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ABSTRACT

We propose Hardware-Aware Deep Subnetworks (HADS) to tackle model adapta-
tion to dynamic resource contraints. In contrast to the state-of-the-art, HADS use
structured sparsity constructively by exploiting permutation invariance of neurons,
which allows for hardware-specific optimizations. HADS achieve computational
efficiency by skipping sequential computational blocks identified by a novel iter-
ative knapsack optimizer. HADS support conventional deep networks frequently
deployed on low-resource edge devices and provide computational benefits even
for small and simple networks. We evaluate HADS on six benchmark architec-
tures trained on the GOOGLE SPEECH COMMANDS, FMNIST and CIFAR10
datasets, and test on four off-the-shelf mobile and embedded hardware platforms.
We provide a theoretical result and empirical evidence for HADS outstanding per-
formance in terms of submodels’ test set accuracy, and demonstrate an adaptation
time in response to dynamic resource constraints of under 40µs, utilizing a 2-layer
fully-connected network on Arduino Nano 33 BLE Sense.

1 INTRODUCTION

Data processing pipelines in edge devices increasingly rely on deep learning models to identify
patterns and extract insights from multimodal sensor data. However, deep models are deployed
and run along with other tasks, under constraints and priorities dictated by the current context and
available resources, including storage, CPU time, energy and bandwidth. Network pruning and
quantization (Han et al., 2016) have become part of standard deep learning deployment pipelines,
e.g., TFLMicro (David et al., 2021) and TensorRT (Vanholder, 2016), to enable deep learning on
severely constrained embedded hardware operated by low-power microcontrollers with only a few
kB or RAM. One drawback of compile-time optimizations is that the resulting models are resource-
agnostic: they yield suboptimal performance in many interesting applications where resource avail-
ability depends on different factors such as available energy, task priority and timing constraints.
Another drawback of one-shot model compression techniques is that these are applied to the whole
model, making exploration of different options for a resource-aware on-device model reconfigura-
tion challenging.

Dynamic resource constraints. Many interesting applications can make use of resource-aware
deep models, i.e., models that can adapt their execution to available computational resources and
time constraints. For example, camera image processing by a drone or a car may depend on the re-
spective speed (Qu et al., 2022). A naive solution to address dynamic resource constraints is to store
several independent deep models and switch between them as resource availability and task priori-
ties change. The drawback of this approach is both the increased memory consumption to store these
independent models which does not scale, and the overhead of switching between models at runtime.
Several recent research studies recognize and address the problem in specific domains. F. Bambusi
et al. (2022) propose the concept of approximate intermittent computing by designing support vec-
tor machines that can adapt to available energy while sacrificing accuracy. Subspace-configurable
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Figure 1: Layers slicing in a fully-connected model. The weight tensor dimensions are shown
in brackets. We slice off two neurons, i.e., computational units, in the first hidden layer of the
network with 4 neurons, 3 inputs and 2 outputs. The matrices W1 and W2 store the weights along
all connections, and the respective columns and rows in W1 and W2 get eliminated by layer slicing.
This breaks the contiguous memory layout and the memory arrangement of W1, yet not W2. A
transpose of W1 and a change of the multiply order preserve contiguous memory of W1 after slicing.

networks (Saukh et al., 2023) offer dynamic model reconfiguration as a resource-efficient alternative
to training a static model with data augmentations. DRESS (Qu et al., 2022) and NestDNN (Fang
et al., 2018) pioneered in designing nested subnetworks. However, DRESS trains nested models
using a 2:4 sparsity pattern and, thus, requires specific hardware, such as NVIDIA Ampere acceler-
ators. NestDNN converts a pre-trained model into a nested structure by applying an iterative filter
pruning, growing and fine-tuning, leading to high construction overhead and complicated learning.
In contrast to DRESS and NestDNN, HADS utilizes insights from Entezari et al. (2021) to preserve
the model’s structural density across all lower-capacity subnetworks, enabling dense matrix opera-
tions on edge devices (Howard et al., 2017). Furthermore, the structured sparsity pattern selected by
HADS to build nested subnetworks is modeled through an iterative knapsack problem.

