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Abstract

Despite significant progress in transformer interpretability, an understanding of the compu-
tational mechanisms of large language models (LLMs) remains a fundamental challenge. We
demonstrate that the inference operation of LLMs can be mapped to an equivalent linear
system that nearly exactly reconstructs the predicted output embedding for a given input
sequence. Extending techniques from image diffusion models that exhibit local or piecewise
linearity, we strategically detach components of the gradient computation with respect to an
input sequence for a next-token prediction such that the Jacobian of the model reproduces
the output with one linear operation per input token. We demonstrate this approach across
models, including Qwen 3, Gemma 3, Llama 3, Phi 4, Mistral Ministral and OLMo 2, up
to Llama 3.3 70B Q4. With the singular value decomposition of the detached Jacobian, we
show that these LLMs operate in extremely low-dimensional subspaces where the largest
singular vectors decode to distinct concepts related to possible output tokens. We examine
the equivalent linear operation of each successive layer (and its attention and multilayer
perceptron components) and observe the emergence of semantic concepts. We demonstrate
that the detached Jacobian of middle layer representations can be used as a steering oper-
ator to insert semantic concepts into unrelated text, which could be useful for improving
safety and decreasing bias. Despite their expressive power and global nonlinearity, modern
LLMs can be interpreted through locally linear decompositions that provide insights into
their internal representations and reveal interpretable semantic structures in the next-token
prediction process.

1 Introduction

The transformer decoder has become the architecture of choice for large language models (Vaswani et al.,
2017) and efforts toward a conceptual understanding of its mechanisms are ongoing. Significant insights
include sparse autoencoders for conceptual activations in LLMs (Bricken et al.,2023)), “white-box” alternative
architectures (Yu et al.,|2023), minimally sufficient architectures (He & Hofmann, 2023) and analytic results
on generalization (Cowsik et al., 2024). While transformers are complex globally nonlinear functions of their
input, we demonstrate how to compute an equivalent linear system that nearly exactly reconstructs the
predicted output embedding for a given input sequence.

Our approach builds on two previous results: [Elhage et al.| (2021) found that attention-only networks with
basic language generation abilities transfer semantic information across the network with interpretable cir-
cuits, including the “induction head”, and |Kadkhodaie et al.| (2023) showed that powerful image denoising
diffusion models can be made exactly locally or piecewise linear through several architectural constraints
and interpreted as low-dimensional adaptive linear filters.

We extend these ideas by demonstrating local linearity for modern LLMs with gated linear activations.
For many open-weight LLMs, the gradient operation with respect to the input can be manipulated at
inference such that the output prediction is unchanged and also almost exactly locally linear. This numerical
Jacobian computation captures the complete forward operation of the model, including activation functions
and attention, although it is only valid for that particular input sequence (more “pointwise” linear than
piecewise linear).
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Figure 1: A schematic of the Llama 3 transformer decoder (Grattafiori et all [2024; [Nvidia), 2024)). The
gradient detach operations for components outlined in red effectively freeze the nonlinear activations for a
given input sequence, creating a linear path for the gradient with respect to the input embedding vectors,
but do not change the output. The output embedding prediction can be nearly exactly mapped to a linear
system by the Jacobian autograd operation. The feedforward module with a SwiGLU activation function is
shown in expanded form to demonstrate how the nonlinear Swish term can be detached from the gradient
to form a linear path, achieving local linearity for a given input. The RMSNorm layers and and softmax
attention blocks also must be detached from the gradient.

This approach allows us to analyze entire models, from input embeddings to predicted output embedding,
as equivalent linear systems for a particular input sequence. By examining the singular value decomposition
(SVD) of the equivalent linear system, we can measure the local dimensionality of the learned manifolds
involved in next-token prediction, and we can decode the singular vectors into output tokens. This analysis
can also be done layer by layer, or for individual attention and multilayer perceptron (MLP) modules, in
order to observe how these models compose next-token predictions.

We demonstrate local linearity in model families including Qwen 3, Gemma 3, Llama 3, Phi 4, Mistral
Ministral, Deepseek R1 0528 Qwen 3 8B and OLMo 2, at a range of sizes up to Llama 3.3 70B Q4. This
approach does not require further model training, offering a new path to interpreting a wide range of open-
weight LLMs at a local level that could serve as a complement to other powerful interpretability methods.

2 Method

2.1 The Jacobian of a deep ReLU Network

[Mohan et al.| (2019) observed that deep ReLU networks for image denoising which utilize zero-bias linear
layers are “adaptive linear” functions due to their homogeneity of order 1 at a given fixed input, which
enables interpretation as a nearly-exact linear system. Given the homogeneity at a fixed input, the network’s
output can be nearly exactly reproduced by numerically computing the Jacobian matrix of the network at
a particular input image x},,, and multiplying it by x{ .

