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ABSTRACT

We consider the problem of uncertainty quantification in high dimensional regres-
sion and classification, for which deep ensemble have proven to be promising
methods. Recent observations have shown that deep ensemble return overconfi-
dent estimates outside the training domain, which is a major limitation because
shifted distributions are often encountered in real-life scenarios. The principal
challenge in solving this problem is to solve the trade-off between increasing
the diversity of the ensemble outputs and making accurate in-distribution pre-
dictions. In this work, we show that an ensemble of large weights networks
fitting the training data are likely to meet these two objectives. We derive a
simple and practical approach to produce such ensembles, based on an original
anti-regularization term penalizing small weights and a control process of the
weight increase which maintains the in-distribution loss under an acceptable thresh-
old. The developed approach does not require any out-of-distribution training
data neither any trade-off hyper-parameter calibration. We derive a theoretical
framework for the approach and show that the proposed optimization can be
seen as a "water-filling" problem. Several experiments in both regression and
classification settings highlight that Deep Anti-Regularized Ensembles (DARE)
significantly improve uncertainty quantification outside the training domain in
comparison to recent deep ensemble and out-of-distribution detection methods.
All the conducted experiments are reproducible and the source code is available at
https://github.com/AnonymousAccount3/darel

1 INTRODUCTION

With the adoption of deep learning models in a variety of real-life applications such as autonomous
vehicles (Choi et al., 2019; [Feng et al., 2018]), or industrial product certification (Mamalet et al.,
2021), providing uncertainty quantification for their predictions becomes critical. Indeed, various
adaptations of classical uncertainty quantification methods to deep learning predictions have been
recently introduced as Bayesian neural networks (Mackayl, |1992; [Neal, 2012), MC-dropout (Gal
& Ghahramani, |2016), quantile regression (Romano et al.l 2019) and deep ensembles (Lakshmi+
narayanan et al., [2017; [Wen et al, |2020; Wenzel et al., 2020). These methods appear to be quite
efficient in predicting the uncertainty in the training domain (the domain defined by the training set),
called in-distribution uncertainty (Abdar et al., 2021). However, when dealing with data outside the
training distribution, i.e. out-of-distribution data (OOD), the uncertainty estimation often appears
to be overconfident (D’ Angelo & Henning|, 2021} [Liu et al.l [2021; |(Ovadia et al., 2019). This is a
critical issue, because deep models are often deployed on shifted distributions (de Mathelin et al.,
2021} \Saenko et al.,|2010; Xu et al., 2019)); overconfidence on an uncontrolled domain can lead to
dramatic consequences in autonomous cars or to poor industrial choices in product design.

The problem to be solved is to increase the output diversity of the ensemble in regions where no data
are available during training. This is a very challenging task as neural network outputs are difficult
to control outside of the training data regions. In this perspective, contrastive methods make use
of real (Pagliardini et al., 2022} Tifrea et al., | 2022)) or synthetic (Jain et al., 2020; Mehrtens et al.,
2022} |Segonne et al.||2022) auxiliary OOD data to constrain the network output out-of-distribution.
However, these approaches can not guarantee prediction diversity for unseen OOD data as the
auxiliary sample may not be representative of real OODs encountered by the deployed ensemble.
Another set of methods assumes that the diversity of the ensemble outputs is linked to the diversity
of the networks’ architectures (Zaidi et al., 202 1)), hyper-parameters (Wenzel et al., [2020), internal
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(a) "Two-moons" classification (b) 1D-regression (Jain et al., [2020)

Figure 1: Synthetic datasets uncertainty estimation. White points represent the training data. For
each experiment, the ensemble are composed of 20 neural networks. For classification, darker areas
correspond to higher predicted uncertainty. For regression, the confidence intervals for +£2¢ are
represented in light blue. The full experiment description is reported in Appendix.

representations (Ramé & Cord, 2021} |Sinha et al., 2021) or weights (D’ Angelo & Fortuin, |2021}
Pearce et al., 2018)). The main difficulty encountered when using these approaches is to solve the
trade-off between increasing the ensemble diversity and returning accurate prediction in-distribution.
The current approach to deal with this issue consists in setting a trade-off parameter with hold-out
validation (Jain et al., |2020; Liu & Yao, |1999; Pearce et al., 2018) which is time consuming and often
penalizes the diversity.

Considering these difficulties, the question that arises is how to ensure important output diversity
for any unknown data region while maintaining accurate in-distribution predictions? In this work,
we tackle this question with the following reasoning: an ensemble of networks with large weight
variance essentially produces large output variance for any data points. Furthermore, to make accurate
prediction on the training distribution, the output variance for training data needs to be reduced,
which requires that some of the network’s weights are also reduced. However, to prevent the output
variance from being reduced anywhere other than the training domain, the network weights should
then be kept as large as possible. Following this reasoning, we seek an ensemble providing accurate
prediction in-distribution and keeping the weights as large as possible.

