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ABSTRACT

Language models can store vast factual knowledge, yet their ability to flexibly
use this knowledge for downstream tasks (e.g., via instruction finetuning) remains
questionable. This paper investigates four fundamental knowledge manipulation
tasks: retrieval (e.g., “What is person A’s attribute X?”), classification (e.g., “Is
A’s attribute X even or odd?”), comparison (e.g., “Is A greater than B in attribute
X?”), and inverse search (e.g., “Which person’s attribute X equals T?”).
We show that language models excel in knowledge retrieval but struggle even in
the simplest classification or comparison tasks unless Chain of Thoughts (CoTs)
are employed during both training and inference. Moreover, their performance in
inverse knowledge search is virtually 0%, regardless of the prompts. Our primary
contribution is a controlled, synthetic experiment that confirms these weaknesses
are inherent to language models: they cannot efficiently manipulate knowledge
from pre-training data, even when such knowledge is perfectly stored in the mod-
els, despite adequate training and sufficient model size. Our findings also apply
to modern pretrained language models such as GPT-4, thus giving rise to many
Turing tests to distinguish Humans from contemporary AIs.1

1 INTRODUCTION

Knowledge is a fundamental component of human civilization and intelligence. Throughout our
lives, we accumulate a vast amount of knowledge and learn to use it flexibly. Large language models
like GPT-4 (OpenAI, 2023) have demonstrated an impressive capacity to memorize knowledge,
arguably surpassing any human. These models also show signs of being able to manipulate this
knowledge to solve various problems.

In this work, we aim to understand how transformer-based language models manipulate the knowl-
edge they have memorized during pretraining and use it flexibly to solve different tasks at inference
time. For example, can language models determine if Princeton is ranked higher than MIT based on
its stored 2023 US News university ranking knowledge? Can they answer questions such as “Was
Joe Biden born in an odd year?” or “Was Donald Trump born earlier than Nancy Pelosi?” based on
their memorization of celebrities’ birthdays? (Spoiler alert, even GPT-4o or Llama-3.1-405B still
fail to answer these as of Oct 1, 2024, see Figure 9; this paper explains why.)

In other words, we are interested in questions that are functions of specific knowledge from the
pretraining data, and study a language model’s ability to answer questions during inference time.
Knowledge manipulation is arguably a simplest form of logical reasoning. To answer questions like
“Is Person A’s attribute X good?”, a model not previously exposed to this sentence in its training data
may draw conclusions from other data such as “Person A’s attribute X equals T” and “T is good”.

In this paper, “knowledge” refers to factual knowledge (e.g., knowledge graph), and we explore
whether a language model can logically manipulate such knowledge embedded in its model weights.
Other research may focus on in-context knowledge or RAG (Lewis et al., 2020; Cai et al., 2022; Liu
et al., 2020; Jiang et al., 2023b; Mao et al., 2020; Parvez et al., 2021; Komeili et al., 2021; Ram et al.,
2023; Siriwardhana et al., 2023), where the model responds to queries about a provided paragraph
in the context (possibly via RAG).

Extensive research has been conducted on the question-answering capabilities of language models
at inference time (Sun et al., 2023; Singhal et al., 2022; Omar et al., 2023; Hernandez et al., 2023;

1The “inverse search” task we study in this paper coincides with the “reversal curse” result by (Berglund
et al., 2023); and our paper is concurrent to theirs (by arxiv dates, which we cannot cite due to anonymity.)
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Given question “Was Joe Biden born in an odd year?”

C: The model does not know the 
birth year of Joe Biden

answers correctly answers incorrectly

D: model does not know 
what “odd” means

E: model knows what “odd” means 
and can answer questions like 

“Is 1946 odd?”, but cannot answer 
“Was Joe Biden born in an odd year?”

A: model infers from “1946 is even” and 
“Biden was born in 1946”, making final 

answer NO based on a function of 
certain knowledge it sees during training

B: model sees training data of 
equivalent form such as 

“Is Joe Biden’s birth year odd number?”

out of scope of this paper

out of scope (we study models 
finetuned on such tasks)

This is the knowledge manipulation we care about

out of scope (this is memorization)

Figure 1: We study (A) vs (E) as knowledge manipulation. With a pre-trained model over internet data, it is
very hard to determine whether (B,C,D) has happened due to the uncontrollability of internet data.

Figure 2: GPT-4 struggles to answer simple knowledge manipulation questions; but when CoT is used, where
the person’s attributes are first explicitly spelled out, GPT-4 can correctly answer them. More GPT-4
examples are in Figure 5, 7, 15, and Appendix E. When we prepared this paper we used GPT-4 of
2023. As of Oct 1, 2024, such counter-examples still apply to GPT-4o and Llama-3-405B, see Fig. 9.

Richardson & Sabharwal, 2020; Peng et al., 2022; Petroni et al., 2019; Naseem et al., 2021), pri-
marily focusing on models trained with internet data. A significant challenge in determining if these
models can manipulate knowledge is to ascertain if the internet data already contains the exact or
equivalent question, or if the models genuinely performed logical deduction during inference time.

We are particularly interested in scenarios without data contamination: the questions or their equiv-
alent forms should not appear in the model’s training data, while the same “function” for other
knowledge should be present — thus ensuring the model understands the function. For example,
can the model determine “Was Joe Biden born in an odd year?” if it has not encountered this sen-
tence or its equivalents during pretraining (such as “Is Joe Biden’s birth year divisible by 2”), but
can infer from “Biden was born in 1942” and “1942 is not odd”? Answering such questions requires
the model to both memorize and comprehend the knowledge. (See Figure 1.)

To address the unpredictability of internet data, Allen-Zhu & Li (2024a;b) developed synthetic
pretrain data containing controlled biographies for up to N = 20 million individuals. They explored
how a language model stores and extracts knowledge about these individuals after-pretraining. Here
is an example of their biography data:
Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty
members at Massachusetts Institute of Technology. She completed her education with a focus on Communications. She had a professional
role at Meta Platforms. She was employed in Menlo Park, CA.

(1.1)
Allen-Zhu & Li (2024a) found that a pretrained model may struggle to extract stored knowledge
from biographical data unless the data is sufficiently knowledge-augmented, meaning the same bi-
ography has diverse and well-permuted English descriptions (see Section 2). This augmentation aids
in accurately answering extraction queries such as “Which city was Anya Briar Forger born in?”

1.1 OUR METHODOLOGY AND RESULTS

This paper further explores whether a model, pre-trained on augmented biography data, can ma-
nipulate its knowledge after instruction finetuning. We investigate its ability to handle queries that
require reasoning about personal attributes, such as “Was Anya born in a southern city?” or “Is
Anya’s university better than Sabrina’s?”