*
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Figure 2: An overview of next-token prediction in the Llama 3.2 3B transformer decoder and decomposition
of the predicted embedding vector computation using the detached Jacobian. Generating three tokens with
only < |BoT| > as input produces “The 201". For each prediction, each input token t; is mapped to an
embedding vector x;, and the network generates the embedding of a next token. The phrase turns out
to be “The 2019-2020 season'. The detached Jacobian J*(x) of the predicted output embedding with
respect to the input embeddings is composed of a matrix corresponding to each input vector. Each detached
Jacobian matrix Ji+ (x) is a function of the entire input sequence but operates only on its corresponding
input embedding vector. The matrices tend to be extremely low rank, shown in the inset figures, and the
matrix J§ varies across A), B) and C) above because the input sequences differ. Since the detached Jacobian
captures the entirety of the model operation in a linear system (numerically, for a given input sequence),
tools like the SVD can be used to interpret the model and its sub-components.

Due to the global nonlinearity of the network, the Jacobian must usually be computed again at every input
of interest. The Jacobian may be the same for similar inputs in the same piecewise region of the response
(Balestriero & Baraniuk} 2021]).

2.2 The Jacobian of a transformer decoder

Many open weight LLMs also use linear layers with zero bias, like the ReLU network of
(2019). A transformer decoder predicts an output token embedding y given a sequence of k input tokens
t = (to,t1...,tx) mapped to input embedding vectors x = (xg,X1...,Xk), where t* and x* represent a
particular sequence. The output embedding prediction is a nonlinear function of the input embedding
vectors Xg, X1,...Xk, as LLMs utilize nonlinear gated activation functions for layer outputs (SwiGLU for

Llama 3, GELU for Gemma 3 and Swish for Qwen 3) as well as normalization and softmax attention
blocks.
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Gated activations like Swish(x) = x - sigmoid(x), with a linear term and a nonlinear term, are also an
“adaptive” linear function or, more generally, an adaptive homogeneous function of order 1 (Mohan et al.|
2019). If the sigmoid(x) term that gives rise to the nonlinearity is frozen for a specific numerical input, e.g.
an embedding vector x§ (Elhage et all |2021)) (or equivalently detached from the computational graph with
respect to the input), then we have a linear function valid only at x§; where holds and we can numerically
compute a Jacobian that carries out Swish(xg) as a linear operation.

Below we show that computing the Jacobian after effectively substituting specific values for the nonlinear
terms also works for other gated activation functions, zero-bias RMSNorm layers and softmax attention
blocks. We further demonstrate that for a given input sequence the entire transformer decoder is an adap-
tive homogeneous function of order 1 where we can apply necessary gradient detachments and numerically
compute a linear system that nearly exactly reproduces the transformer output embedding y*.

The Jacobian J(x) of a transformer is the set of matrices generated by taking the partial derivative of the
decoder inference function y(x) = f(xo,X1...,Xk), with respect to each element of each x; (where x; for
Llama 3.2 3B has length 3072, for example, and therefore the Jacobian matrix for each embedding vector is
a square matrix of this size).

We introduce a “detached” Jacobian J*, which is a set of matrices that captures the full nonlinear forward
computation for a particular input sequence x* as a linear system. The detached Jacobian is the numerical
Jacobian of the LLM forward operation when its gradient includes a specific set of detach() operations for
the nonlinear terms in the normalization, activation and attention operations. Fig. [2]shows how each matrix
of the detached Jacobian operates on its corresponding input embedding vector to provide a nearly-exact
reconstruction of the LLM forward operation (with a relative error of 107¢ (the standard deviation of the
reconstruction error divided by the standard deviation of the output embedding), see Fig. [3).

k
y' =) X (2)

=0

While the traditional Jacobian J for a particular input sequence x* is a locally linear approximation of the
nonlinear LLM forward operation, it does not generate an exact reconstruction at x* since the transformer
function is not linear. The detached Jacobian J* evaluated at x* is the result of an alternative gradient
path through the same network which is linear for the input x*. The detached Jacobian J* only generates
a near-exact reconstruction at x* and not in the local neighborhood due to the strong nonlinearity of the
decoder inference function. The detached Jacobian matrices differ for every input sequence and must be
computed numerically for every sequence.

2.3 Nonlinear layers as locally linear operations

In order to achieve local linearity, modifications must be made to the gradient computations of the
RM SNorm operation, the activation function (SwiGLU in Llama 3.2) and the softmax term in the atten-
tion block output.

2.3.1 Normalization

Normalization layers like Layer Norm (Xu et all [2019) or RM SNorm (Zhang & Sennrich, [2019) are non-
linear with respect to their input because they include division by the square root of the variance of the
input.

norm(x) = _x 3
() var(x) ®)

Mohan et al.| (2019) devised a novel bias-free batch-norm layer which disconnects the variance term from the
network’s computational graph. Their batch-norm layer returns the same values as the standard batch-norm
layer, but it is locally linear at inference as the nonlinear operation is removed from the gradient computation.
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Figure 3: For the input sequence “The bridge out of Marin is the”, the elements of the predicted output
embedding vector of the model compared to the elements from the Jacobian reconstruction for both the
original Jacobian (blue points) and detached Jacobian operations (red points), shown for a range of model
families and sizes. Note that the detached Jacobian reconstructions nearly exactly match the predicted
embedding in each case, with relative error (the standard deviation of the reconstruction error divided by
the standard deviation of the output embedding) on the order of 10~3 for float16 precision and 10~° for
float32 precision. Llama 3 models are shown in A) and D), Qwen 3 models in B) and E), and Gemma 3
models in C) and F). These plots demonstrate the near-exact reconstruction of the detached Jacobian and
therefore the local linearity of the mapping.

