer 4.18 ± 0.73 4.26 ± 0.51 7.93 ± 0.70
DDM 0.55 ± 0.27 1.49 ± 0.13 3.22 ± 0.47

Cloth
GNN 2.17 ± 1.44 5.02 ± 0.90 7.31 ± 4.65

Transformer 1.30 ± 0.65 2.27 ± 0.46 7.06 ± 2.08
DDM 0.66 ± 0.45 2.12 ± 0.54 5.51 ± 1.03

Table 5: Quantitative results on dynamics pre-
diction with perception input. Errors represent
a 95% confidence interval.

Qualitative Results We present additional qualitative results for dynamics prediction in Figure 7
and Figure 8. Each row represents a predicted dynamics sequence. The results demonstrate the
physical plausibility of the generated outputs.

Figure 7: Qualitative results on cloth dynamics prediction using DDM.
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Figure 8: Qualitative results on t-shirt dynamics prediction using DDM.
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A.2 Real-world Planning

Additional Quantitative Results We present quantitative results using the EMD metric, which
measures the distance from the initial state to the target state in real-world planning scenarios in
Figure 9.
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Figure 9: Quantitative evaluation of planning performance. Earth Mover’s Distance (EMD)
convergence during the planning stage, measured over 10 repeated trials with identical initial and
target configurations. Errors represent 95% confidence intervals. Our method outperforms baselines
by achieving lower EMD values and faster convergence to goal states.

In single-step manipulation scenarios, our dynamics model exhibits superior performance across
both object types. For cloth folding, our method consistently achieves lower EMD values with
reduced confidence intervals, indicating enhanced prediction reliability compared to baseline ap-
proaches. This performance advantage is particularly evident in T-shirt folding, where topological
complexity presents heightened challenges. While baseline methods, especially GNN, exhibit in-
creased variance and elevated EMD values, our approach demonstrates consistent performance im-
provements throughout the planning horizon, suggesting enhanced handling of complex geometric
relationships.

The multi-step scenarios, extending to 20 steps, further highlight our method’s efficacy in long-
horizon predictions. Our approach maintains significantly reduced EMD values with a consistent
downward trajectory for both cloth and T-shirt manipulation tasks. The performance gap between
our method and baselines becomes increasingly pronounced over extended horizons, particularly in
T-shirt manipulation, where dual-layer structures introduce additional complexity. This sustained
performance advantage in multi-step scenarios underscores our model’s robust capability in mitigat-
ing error accumulation while maintaining prediction accuracy across extended planning sequences.

(a) Cloth folding (b) T-shirt folding

Figure 10: Success rate under different threshold.

We present a comprehensive breakdown
of the success rates in real-world long-
horizon setting ( Figure 10) under different
thresholds in Figure 1, where our method
consistently outperforms all baselines.

Additional Qualitative Results Ac-
cordingly, we also provide additional
qualitative results for single step and multi
step scenarios on clothes and T-shirts in
Figure 11. The results validate our sys-
tem’s capability to accurately manipulate diverse fabric items from arbitrary initial configurations
to challenging target folding states.

Additional Intra-class Generalization Results We provide additional qualitative results for intra-
class generalization on square cloth object in Figure 12 with sizes ranging from 20 cm to 40 cm.
Our model successfully executes precise folding trajectories across these variations, consistently
achieving target configurations and confirming robust intra-class generalization.
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𝑡 Target state
Process

(a)

(b)

Target state
Process

𝑡Figure 11: Qualitative results of real-world system deployment. The target state is represented
in the last column of each row. Each experimental sequence illustrates the progressive deformation
states during folding tasks. The first two rows correspond to single-step scenarios, while the last two
represent multi-step scenarios.

Target state
Process

(a)

(b)

(c)

t

Figure 12: Intra-class generalization evaluation. We demonstrate that our method can generalize
across garments with varying physical attributes (size, material, and color). The garment size pro-
gressively decreases from (a) to (c).
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A.3 Simulation Planning Results

We present more qualitative results in Figure 14 in the simulation environment on planning. We
design four simple tasks in simulation for system validation as visualized in Figure 13.