To meet these two objectives, deviating from traditional recommendations for deep learning training,
we propose an "anti-regularization" process that consists in penalizing small weights during training
optimization. To find the right trade-off between increasing the weights and returning accurate
prediction in-distribution, a control process activates or deactivates the weight increase after each
batch update if the training loss is respectively under or above a threshold. Thus, the increase of
the weights induces an increase of the prediction variance while the control on the loss enforces
accurate in-distribution predictions. Synthetic experiments on toy datasets confirm the efficiency
of our proposed approach (cf Figure [I). We observe that the uncertainty estimates of our Deep
Anti-Regularized Ensembles (DARE) increase for any data point deviating from the training domain,
whereas, for the vanilla deep ensemble, the uncertainty estimates remain low for some OOD regions.

The contributions of the present work are the followings: 1) A novel and simple anti-regularization
strategy is proposed to increase deep ensemble diversity. 2) An original control process addresses
the trade-off issue between in-distribution accuracy and reliable OOD uncertainty estimates. 3) We
provide theoretical arguments to understand DARE as a "water-filling" optimization problem where a
bounded global amount of variance is dispatched among the network weights. 4) A new experimental
setup for uncertainty quantification with shifted distribution is developed for regression. Experiments
are also conducted for out-of-distribution detection on classification datasets.

2 DEEP ANTI-REGULARIZED ENSEMBLE

2.1 OPTIMIZATION FORMULATION

We consider the supervised learning scenario where A" and ) are respectively the input and output
space. The learner has access to a training sample, S = {(21,¥1), ..., (Tn,Yn)} € X X Y of size
n € N. We consider a set H of neural networks hy € H where § € R? refers to the network weights.
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We consider a loss function ¢ : ) x J — R, and define the average error of any hy € H on S,
Ls(hg) = %Z(%yi)eg L(ho(x3), yi)-

Traditional deep learning training generally involves the use of weight regularization to avoid
overfitting. A penalization term R(6) is added to the average error to form the objective function
Ls(hg) + R(0) with R(0) increasing with 6 (e.g. {2 and ¢; regularization). However, when used
for deep ensemble, such regularization fosters the production of neural networks with small weights,
which are then "close" to each others in the weight space and then lack of diversity. The same
effect is also induced by the implicit regularization of gradient descent algorithm (Smith et al.|
2020). Based on these considerations, we propose the complete opposite approach, which consists in
"anti-regularizing" the networks’ weights as follows:

Hgl’l Es(hg) - AR(@) (1)

with R : R? — R, a monotone function growing with # and \ a trade-off parameter. The first term
of the optimization objective in Eq. : Ls(hg) is the loss in-distribution. This term conditions the
network to fit the training data which implies smaller in-distribution prediction variances. The second
term —AR(6) acts as an "anti-regularization" term which induces an increase of the network weights.
This implies a larger variance of the ensemble weights, and therefore a larger prediction variance,
especially for data "far" from the training distribution on which the network’s predictions are not
conditioned. The parameter A € {0,1} is a binary variable which controls the trade-off between
the in-distribution loss and the anti-regularization term. At each batch computation, A is updated as

follows:
A= {1 if Ls(hg) < T

0 lfﬁg(hg) >T, (2)

with 7 € R a predefined threshold.

The underlying idea of the proposed optimization is that, to fulfill both objectives: reducing the
loss in-distribution and increasing the weights, large weights will appear more likely in front of
neurons which are never or weakly activated by the training data. Therefore, if an out-of-distribution
data point activates one of these neurons, large values are propagated through the networks, which
induces larger prediction variances. We show, in Sections [2.3|and[.1] that this claim is supported by
theoretical analysis and empirical observations.

The control process is necessary to temper the weight increase, because a large increase of the
weights induces an unstable network with reduced accuracy on training data. To be sure to fulfill a
performance threshold 7, the weight increase is stopped (A = 0) until the loss in-distribution comes
back under the threshold. Therefore, the resulting ensemble is composed of networks fitting the
training data with weights as large as possible.

2.2 IMPLEMENTATION

Parallel optimization. Each network of the ensemble is trained with batch gradient descent, indepen-
dently of the others, with the objective of Eq. (I). This approach allows for parallel training of the
ensemble. It is theoretically possible that each network ends up reaching the same optimum resulting
in no ensemble diversity. However, we empirically observe that this degenerate case never occurs due
to the random process of the optimization and aleatoric weights initialization.

Regularization function. We propose the following choice of regularization function:

d
1
R(0) == log(t}) 3)
k=1

With 6 = (64, ..., 0x) the network weights. The use of the logarithmic function is motivated by the
"water-filling" interpretation of DARE (cf. Section [2.3).

Control threshold and Model Saving. The control threshold 7 should be chosen by the learner
based on his targeted error level in-distribution. Smaller 7 leads to smaller increase of the weights.
For 7 = —oo, DARE is equivalent to a vanilla deep ensemble. An intuitive value of 7 is close to the
validation loss of a vanilla network. We propose, in this work, to set 7 = L, (h)(1 4+ §) with § > 0
and h a vanilla network from a deep ensemble.
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Regarding the model saving across epochs, we propose to save the model when the validation loss is
below 7. Indeed, a small penalization of the validation loss should be accepted to enable the weight
increase.