This is also similar to the “freezing” of nonlinear terms in attention-only transformers from [Elhage et al.
(2021).

We make a similar change for Llama 3.2 3B by altering how the gradient with respect to the input is
computed at inference for RM SNorm. This is accomplished by substituting the value for the input vector
x* for only the variance term as in . In PyTorch, this is accomplished by cloning and detaching the x
tensor within the variance operation, so its value will be treated as a constant. The gradient operation is still
tracked for x in the numerator, so that term will be treated as a variable by autograd. functional.jacobian.
The gradient of the function is then computed at x* (we assume for simplicity a sequence of length 1).

normr,r(x) = _x 4
&) var(x*) @

We define the detached Jacobian as follows:
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0
T = [&normm(x)] |e=sx (5)

We can rewrite the locally linear RM SNorm as follows:

normp(x*) =J  (x*)-x* (6)
At inference, we now have a locally linear RMSNorm whose output is numerically identical to the one
used in training. However, when we take the gradient with respect to the input vector x in eval mode, the
numerical output is the detached Jacobian matrix J KLL, which we can use to reconstruct the normalization
output exactly as a linear system; no higher-order terms are needed.

The goal is to apply this same approach for other nonlinear functions in the decoder such that the entire
computation from the input embedding vectors to the predicted output is locally linear, and we can compute
and interpret the set of detached Jacobian matrices.

2.3.2 Activation functions

While Mohan et al.| (2019)) relied on ReLU activation functions, which do not require any changes to achieve
local linearity, Llama 3.2 uses SwiGLU (Shazeer, 2020), Gemma 3 uses approximate GELU (Hendrycks
& Gimpel, 2016) and Qwen 3 uses Swish for activation functions. Fortunately, there is a linear x term in
each of these, and the gradients can be cloned and detached from the nonlinear terms. This manipulation
produces a locally linear SwiGLU layer with respect to the input x. Below, Swish(x) = x - sigmoid(x) and
® is element-wise multiplication.

SwiGLU (x) = Swish (Wx) @ (Zx) (7)
SWIGLU, 1 (x) = [Swish (Wx)]lxex- @ (Zx) 3)
SWIGLU L () = ([ SWCGLUL (1)) o) - X° ©)
SwiGLU Lz (x*) = I igLu,, (X) - X" (10)

Detaching the gradient from the Swish output thus allows for a locally linear form of SwiGLU at inference.
A similar procedure may be carried out for GELU with Gemma 3 (see supplement).

2.3.3 Attention

The softmax operation at the output of the attention block can also be detached, with the linear relationship
preserved through the subsequent multiplication with V, which is a linear function of x. Below, Q = Wqx,
K=Wgkxand V= Wyx.

QK"

Attn(Q, K, V) = softmax( NP )V (11)

Attnrp(x) = [SOftma.Z‘((?/I;»:)Q—Q*,K—K*] - Wyx (12)
0

Attnpr(x*) = ([z=Attnpp (2)]|x=x) - X~ (13)

ox
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Attnpp(x”) = JXttnLL (x¥) - x* (14)

The linear x term within V makes it possible for the attention block to be locally linear at inference, as the
gradient for the softmaxz output is detached.

2.3.4 The Transformer Decoder

With the the above gradient detachments for the normalization layers, activation functions and attention
blocks, the transformer decoder network is locally linear with respect to x* when evaluated at x* (shown
here for length k).

k
y =) 3 (x)x (15)
=0

The output of the network incorporating the above gradient detachments is unchanged from the original
architecture.

3 Results

3.1 Local linearity of the predicted output

In order to validate whether the detached Jacobian achieves local linearity, we can compare the predicted
output embedding vector for a given input token sequence to the Jacobian reconstruction of the output.

Fig. [Blexamines the original output and the output when incorporating the appropriate gradient detachments
for local linearity for two sizes of Llama 3, Qwen 3 and Gemma 3. The reconstruction of the output
embedding with the detached Jacobian matrices falls close to the identity line when compared with the
output embedding, which is evidence for local linearity. The same comparison with the original Jacobian
does not fall on the identity line. The standard deviation of the difference for the detached Jacobian divided
by the standard deviation of the output embedding vector is on the order of only 106, which quantifies how
exactly the detached Jacobian reproduces the output). These plots therefore validate the local linearity of
Llama 3, Qwen 3 and Gemma 3 with the appropriate gradient detachments for a particular input.

The numerical computation of the top k singular vectors of the Jacobian takes on the order of 10 seconds
for an input sequence of 8 tokens for Llama 3.2 3B on a T4 GPU. At the other end of the spectrum, the
singular vectors for the same sequence with Llama 3.3 70B Q4 on an H100 GPU takes more than a minute.
(A method for computing the top singular vectors without forming the full matrix with Lanczos iteration is
under development.)

3.2 Single-unit feature selectivity and invariance

Since the detached Jacobian applied to the input embedding reproduces the predicted output embedding
vector, and the elements of the predicted output embedding vector are the units of the last transformer
layer, the rows of the detached Jacobian matrices represent the input features to which the last layer units
are selective and invariant for that particular input sequence (Kadkhodaie et al., |2023; Mohan et al., |2019)).