During training, the model learns from the biographies of all N individuals and the knowledge ma-
nipulation question-answer (QA) texts from a subset of individuals (the in-distribution set Ptrain).
We evaluate the model’s out-of-distribution (OOD) generation accuracy by testing it on the remain-
ing subset (the out-of-distribution setPtest), where it has seen the biographies but not the QAs during
training. IncludingPtrain in the training data ensures the model encounters enough examples to com-
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prehend the QAs. We focus on the model’s OOD accuracy on Ptest, reflecting its true capability in
logical deduction during inference time, as opposed to on Ptrain which could easily reach 100%.

We study four basic types of knowledge manipulations: retrieval, classification, comparison, and
inverse search, which cover most real-world scenarios.2

KNOWLEDGE RETRIEVAL. Extending work on knowledge extraction, we finetune the model to
retrieve (1) part of an attribute or (2) multiple attributes at once. We discover a model may

• correctly answer “What is the birth date of Anya” as “June 27th, 1997”, but struggle with “What
is the birth year of Anya” (Result 2); and

• correctly answer “Which company and where did Anya work” but fail on “Where and which
company did Anya work.” (Result 1)

These serve as preliminary evidence suggesting the necessity of a Chain-of-Thought (CoT) for
knowledge manipulation. The model must explicitly state the birth month/day to deduce the birth
year, or explicitly state the company name before the work city location.

KNOWLEDGE CLASSIFICATION. We finetune the model for classification tasks on its stored knowl-
edge; for instance, “What degree did Anya receive?” may require ternary classification (art, science,
engineering) based on her major. Language models often struggle with such tasks unless they (1)
generate answers in CoT manner or (2) are finetuned with a significantly larger number of samples
than theoretically necessary.

Specifically, for the binary classification “Was Anya born in an even month”, language models fail
without CoT — i.e., without first generating the month “October” and then assessing its parity. This
remains true even if the model is sufficiently trained

• to answer everyone’s birth month with 100% accuracy,
• on 25,000 QA samples, more than needed to classify 12 months to 2 classes,

This reveals that language models cannot efficiently be trained+finetuned to perform even a single
step of knowledge manipulation during inference time without CoT (Result 3). Furthermore, our
findings reveal:

• Including sufficient CoT samples in training does not enhance non-CoT inference (Result 4);
• Improving model’s knowledge extraction don’t improve its manipulation ability (Result 5).

Importantly, this is different from and do not contradict to most common CoTs used in practice
at enhancing math or reasoning skills; for example, GPT-4 can skip a computation step and answer
whether the sum of a and b is even for a, b ∈ [12], without writing down their sum explicitly. More
broadly, many in-context reasoning can be done mentally without writing down (Ye et al., 2024).

KNOWLEDGE COMPARISON. This task involves determining if one attribute is greater than another,
based on a predefined ranking. For instance, “Is Anya’s university better than Sabrina’s?” requires
a Yes/No response based on the universities’ rankings. Our results align with those from the clas-
sification case: models struggle to perform knowledge comparisons effectively without CoTs. For
instance, the accuracy of comparing knowledge among 100 options is barely random guess, even
with 2, 500, 000 training samples, more than enough to learn to rank 100 objects (Result 3-5).

KNOWLEDGE INVERSE SEARCH. This involves identifying a person based on their attributes, such
as “Who was born on October 2, 1996 in Princeton...” when the knowledge is only forwardly
presented in the training data: “Anya Forger was born on October 2, 1996...” We discover that
language models cannot perform this task, regardless of training methods, data, or model size,
unless the knowledge is already presented inversely in the data (Result 8).3 This suggests that
language models cannot be used as databases.
Remark 1.1. Many knowledge manipulations are composed functions of the tasks above (see
Footnote 2); since we mostly present negative results, it suffices to study simplest forms of them.

2One could also explore combinations, such as “Is A’s wife’s university ranked higher than B’s?” or “Is the
person born on June 27th, 1997, and studied at MIT named with an initial A?” These would further complicate
the tasks. Given that we show mostly negative results, focusing on the basic forms suffices.

3A concurrent study (Berglund et al., 2023) observed similar results, and called this “reversal curse.”
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IN PRACTICE. We also demonstrate that modern large models like GPT-4 or Llama-3 (see Figure 2)
struggle with these tasks (Result 6, 8), suggesting these limitations may be inherent to generative
language models and not easily overcome by scaling up.

1.2 OUR CONTRIBUTIONS

We discover that language models, through controlled experiments and pre-trained on synthetic data,
perform poorly at basic knowledge manipulation tasks. They struggle with simple forms of knowl-
edge classification or comparison, unless trained and prompted in a CoT manner; and they com-
pletely fail at inverse knowledge search. This synthetic setting acts as a simple, yet important testbed
for future studies to enhance in language models’ knowledge manipulation abilities.

Connection to prior work on CoTs. The formal introduction of CoT (Wei et al., 2022) and
subsequent studies have highlighted the significance of CoTs for complex in-context computations,
such as solving math problems. Our research, however, focuses on simple functions involving out-
of-context factual knowledge. For instance, GPT-4 can accurately answer “Is the sum of a and b an
even number?” (for a, b ∈ [12]) without explicitly calculating a+ b.

Their paper also touched knowledge manipulation questions, such as “Did Aristotle use a laptop?”
or “Would a pear sink in water?” from the StrategyQA dataset. Although GPT-4 can answer some
of these Yes/No questions, it is unclear if this is due to data contamination or an inherent ability to
manipulate knowledge without CoTs. Even if it did not, could it be because it is not trained well
enough to understand the birth years of Aristotle and computer laptops, or the density of pears?

This underscores the need for controlled, synthetic experiments to eliminate such possibilities and
discover the language model’s true capabilities on knowledge manipulation tasks (see Figure 1
again). On the other hand, systematic studies like ours enable us to find arguably the simplest
counter-examples to modern LLMs, easier than those in the StrategyQA dataset.

Connection to humans. Our findings suggest a Turing test to distinguish humans from modern
generative language models (at least as of today). Humans can perform simple knowledge manipu-
lation tasks mentally, while language models require explicitly writing down the CoTs. Despite the
challenge of inverse search for humans, we identified tasks easily solvable by humans but not by
GPT-4 (refer to Figure 7). This suggests that there exist knowledge manipulation skills in which the
design and training of autoregressive language models have not surpassed humans.