(a) Lift cloth (b) Fold cloth (c) Rotate cloth (d) Pull cloth

Figure 13: Simulated cloth manipulation environments. Visualization of diverse manipulation
scenarios in simulation: (a)-(d) demonstrate different cloth-robot interactions with varied object
configurations and manipulation tasks.

Figure 14: Model predictive control evaluation in simulation. Demonstration of our diffusion-
based dynamics model integrated with MPC across diverse manipulation tasks using xArm7, vali-
dated on various cloth types.
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B Experiment Setup

B.1 Task Description
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Figure 15: Coverage of different clothes in our
experiments.

Intel RealSense L515Intel RealSense D435
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Ability robot handsSoft robotic gripper

Figure 16: Hardware overview. Our real-world
platform includes a UFactory xArm-6 and a bi-
manual dexterous system consisting of two UFac-
tory xArm-7 robots with Ability hands. Each
robot is equipped with one RGB-D camera.

B. T-shirts & Long-sleeve ShirtsA.Single-layer Cloth 

Sparse-Grid Handkerchiefs

Dense-Grid Handkerchiefs Silk Cotton-Modal T-shirt 

Heavier Cotton T-shirtRayon T-shirt

Knit Sweater

Figure 17: Cloth overview. We evaluate our
method on different single-layer clothes as well
as dual-layer T-shirts and long-sleeve shirts with
varying colors and materials.

We evaluate our method on challenging cloth
folding tasks characterized by significant vi-
sual occlusion and complex physical dynam-
ics, demonstrating the real-world performance
of our diffusion-based perception and dynam-
ics model.

Square Cloth folding and unfolding. This
task explores robotic cloth folding and unfold-
ing tasks across diverse fabrics. We employ
prediction results from DPM to define target
shapes, enabling accurate shape matching be-
tween the manipulated cloth and desired fold-
ing configurations. The system aims to robustly
handle variations in fabric characteristics while
maintaining folding accuracy. This task is more
challenging than usual pushing or relocating
tasks due to significant visual occlusions dur-
ing the folding process, and the increased ac-
tion complexity. Achieving precise folding to
a specified target configuration requires both an
accurate estimation and the dynamic prediction
of the cloth. We tested with square handker-
chiefs made of three different materials. Each
of these clothes has a different visual appear-
ance and size.

Garment folding and unfolding. This task
focuses on folding or unfolding a T-shirt or
a long-sleeve top into the target configuration.
Such garments present unique challenges due to
their dual-layer structure and compliant dynam-
ics. We evaluate our approach on garments of
different sizes and physical properties. We set
more challenging target states (such as diagonal
fold and fold in half) that require higher mo-
tion accuracy. Incorrect actions will increase
the recovery cost. Some target states also re-
quire changing the grasp contact points and performing multiple folds. Figure 17 shows all the test
cloths and garments with various materials and sizes used in our real-world experiments.

We visualize the distribution of all the clothes and garments in our expriments in Figure 15

B.2 Physical Setup

We validate our system on two robotic platforms: (1) a single UFactory xArm-6 robotic arm with
Fin Ray Effect-based soft robotic fingers for gripping cloth, and (2) a stationary bimanual dexterous
system consisting of two UFactory xArm-7 robotic arms, each equipped with a 6-DoF Ability hand.
Both setups use a single RGB-D camera: the Intel RealSense D435 with 640 × 480 resolution for
the xArm-6 and the L515 with 1024 × 768 resolution for the dual-arm system. Figure 16 illustrates
our hardware setup.
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C Implementation Details

C.1 Data Collection

We collect training data for learning state estimation and dynamics prediction in a simulation en-
vironment built on SAPIEN [45]. The rigid bodies, such as the robot arm, are simulated using
the built-in PhysX-based simulator, while the cloth is simulated with the projective dynamics (PD)
solver [46]. The two systems are coupled at the time step level by alternating updates: the PD
system treats the positions and velocities of PhysX-managed objects as boundary conditions, and
PhysX does the same for the PD-managed cloth. In the PD system, the cloth is modeled as a hyper-
elastic thin shell. We follow Ly et al. [47] to simulate collision and friction in the PD system. We
provide detailed physical parameters for cloth simulation in Table 6.