Contributions. This paper presents the design of Hardware-Aware Deep Subnetworks (HADS)
featuring a nested submodel structure to address dynamic resource constraints on mobile and IoT de-
vices. HADS introduces a novel hardware-aware method to design the nested subnetwork structure
by formulating and solving an iterative knapsack problem, provide theoretical guarantees and empir-
ical evidence of outstanding solution performance. Furthemore, we leverage permutation invariance
of neurons (Entezari et al., 2021) to keep the subnetwork weight tensors in contiguous memory
regions, i.e., dense layers remain dense in all lower-capacity subnetworks. This makes the descrip-
tion of the subnetwork structure elegant, reduces HADS adaptation time, and allows for further
hardware-specific optimizations. HADS is evaluated on six benchmark architectures from (Zhang
et al., 2017) trained on GOOGLE SPEECH COMMANDS (Warden, 2018b), FMNIST (Xiao et al.,
2017) and CIFAR10 (Krizhevsky et al., 2009) and tested on four mobile and IoT devices (Section 4).
Our code is publicly available.1

2 HADS SUBNETWORKS STRUCTURE

HADS organizes a model into a set of nested submodels, i.e., the active weights of a child subnet-
work are fully contained in its parent subnetwork. We slice each parent subnetwork into an active
and an inactive part, where the active part shapes the child subnetwork. HADS makes use of struc-
tured sparsity, i.e., model slicing occurs at the level of individual neurons and convolutional filters.
A tensor slice is defined as a temporary tensor object that points to the original weight tensor.

Firstly, even though any neuron can be removed from a layer, we re-order neurons to have a group
of active neurons followed by inactive neurons due to the permutation invariance phenomenon of
neural networks (Entezari et al., 2021). A permutation does not change the function of the network,
but allows optimizing the memory layout to keep subnetwork weights in contiguous memory. The
above observations make the subnetwork layout efficient to be stored on-device, in fact it is suffi-
cient to store one integer value denoting the slicing point for each layer in each subnetwork, which
corresponds to the number of active computational units. This is possible since active and inactive
units build continuous groups in memory. Activating a particular subnetwork means changing the
length of the dimension of the weight tensor in each layer.

1https://github.com/FraCorti/hads
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Secondly, HADS achieves minimal adaptation overhead: only the widths of the layers have to be
updated to switch to a different model. Switching from one HADS submodel to another requires
adjusting only the sizes of the layers. Due to a local scope of a slice, the modification affects only the
incoming and outgoing connections. An example of slicing dense and convolutional networks are
shown in Figure 1. At inference time, the computational cost of running inference using a subnet-
work is not affected by the presence of other HADS networks, in sharp contrast to the approaches
that use binary masks to select active neurons or channels.

3 ITERATIVE KNAPSACK PROBLEM

Given a pre-trained model, HADS identifies how to best slice the weight tensors by formulating
the problem as an iterative knapsack problem with k stages: the items included in a knapsack with
capacity c have to be included in all later stages, i.e., knapsacks with larger capacities (Della Croce
et al., 2019). Each item, i.e., computational unit of the model encoder architecture, is characterized
by an importance score, denoted as Ic, and a computational cost defined in terms of model inference
latency. The former is computed as Ii = |giγi|, where gi is the sum of the accumulated gradients
which approximates each unit contribution to the final prediction loss (Molchanov et al., 2019). The
latter is defined as the number of multiply–accumulate operations (MACs) as the inference latency
predictor for each unit on an MCUs (Liberis et al., 2021).