Connection to industry. While this paper reveals that novel techniques are needed to fundamen-
tally improve a language model’s knowledge manipulation ability, immediate mitigations are also
possible. This includes generating more CoT data (Section 4) and employing methods like retrieval
augmented generation (RAG) (Lewis et al., 2020) and reversal training (Golovneva et al., 2024;
Nguyen et al., 2024; Guo et al., 2024) to help inverse search, or multi-token prediction (Gloeckle
et al., 2024) to help partial retrieval. We ourselves also suggest rewriting training documents to
include reversal data and introducing line numbers (Result 9) to bolster inverse search capabilities.
These strategies could inform the development of future industrial-scale language models.

2 PRELIMINARIES

To make this paper self-contained, we summarize some of the datasets, terminologies, models, and
training methods introduced in Allen-Zhu & Li (2024a;b).

BIO datasets bioS. Allen-Zhu & Li (2024a) introduced a synthetic biography (BIO) data family,
bioS, consisting of N = 100, 000 individuals with six attributes: birth date, birth city, university,
major, company name, and company city.4 Six randomly chosen sentences describe each individ-
ual’s attributes as in (1.1). Their basic setup has only one biographical entry per person with sen-
tences in the same order as (1.1). They also explored knowledge augmentation, including: multiM ,
generating M equivalent entries per person (using different wordings); permute, random sentence
shuffling; and fullname, replacing pronouns with full names. This totals to 16 datasets.5 Later,

4All attributes, except the company city (uniquely determined by the company name), are randomly selected.
5One basic setup plus 15 augmentations that are combinations of the above. For instance, “bioS

multi5+permute” denotes five biographical entries per individual with shuffled sentences. Refer to Figure 3 or
Appendix A for a complete list of such augmentations.

4
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Allen-Zhu & Li (2024b) generalized this to larger N . In the main body we use N = 100k for a
better comparison to Allen-Zhu & Li (2024a); in the appendix we also use N = 2 or 5 millions.

BIO dataset bioR. Allen-Zhu & Li (2024a) also introduced 7 versions of the bioR datasets, created
by prompting LLaMA (Zhou et al., 2023; Touvron et al., 2023) to write close-to-real biography
entries. This paper uses bioS for negative results and both bioS and bioR for positive results.

QA and single knowledge extraction. Allen-Zhu & Li (2024a) analyzed QAs like “What is the
birth city of Anya Briar Forger?” corresponding to the six attributes. They split the N individuals
into two equal parts: a training set Ptrain and a testing set Ptest, and explored two training methods:

• In BIO+QA mixed training, simultaneously train the language model on the BIO for everyone
and QA data for Ptrain, using a ratio QAr to control the percentage of QA data.

• In BIO pretrain + QA finetune, initially pretrain the language model with the BIO data, then
fine-tune it using the QAs for individuals in Ptrain.

In both cases, one can assess the model’s accuracy to answer questions about individuals in Ptest,
referred to as QA test accuracy. Key findings from Allen-Zhu & Li (2024a) include:

• The success of QA finetune largely depends on pretraining data augmentation. For instance,
pretraining on bioS multi5+permute yields a mean knowledge extraction accuracy over 96.6%,
while bioS single results in just 9.7% accuracy (see right block of Figure 3).6

• In BIO+QA mixed training, knowledge augmentation is less critical, with the model achieving
over 85% QA test accuracy on bioS single. However, as shown in (Allen-Zhu & Li, 2024a), this
method mirrors a “study to pass the test” approach, where the knowledge is first learned from
QAs, unlike typical human knowledge acquisition and is also less practical.

Language models. We study GPT2/Llama/Mistral architectures (Radford et al., 2019; Touvron
et al., 2023; Jiang et al., 2023a); for GPT2 we replace its absolute positional embedding with modern
rotary positional embedding (Su et al., 2021; Black et al., 2022), still referred to as GPT2 for short.
In the main body of this paper we followed Allen-Zhu & Li (2024a) to use 12-layer 768-dim GPT2
for the bioS data and 12-layer 1280-dim GPT2 for the bioR data; while we show in the appendix the
same results also hold for GPT2/Llama/Mistral architectures of lager sizes. A fixed context window
length of 512 is used throughout this paper.

3 RESULTS 1-2: KNOWLEDGE DUAL AND PARTIAL RETRIEVALS

We examine two partial knowledge retrieval tasks that involve extracting either the person’s birth
day or year from the complete birth date information.

1. What is the birth day of Anya Briar Forger? 2. 2. What is the birth year of Anya Briar Forger? 1996.

We consider six dual knowledge retrieval tasks:
1. Where was Anya Briar Forger born and which company did this this person work for? Princeton, NJ; Meta Platforms.
2. Which company did Anya Briar Forger work for and where was this person born? Meta Platforms; Princeton, NJ.
3. Which university and what major did Anya Briar Forger study? Massachusetts Institute of Technology; Communications.
4. What major and which university did Anya Briar Forger study? Communications; Massachusetts Institute of Technology.
5. Where and which company did Anya Briar Forger work for? Menlo Park, CA; Meta Platforms.
6. Which company and where did Anya Briar Forger work for? Meta Platforms; Menlo Park, CA.

Methodology. We aim to determine if a model pretrained on BIO data can be fine-tuned to address
the eight questions related to partial/dual knowledge retrieval. We divide the N individuals equally
into training Ptrain and testing set Ptest. The model is fine-tuned using the above eights QA tasks for
individuals in Ptrain and evaluated on its out-of-distribution (OOD) generation accuracy by testing
its responses to the questions for individuals in Ptest. We use LoRA fine-tuning Hu et al. (2021) to
enhance performance, as suggested by Allen-Zhu & Li (2024a) (see Appendix B for details).

Result 1 (Figure 3 middle). Dual retrieval is generally easy when both tasks are. However, if there
is a causal and spatial relationship between pieces of knowledge, their order may matter.

• If a language model is pretrained on sufficiently augmented data, such as bioS multi5+permute,
which generates five biographical entries per person and permutes the six sentences randomly,

6Allen-Zhu & Li (2024a) used probing to explain this phenomenon. Essentially, knowledge augmentation
in the BIO pretraining data ensures that knowledge is more closely tied to an individual’s name.