Physical Parameter Value

collision margin 1e-3
collision weight 5e3
collision sphere radius 8e-3
damping 1e-2
thickness 1e-3
density 1e3
stretch stiffness 1e3
bend stiffness 1e-3
friction 0.5
gravity -9.81

Table 6: Simulation physical
parameters.

To collect state estimation data, we set up a comprehensive multi-
view system that incorporates up to four calibrated stereo-depth
sensors, strategically placed at randomized viewing angles within
predefined ranges. Cloth is initialized given a randomly "pick-
and-place" action. This configuration enables the generation of
paired datasets consisting of fused point clouds alongside their cor-
responding ground-truth mesh states across multiple viewpoints.
The system leverages SAPIEN’s advanced stereo depth simulation
capabilities[48], which significantly reduces the sim-to-real gap by
faithfully reproducing point cloud characteristics observed in real-
world scenarios. This high-fidelity simulation approach ensures ro-
bust and reliable state estimation performance when transferred to
physical environments. In our point cloud fusion process, we aug-
ment camera extrinsic parameters to simulate real-world calibration
errors. Specifically, we introduce rotational variations ranging from
−1.5◦ to 1.5◦ and translational variations from -0.5 to 0.5 cm. To better mimic real-world condi-
tions, we also simulate depth sensor noise and occlusion effects by applying random point dropout
with ratios between 0.1 and 0.2, and introducing noise to the fused point cloud.

To collect dynamic data, we employ diverse action sampling strategies to generate a comprehensive
dataset of 500K examples. Our sampling approach encompasses two key methodologies designed
to capture realistic cloth manipulation scenarios. The first method involves applying directionally-
randomized displacements to selected mesh vertices, with particular emphasis on folding-oriented
actions where the cloth is manipulated to create various folding patterns. We also simulate picking
and relocation actions by applying upward and translational movements to randomly selected ver-
tices. The second methodology focuses on pair-wise vertex manipulation, where vertex pairs are
selected based on their spatial distances to simulate actions such as folding one point of the cloth
onto another. Each incremental action is precisely controlled, with magnitudes ranging from 0.02 to
0.05 units. To evaluate the model’s performance across different time horizons and assess the im-
pact of auto-regressive inference error accumulation, we generate action sequences varying in length
from 15 to 35 steps. All resultant mesh deformations throughout these sequences are meticulously
recorded to capture the complete dynamics of the cloth’s behavior.

C.2 Model Details

Point Cloud Encoder We employ a patch-based architecture for point cloud encoding that pro-
cesses the input through local grouping and feature extraction. The encoder first groups points
using a KNN-based strategy, then processes each local patch through a specialized patch encoder,
and finally incorporates positional information through learnable embeddings. This design enables
effective capture of both local geometric structures and global spatial relationships.

Model Architecture We design a transformer-based architecture for state estimation, which con-
sists of a point cloud encoder, a positional embedding module, and a series of transformer blocks.
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Hyperparameter Value
Output dimension 1024
Number of groups 256
Group size 64
Group radius 0.15
Position embedding dimension 128
Patch encoder hidden dims [128, 512]

Table 7: Point cloud encoder hyperparameters.

The model takes both point cloud observations and mesh states as input. In dynamics model, the
model takes an additional input channel containing a binary mask, indicating grasped mesh vertices.
The point cloud is first processed through a patch-based encoder, while the mesh states are em-
bedded using a patchified positional encoding scheme. These features are then processed through
transformer blocks with cross-attention mechanisms to predict the mesh state.

Hyperparameter Value
Number of attention heads 16
Attention head dimension 88
Number of transformer layers 4
Inner dimension 1408
Dropout 0.0
Cross attention dimension 1024
Point cloud embedding dimension 1024
Number of input frames 2
Number of output frames 1
Activation function GELU
Output MLP dimensions [512, 256]
Normalization type AdaLayerNorm
Normalization epsilon 1e-5

Table 8: Model hyperparameters.

Action Embedding We employ a Fourier feature-based action encoding scheme to effectively
represent mesh manipulation actions in a high-dimensional space. The action encoder consists of
two main components: (1) a Fourier feature mapping that projects 3D action vectors into a higher-
dimensional space using sinusoidal functions, and (2) a multi-layer perceptron that further trans-
forms these features into the desired embedding dimension.