The activation of a particular unit in the last layer is determined by the inner product of a row of the
detached Jacobian and the input embedding vector. We can sort by the mangitude of row norms, then map
the largest-magnitude rows of the detached Jacobian back to the input embedding space (by finding the
nearest-neighbor embedding vectors from the tokenizer) to determine the tokens that cause each unit to be
strongly positive or negative. We can see in Fig. [4] (in appendix [A]| below) that the units respond strongly
to the words of the prompt, including “bridge”, “Marin” and “is”. Decoding of the rows of the detached
Jacobian for each token as well as the distribution of activations for this sequence is shown in Fig. [A.
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Figure 4: Given the sequence “The bridge out of Marin is the", the most likely prediction is “most" for
Llama 3.2 3B. The detached Jacobian matrices for each token represent a near-exact local linearization of
the predicted output embedding. A) We show the features which drive large responses in single units in the
last decoder layer, which are the rows of the detached Jacobian with the largest norm values, and decode
each of those into the most likely input embedding token. The blue list of words at the top are the ordered
decoded “feature" input tokens from the largest rows of the detached Jacobian matrix for the beginning of
sequence token, and the different colors show the decoded feature tokens for the other input tokens. A similar
operation is carried out for columns of the largest norm values, which are decoded to the output token space.
Note that the activation distribution of column magnitudes is fairly sparse, with only a few features driving
the response. B) We take the singular value decomposition of the detached Jacobian matrix corresponding to
each input token, which summarizes the modes driving the response, and decode the left and right singular
vectors U and V to output and input embeddings, shown in colors. The singular value spectrum is extremely
low rank, and decoding the U singular vectors returns candidate output tokens: “most" and “one" appear
frequently. Decoding the V singular vectors returns variants of the input tokens like “bridge”, “Marin” and
“is”, as well as others that are not clearly related to the input sequence.

The columns of the Jacobian can also be decoded to the output token space, and these turn out to be tokens
that could be predicted, which include words like “most” or “first”, which could be acceptable outputs.

3.3 Singular vectors of the detached Jacobian

An alternative approach is to look at the singular value decomposition of the detached Jacobian J 1+ =UxVT,
following Mohan et al| (2019). Since the detached Jacobian represents the forward computation, and there
are no higher order terms, the fact that the SVD is very low rank shows the entire forward computation can
be approximated with only a few singular vectors operating on the input embeddings.

In Fig. [@B, the singular vectors are decoded for three different models of two sizes each, from 3B to 70B
parameters. The right singular vectors V are decoded to input tokens in the same way the rows of the
detached Jacobian were above, and we see almost identical decoding of the top tokens to the features driving
the most active single units. The left singular vectors U can be decoded to output embedding tokens, and
“most" is the strongest, as it was in the columns of the detached Jacobian matrices.

3.4 Singular vectors across model families

Fig [5| shows this same analysis for Llama 3, Qwen 3 and Gemma 3 across two different sizes of each. Note
the low-rank structure of each of the detached Jacobians, as well as the differing decoding of the top singular
vectors from each input embedding vector. The first or “beginning of sequence” token has the highest