2.3 THEORETICAL ANALYSIS FOR LINEAR REGRESSION

The purpose of this theoretical analysis section is to provide an understanding of the underlying
dynamic of DARE. We focus our analysis on the linear regression case. This setting offers valuable
insights on what happen between two layers of a fully-connected neural network.

We consider the regression problem where X € R™*? and y € R™*! are respectively the input
and output data which compose the training set S. We consider the ensemble of linear hypotheses
H = {z — 276;0 € RP}. To simplify the calculation without loosing in generality, we assume
that there exists 0* € RP such that Ls(hg~) = 0. The loss function is the mean squared error such
that for any hg € H we have nLs(hg) = || X0 — y||3. We denote s> = (s7,...,52) € R:P the
diagonal of the matrix %X T X . We now consider an anti-regularized ensemble ... To characterize
this ensemble, we make the following assumptions for any hg € H.,:

6 ~ 0,2; E[f] =6*, Cov(d) = diag(c?) )
E[Ls(he)] <4dT Q)
Where § > 0 and diag(o?) is the diagonal matrix of values o € R" verifying:

0? = argmax z”: log (0;2 + ai) 6)

02:(0%,...70%) k=1

As presented in Assumption[d] the large weights ensemble distribution is described by the random
variable 0 centered in 6* with variance o2. Assumption [5|implies that P(Ls(hg) > 7) < 6, by
Markov inequality, which models the fact that the loss of each member of DARE is maintained above
a threshold 7 thanks to the control process on A (cf Section [2.1). Definition [6] approximates the
impact of the anti-regularization term —R(#) in the DARE optimization formulation with an upper
bound of max, E[R(6)]. The weights are increased as much as possible while the loss stays under
the threshold.

Our first theoretical result shows that the weight variance of the anti-regularized ensemble is solution
of a "water-filling" optimization problem (Boyd et al., 2006), and is proportional to 1/s2, i.e. the
inverse of the input features variance.

Theorem 1. There exist a constant C' > 0 such that for any k € [|1,p|], the variance of the k"

weight component is expressed as follows:

0% = max [C:iT — 9,’;2, O} @)
k

Sketch of Proof. A detailed proof is reported in Appendix. The proof consists in first noticing that
E[Ls(ho)] = >__; sio. By combining this result with Assumptions[5|and[6| we show that o is
solution of the above water filling problem:

P
maximize Z log(a,% + 922)

2 cRP
o?€eRY 1

p ®)
subject to Z sior <61
k=1
As log is strictly concave, and the constraints form a compact set on R?, the problem (8] has a unique
solution which is given by (7).

The "water-filling" interpretation of the DARE optimization (&) is very insightful: § 7 is the "global
variance capacity" that can be dispatched to the network weights. As, it grows as a function of 7, the
more the learner accept a large error in-distribution, the more the global variance capacity increases.
We see that each weight component has a different "variance cost" equal to s3: for high feature
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variance s7, the increase of the corresponding weight variance o7 penalizes more the training loss.
Thus, large weights appear more likely in front of low variance features. Notice also that, when 0;’;2
is high, C‘ST — 9*2 is more likely to be negative, leading to o, = 0 (cf Eq. ') Besides, 0*2

generally hlgher for higher s as it corresponds to more informative feature, enhancing the effect
o = 0 for large s3.

We see the importance of choosing a strictly concave function like the logarithm (cf Section [2.2)),
if instead of log, we choose the identity function for instance, then the solution of (8) degenerates

to 02 = (O ,0, ‘”) with s the lowest feature variance. In this case, all the weight variance is

assigned to one component, Wthh reduces the likelihood to detect a deviation of a potential OOD
input on another low variance feature.

From Theorem|[T] we now derive the expression of the DARE prediction variance for any data z € RP:

Corollary 1.1. Let 1. be the large weights ensemble defined by Assumptions [ B} [6land x € RP an
input data, the variance of prediction for hg € H. is:

Var [ho(x Z 23 max { 0 ] )

0~0O 2

We deduce from Corollary .that the predlctlon variance for z is large when the components 7 are
large for features with low variance (s7 < 1). Thus, the predicted uncertainty of DARE is correlated
with deviations in directions in which the training input data has small variance. Applied to the
hidden-layers of deep fully-connected neural networks, Theorem () and Corollary (T.T) suggest that
the weight variance is larger in front of neurons weakly activated by the training data. In this case,
OOD data that activate such neurons propagate large values inside the network, resulting in a large
output variance.