Given a list of MAC values obtained by multiplying the computational cost of the full model by
predefined percentages, HADS solves an iterative knapsack problem with as many stages as the
predefined number of subnetworks. We give two heuristic algorithms that solve the corresponding
iterative knapsack problem and hence find subnetwork architectures, i.e., slicing points for each layer
and each subnetwork, that satisfy these capacity constraints while maximizing I to keep the most
important units in each subnetwork. Both heuristics are based on solving several knapsack problems
formulated as integer programs (Perron & Furnon) which we then solve by using a mixed integer
programming solver (Gurobi Optimization, LLC, 2023). Due to permutation invariance, the items
are stored and passed to the solver in descending order of their importance scores. This property
makes the solver select items in descending order, thereby creating contiguous active and inactive
units for the weight tensors in each subnetwork. Given CMACs as the maximum number of MACs
in a subnetwork, a single stage knapsack problem is formulated as follows:

max

L∑
l=1

ul∑
i=1

xil · Iil

s.t.
L∑

l=1

ul∑
i=1

xil ·MACsil ≤ CMACs ,

xil ∈ {0, 1}, ∀ l ∈ {1, . . . , L}, i ∈ {1, . . . , ul},
Ii1 ≥ Ii2 ≥ · · · ≥ Iil,

(1)

where xil is a binary decision variable taking value 1 if an item i from layer l is selected and 0
otherwise; Iil is the importance score of item i from layer l; MACsil is the number of MACs
of item i from layer l; L is the number of layers in the model and ul is the number of items in
layer l. The above knapsack problem formulation is limited to the fully-connected and standard
convolution architectures, its generalization for depthwise-convolution architectures (Howard et al.,
2017) is moved to the Appendix A.1 for clarity of presentation.

3.0.1 BOTTOM-UP (BU) AND TOP-DOWN (TD) HEURISTICS

HADS examines two heuristics for solving the iterative knapsack problem named bottom-up (BU)
and top-down (TD). The former iteratively calculates the subnetwork architectures by considering
the tightest MACs constraints for the smallest subnetwork first. Once a solution is found by the
knapsack solver, these units are frozen, i.e., they are now part of all nested subnetworks, and the
second smallest subnetwork is now being computed by the solver. The latter top-down method
determines the solutions by considering the weakest MACs constraints first and then iteratively
searching the architectures for increasingly smaller subnetworks. In Appendix A.2 we prove that
the solution found by the two-stage bottom-up iterative knapsack heuristic is not worse than 2

3 ·Opt,
where Opt is the optimal solution of the knapsack with larger capacity, and that this bound is tight.
We then show that the tight bound for the top-down iterative knapsack is 1

2 ·Opt, where Opt in this
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case is the optimal solution of the knapsack with smaller capacity. Since our generalized problem
suited for DS-CNN architectures has the classical 0-1 knapsack as its core problem, we believe that
a similar result is valid for this case as well. In other words, the bottom-up knapsack offers a better
solution in the worst case than the top-down knapsack.

4 EVALUATION

4.1 HADS FINE-TUNING

HADS subnetworks found by the heuristic algorithms are fine-tuned simultaneously to recover their
accuracy. For each subnetwork we slice each layer to construct a subnetwork architecture by storing
only the slicing point corresponding to the number of active computational units. During fine-
tuning, the weights of each subnetwork i are reused by all lower-capacity subnetworks {i+ k}Nk=1.
We balance the contribution of the loss of each individual model with parameters {πi}Ni=1 equal to
the percentage of weights used by the subnetwork i (Qu et al., 2022).

4.2 EVALUATION SETUP

HADS is evaluated on three pre-trained GOOGLE SPEECH COMMANDS architectures (DNN, CNN
and DS-CNN) of two sizes (S and L) each introduced in Zhang et al. (2017). DNN is a 2-layer fully-
connected architecture with layer width 144 (S) and 436 (L), CNN is a convolutional architecture
with two convolutional layers followed by 3 fully-connected layers. The widths of convolutional
layers are 28 and 30 for the S architecture and 60 and 76 for the L architecture, respectively. DS-
CNN is composed of a standard convolutional layer followed by several blocks of depth-wise and
point-wise convolutional layers. There are 4 blocks for the network of size S, and 5 blocks for the
network of size L with a layer width of 64 and 276 respectively. The main paper presents the results
for DS-CNN architectures (S and L) on GOOGLE SPEECH COMMANDS. Additional results for
other architectures and datasets are available in our arXiv preprint (Corti et al., 2024).