5
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QA bday
QA byear

QA bcity
+cname

QA cname+bcity

QA univ+major

QA major+univ

QA cname+ccit
y

QA cci
ty+cname

QA bdate
QA bcity

QA univ
QA major

QA cname
QA cci

ty

baseline
bioS single                   
bioS single                    + fullname
bioS single + permute1
bioS single + permute2
bioS single + permute5
bioS single + permute1 + fullname
bioS single + permute2 + fullname
bioS single + permute5 + fullname
bioS multi2                   
bioS multi2                    + fullname
bioS multi2 + permute 
bioS multi2 + permute  + fullname
bioS multi5                   
bioS multi5                    + fullname
bioS multi5 + permute 
bioS multi5 + permute  + fullname

3.6 0.5 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.5 0.3 1.0 0.4 13.7
37.2 15.6 0.2 0.3 0.2 0.2 1.0 1.1 33.5 6.3 2.3 4.0 1.1 13.8
58.5 43.5 27.6 29.1 41.1 36.3 55.2 11.2 56.2 58.8 63.0 55.7 50.5 14.1
8.5 2.6 0.2 0.2 0.3 0.3 3.6 1.9 0.5 3.3 2.4 5.0 3.5 13.7
62.1 16.6 27.1 27.1 32.1 31.9 52.5 51.2 57.3 48.3 53.1 55.0 51.8 58.3
67.6 18.8 49.1 49.1 42.0 42.7 94.9 91.8 56.4 57.7 58.3 64.9 90.5 97.7
43.9 30.5 9.5 10.4 12.3 11.0 32.0 28.5 26.6 29.3 36.9 31.1 31.4 37.9
70.1 65.0 54.3 53.9 43.0 44.2 91.1 90.2 69.0 60.6 64.2 64.0 87.9 95.0
82.4 68.7 65.5 63.9 49.7 54.6 95.9 96.6 83.7 67.8 72.6 69.1 93.0 98.6
90.6 47.1 5.2 3.1 19.8 9.6 3.4 2.6 100 71.7 33.1 26.1 5.2 14.0
97.6 77.1 94.0 97.5 93.8 94.3 98.5 19.4 100 97.7 89.5 97.6 91.3 35.3
95.7 46.5 85.2 88.2 93.8 95.1 87.9 80.4 99.3 98.7 89.8 96.7 83.3 83.5
96.2 67.2 95.1 97.0 95.3 94.3 97.4 96.1 100 98.8 91.3 98.1 93.7 97.8
85.0 37.3 6.9 4.6 31.5 16.7 9.7 3.6 100 50.8 30.9 43.5 10.2 13.8
97.4 68.0 94.0 95.4 92.0 94.6 94.9 17.4 100 98.6 88.4 96.1 91.9 26.8
82.3 20.4 96.5 97.6 94.8 94.6 97.0 96.9 100 99.0 91.3 97.7 95.1 98.7
97.6 76.7 95.6 98.6 95.1 95.1 98.7 97.7 100 98.7 90.6 97.9 93.7 99.0

Figure 3: Partial (left) and dual (middle) knowledge retrieval, versus the single knowledge extraction (right).

Each row is a different augmented pretrain dataset bioS (see Section 2), and the right block is from
Allen-Zhu & Li (2024a). This is for GPT2 and see Figure 10(a) for the bioR data; the same results
hold for the LLaMA architecture Figure 10(b) and 10(c); as well as for 50x larger data and 5.5x
larger GPT2/Mistral/Llama models Figure 10(d). Details are in Appendix B.

the accuracy for dual knowledge retrieval is nearly perfect.
• However, if the pretraining data exhibits spatial dependency between the two knowledge pieces,

the order of their retrieval can impact accuracy. For example, with bioS multi5+fullname, where
biographical entries always maintain the same order (specifically, the company name always
precedes the company city, and recall company city is uniquely determined by the company
name as noted in Footnote 4), answering the company name first yields near-perfect accuracy,
but answering the company city first drastically reduces accuracy.

Result 2 (Figure 3 left). Even if an attribute (e.g., October 2, 1996) can be perfectly extracted,
partially retrieving only its later tokens (e.g., the year 1996) may still be poor.

In particular, the model may fail to answer questions like “What is the birth year of person Anya”,
despite correctly answering “What is the birth date of person Anya”.

We view both results as preliminary evidence that the model requires CoTs for knowledge manip-
ulation. For instance, during inference, the model must explicitly state the birth month/day before it
can answer the birth year (we used the US format “Month day, year” in training). It cannot “skip”
tokens to directly generate subsequent knowledge learned from pretraining.

4 RESULTS 3-6: KNOWLEDGE CLASSIFICATION AND COMPARISON

Knowledge classification QA. We explore classification tasks concerning a person’s birth month
and major of study. For the birth month, we employ modular arithmetic with p = 2, 6, 12:7

1. Was Anya Briar Forger born in an even month? Answer: Yes.
2. What is Anya Briar Forger’s birth month mod 6? Answer: 4.
3. What is Anya Briar Forger’s birth month in numerics? Answer: 10.

For the major of study, we consider 100 unique majors and apply modular arithmetic with p =
5, 20, 100, assigning a “luckiness” score from 0 to 99 to these majors.8 The question then becomes
“What is the luckiness of Anya Briar Forger’s major modulo p?” Classifying the birth month with
p = 12 or the major with p = 100 is a form of transfer learning, which essentially rephrases the
question and response format.

Knowledge comparison QA. We investigate tasks related to ranking and subtraction based on a
person’s birth month and major of study (also birth day in the appendix). The questions include:

1. Was Anya Briar Forger born in a month in a year later than Sabrina Eugeo Zuberg? [Yes/No].
2. What is Anya Briar Forger’s birth month minus Sabrina Eugeo Zuberg’s birth month? [-11..11].
3. Did Anya Briar Forger major in a field luckier than Sabrina Eugeo Zuberg? [Yes/No].
4. How luckier is Anya Briar Forger’s major compared with Sabrina Eugeo Zuberg’s major? [-99..99]

7Answer format does not matter. We employed the simplest format such as “Answer: Yes.” We also tested
more complex formats like “Anya Briar Forger was indeed born in an even month” and added padding such as
“Answer: dot dot dot dot True” (Pfau et al., 2024). No noticeable differences in results were observed, so we
ignored them.

8For example, Computer Science is 0, Communications is 28, and Music is 99. This could be replaced with,
for instance, the popularity of majors according to US News in reality.
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major subtraction (10k)
major subtraction (25k)
major subtraction (50k)

field task #train
individuals

Figure 4: Knowledge classification and comparison tasks on BIO pretrained model vs QA finetuned model.9

This figure is for GPT2 and results for more tasks are in Figure 11. Results for LLaMA architecture
is in Figure 12, and for Mistral on 50x larger dataset with 5.5x larger model is in Figure 13.

Observations: (♣) test acc without hint is low, unless training with far more samples than theoret-
ically needed — accuracy is 1% even with 2.5 million training samples to compare 100 possible
majors, see Figure 13; (♠) adding hints in training does not improve model’s test acc without hint;
(♢) fine-tuning the model for knowledge extraction does not improve its manipulation capability.