3 RELATED WORKS

Increasing ensemble diversity has been an enduring paradigm since the early days of the ensemble
learning research. At first, diversity was seen as a key feature for improving the generalization
ability of the ensembles (Brown et al.,|2005; |Kuncheva & Whitaker} 2003} |Liu & Yao, |1999; Zhang
et al., 2008). Then, with the growing interest in uncertainty quantification, the primary objective
of ensemble diversity becomes to produce good uncertainty estimates. In this perspective, a first
category of methods propose to increase diversity by using diverse architectures or training conditions
among an ensemble of deep neural networks (Lakshminarayanan et al., [2017; Wen et al., [2020;
Wenzel et al., 2020} [Zaidi et al., [2021)). The underlying idea is that the diversity of architecture or
local minima reached by the different networks induce a diversity of predictions. Another category
of methods propose to explicitly impose a diversity constraint in the loss function of the networks.
The loss function is then written £ + AP where L is the loss for the task (e.g. mean squared error
or negative log-likelihood (NLL)), P is a penalty term which decreases with the diversity of the
ensemble and ) is the trade-off parameter between the two terms. Three kinds of penalization are
distinguished in the literature. The first kind makes use of training data to compute the penalty term.
It includes the Negative Correlation method (NegCorr) (Shui et al.| |2018; |[Zhang et al.,|2020) which
applies the penalization from (Liu & Yao,|1999) to deep ensembles to enforce a negative correlation
between the errors of the networks on the training set. Similarly, (Ross et al., 2020) imposes an
orthogonality constraint between the gradients of the ensemble members on training data. Penalizing
the similarity between hidden representations of the networks has also been proposed by (Ramé &
Cord, [2021}; Sinha et al.||2021)) using adversarial training. The second kind of penalization refers to
contrastive methods that enforces diversity on potential OOD instances rather than training data. This
avoids the issue of being over-conditioned by the training domain that can be encountered by previous
methods. In this category, several methods suppose that an unlabeled sample containing OOD is
available, (Pagliardini et al., 2022} Tifrea et al. 2022). Others avoid this restrictive assumption
and simulate potential OOD with random uniform data (Jain et al.,|2020; [Mehrtens et al., 2022)) or
instances localized around the training data (Segonne et al.,|2022). In the last approach, considered
by Anchored-Networks (AnchorNet) (Pearce et al., 2018) and Repulsive Deep Ensemble (RDE)
(D’ Angelo & Fortuin, 2021)), the penalization P is a function of the network’s parameters which
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forces the networks to reach local minima spaced from each other in parameters space. Our proposed
DARE approach relates particularly to these two methods. Our assumption is that imposing weights
diversity has more chance to obtain a global output diversity rather than imposing it on specific
data regions as done by the two previous kind of penalization. Anchored-Networks appears to be
an efficient tool, for instance, in the detection of corrupted data (Ulmer et al., |2020), however, it
is very hard to set the right anchors and trade-off parameter (Scalia et al., [2020). Large initial
variance can lead to large weight variance but may not converge to accurate model in-distribution.
The DARE approach is more practical as it starts to increase the weights after reaching an acceptable
loss threshold which ensures to fit the training data.

4 EXPERIMENTS

The experiments are conducted on both regression and classification datasets. The source code of
the experiments is available on GitHulﬂ We consider the following competitors: Deep-Ensemble
(DE) (Lakshminarayanan et al.,2017), NegCorr (Shui et al.,[2018]), AnchorNet (Pearce et al., 2018)),
MOD (Jain et al.; [2020) and RDE (D’ Angelo & Fortuin, [2021)). All are deep ensemble methods
presented in Section[3] AnchorNet, NegCorr and MOD introduce a penalty term in the loss function
multiplied by a trade-off parameter A. The trade-off A and the anchor initialization parameter o
for AnchorNet are selected through hold-out validation, as suggested in (Jain et al.| 2020; |Pearce
et al., 2018). The kernel bandwidth for RDE is adaptive and chosen with the median heuristic as
suggested in the corresponding work (D’ Angelo & Fortuin, [2021). The validation loss is monitored
across epochs. We restore the weights, at the training end, corresponding to the best validation loss
epoch. For DARE, the parameter 4 is set to 1/4 and the weight saving strategy follows the monitoring
process described in Section[2.2]

If nothing else is specified, the experiments are performed with ensemble of M = 5 fully-connected
networks with 3 hidden layers of 100 neurons each and ReLU activations. The Adam optimiza-
tion algorithm is used with learning rate 0.001 (Kingma & Bal 2015). The batch size is cho-
sen equal to 128. The experiments are repeated 5 times to compute standard deviations for the
scores. For the regression experiments, we use the Gaussian NLL defined in (Lakshminarayanan
et al., [2017) as loss function. Each network in the ensemble returns the 2-dimensional output
ho(x) = (pg(x),09(x)), for any x € X. The mean prediction of the ensemble (hy(), ..., b))
is then equal to fi(x) = (1/M) 2%21 tg(m) () and the prediction variance is computed through
a(x) = (1/M)SM_ | (090m ()% + pgom ()?) — Tig(x)?. For the classification experiments, the
loss function is the NLL and a softmax activation is added at the end-layer of the networks, following
common practice in the classification setting. However, for DARE, we observe that the softmax
activation cancels the effect of increasing the weights. Indeed, the softmax activation inverses the
correlation between large outputs and high uncertainty, resulting in over-confidence for OOD data.
To avoid this negative effect, the loss function is set to the mean squared error, scaled by the number
of classes: £(hg(z),y) = ||he(z) — Kyl||3, forany 2,y € X x Y, with y the one-hot encoded label,
hg(x) the predicted logit and K the number of classes. To provide uncertainty quantification, we
define the following "ad-hoc" uncertainty score:

M M
1 I 1 —
(@) = 37 > lhgom (@) = Kgmll3 + 37 D [1hgom () = B()] 13- (10)
m=1 m=1

Where ¥,,, is the one-hot encoding of the estimated label: arg max ¢y k) hoom (7) and h(z) =

(1/M) Z%:l hg(my (x). Equation l) can be interpreted as the addition of the individual uncertainty
estimation of each member to the ensemble prediction variance.