We analyzed HADS in the low-data regime, where only few samples per class are available for
fine-tuning, the performance differences between BU and TD heuristics are remarkable. Figure 2
(left) shows the performance when few-shot learning is applied to fine-tune HADS structures. Our
empirical findings confirm a consistently superior performance of the BU heuristic compared to the
TD alternative. The differences diminish as more samples are used for fine-tuning (Entezari et al.,
2023). We observe in Figure 2 (right) consistent differences in each layer slicing points as we move
from parent to child submodels. The distribution of computational units across subnetworks in each
layer depends on the model architecture and dataset.
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Figure 2: Analysis of the BU and TD DS-CNN S and L subnetworks. Few-shots finetuning
accuracies (left) and structured sparsity (right) on GOOGLE SPEECH COMMANDS (Warden, 2018a).

4.3 HADS ON MOBILE AND IOT

We evaluate HADS models on two mobile phones, specifically Xiaomi Redmi Note 9 Pro and
Google Pixel 6, and on two IoT devices, namely Arduino Nano 33 BLE Sense and Infineon
CY8CKIT-062S2. For the mobile phone evaluation, we employed the Google Tensorflow Lite
benchmarking tool and for IoT devices we evaluated the models using Edge Impulse (Hymel et al.,
2022). We report the number of parameters, accuracy, and latency on the mobiles and on the IoT
devices for the full architectures (100% MACs) and the subnetworks architecture (75%, 50% and
25% MACs) found by the BU knapsack solvers. The obtained results are reported in Figure 3 for
the DNN, CNN and DS-CNN architectures S (top row) and L (bottom row) on GOOGLE SPEECH
COMMANDS. Tensorflow Lite and TFLMicro lack support for runtime adaptation of model weight
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Figure 3: HADS size S (top row) and L (bottom row) architecture analysis. The two plots on the
left show the number of model parameters and model accuracy as a function of MAC percentage in
each HADS submodel. The two plots on the right evaluate model inference time on two classes of
devices: Xiaomi Redmi Note 9 Pro, Pixel 6; and low-power IoT platforms including Arduino Nano
33 BLE Sense and Infineon CY8CKIT-062S2. All results are averages over three runs.

tensors. We extended the TFLMicro framework to support HADS out of the box and measure
on-device inference and submodel switching times.

The first left-most column of plots in Figure 3 shows the relationship between the subnetworks’
MACs and the number of model parameters. All curves are close to linear, even though the param-
eters of these linear relationships are architecture-specific. The DS-CNN models have the lowest
number of parameters, thanks to their more sophisticated architecture. DS-CNN models also yield
better accuracy, even for only 25% of MACs, while DNN models perform worst, as can be observed
in the second column of plots. This result can be attributed to the successful generalization of the it-
erative knapsack problem to support depth-wise convolutions (Appendix A.1). We compare HADS
to pruning an equal share of computational blocks in each layer (Tan & Le, 2019). We use the block
selection strategy based on the L1 norm (Cai et al., 2020) and a random selection. HADS knapsack
solution outperforms both baselines achieving higher accuracy for the same percentage of MACs.
The last two plots on the right show HADS performance on mobile and IoT devices. We observe
a difference of three orders of magnitude in the inference times between the two categories. DNN
models perform best thanks to the more optimized algorithm and libraries for matrix-matrix mul-
tiplication (Goto & Geijn, 2008). All models show a linear relationship between the percentage of
MACs and inference time. This empirical evidence validates MACs as a robust predictor of model
latency, extending its applicability to mobile devices. On Arduino Nano 33 BLE Sense, HADS
yield 38±1µs model adaptation time for a 2-layer fully-connected network, while the model infer-
ence times for the same network with 25% and 50% of MACs are 2’131±27µs and 4’548±13µs
respectively. This highlights the efficiency of the dense structured sparsity approach of HADS to
adapt the model to dynamic constraints.