Hyperparameter Value

Fourier frequencies 8
Fourier feature dimension 48
MLP hidden dimensions [512, 512]
Output dimension output_dim
Activation function SiLU
Position normalization Center & Scale

Table 9: Action encoder hyperparameters.

The Fourier feature mapping applies frequency-
based encoding separately to each spatial dimension
(Ax, Ay, Az) of the action vectors using both sine
and cosine functions, resulting in an intermediate
representation of dimension 2×3×F , where F is the
number of Fourier frequencies. Given the input ac-
tion a ∈ RB×N×3, where N is the number of actions
and 3 represents the dimension of (x, y, z) coordi-
nates, we compute the embedding e ∈ RB×N×D3

as:

eb,n,d =

[
sin(2πfdab,n,x) cos(2πfdab,n,x)
sin(2πfdab,n,y) cos(2πfdab,n,y)
sin(2πfdab,n,z) cos(2πfdab,n,z)

]
(2)

where D3 is the action embedding dimension, d ∈ {0, . . . , D3/6 − 1}, and fd = 100d/(D3/6)

are the Fourier feature frequencies. The resulting embedding e provides a rich, high-dimensional
representation of the action space. This representation is then processed through an MLP to produce
the final action embeddings, which is later injected as the condition into our model through cross-
attention layers.
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Figure 18: Example training data.

C.3 Training Details

We train our model using distributed data parallel training on 4 H100 GPUs. The model is trained
with a batch size of 128 per GPU and gradient accumulation steps of 4, resulting in an effective
batch size of 2048. We use the AdamW optimizer with a learning rate of 1e-5 and cosine learning
rate scheduler with 1000 warmup steps. For numerical stability and training efficiency, we employ
mixed-precision training with bfloat16 and enable TF32 on supported hardware.

C.4 Planning Details

Hyperparameter Value

Number of GPUs 4
Batch size per GPU 128
Gradient accumulation steps 4
Effective batch size 1024
Learning rate 1e-5
Learning rate scheduler Cosine
Warmup steps 1000
Mixed precision bfloat16
Number of workers 16

Table 10: Training hyperparameters.

For planning, we employ a hybrid approach combin-
ing Model Predictive Control (MPC) and Cross Entropy
Method (CEM). Our planner optimizes action sequences
by iteratively sampling actions, evaluating their outcomes
using the learned dynamics model, and updating the sam-
pling distribution based on the costs. To enhance plan-
ning efficiency, we introduce two key strategies: (1) an in-
formed action sampling mechanism and (2) a grasp point
selection method. For action sampling, we initialize the
sampling distribution using a prior direction informed by
the target state. Specifically, we identify the K vertices
with the highest mean squared error (MSE) between the
current and target states, and compute a weighted average
direction based on their distances to the grasp point:

dmain =

K∑
i=1

wi(s
i
t − sic), wi =

1

∥pg − pi∥+ ϵ
(3)
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where sit and sic are target and current states of vertex i, pg is the grasp point position, and pi is
the position of vertex i. This informed direction guides the initial sampling distribution for more
efficient exploration.

For grasp point selection, we employ a temperature-controlled softmax strategy based on vertex
displacements. Given the current state Sc and target state St, we compute a probability distribution
over all vertices:

p(i) =
exp(∥sit − sic∥2/τ)∑
j exp(∥s

j
t − sjc∥2/τ)

(4)

where sit and sic represent the position of vertex i in target and current states, respectively, and τ is a
temperature parameter that controls the concentration of the probability distribution. A lower tem-
perature leads to more deterministic selection focusing on maximum displacement vertices, while a
higher temperature enables more exploratory behavior. The grasp point is then sampled from this
distribution:

g ∼ p(i) (5)

This probabilistic selection mechanism provides several advantages over deterministic maximum
displacement selection: (1) it allows for exploration of different grasp points, (2) it can adapt to dif-
ferent manipulation scenarios by adjusting the temperature parameter, and (3) it provides a smoother
transition between different grasp point candidates. The planning algorithm is outlined in Algorithm
1. Hyperparameters for model-based planning are listed in Table 11.