In the majority of previous works, OOD uncertainty quantification is studied in the perspective
of OOD detection in the classification setting where examples from other classes / datasets are
considered as OOD (D’Angelo & Fortuin, [2021; |Lakshminarayanan et al., 2017} [Liu et al., 2022}
Van Amersfoort et al.,|2020). For regression, few attempts of uncertainty quantification on shifted
datasets have been conducted: (Jain et al.,|2020) separates male and female faces for age prediction
dataset and (Jain et al.,[2020j [Foong et al.| |2019; [Segonne et al.,|2022) propose OOD version of several

'https://github.com/AnonymousAccount3/dare
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UCI regression datasets (Dua & Graff, [2017). In this work, we propose a novel regression setup
for uncertainty estimations on shifted domains based on the CityCam dataset (Zhang et al., 2017
which has been used in several domain adaptation regression experiments (de Mathelin et al.} 2020
2018). Our setup models real-life domain shift scenarios where uncertainty quantification
is challenged and offers a clear visual understanding of the domain shifts (cf Figure [3). For the
classification experiments, we consider the OOD detection setup developed in (D”Angelo & Fortuin,

4.1 SYNTHETIC EXPERIMENTS

We consider the "two-moons" binary classification dataset and the 1D regression experiment devel-
oped in (Jain et al.| 2020). The visualization of the results is provided in Figure[T] The full description
of the experiments is reported in Appendix.

We are interested in confirming the theoretical insights derived in Section[3] i.e. the weight variance
is proportional to the training neuron activation variance and OOD data that activate neurons of small
training activation variance propagate large values inside the network. Figure 2] presents the predicted
uncertainty heat-map for one DARE network as well as the internal layer representations for the
classification experiment. We observe that the OOD neuron activations grow from one layer to the
next. A correspondence between features with low variance for the training data and large weights
can be clearly observed. In the last hidden layer (layer 3), the OOD components are large in direction
of low training variance (components 80 to 100) to which correspond large weights. This observation
explains the large uncertainty score for the OOD example.
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Figure 2: Internal analysis of a DARE network The uncertainty produced by one DARE member
is presented on the left. On the right, the two figures on top present the expression of the training
distribution in the three hidden layers (in blue) compared to the representation of one OOD example
(in red). The components (neuron activations) are sorted in descending order of training variance.
The two bottom figures present the average weight in front of each component, i.e. the mean weights
that multiply the layer components to produce the next layer representation.

4.2 REGRESSION EXPERIMENTS ON CITYCAM

We propose, here, a novel regression setup for uncertainty estimations on shifted domains based on
the CityCam dataset (Zhang et al which has been used in several domain adaptation regression
experiments (de Mathelin et al., 2020} [Zhao et al., 2018)). Our setup models real-life domain shift
scenarios where uncertainty quantification is challenged and offers a clear visual understanding of
the domain shifts (cf Figure3). The CityCam dataset is composed of images coming from different
traffic cameras. The task consists in counting the number of vehicles present on the image, which is
useful, for instance, to control the traffic in the city. To get relevant features for the task, we use the

features of the last layer of a ResNet50 [2016) pretrained on ImageNet 2009).

We propose three different kinds of domain shift:




Under review as a conference paper at ICLR 2024

s N —
Camera-shift Bigbus-shift

s ~
Weather-shift

o B ]
- =

Figure 3: CityCam experimental setups. The top blue images correspond to in-distribution examples
and bottom orange images to OOD examples.

1. Camera-shift: This experiment uses the images from 10 cameras in the CityCam dataset. For
each round, 5 cameras are randomly selected as in-distribution while the 5 remaining cameras are
considered as out-of-distribution.

2. Bigbus-shift: Images marked as "big-bus" referring to the fact that a bus appears and masks a
significant part of the image (Zhang et al.|[2017)) are used to create the OOD dataset.

3. Weather-shift: Blurry images caused by water drops landed on the camera are used as OOD
dataset.

These three experiments model real-life uncertainty quantification problems as the generalization of
uncertainty estimates to unseen domains (camera-shift), the robustness to changes in data acquisition
(weather-shift) and the detection of rare abnormal event (bigbus-shift). Further details on these
experimental setups are provided in Appendix.