5 CONCLUSION, DISCUSSION, OUTLOOK

This paper introduces Hardware-Aware Deep Subnetworks (HADS), an approach for adapting deep
neural networks to the dynamic resource constraints typically encountered on mobile and IoT de-
vices. We formulate the design of HADS’ subnetworks’ structured sparsity pattern as an itera-
tive knapsack problem, leveraging permutation invariance of neurons, and we perform a theoretical
analysis of the solution space. Experimental evaluations on six benchmark architectures demon-
strate HADS’ effectiveness on mobile and IoT devices, showing superior performance compared to
baselines. Currently, HADS does not support skip connections used in advanced architectures like
MobileNet v2. This limitation, however, is expected to be addressed in future ongoing research.
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A APPENDIX

A.1 KNAPSACK FOR DEPTH-WISE CONVOLUTIONS

In this section we define a generalized knapsack framework for depth-wise convolutions. Let the
input be a 2D matrix A with dimensions m× n. The first layer L0 is a standard convolutional layer
applied to A that consists of N0 filters and hence produces N0 output channels. It is followed by
depth-wise convolutional blocks B1, . . . , Bd, where each block i is built by a depth-wise layer BD

i

and a point-wise layer BP
i for i = 1, . . . , d. A depth-wise layer applies one filter on each of the

Ni−1 input channels. The point-wise layer BP
i then applies Ni filters, where the kernel number for

each filter has to be equal to the number of filters of the previous layer. From a knapsack perspective,
if we want to reduce the size of the network, we can decide on how many filters we use at L0 and
at each BP

i . For example, if we choose k filters at L0 the layer BD
1 will have exactly k filters and

one filter of BP
1 will have k as kernels number. We give an integer programming formulation for

this network structure. The resulting optimization method can be used for structural pruning of a
neural network, i.e., for choosing an optimal number (≤ N0) of filters of L0 and (at most Ni) filters
of BP

i such that we maximize performance of the network obeying a constraint on time or space
complexity, which in HADS is the number of MACs.

Formally, we introduce an integer decision variable x0 to decide on the number of filters we use at
L0, and xi on the number of filters to use at each BP

i . Since every computational unit consumes
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computational resources and contributes to the overall accuracy, we also introduce decision variables
that control whether a unit is used by a subnetwork or not. For L0 we introduce N0 binary variables
y1, . . . , yN0

, and for every block Bi, i = 1, . . . , d, we introduce binary variables f i
k and gikt, where

k ∈ {1, . . . , Ni} and t ∈ {1, . . . , Ni−1}, f i
k to indicate whether a filter k is used in BP

i , and gikt if
filter k with kernel t of BP

i is used. For BD
i we introduce the decision variables dit to decide if a

depth-wise filter t ∈ {1, . . . , Ni−1} is used.

In the model P 1 is the importance score of a standard convolution filter i in the first layer and W1

is its number of MACs. For each depth-wise point-wise block i, P i
t is the importance score for the

depth-wise filter t, P i
kt is the importance score of the corresponding kernel k of the point-wise filter

t in the subsequent layer Ni. The problem is formulated as:

max

N0∑
i=1

yi · P 1 +

d∑
i=1

Ni−1∑
t=1

(
dit · P i

t +

Ni∑
k=1

gikt · P i
kt

)
(1)

s.t.

N0∑
i=1

yi ·W1 +

d∑
i=1

Ni−1∑
t=1

(
dit ·W2 +

Ni∑
k=1

gikt ·W3

)
≤ C (2)

N0∑
i=1

yi = x0 (3) and
Ni−1∑
t=1

dit = xi−1 ∀i (4)

Ni∑
k=1

f i
k = xi ∀i (5) and f i

k ≥ f i
k+1 ∀i (6)

gikt ≤ f i
k ∀i, k, t (7) and f i

k ≤
Ni−1∑
t=1

gikt ∀i, k (8)

Ni−1∑
t=1

gikt ≤ xi−1 ∀i, k (9)

Ni−1∑
t=1

gikt ≥ xi−1 − (1− f i
k) ·Ni−1 ∀i, k (10)

The knapsack for depth-wise convolutions is described as:

(1) The objective function maximizes the total importance of the chosen architecture.