Methodology. We evaluate knowledge manipulation using models that are near-perfect in knowl-
edge extraction, ensuring any difficulties arise from manipulation rather than extraction. We utilize
models pretrained on the bioS multi5+permute dataset, capable of achieving nearly 100% test accu-
racy for extracting birth dates (and thus birth months) and 98% for majors.

Specifically, we employ either a model pretrained solely on this BIO data (the BIO pretrained
model), or one that is BIO pretrained + QA finetuned for single knowledge extraction tasks, such as
“What is the birth date of Anya Briar Forger?” (the QA finetuned model). Given the QA finetuned
model’s proven extraction ability, one might expect it to perform better in knowledge manipulation.

TRAIN WITHOUT HINT. Our BIO data consists of biographical entries for N = 100k individuals.
We allocate half (i.e., 50k) as the testing set Ptest, and select a separate subset Ptrain as the training
set, with |Ptrain| = 2.5k, 5k, . . . , 50k. Starting from one of the two models mentioned above, we
conduct additional LoRA fine-tuning using the classification or comparison tasks above, trained with
individuals fromPtrain.10 We then assess the model’s out-of-distribution (OOD) generation accuracy
by evaluating its performance on the same task for individuals in Ptest.

TRAIN WITH HINT. To improve the model’s knowledge manipulation capabilities, we fine-tune it
using knowledge hints. These hints articulate a person’s attributes in English before answering the
manipulation question. For instance, in our tasks, the underlined sentences act as hints:11

1. Was Anya Briar Forger born in a month in a year later than Sabrina Eugeo Zuberg? October; September. No.
2. How luckier is Anya Briar Forger’s major compared with Sabrina Eugeo Zuberg’s major? Communications; Music. -71.
3. What is the luckiness of Anya Briar Forger’s major modular 20? Communications. 8.

Including hints enables the model to adopt a chain-of-thought (CoT) approach, allowing it to first
extract the necessary knowledge and then learn the manipulation task by directly using this knowl-
edge. Similar to “train without hint”, we train using QAs for individuals in Ptrain and test on Ptest.
For each individual in Ptrain (or each pair for comparison tasks), we include hints with 50% proba-
bility. Thus, the model sees data both with and without hints. We then evaluate the model’s OOD
generation accuracy under both conditions.12 Our goal is to ascertain if adding CoT training data
enhances the model’s knowledge manipulation skills at inference time, even without CoT (♠).

9#train individuals column shows |Ptrain|. trained w/o hint column is when model finetuned on the clas-
sification/comparison tasks without adding hints. trained with hint block is the model finetuned with hints
added with probability 0.5. test acc (with hint) and test acc (w/o hint) represent the accuracy on Ptest with or
without hints; while hint acc shows the model’s hint generation accuracy.

10Full finetuning is even worse, similar to (Allen-Zhu & Li, 2024a), hence it is not considered in this paper.
11For context, besides (1.1), we examine another individual, Sabrina Eugeo Zuberg, who was born in Septem-

ber and majored in Music. We have previously assigned specific luckiness values to each major: Communica-
tions is valued at 28, while Music has a value of 99.

12In evaluation, the model only sees the question without hints. We design tokens to instruct the model to
either generate a hint followed by an answer (test acc (with hint)), or to answer directly (test acc (w/o hint)).
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Question:   “Answer me yes or no concisely: for <name> who was a <occupation> and was born in <city> in <year>, was this person born in an even month?” 
  GPT4 correct answer = 50.7%, incorrect answer = 48.5%, I don’t know = 0.7%

Classify 
month % 2

Question:   “Answer me yes or no concisely: was <name1> who was a <occupation1> and was born in <city1> born earlier than <name2> who was a 
<occupation2> and was born in <city2>?”   GPT4 accuracy answer = 52.3% among individuals born in 1900~1910
     GPT4 accuracy answer = 71.1% among individuals born in 1900~1950
     GPT4 accuracy answer = 81.6% among all pairs of individuals

“what's the birthday and year of <name> who is a <occupation> and was born in <city>?” GPT4 accuracy: 99% (among 4779 celebrities on Wikipedia)

Rank birth 
date

Figure 5: Knowledge classification and ranking on WikiBio using GPT-4. Details are in Appendix E.2.

Overall, we discover that models struggle in knowledge classification/comparison unless hints are
used both in training and testing. We explain this better in three results.

Result 3 (Figure 4, ♣). Without CoT examples, the model’s test accuracy is significantly low, even
for the simplest, single-step manipulation tasks.

• Determining whether a month is even or odd requires 10,000 training samples to achieve a 75%
accuracy, despite theoretically needing a sample complexity on the order of O(12) (♣).

• Ranking months requires 50, 000 training samples to reach an 85% test accuracy, even with a
theoretical sample complexity of O(122), provided no hint is given (♣).

• Ranking 100 majors barely outperforms random even in 2.5 million training samples (♣).
• Only “transfer learning” (i.e., knowledge rephrasing) has a good accuracy (see Figure 11).

Result 4 (Figure 4, ♠). Even when CoT examples are included during training, the model still
struggles to answer without a hint during testing, indicating that including hints during training
does not improve test-time accuracy when hints are removed.

Conversely, when the model uses hint during testing, accuracy significantly improves. The manipu-
lation task accuracy largely depends on if the model is successful in generating the hint first.13

Result 5 (Figure 4, ♢). The difference between a BIO pretrained and a QA finetuned model is
minimal for downstream knowledge manipulation tasks.

For instance, fine-tuning the model first to answer questions like “What major did Anya Briar Forger
study” does not necessarily improve its performance on future ranking/classification tasks based on
the major of study.

In addition to our synthetic experiment, we also studied ChatGPT (GPT-4) in practice.

Result 6 (Figure 5). Real-life GPT-4 also struggles with knowledge classification/comparison in
the absence of CoTs.

We tested with about 5000 Wikipedia biographies in Figure 5. In particular, GPT-4 has a 71.1%
accuracy rate comparing birth dates for celebrities from 1900-1950, but this drops to 52.3% (almost
random guess) for 1900-1910, suggesting a correlation with the number of samples in its training
data. Visual examples in Figure 2, 9, 15 also confirmed this, and show that adding CoTs can rectify
this issue. This suggests that scaling up model size may not mitigate the issues.

Importantly, our discovery is different from most common CoTs used in practice at enhancing math
or reasoning skills; for example, GPT-4 can skip a computation step and directly answer whether
the sum of a and b is even for a, b ∈ [12], without writing down their sum explicitly. Furthermore,
our focus here is on out-of-context knowledge manipulation; if one is instead interested in in-context
reasoning, then language models are capable of mentally computing many reasoning steps without
writing them down Ye et al. (2024).