Datasets In-distribution Coverage Out-of-distribution Coverage
Methods Camera Bigbus Weather Camera Bigbus Weather

Deep Ensemble 96.71 (0.54) 97.60 (0.15) 96.50 (0.15) 63.0 (3.9) 78.9 (0.9) 88.8(0.2)
Negative Correlation 96.97 (1.34) 97.68 (0.46) 96.50 (1.37) 63.8 (6.8) 79.4 (2.9) 89.0 (0.6)
MOD 97.22 (1.05) 97.82 (0.07) 95.90 (0.15) 65.6 (5.6) 79.3 (0.0) 88.8(0.8)
Anchored Networks 96.44 (0.32) 96.72 (0.59) 96.66 (0.30) 64.1 (3.6) 76.8 (2.2) 89.8 (0.0)
RDE 96.83 (0.13) 97.19 (0.07) 96.35 (0.61) 64.0 (3.9) 77.3 (0.4) 89.2(1.2)
DARE 96.98 (0.16) 96.55 (0.61) 97.42 (0.15) 70.9 (2.4) 0.0 (0.7) 93.7 (0.0)

Table 1: In-distribution and Out-of-distribution Coverage for CityCam. The coverage scores are
reported after using conformal prediction on the validation dataset.

The number of epochs is set to 100 for Camera-shift and Bigbus-shift, and 200 for Weather-shift,
based on the number of instances in the datasets. We notice that all methods fully converge before
reaching this limit of epochs. To assess the ensemble quality for the regression experiments, we
consider the "conformalized Out-of-distribution coverage". To compute this metric,the predicted
standard deviations &(x) are used to produce confidence intervals of level 1 — «, such that:

C(z, B) = [a(x) + ®(a/2)7(2) — B, (z) + (1 — a/2)o(x) + A], (11)

with ® the cdf of the normal distribution and 3 < 0. The confidence intervals are then "conformalized"
using conformal prediction Romano et al|(2019), the parameter 3 € R is then defined such that a
proportion 1 — « of the validation data (x, y) verify: y € C(z, 8). We consider a confidence level
a = 0.05 and compute the coverage on the respective test and OOD datasets as follows:
1 1
m 1 (y € C(.’IJ,,B)) COVOOd = m Z 1 (y € C(xvﬁ)) (12)
es (x,y)GSm o0 (:c,y)ESm,d

Covie =

The results are reported in Table[I] We first observe that the test coverage for all methods is very
similar, as a consequence of the "conformalization" on the validation dataset which follows the
same distribution as the test set. We observe, however, that DARE outperforms other uncertainty
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quantification methods in terms of OOD coverage for the three experiments. in the camera-shift
experiment, for instance, the Out-of-distribution coverage for DARE is more than 5 points above the
second-best method.

4.3  CLASSIFICATION EXPERIMENTS

CIFAR10 Fashion-MNIST
Methods SVHN CIFAR100 Accuracy CIFARI10 MNIST Accuracy
DE (NLL) 90.9 (0.4) 86.4 (0.2) 91.8 (0.1) 89.7 (0.9) 62.7 (6.2) 89.2 (0.2)
AnchorNet 91.0 (0.3) 86.5 (0.2) 91.8 (0.0) 88.8 (1.1) 68.7 (6.2) 89.1(0.2)
MOD 91.3(0.3) 86.3(0.3) 91.7 (0.1) 89.4 (1.7) 60.8 (2.7) 88.7 (0.4)
NegCorr 91.3(0.4) 86.3 (0.4) 91.7 (0.1) 91.5(0.8) 68.9 (4.5) 86.1 (0.6)
RDE 91.2(0.5) 86.4(0.3) 91.8 (0.1) 90.1 (0.9) 70.9 (5.8) 89.1(0.3)
DE (MSE) 85.9 (1.2) 77.7(0.8) 91.7 (0.1) 96.5 (0.5) 93.0 (5.3) 88.6 (0.1)
DARE 92.6 (0.7) 82.7(0.5) 91.8 (0.1) 97.7 (0.5) 97.4 (1.3) 87.2(0.2)

Table 2: OOD detection results. AUROC scores and ID accuracy are reported

We consider the experimental setup defines in (D’ Angelo & Fortuinl [2021) for OOD detection on
Fashion-MNIST and CIFAR10. The MNIST dataset is used as OOD dataset for Fashion-MNIST
and the SVHN dataset for CIFAR10. We extend the experiments by adding CIFAR10 as OOD for
Fashion-MNIST and CIFAR100 as OOD for CIFAR10. Thus, for both experiments, OOD detection
is performed on both "Near-OOD" and "Far-OOD" datasets (Liu et al.,[2022). To reduce the need of
computational ressources for CIFAR10, we consider the "multi-head" setting (Lee et al., 2015)), where
deep ensemble of fully-connected networks are trained over the penultimate layer of a pretrained
ResNet32 (He et al., 2016)).