(2) Solution MACs must comply with the constraint C.

(3) The number of filters chosen in the first convolution layer.

(4) The number of filters chosen in the depth-wise layer i must match the number of filters picked
in the previous layer i− 1.

(5) The number of the point-wise filters chosen in layer i.

(6) Point-wise filters are chosen in ascending order to impose a contiguous solution.

(7) If kernel t of filter k is chosen then the whole filter k is chosen.

(8) A point-wise filter k is chosen only if one of its kernels is chosen.

(9) The number of kernels in the filter k of point-wise layer i must ≤ the number of filters taken in
the previous depth-wise layer.

(10) If filter k in layer i is chosen then the constraints (9) and (10) together ensure that the number of
kernels t of filter k in layer i equals the number of point-wise filters in the previous block (i.e.,
the number of filters in the depth-wise layer i). If filter k in layer i is not chosen, constraints (9)
and (10) together imply that all kernels t of filter k at layer i are zero (the right-hand side of (9)
is ≤ 0, since Ni−1 is an upper bound on xi−1).

8
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A.2 ITERATIVE KNAPSACK PROBLEM

In this section we prove that the order matters if we want to pack a knapsack iteratively. We are
looking at the 2 stage iterative knapsack problem, where the items of a solution for capacity c/2 have
to be a subset of the items of a solution for capacity c. We give our analysis and theoretical findings
under the natural assumption that all items of the knapsack have weight ≤ c/2. We first consider the
bottom-up iterative knapsack heuristic and show that the quality of a worst-case solution is bounded
by 2

3 ·Opt and the bound is tight. We then analyze the top-down iterative knapsack heuristic and show
that in this case a worst-case solution has a tight lower worst-case bound of 1

2 ·Opt. Approximation
results for the related incremental knapsack problem were given in Della Croce et al. (2019) and
Faenza et al. (2023). For a set of items I , let P (I) (W (I)) denote the total profit (weight) of all
items in I . For a binary knapsack problem (see Kellerer et al. (2004) for a general overview) we say
that a split item Is according to some ordering O of the items and capacity c exists, if there is an
item Is with the following property: all the items IOb that appear in O before Is fulfill W (IOb ) < c
and W (IOb ∪ Is) > c.

Bottom-up knapsack. Let I(Optc) denote the optimal solution set for a knapsack of capacity
c. Consider the following iterative heuristic Ac: we first find an optimal solution of the knapsack
with capacity c/2, then we fix the selected items I(Optc/2) and solve the knapsack defined on the
remaining items and capacity c − W (I(Optc/2)). We denote this second set of items as I(Ac/2).
Hence, the overall item set of this heuristic is given by I(Ac) = I(Optc/2)∪I(Ac/2). Note that there
may be P (I(Ac/2)) > P (I(Optc/2)), since the corresponding knapsack capacity in the second step
can be larger than c/2.

Theorem 1. Ac yields a worst case ratio of 2
3 , i.e., P (I(Ac)) ≥ 2

3 · P (I(Optc)), if all items of the
knapsack have a weight ≤ c/2. This bound is tight.

Proof. Let us arrange the items of I(Optc) in the following order O: we first take all the items from
I(Optc) ∩ I(Optc/2) in an arbitrary order. Note that these are the items that are in both optimal
solutions, i.e., for both capacity c and c/2. Then we take all the items that are not included in
I(Ac/2) followed by the items of I(Optc) ∩ I(Ac/2) (again in arbitrary order). Now we have two
cases:

Case 1: There does not exist a split item in I(Optc) with respect to O and capacity c/2. Hence
W (I(Optc/2)) = c/2. It is easy to see that in this case Ac = Optc.