Under review as submission to TMLR

Model: meta-llama/Liama-3.2-38-Instruc 1: Quen/Qwens3.- Model: google/gemma-3-4b-it
A \npu(+prem:lmn “The bridge out of Marin \S the [[mos(]] Inpu(+pred\((mn ThE bridge out of Marm IS the [[only]]" C Inpul+pred|c(won "The bridge out of Marin is the [[Golden]]"
of the Detached Jacobiar of the Dela(hed Jacobiar VD of the Detachedjac bian
Token 0, Vs iow, [ few, own, quIckly Token 0, Vi The, “Ther TThes Koo po ool Token 0, ir <boss 11 docen. Dens Do
. 1
Token 2, Vo: bridge, Bridge, bridges, Brid, Bridge Vs out, Aout, up, OUT, OUT Token 2, Va: Bridge, bridge, Bridges, cau, &u
. Token 3, Vo: out, OUT, Out, -out, .out s Vo 1€, de, from, _of, N Token 3, Vo: \#, Zhu, Jackie, Emily, Wu.
Ve off, into, from xi Marin, zwiaszc, 0, Marg, Mapn Token 4, Vo: deity, kanTopsi, ,, Corv
Token 5, Va: Marin, San, ma 150 s, are, was, [, Al Token 5, Vo: Marin, Marin, Sonoma, Chev, Rousseau.
2 he, THE, The, -the, _th 2 3 ken 7, Vo: the, the, THE, this, ts.
g0 ] g
£ g £s
H Token 0, Us: most, best, one, I, *, only, Mar H Token 0, Us: only, first, main, last, most, second, third H Token 0, Us: one, most, only, Golden, *, main, lon
g ) 2, 1
2 Token 2, U ne, *, only, B, I, best ] oken 2, Us: only, last, first, main, key, same, one, road H Token 2, U bridge, Bridge, Richmond, trus: Iden, Toll, Gamer
Token 3, Us: most, one, Marin, best, only, Mar, . Token 3, Us: Marin, only, last, San, first, same, main, ke, ] Token 3, Us: bridge, Golden, Bridge, Puente, Highway, Richmond, cause, ohe.
Token 5, Us: Marin, most, Bay, best, only, one, Mar. Token 5, Us: only, first, last, main, third, key, final, way. Token 5, Us [, Marin, Sonoma, Contra, Marin, Richmond, contra, Doyle... |
50 .
s i
. most, longest, first, one, final, : oken 7, Uo: bridge, Bridge, Brooklyn, world, way, Golden, famous, infamo:
o o o
0 = By 3 T 3 £ 3 3 = £
Singular value index Singular valu index Singuar value index
Model: unsloth/Llama-3.3-70B-Instruct-bnb-dbit Model: Qwen/Qwen3-: Model: google/gemma-3-2
\npqured\(llon “The bridge out of Marin \5 the [[Golden]]" Inpu(%predl((mn The bridge out of Marm is the [[Golden]]" \npqurEd\(lmn The bridge out of Marln \S the [[Golden]]*
of the Detached Jacobia of the Detached Jacobian o the Detached Jacobar
ok U Vi <ToEgT T Token 0, Vi The, Human - The, 241 e BBl a0, v <oaes orthingss, metakss T
e Token 1
Token 2, Vo: bridge, bridges, brid, Brid, brid. Token 2, Ve: out, Out, -out, OUT, ou. [ Sans s Token 2, Va: bridge, Bri ges, Bridge, BRIDGE... _
s00 Token 3, Vo: [ @, outweigh 4, as 150 Token 3, Ve: of, Of, from, OF, =. — mienst out, OUT, over, OUT, from
Token 4, Vo: InSeconds, squ Miss, toaste Token 4, Va: Marin, marin, margin, opir Toens outta, out, onto, Ou en
§ e 1350 Mapi —
Token 5, Vo: Marin, marin, Mar, _collision, _TIME Token 5, Vo: s, are, was, is marin, Kristin, Mapurea.
goo Token 7, Ve the, The, The, “The, he 3 2 Token 7, Vit th
H Token 0, Us: Golden, Richmond, one, most, last, San, first. g0 g Token 0, Us: Golden, most, only, main, gateway, one, last
H H H y gateway
P Token 2, Us: Golder first, one, best, only s c Token 2, Us: Richmond, Richa
H Token 3, Us: Golden, ast, first, best, same, one. H Token 3, U bridge, Golden, ichmend, Sir, o Token 3, Us: Richmond, Richa
H Token 4, Us Golden, most, st irs, best, only. £ Token 4, U bridge, Golden, Richmond. Si. T Token 4, U Richmond, botteneck, R
Token 5, Us: Golden. best, first, Richmond, golden g., Token 5, Us: same, Golden, Bay, frst, only, backbone, San, easter. Token 5, Us: Marin, Richmond, Richar
030
200
= 025
o . 0.00 - T
g 3 0 = B 3 H T = B g T 0 = B
Singular value index Singular value index Singular value index

Figure 5: Singular value decomposition of the detached Jacobian for different families and sizes of language
models (from 3B to 70B parameters) evaluating the input sequence “The bridge out of Marin is the”, followed
by a predicted token. The left singular vectors decode to tokens related to bridges and local geography,
particularly the Golden Gate Bridge, while singular value spectra all have extremely low rank (see below for
quantification). Each row shows top tokens associated with different singular vectors, demonstrating how
models encode semantic knowledge about the input sequence and the prediction. See Fig. for Deepseek
R1 0528 Qwen 3 8B Distill, Phi 4, Mistral Ministral and OLMo 2.

magnitude in each spectrum reflecting how the positional encoding is entangled with semantic information
in the detach Jacobian representation.

3.5 Layer output singular vectors

Tables and[2] show the decodings of the top three singular vectors of the detached Jacobians of the layer
outputs for Llama 3.1 8B, Gemma 3 4B and Qwen 3 8B. Similar patterns emerge across models: the words
“bridge” (and its variants), “Golden”, “highway”, “exit”, “most” and “only” are highlighted to show their
appearances in singular vector decodings. Early layers are excluded as the decodings are unintelligible. The
emergence of intelligible tokens in later layers is shown in the tables as something like a phase change in the
representation. Llama 3.1 shows a progression from generic bridge terms to specific San Francisco geographic
terms and generating “Golden”. Gemma 3 includes more diverse geographic terms including international
locations but still results in “Golden”. Qwen 3 produces more infrastructure and engineering concepts before
producing “only”.

Fig. [6A shows the normalized singular value spectra of the detached Jacobian at the output of every layer.
Llama 3.2 3B has 28 transformer layers, and decoding the largest singular vectors shows that the word
representation of these intermediate operations is not interpretable until later layers. From the decoding
of the top singular vector by layer, “only” emerges in layer 19. From the map of the progression of the
projection of the top two singular vectors onto the top two singular vectors of the last layer in Fig. 6B, we
first see a shift at layer 11 toward the prediction.

Since the layer—by—layer operations are only linear and have no higher-order terms, the stable rank R =
(Z S2)/82 .. serves as a measure of the effectively dimensionality of the subspace of the representation at
a particular layer.
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When looking at Wy o &, the cumulative layer transform up through layer k, the dimensionality of the
detached Jacobian steadily decreases. When considering each layer i as its own individual transform W;
(where Wy 40 1 = Hf:o W; for the simplified scenario of a single input token; there are other cross-token
terms not shown here for mid-layer detached Jacobians for longer input sequences), we also see a large peak
in dimensionality near the end.