C.5 State Estimation Baseline Implementation

Parameter Value

Number of iterations 5
Samples per iteration 16
Sequence length 5
Action dimension 3
Initial std deviation 0.1
Temperature 1.0

Table 11: Planning hyperparameters.

Hyperparameter Value

Maximum particles (Nobj) 100
Maximum relations (NR) 1000
History frames (nhis) 3
Future frames (nfuture) 5
State dimension 3
Attribute dimension 2
FPS radius range [0.05, 0.1]
Adjacency radius range [0.74, 0.76]
Topk neighbors 5

Table 12: GNN model hyperparameters.

To create the fairest possible comparison, we
provided the GT canonical mesh to both Gar-
mentNets and MEDOR. This isolates the evalu-
ation to their performance for mapping a known
shape to a deformed configuration in the obser-
vation space. We retrained the TRTM baseline
from scratch on our data, and evaluated Garment-
Nets and MEDOR using their official pretrained
checkpoints. The model input domain gap is
minimal, as both our work and these baselines
use the CLOTH3D dataset [49] with the same
crumpled-state generation procedures. The eval-
uation is particularly fair for MEDOR for its test-
time adaptation mechanism.

C.6 Dynamics Baseline Implementation

We introduce details of the dynamics baseline im-
plementation.

GNNs We adopt the implementation from [6].
We construct a comprehensive graph represen-
tation for modeling cloth dynamics, incorporat-
ing object particles, end-effector interactions, and
material properties. The graph structure consists
of four main components: (1) state and action representations, (2) particle attributes and instance
information, (3) relation matrices for particle interactions, and (4) material-specific physics param-
eters. The state representation captures both spatial positions and temporal dynamics through a
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history buffer of nhis frames and future predictions of nfuture frames. Each state vector contains
the 3D positions (x, y, z) of both cloth particles and the end-effector. We maintain a fixed-size
particle set through Farthest Point Sampling with an adaptive radius range of [0.05, 0.1]. We show
detailed parameters for graph construction in Table 12.

C.7 Manipulation Pipeline Details

Our system integrates OWLV2 [50] and Segment Anything [51] to detect and segment desktop
objects from RGB-D input. A single-view partial point cloud of the target object serves as input,
which is processed via DPM to infer the state of the cloth. To address the dimensional and positional
discrepancies between predicted and observed point clouds, we implement a two-stage alignment
process. First, we compute the spatial dimensions of the observed point cloud and apply appropriate
scaling transformations to the predicted point cloud. Subsequently, we employ the Iterative Closest
Point (ICP) algorithm for fine-grained alignment, ensuring that MPC-generated grasping positions
and motion trajectories can be accurately mapped to the physical object. For manipulation, we
model both soft robotic grippers and dexterous hands by representing their end effectors as particles
that attach to mesh vertices during motion. To evaluate our system, we first collect realistic and
challenging target states through teleoperation. We then conduct 10 experimental trials for the same
target state, executing a delta action sequence through the MPC with the dynamics model. These
actions are transformed into absolute positions in the base frame of the robotic arm, with smooth
Cartesian trajectories generated using joint online trajectory planning.

Algorithm 1 MPC Planning Algorithm

Require: Initial state si, target state st, dynamics model fθ, number of iterations N
Require: Number of samples K, sequence length L, action bounds [amin, amax]

1: Initialize µ← 0, σ ← 0.1
2: abest ← None, cbest ←∞
3: for i = 1 to N do
4: Amppi ← SampleGaussian(K/2, L, µ, σ, [amin, amax])
5: Auniform ← SampleUniform(K/2, L, [amin, amax])
6: A← Concatenate(Amppi, Auniform)
7: Spred ← fθ(S,A) ▷ Predict trajectories
8: C ← ComputeCost(Spred, A, T ) ▷ Evaluate costs
9: if min(C) < cbest then

10: cbest ← min(C)
11: abest ← A[argmin(C)]
12: end if
13: µ, σ ← UpdateDistribution(A,C, τ) ▷ Update using weighted averaging
14: σ ← σ · (1− i/N) ▷ Anneal exploration
15: end for
16: return abest
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