Once again, the GPT-4 experiment is included solely for illustrative purposes.14 We focus on a
controlled, synthetic experiment to study knowledge manipulation in a more scientific manner —

13For example: in the task “birth month classify %2”, with a hint accuracy 91.0%, the test accuracy (with
hint) is 94.2%, nearly aligning with the calculation: 91.0% + (1 − 91.0%) × 50% = 95.5% (where 50% is
the random guess accuracy). Similarly, in the task “birth month subtraction”, a hint accuracy of 78.1% results
in a test accuracy (with hint) of 61.5%, comparable to the value derived from the formula: 78.1%× 78.1% +
(1− 78.1%× 78.1%)× 8.3% = 64.2% (where 8.3% is the random guess accuracy).

14Without control over its pretrained data, distinguishing between Case (A)-(E) from Figure 1 is difficult.
In Figure 5, we ensured the model could accurately identify individuals’ birth dates 99% of the time, thereby
eliminating Case (C). However, we cannot dismiss Case (D) due to uncertainty about the number of relevant
training examples in GPT-4’s data.
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Each row is a different augmented pretrain
dataset bioS (see Section 2). The top 4
rows with reverse indicate knowledge
written in reverse order on the pre-train
data for comparison (thus, these rows are
no longer knowledge inverse search). De-
tails in Appendix D.
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Figure 6: Accuracy for QA finetune (left) and BIO+QA mixed-training (right) in knowledge inverse search.
This is for GPT2 and same holds for LLaMA (Figure 14(a)), and for GPT2/Llama/Mistral on 50x
larger dataset with 5.5x larger model sizes (Figure 14(b)). Conclusion: language models are impos-
sible to perform inverse search, regardless of model/data sizes, training, data/prompt qualities (♡).

for instance we can make claims like (♠), (♣), (♢) because we can control how the model is trained.

5 RESULTS 7-9: KNOWLEDGE INVERSE SEARCH

Knowledge inverse search. The biographies in bioS always start with the person’s name, as shown
in (1.1). This enables us to examine the knowledge inverse search by asking about the individual’s
first or full names. We consider 10 such QA tasks (with task names on the right):

• Give me the [first/full] name of the person born on October 2, 1996? (bdate to first, bdate to full)
• Give me the [first/full] name of the person born on October 2, 1996 in Princeton, NJ? (birth to first, birth to full)
• Give me the [first/full] name of the person who studied Communications at Massachusetts Institute of Technology and worked for Meta

Platforms? (three to first, three to full)
• Give me the [first/full] name of the person who studied Communications at Massachusetts Institute of Technology, was born in Princeton,

NJ, and worked for Meta Platforms? (four to first, four to full)
• Give me the [first/full] name of the person who studied Communications at Massachusetts Institute of Technology, was born on October

2, 1996 in Princeton, NJ, and worked for Meta Platforms at Menlo Park, CA? (all to first, all to full)

(Note, some inverse search tasks may not have unique answers (e.g., bdate to full); however,
one should expect a successful inverse search should at least have some non-trivial accuracy.)

Methodology. We split N individuals equally into training set Ptrain and testing set Ptest. The
model is trained using QA data from Ptrain and evaluated on its out-of-distribution generation accu-
racy, using the above 10 inverse knowledge search tasks. We consider two approaches: “BIO pretrain
+ QA finetune”, which fine-tunes a BIO-pretrained model using the above 10 tasks on Ptrain, and
“BIO+QA mixed training”, where the model is concurrently trained on all the BIO data and the 10
tasks on Ptrain. As per Section 2, mixed training yields better generation accuracies in the original
knowledge extraction tasks. In addition to the 16 bioS datasets (separately knowledge-augmented,
see Section 2), we introduce 4 more datasets:

• bioS multi5+reverse1, in this case we move the full name of the person to the second sentence.
• bioS multi5+reverse2, in this case we move the full name of the person to the third sentence.
• bioS multi5+reverse6, we move the full name of the person to the end of the biographical entry.
• bioS multi5+permute+reverse6, on top of bioS multi5+reverse6 we permute the sentences.
• The person was born on October 2, 1996. Anya Briar Forger spent her early years in Princeton, NJ... (bioS multi5+reverse1)

• The person was born on October 2, 1996. She spent her early years in Princeton, NJ. Anya Briar Forger... (bioS multi5+reverse2)
• The person was born on October 2, 1996. She spent her early years in Princeton, NJ... The person’s name is Anya Briar Forger.

(bioS multi5+reverse6)
• The person spent her early years in Princeton, NJ. [... 4 more sentences in random order ...] She had a professional role at Meta Platforms.

The person’s name is Anya Briar Forger. (bioS multi5+permute+reverse6)

Result 7 (Figure 6, ♡). Models have near-zero accuracy to inverse knowledge search in Ptest, even
for the simplest task all to first, even with the BIO+QA mixed training approach, and even
with strong pretrain data knowledge augmentation.15

Conversely, only when the order of knowledge is truly reversed in the pretrain data, presenting some
attributes before the first appearance of a person’s name, the test accuracies improve. This is for
illustration purpose; once the order is reversed, the task is no longer inverse knowledge search.

15For instance, in the bioS multi5+permute+fullname data, we include five diverse biographical entries per
individual, with the full name at the front in each sentence, and random shuffle all the sentences.
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Inverse search:    “In <Pride and Prejudice>, what’s the sentence before: <sentence2>?”
Forward search: “In <Pride and Prejudice>, what’s the sentence after: <sentence1>?”

Pride & Prejudice Sense & Sensibility Persuasion Northanger Abbey Emma Mansfield Park

forward vs inverse accuracy by GPT3.5 0.5% vs 14.4% 0.3% vs 5.4% 0.07% vs 4.3% 0.6% vs 5.5% 0.8% vs 7.2% 0.7% vs 5.5%
forward vs inverse accuracy by GPT4 0.8% vs 65.9% 0.9% vs 40.2% 0.5% vs 33.9% 0.9% vs 41.0% 0.6% vs 42.7% 0.3% vs 31.7%

Inverse search:   “what‘s the full name of the celebrity born on <date> in <city> who is a <occupation>?” GPT3.5 acc = 23.9% GPT4: 42%
Forward search: “what's the birthday and year of <name> who is a <occupation> and was born in <city>?” GPT3.5 acc = 89.5% GPT4: 99%