Table 1: The top three singular vectors of the detached Jacobian for the layer outputs from Llama 3.1 8B for
the sequence “The bridge out of Marin is the” with the prediction [[Golden]]. Legend: “Bridge” , “only” ,

“highway”  “exit” , “Golden” , “most” . This is a selection of the middle layers, see for full tables
that extend to the last layer.

Table 2: The top three singular vectors of the detached Jacobian for the layer outputs from Qwen 3 8B for
the sequence “The bridge out of Marin is the” with the prediction [[only]]. Legend: “Bridge”, “only” ,

“highway” , “exit” , “Golden” , “most” .

Table 3: The top three singular vectors of the detached Jacobian for the layer outputs from Gemma 3 4B for
the sequence “The bridge out of Marin is the” with the prediction [[Golden]]. Legend: “Bridge” , “only” ,

“highway”|, “exit” , “Golden” , “most” .

3.6 The detached Jacobian as a conceptual steering operator

Steering vectors are a well-known technique for altering LLM outputs (Liu et al., [2023). Here we utilize the
detached Jacobian from an intermediate layer for a phrase like “The Golden Gate”, after the “Golden Gate
Claude” demo (Templeton et al., |2024). The model predicts “Bridge”, and this detached Jacobian is used
as an operator to steer the continuation of a new phrase toward this concept. For a new input phrase, like
“Here is a painting of the”, the new embedding vectors x},.,, are scaled by A and multiplied by the detached
Jacobian for the steering concept J5 (XZieor), and added to the layer activation fr; from the new input.

fLi(X) = )\ . fLi(X*

new )

+ (1 - >‘) : in(xzteer) : X;'klew (16)

This intermediate representation is then fed back through the remaining layers of the network and the next
token is decoded. The detached Jacobian must only be computed once for the steering concept, and therefore

10
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Figure 6: Since the transform representing the model forward operation is locally linear, we can also decom-
pose each transformer layer as a linear operation as well. A) The singular value spectrum for the cumulative
transform up to layer i. Note that later layers are lower rank than earlier layers. The top singular vectors of
the later layers show a clear relation to the prediction of “most". B) The projection of the top two singular
vectors onto the top two singular vectors of the final layer. The singular vectors of the first 10 layers are
very different than those of the last layer, so the projections remain close to the origin. At layer 11, they
begin to approach those of the output layer. C) A measurement of the dimensionality of the cumulative
transform up to the output of each layer as the stable rank. Within each layer, the outputs of the attention
and MLP modules (prior to adding the residual terms) can also be decomposed as linear mappings. The
dimensionality decreases deeper into the network at each of these points, except for a slight increase for
the attention and MLP module outputs in layer 3. D) The dimensionality of the detached Jacobian for the
layer-wise transform at layer ¢ for the layer output, as well as the attention module output and MLP module
output.

this method is rather efficient. Table [4]shows how the detached Jacobian from an intermediate layer imposes
the Golden Gate Bridge as the semantic output coherent with the rets of the input sentence, even when it
is difficult to make a logical connection. Beyond demonstrating practical utility, the success of the steering
operator provides validation that the detached Jacobian captures actual semantic representations.

11
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4 Discussion

The detached Jacobian approach allows for locally linear representations of the transformer decode to be
found for each input sequence, without changing the output. The intermediate outputs of each layer and
sub-component are also exactly reproduced by the detached Jacobian function.

The detached Jacobian operation is only nearly exact at the specific operating point at which the matrices
were computed by autograd. A short distance away in the input embedding neighborhood, the detached
Jacbian will be extremely different because the manifold is highly curved. (Although local neighborhood
validity is less applicable to LLMs which map tokens to embedding vectors, as inputs will only ever discretely
sample the embedding space, and there are not obvious needs for exploring the local neighborhood beyond
token embedding vectors). The manifold is not piecewise linear, but only has a linear equivalent exactly at

the operating point, which can be found numerically for every input sequence.

Model

Layer intervention

Input sequence

Normal response

Steered response

Llama 3.1 8B IT

24 / 36

‘'m going to ari-
zona to see the’

‘I'm going to ari-
zona to see the
Grand Canyon. I've
heard it’s a must
see. I've also heard
it’s a bit of a trek to’

‘I'm going to ari-
zona to see the
Grand Canyon,
and I'm planning
to hike the Bright
Golden Gate Bridge
(I think that’s the
name of the trail) in
the Grand Canyon.

to see the’

to see the memo-
rial and museum. It
was a very moving
and emotional ex-
perience.

Qwen 3 8B IT 24 / 36 ‘Here is a painting | ‘Here is a paint- | ‘Here is a paint-
of the’ ing of the same | ing of the Golden
scene as in the pre- | Gate Bridge in San
vious question, but | Francisco. The
now the two peo- | Golden Gate Bridge
ple are standing on | is one of the most
the same side of the | famous bridges in
building. ’ the world. ’
Gemma 3 12B IT 33 /48 ‘I went to new york | ‘I went to new york | ‘I went to new york

to see the 10th
anniversary of the
Broadway show,
“The Golden Gate
Bridge Bridge." It

was a great show.