The obtained results are reported in Table 2] for DARE and the competitors. To fully evaluate the
impact of the DARE optimization, we add the results obtained with a Deep Ensemble trained with
the mean squared error (DE (MSE)) which is equivalent to a DARE with A = 0. We train 5 networks
in each ensemble and repeat the experiments 5 times. The AUROC metric is used, computed with
the uncertainty score defined in Equation (I0) for DARE and DE (MSE) and the entropy for the
other methods. We observe that DARE globally improves the OOD detection. For instance, in
Fashion-MNSIT, we observe an improvement of 8 points on CIFAR10 and 34 points on MNIST
compared to DE, with a lost of only 2 points of in-distribution accuracy. Mild results are obtained For
CIFARI10, we observe an improvement for SVHN but not for CIFAR100. We argue that it is mainly
due to the use of the mean squared error, which is not suited for this experiment, as indicated by the
poor results of DE (MSE). Notice that for the Fashion-MNIST experiment, the contrary is observed,
as DE (MSE) provides an important improvement. We finally underline that, DARE always performs
better than its DE (MSE) counterpart.

5 LIMITATIONS AND PERSPECTIVES

For now, the efficiency of DARE is limited to fully-connected neural network with piece-wise linear
activation and linear end-activation. Moreover, the threshold setting is still based on a heuristic,
which may be suboptimal. We have seen, however, that DARE can benefit to a final fully-connected
network head placed on top of deep features obtained with convolutions. Thanks to the practical
aspect of DARE, the method can be combined to other deep ensemble or OOD detection methods.
One can use a specific training process and then apply DARE afterward to increase diversity. Future
work will consider a "Bayesian" version of DARE by adding Gaussian noise with increasing variance
to the weights of pretrained networks.
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A PROOF OF THEOREM 1

We first remind the assumptions and notations used for the Theorem:
Notations:
* X € R"P and y € R™ are respectively the input and output data which compose the
training set S.
* H = {z — 270;0 € RP} is the ensemble of linear networks.
Ls(hg) = 2| X0 — yl3 is the mean squared error.

57 = (s7,...,52) € R, P is the diagonal of the matrix £ XX

» O, is the weights distribution of the anti-regularized ensemble H, C H, with o the
weights variance.

Assumptions:
30" e RP; X0 =y (13)
For any hy € H.:
0 ~ O,2; E[f] = 6%, Cov(f) = diag(c?) (14)
E[Ls(ho) <67 (15)

Where § > 0 and diag(o?) is the diagonal matrix of values o2 € R%, verifying:

P
o? = argmax Zlog( 52 aﬁ) (16)

02:(057...,03) —1

Theorem 2. There exist a constant C' > 0 such that for any k € [|1,p|], the variance of the k"

weight component is expressed as follows:

o} = max [C:;T - 9};2,0} (17
k

Proof. Let’s introduce the variable z ~ N(0, diag(c?)), verifying: = 6* + 2. From Assumption
[T3] we derive that:

1
Es(he):ﬁHX@*yH%
1
— X0+ 2) — g2
n|| (0" +2) —yll3

1 * 2
= lIX0" —y+ Xl (18)

1
= —||Xz||2 (by definition of §*)
n

1 n b p
= g Z Z Z XikXijZij

i=1 k=1 j=1

Thus, we have:
1 n p p

ElLs(hg)] = — Z Z Z XinXijE[212)]

i=1 k=1 j=1

1 n P

=3 ") " X}07 (by definition of 2)
i=1 k=1

(23 xi)a
=1

Skok

3

3

19)

|
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Combining this results with Assumption|16] we show that o2 verifies:

p

o 2

maximize E log(o? + 6;°)
o2eR’ 1

P
subject to Z sior <61
k=1

(20)

This expression is a "water-filling" problem (cf Boyd et al. (2006) Example 5.2) with weighted
constraint. The inequality constraint Y ;_, s20% < § 7 can be written as an equality constraint, as

any increase of o induces an increase of the objective function.

To solve this problem, we introduce the Lagrange multipliers ;« € RE for the constraints 02 >0
and the multiplier o € R for the constraint >} _, s307 = 0 7. By considering the Lagrangian as a

function of o2, the KKT conditions are then written:

1 )
——— tas; —upr =0VEk €|l

p
02 >0, up >0, upo2 =0k € |1 and s202 =071
k » M » HEO} D K%k

k=1

Leading to:

-1
2 2
g —— tas =0VEkelll,
k(e;;g /% k) H pI]

p
, Wk €[|1,pl] and Y siof =067
k=1

2 2
op >0, asg >
’ b; + o

Then, for any k € [|1, p|], we have:

As 07 > 0, we deduce that:

k
With « verifying:

P
Zsimax[ 5 0,’;2,0]257
= asy,

P 2 2

Zm |: 1 Skak , :|1

adT ot

By defining C' = ——, we have:

ad T’

Which imposes C' > 0.
We conclude then, that there exists C' > 0 such that, for any k € [|1, p|]:

)
07 = max {CQT - 9}:2,0]
Sk
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(24)

(25)

(26)
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B PROOF OF COROLLARY 1

Corollary 2.1. Let H, be the large weights ensemble defined by Assumptions[[4} [I3} [I6|and = € R?
an input data, the variance of prediction for hg € H. is:

p
Cort

_ 2 *2

9}%1;2 [ho(x)] = g xj max {s% — 0 ,O] (30)