Given a common 4-letter Chinese idiom such as 指鹿为马, mask out its i-th letter (for i=1,2,3, or 4) and let GPT fill out the missing letter.
Prompt 1: 成语“X鹿为马”的X是什么字？  GPT3.5 accuracy 9.4%, GPT4 accuracy 17.6%
Prompt 2: 成语“指X为马"的X是什么字？  GPT3.5 accuracy 29.5%, GPT4 accuracy 36.1%
Prompt 3: 成语"指鹿X马"的X是什么字？  GPT3.5 accuracy 32.0%, GPT4 accuracy 76.7%
Prompt 4: 成语"指鹿为X"的X是什么字？  GPT3.5 accuracy 56.7%, GPT4 accuracy 90.6%

Jane Austen 
Novel Task

Wiki Bio 
Task

Chinese Idiom 
Task

Chinese Poem 
Task

Given a famous two-sentence Chinese poem such as 劝君更尽一杯酒, 西出阳关无故人, let GPT answer what’s the sentence before/after <sentence2/1>
Inverse search:   “西出阳关无故人”的上一句是什么？ GPT3.5 accuracy   2.1%, GPT4 accuracy   7.3%
Forward search: “劝君更尽一杯酒”的下一句是什么？ GPT3.5 accuracy 33.0%, GPT4 accuracy 66.5%

Figure 7: Forward search vs inverse search on ChatGPT (GPT3.5 / GPT-4); details in Appendix E.1.
(While inverse search may seem challenging even for humans, we have designed the Chinese id-
iom/poem tasks that are allegedly simple for many high school graduates in Chinese education.)

forward knowledge search chain of thought

pretrain 
data

the Bible is ‘sufficiently augmented’ on the internet data, 
chapter/verse numbers appear both before and after

Figure 8: How GPT-4 uses CoT to perform inverse knowledge search on the Bible task.

In conclusion, our findings underscore a fundamental limitation of generative language models:
they cannot perform inverse knowledge search, period. This is due to its left-to-right autoregressive
training design. If the model learns “A equals B” it cannot infer “B equals A” unless it is also in the
training data. A bidirectional model like BERT cannot mitigate this issue, because it suffers from
more severe issues even in the forward, single knowledge extraction case (Allen-Zhu & Li, 2024a).16

We also tested GPT-3.5/4 in practice and discover:

Result 8 (Figure 7). GPT-3.5/4 also also exhibit huge difficulties with inverse knowledge search.

For example, while GPT-4 can predict the next sentence in Jane Austen’s Pride and Prejudice with
65.9% accuracy, it only has 0.8% accuracy to predict the preceding sentence. Once again, these
experiments are included for illustrative purpose — even if GPT-4 can answer such questions it
remains unclear if GPT-4 has seen them during its pretraining. Our controlled, synthetic experiment
not only eliminates such possibility, but also provides strong claim like (♡).
Using CoT for inverse search. We observed that GPT-4 can identify a Bible verse preceding
another one via CoT: it first generates the verse number (e.g., 9:5), then subtracts 1 (e.g., write down
9:4), and retrieve the full text of the verse (see Figure 8). This capability stems from the abundance
of Bible data on the internet that have the numbers appearing both before and after them. Therefore,

Result 9. To improve inverse search of critical documents by LLMs, not only one can employ
RAG (Lewis et al., 2020) or preprocess training data to include reverse knowledge (see Figure 6-
top, or practically through a “rewrite” prompt), one can also introduce line numbers (see Figure 8).

Conclusion. In this paper, we use controlled experiments to show fundamental limitations of
language models to manipulate knowledge at inference time even under the strongest pretraining
setting, regardless of model size, data size, etc. Our work sheds light on why extremely large lan-
guage models like GPT-4 are still bad at the simplest, single-step knowledge manipulation, and give
surprisingly simple such counter-examples (see Figure 2, 9). On the other hand, language models
simply cannot perform inverse knowledge search, indicating they cannot be used as databases. Our
synthetic data can also be used as an important testbed for designing new training techniques.

16BERT-like models already struggle with (forward) knowledge extraction due to their whole-word masked
language modeling (MLM) nature — not to say knowledge manipulation. For example, a company name “Meta
Platforms” will lead BERT to correlate the embedding of “Meta” with that of “Platform”, rather than associating
the company information to an individual’s full name. For more details, see (Allen-Zhu & Li, 2024a).
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Figure 9: Even as of Oct 1, 2024, GPT-4o (top) and Llama-3.1-405B (bottom) still fail on simple knowledge
classification (left), knowledge comparison (middle) and inverse search (right) tasks.

APPENDIX
A MORE DETAILS ON DATA PREPARATION

Allen-Zhu & Li (2024a) introduced a synthetic biography data family bioS and a “close-to-real”
dataset family bioR. For completeness, we provide a quick summary below. We primarily use bioS
to present negative results due to its controllable knowledge order. For positive results, specifically
for partial/dual knowledge retrieval, we also use bioR.

A.1 BIO DATASET BIOS

In the synthetic dataset labeled as bioS, one generates profiles for N individuals. Each individual’s
first, middle, and last names, birth date, birth city, university attended, major of study, and work
company are selected independently and randomly from a uniform distribution, out of 400, 400,
1000, 200 × 12 × 28, 200, 300, 100, 263 choices respectively. Additionally, the ‘company city’
attribute completely depends on the US location of the work company’s headquarters. For instance,
an employee of Meta would list Menlo Park, CA as their company city. Notably, 13.7% of the
companies are headquartered in New York, NY so defaulting to New York, NY gives a base accuracy
13.7% when predicting a person’s work city.

In the bioS dataset, a biographical entry of an individual consists of six sentences. Each sentence
illuminates a distinct attribute of this individual. To increase diversity, each sentence is randomly
selected from a set of∼ 50 pre-defined templates. Beyond (1.1), we paste some examples from their
paper:

Carlos Jameson Stokes has his annual celebration on November 12, 2088. He celebrates his birth in San Francisco, CA. He gradu-
ated from Oklahoma State University. He explored the theoretical aspects of Information Systems. He contributed his expertise to
United Airlines Holdings. He acquired industry knowledge while working in Chicago, IL.

Alondra Bennett Rooney celebrates their life journey every year on April 1, 1909. They owe their roots to Durham, NC. They benefited from
the resources and facilities provided by University of South Alabama. They developed a strong foundation in Data Science. They had a job at
The Southern Company. They were involved in the industry of Atlanta, GA.

Aidan Alexa Dennis’s birth is celebrated annually on July 17, 1968. She calls Palmdale, CA her birthplace. She specialized in her field of
study at Stevens Institute of Technology. She completed a rigorous program in International Business. She had employment prospects at
Johnson & Johnson. She gained work experience in New Brunswick, NJ.