Table 4: Detached Jacobian matrices as steering operators, pilot results with Llama 3.1 8B, Qwen 3 8B and
Gemma 3 12B.

5 Conclusion

We have demonstrated that a number of open-weight LLMs can be made locally linear at inference, where
a set of detached Jacobian matrices completely describes the forward computation, and that the predicted
output embedding is unchanged from that of the original model. One potential safety application of this
method is to examine large singular vectors for bias, misinformation or toxic content. The initial demon-
strations of model steering may eventually be useful as a way to intervene and elicit safer outputs. Although
this method requires intensive computation for decomposing single-token predictions, it should be possible
to scale this investigation to well-known LLM datasets.

12
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A Appendix

A.1 Locally linear approximate GELU

Gemma 3 uses the approximate GELU activation function. Below 7 = 0.44715. Here is the derivation of
the locally linear version of GELU used for Gemma 3 in the preceding analysis.

GELU (x) = %x (1 + tanh [\/2/7r (z + »yx?’)D (17)

1
GELU. (x) = 7% (1 + tanh {\/2/7‘(’ (z+ ’ny)D [ (18)
GELU,, (x*) = ([%GELULL(:E)HXZXg X (19)

A.2 Code availability

Code is provided as a zip file (and will be made available on github).

A.3 Additional models

Local linearirty for Deepseek R1 0528 Qwen 3 8B Distill, Phi 4, Mistral Ministral and OLMo 2 are shown
on the following page. See Fig.

A.4 Semantic Emergence in Transformer Layers

The first singular vectors of the detached Jacobians for the layer outputs from Llama 3.1 8B, Gemma 3 4B
and Qwen 3 8B for the sequence “The bridge out of Marin is the” are shown below on the following page.
These are expanded versions of Tables and [3] from the main text.