Case 2: Let Is be the split item in I(Optc) with respect to O and capacity c/2. In this case we get
that the weight of all the items IOb before Is as well as the weight of all the items IOf that follow Is
is smaller than c/2. It follows that P (I(Optc/2)) ≥ P (IOb ) and that P (I(Ac/2)) ≥ P (IOf ). Since
all items have a weight ≤ c/2 and by the fact that Is is not contained in I(Optc/2) we know that its
profit is less or equal than the minimum of P (I(Ac/2)) and P (I(Optc/2)). Therefore, it holds that
P (Is) ≤ 1

2P (I(Ac)). Hence we get:

P (I(Optc)) = P (IOb ) + P (Is) + P (IOf ) ≤ P (I(Ac)) +
1

2
P (I(Ac))

=
3

2
P (I(Ac))

It remains to show the bound is tight. We introduce the following knapsack instance with four items
and a large positive constant P .

item: 1 2 3 4
weight: c/3 + ϵ c/3 c/3 c/3
profit: P + ϵ P P P

Here I(Optc/2) = {1} which only leaves space for one additional item for the larger capacity.
Hence we get that P (I(Ac)) = 2P + ϵ, whereas P (I(Optc)) = 3P .

9



Published as a conference paper at ICLR 2024

Top-down knapsack. We now consider a heuristic Dc/2 consisting of an iterative top-down knap-
sack packing. We first solve the knapsack with capacity c to optimality, and then solve the knapsack
problem defined only on the items I(Optc) with capacity c/2 to optimality. I(Dc/2) corresponds to
the items in this second and smaller knapsack.
Theorem 2. Dc/2 yields a worst case ratio of 1

2 , i.e., P (I(Dc/2)) ≥ 1
2 · P (I(Optc/2)) if all items

of the knapsack have a weight ≤ c/2. This bound is tight.

Proof. Consider a knapsack of size c with optimal solution set I(Optc) and the knapsack problem
with capacity c/2 defined on the restricted item set I(Optc) with solution set I(Dc/2). We will
show that: P (I(Dc/2)) ≥ 1

2 · P (I(Optc/2)).

We first arrange the items of I(Optc) in an ordering O′ such that they start with those items con-
tained also in I(Optc/2). Then we identify the split item Is according to O′ for capacity c/2 and
partition I(Optc) into three parts. D1 = IO

′

b , D2 = Is and D3 contains all the remaining items. If
no split item exists, we simply set Is = ∅. We now show that:

max(P (D1), P (D2), P (D3)) ≥
P (I(Optc/2))

2
(2)

Assuming that this is not the case, we would get that:

max(P (D1), P (D2), P (D3)) <
P (I(Optc/2))

2

This would imply

P (I(Optc)) = P (D1) + P (D2) + P (D3) < P (I(Optc/2)) + P (D3).

However, since I(Optc/2) ∩D3 = ∅ and W (I(Optc/2)) ≤ c/2, I(Optc/2) ∪D3 would constitute
a feasible solution better than I(Optc), which is a contradiction. Thus, we have shown (2).

For i = 1, . . . , 3, there is W (Di) ≤ c/2 and all items in Di are available for Dc/2. Therefore, (2)
implies

P (I(Dc/2)) ≥ max(P (D1), P (D2), P (D3)) ≥
1

2
P (I(Optc/2)).

It remains to show the bound is tight. We introduce the following knapsack instance with four items
and a large positive constant P .

Item: 1 2 3 4
Weight: c/3 c/3 c/3 c/2
Profit: P + ϵ P + ϵ P + ϵ 2P

Here I(Optc) = {1, 2, 3}. Dc/2 then selects one of these items and no more items fit into the
knapsack. Optc/2 selects item 4, which shows that the ratio of 1

2 is tight.

Note that in case that we have instances, where the weight of certain items is greater that c/2, it is
easy to construct instances with arbitrary bad ratios for both cases.
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