Proof. Let’s consider z € RP and hy € H,:

Var [hg(x)] = Var

p
kaﬂk]
k=1

0~O 2 0~©, 2
» (3D
= Z ziot (by Assumption[T4)
k=1
O

C SYNTHETIC EXPERIMENTS

We consider the two synthetic experiments : Two moons classification and 1D regression :

* Two Moons Classification : 200 random data points are generated from the two moons
generatoﬂ to form the training set. We consider the three uncertainty quantification methods:
Deep Ensemble (NLL), Deep Ensemble (MSE) and Deep Anti-Regularized Ensemble
(DARE). The first method implements a softmax activation function at the end layer and
use the multi-classication NLL as loss function. The two others use a linear activation at
the end layer and the mean squared error as loss function. A fully-connected network of
three layers with 100 neurons each and ReLU activations is used as base network. Each
ensemble is composed of 20 networks. The Adam |[Kingma & Ba| (2015) optimization is
used with learning rate 0.001, batch size 32 and 500 epochs. For DARE, the threshold is
set to 7 = 0.001. To compute the uncertainty scores, the entropy metric |Lakshminarayanan
et al.| (2017) is used for Deep Ensemble (NLL) while Deep Ensemble (MSE) and DARE use
the uncertainty metric for classification with MSE loss function. We report the uncertainty
map produced by each method in Figure d] We also report the results for the OOD detection
task in Figure 5] To produce this last results, we sample 50 random points from the two
moons generator which acts as validation data. We compute the uncertainty scores on the
validation set and use the 95% percentiles as threshold for OOD detection. Any data points
below this threshold are considered as in-distribution data (in white) and the others as OOD
(in dark blue).

* 1D Regression : We reproduce the synthetic univariate Regression experiment from Jain &
Grauman| (2016). We consider the three methods: Deep Ensemble (NLL), Deep Ensemble
(MSE) DARE. We use the gaussian NLL loss for regression defined in Lakshminarayanan
et al.[(2017) for Deep Ensemble (NLL) and DARE. The mean squared error is used as loss
function for Deep Ensemble (MSE). The threshold for DARE is set to 7 = 0.1. For any data
x € R, each method, return two values p,, and o, (cfLakshminarayanan et al|(2017)). We
report in Figure@the confidence intervals [p, — 204, pt; + 20,] (in light blue) for any x in
the input range.

2https ://scikit-learn.org/stable/modules/generated/sklearn.datasets.
make_moons.html
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(a) Deep Ensemble (NLL) (b) Deep Ensemble (MSE) (c) DARE

Figure 4: Two-moons uncertainty estimation Darker areas correspond to higher predicted uncer-
tainty.

(a) Deep Ensemble (NLL) (b) Deep Ensemble (MSE) (c) DARE

Figure 5: OOD detection. Data classified as OOD are in dark blue OOD while the ones classified as
in-distribution are in white.

(a) Deep Ensemble (NLL) (b) Deep Ensemble (MSE) (c) DARE

Figure 6: 1D Regression uncertainty estimation. the confidence intervals for +2¢ are given in light
blue.

D CitYyCAM EXPERIMENTS

We consider the three following experiments:

* Weather-shift: in this experiment, we select the images of the three cameras n°164, 166 and
572 and use the images recorded during February the 23". During this particular day, the
weather significantly change between the beginning and the end of the day. Thus, to evaluate
the robustness of the method to a change in the weather condition, we split the dataset in two
subsets: we consider the images recorded before 2 pm as in-distribution and the others as
out-of-distribution. we observe a shift in the weather condition around 4 pm which produces
a visual shift in the images. After 4 pm, the rain starts to fall and progressively damages
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the visual rendering of the images due to the reverberation. This is particularly the case for
camera n°164, as the water drops have landed on the camera and blur the images. Each
dataset is composed of around 2500 images.

¢ Camera-shift: this experiment uses the images from 10 cameras in the CityCam dataset.
For each round, 5 cameras are randomly selected as in-distribution while the 5 remaining

cameras are considered as out-of-distribution. In average, each set is composed of around
20000 images.

* Bigbus-shift: The CityCam dataset contains images marked as "big-bus" referring to the fact
that a bus appears and masks an significant part of the image Zhang et al.[(2017). We then
select the 5 cameras for which some images are marked as "big-bus" and use this marker to
split the dataset between in-distribution and out-of-distribution samples. The in-distribution
set is composed of around 17000 images while the other set contains around 1000 images.

(@A=0 (byAe{0,1} (cA=1

— rig) |

;;" ' ' L,UL\_IA L[ ____________
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Figure 7: Training behaviors for different )\ settings. Evolution of the weights, the training loss
and the average trade-off parameter over the epochs ((a) = DE and (b) = DARE).

The impact of the X control in the DARE optimization is presented in Figure[7] we observe that the
setting A = 0 (equivalent to DE) leads to a small weight increase whereas the setting A = 1 leads to a
loss explosion. The control setting A € {0, 1} allows the weight increase while maintaining the loss
above 7.
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