15



Under review as submission to TMLR

. _at _R1T- ~ . Model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
Model: deePseek allDeepSe'ek'Rl 0528 Qwen3-8B Input+prediction: "The bridge out of Marin is the [[only]]"
The bridge out of Marin is the [[only]] SVD of the Detached Jacobian
Detached Jacobian Reconstruction Error = 1.06e-06 Token 0, Vor The, You, "The, "The, There.. — Tokeno
T = T T— T Token 1, Vo: bridge, bridges, I, breat, Clinton —— Token 1
. Onglr)al Jacoblanv Reconstruction 300 Token 2, Ve: out, Bout, in, OUT, -out... I::::i
= 607 :;‘etnt'tgl goca”{)."ne:r) et Token 3, Vo: 0o0n, [, _of, To, For.. — Toens
| . — Token
S etached Jacobian Reconstruction 250 Token 4, Vo: [I, Martins, Rangers, zwiaszc, [J.. —— Token &
§ 40 Token 5, Vo: is, are, [, Is, be...
o Token 6, Vo: the, THE, The, , a
£ @
o 3 200
3 2 £
-g . | g Token 0, Uo: only, first, most, last, main, best, same, longest...
f‘ 0 e % . . - 3 Token 1, Uo: bridge, Bridge, structure, crossing, span, longest, only, entrance
Ed . 5\ " g 150 Token 2, Uo: road, only, worst, last, way, route, first, best...
£ £ Token 3, Uo: road, only, worst, bottleneck, route, Marin, last, first..
3
%‘ -20 % Token 4, Uo: Marin, San, marine, Marine, ferry, SF, worst, mar.
S 100
K Token 5, Uo: only, first, bottleneck, way, same, beginning, gateway, last...
8 —40 Token 6, Uo: gateway, bottleneck, thorough, lif, kind, beginning, Gateway, culmination..
=
€ 50
5
¥ -60
0
-60 -40 -20 0 20 40 60 T T o = %
Output Embedding Singular value index
Model: microsoft/Phi-4-mini-reasoning
Model: microsoft/Phi-4-mini-reasoning Input+prediction: "B bulld we need [[to]]*
" SVD of the Detached Jacobian
To build we need [[to]] o] T TOKeN 0, Vot @, 50, wax, bunifu, Max... ]
Detached Jacobian Reconstruction Error = 3.08e-06 Token 1, Vo: ‘aller, non, ctos, ausschlieBlich, .alg.— Token1
v — Token 2
«  Original Jacobian Reconstruction P Token 2, Vo: (J0, 00, avorites, 0000, paar... — Token 3
- —— Identity (locally linear) g 120 Token 3, Vo: [0, omegranate, [0, an, 1] 0...
Sl 4 = Detached Jacobian Reconstruction
]
gl 100
= 2
3°? ’
2 g 80 Token 0, Uo: Project, merges, List, Path, --, Type, pushes...
g g Token 1, Uo: spirit, 360, 720, 111, 174, belief, 136, reality.
.5' 0 3 Token 2, Uo: spirit, belief, willingness, continuity, commission, talent, sentiment, wooden
< |
g 2 0 Token 3, Uo: implicitly, (s, optim, indirectly, simultaneously, separately, similarly, separa
£ 3
S -
-2 40
-4 20
T T T T T o
-4 -2 0 2 4 0 5 10 15 20
Output Embedding
. mi IMini _QR.| X Model: mistralai/Ministral-8B-Instruct-2410
Model: mistralai/Ministral-88 l.nStru,c': 2410 Input+prediction: "There was thunder and [[lightning]]"
There was thunder and [[lightning]] SVD of the Detached Jacobian
Detached Jacobian Reconstruction Error = 2.04e-06 Token 0, Vor [SUFFIX], [MIDDLE], [IMG_END, [PREFIX], [IMG]... —s
30 == - - Token 1, Vo: [SUFFIX], [MIDDLE], [IMG_END], [PREFIX], [IMG] — Token 1
) Eng'tr.‘ta”;amt::a':. Raconstruction i 2500 Token 2, Vo: [SUFFIX], [MIDDLE], [IMG_END, [PREFIX], [IMG]... T en?
= Det“ 'hy (d°ca :’)_ '"e:') ks Token 3, Vo: [SUFFIX], [MIDDLE, [IMG_END], [PREFIX], [IMGL... — Token 4
u .
S 204 etached Jacobian Reconstrction Token 4, Vo: [SUFFIX], [MIDDLE], [IMG_END], [PREFIX], [IMG]
3
>I 2000
g
£ ®
3 19 g
o €
€ gmo Token 0, Uo: lightning, a, light, rain, there, the, it, thunder...
S P - PO 3 Token 1, Uo: lightning, light, rain, a, there, lighting, it, the
3 ° K Token 2, Uo: lightning, light, rain, a, lighting, it, the, there..
2 Token 3, Uo: lightning, rain, light, the, a, it, lighting, storm...
| =
< _104 £ 11000 Token 4, Uo: lightning, light, thunder, rain, a, the, it, lighting...
o 2l
s
o
S
E) )
:E, =204 /’( 500
. e \
—30 {7
T T T T T T T o
-30 -20 -10 0 10 20 30 : T " = %
Output Embedding Singular value index
. . Model: allenai/OLMo-2-1124-78
Model: allenai/OLMo-2-1124-7B Input+prediction: "A fluffy blue creature roamed the [[Earth]]"
A fluffy blue creature roamed the [[Earth]] SVD of the Detached Jacobian
Detached Jacobian Reconstruction Error = 1.29e-06 ToKen U, Ve A, Well, UNited, An, €. — Token0
Token 1, Vo: bast, slender, inflict, raping, vile — Token 1
+  Original Jacobian Reconstruction / 120 Token 2, Vo: mute, kill, raping, slender, bleak... s
= 204 Identity (locally linear) Token 3, Vo: constructs, youths, licants, slaves, entities... s
- ; — Token
§ = Detached Jacobian Reconstruction / Token 4, Vo: ro, w, r, Ro, -ro... ket
§ 100 Token 5, Vo: roam, wandering, ams, wandered, aming...
o Token 6, Vo: The, <|endoftext|>, a, the, the
£ 10 g
= 32
g ‘é 80
-g g Token 0, Uo: streets, forest, earth, sea, Earth, planet, desert, surface...
5 . s Token 1, Uo: river, ground, area, place, surface, village, ship, forest
o 1 . E
3 S 60 Token 2, Uo: river, wastes, edge, eastern, ground, place, upper, ruins..
£ 2 Token 3, Uo: corpse, wastes, corpses, place, damned, melee, village, fet...
= 3
<! = Token 4, Uo: forest, plains, fields, streets, sav, land, earth, hills...
T
5 —101 0 Token 5, Uo: fields, streets, forest, plains, land, sav, grounds, hills...
§ Token 6, Uo: room, surface, streets, sky, living, land, city, road
= /
g / 20
2 -20
T T T T T °
-20 -10 [ 10 20 p T o = =
Output Embedding singular value index

16
Figure Al: The detached Jacobian reconstruction error and SVD for Deepseek R1 0528 Qwen 3 8B, Phi 4
Mini 4B, Mistral Ministral 8B and OLMo2 7B.
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Legend: “Bridge” , “only” , [“highway” , |“exit” , “Golden” , “most” .

Table 5: The top three singular vectors of the detached Jacobian for the layer outputs from Llama 3.1 8B
for the sequence “The bridge out of Marin is the” with the prediction [[Golden]].

Table 6: The top three singular vectors of the detached Jacobian for the layer outputs from Gemma 3 4B
for the sequence “The bridge out of Marin is the” with the prediction [[Golden]].

Table 7: The top three singular vectors of the detached Jacobian for the layer outputs from Qwen 3 8B for
the sequence “The bridge out of Marin is the” with the prediction [[only]].

17



	Introduction
	Method
	The Jacobian of a deep ReLU Network
	The Jacobian of a transformer decoder
	Nonlinear layers as locally linear operations
	Normalization
	Activation functions
	Attention
	The Transformer Decoder


	Results
	Local linearity of the predicted output
	Single-unit feature selectivity and invariance
	Singular vectors of the detached Jacobian
	Singular vectors across model families
	Layer output singular vectors
	The detached Jacobian as a conceptual steering operator

	Discussion
	Conclusion
	Appendix
	Locally linear approximate GELU
	Code availability
	Additional models
	Semantic Emergence in Transformer Layers