In the basic configuration, there is a single biographical entry for each individual, maintaining a
consistent order for the six sentences as outlined above. This configuration is denoted as “bioS
single.” In (Allen-Zhu & Li, 2024a), they delved into 15 knowledge augmentations:

• bioS single+fullname: Pronouns are replaced with the person’s full name.
• bioS single+permute1/2/5: The six sentences in the biography entry are randomly permuted

1/2/5 times for each person. However, the full name only appears in the first sentence, with
subsequent sentences using pronouns. This results in 1/2/5 biography entries for each person.
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• bioS single+permute1/2/5+fullname: As with the previous augmentation, but the full name is
used in all six sentences.

• bioS multi2/5: 2 or 5 biographical entries are generated for each person, with each generation
employing a re-sampled set of sentence templates.

• bioS multi2/5+permute: Building on bioS multi2/5, the six sentences within each biographical
entry are randomly permuted. However, the full name appears only once in the first sentence.

• bioS multi2/5+fullname: Building on bioS multi2/5, pronouns are replaced with the individual’s
full name across all sentences.

• bioS multi2/5+permute+fullname: Incorporating features from both bioS multi2/5+permute and
bioS multi2/5+fullname, the pronouns are replaced with the individual’s full name and the six
sentences are randomly permuted.

Allen-Zhu & Li (2024a) were using N = 100, 000, and this has been later generalized to support N
up to 20, 000, 000 in (Allen-Zhu & Li, 2024b).

Our main body uses N = 100, 000 but we also present results with respect to N = 1, 2, 5 million —
denoted as bioS(10x, 20x, 50x) respectively. In these larger datasets, we have followed (Allen-Zhu
& Li, 2024b) to consider full knowledge augmentation (denoted as multi∞+permute). This means
each person is fully augmented to have 506 × 6 different writings of their biography.
Remark A.1. This bioS(50x) multi∞+permute data is especially useful for us to present negative
results (such as in Figure 13 and Figure 14(b)), because even when the data is well-prepared to
include so many different knowledge augmentations, the negative results still apply.

A.1.1 ADDING REVERSE KNOWLEDGE

In this paper, in Section 5 when considering inverse knowledge search, we have also introduced a
few auxiliary knowledge augmentations for comparison purpose:

• bioS multi5+reverse1, in this case we move the full name of the person to the second sentence:
The person was born on October 2, 1996. Anya Briar Forger spent her early years in Princeton, NJ...

• bioS multi5+reverse2, in this case we move the full name of the person to the third sentence:
The person was born on October 2, 1996. She spent her early years in Princeton, NJ. Anya Briar Forger...

• bioS multi5+reverse6, we move the full name of the person to the end of the biographical entry:
The person was born on October 2, 1996. She spent her early years in Princeton, NJ... The person’s name is Anya Briar Forger.

• bioS multi5+permute+reverse6, in this case on top of bioS multi5+reverse6 we also randomly
permute the six sentences. Here is an example.
The person spent her early years in Princeton, NJ. [... 4 more sentences in random order ...] She had a professional role at Meta Platforms.
The person’s name is Anya Briar Forger.

A.2 BIO DATASET BIOR

We also examine the bioR dataset which is produced by prompting LLaMA (Zhou et al., 2023; Tou-
vron et al., 2023) to write close-to-real biography data for the previous N = 100, 000 individuals.
Below we paste some examples from their paper:
Nicole Kevin Pratt is an American business executive. She is currently the Vice President of P&G Global Business Services at
Procter & Gamble. She was born on January 25, 1977, in Baltimore, Maryland. She graduated from Haverford College with a degree in
Management. P&G recruited her as an Assistant Brand Manager in 2000. She held various leadership positions in brand management, market-
ing, and sales across different business units and categories. She was named Vice President of P&G Global Business Services in 2019. Nicole
currently lives in Cincinnati, Ohio with her husband and three children.

Hunter Bennett Kenny is a talented political science graduate from Queens College, City University of New York. He hails from
Augusta, Georgia and was born on March 25, 2033. During his time at college, he was an active member of the student council and served
as its president in his senior year. He interned at the office of New York Senator Chuck Schumer. After graduating cum laude, he worked for
Kohl’s in Menomonee Falls, Wisconsin. He currently resides in Brooklyn, New York.

Johnathan Charles Wade is a successful insurance agent who works for Allstate. He was born on January 7, 2098, in New York City, NY. He
graduated from Colorado State University, where he majored in Sociology. He currently resides in Northbrook, IL.

In the basic configuration, there is a single biographical entry per person, denoted as “bioR single.”
For comparison, we also consider their multiM augmentation, which creates M entries per person,
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and the fullname augmentation.

B MORE DETAILS ON KNOWLEDGE RETRIEVAL

Recall from Section 3 that we examined two partial knowledge retrieval tasks, which involved ex-
tracting either a person’s birth day or year from complete birth date information. We also considered
six dual knowledge retrieval tasks that involved extracting two attributes of a person simultaneously.

Following (Allen-Zhu & Li, 2024a), we initially used a BIO-pretrained model checkpoint and then
applied LoRA finetuning on top of it, utilizing the QA texts of the aforementioned eight tasks for
half of the individuals (denoted by Ptrain).17 We then presented its out-of-distribution generation
accuracies for answering those eight tasks on the remaining individuals (denoted by Ptest).

We followed the same experiment setup as (Allen-Zhu & Li, 2024a).18

In LoRA fine-tuning, as described by (Hu et al., 2021), one selects certain weight matrices Wd×k

in the transformer and applies a rank-r update on top: W′ ← W + αAB with A ∈ Rd×r and
B ∈ Rr×k for some small number r. Here, α is a constant, and both A and B are trainable
parameters.19 Notably, B is initialized with Gaussians and A is initialized with zeros.

Based on Hu et al. (2021), we applied a low-rank update to the query/value matrices in each trans-
former layer. To account for the input distribution shift (from BIO data to QA data), we also applied
a low-rank update to the embedding layer. We used either a rank 8 or 16 update for the query/value
matrices and a rank 128 update for the embedding layer, presenting the best accuracy from the two
runs.20

We employed the AdamW optimizer with ε = 10−6. The weight decay was set to 0.01, with an
initial learning rate of 0.0003. We did not use warmup, and we implemented cosine learning rate
scheduling (reducing to 10% of the initial learning rate). The batch size was set at 48 with a total
of 50,000 training steps. We used a mixture of V100/A100 GPUs for the experiment but the GPU
types are irrelevant for our experiments.

• The results for the N = 100k bioS data (on the 12-layer, 12-head, 768-dim GPT2) are presented
in Figure 3.

• The results for the N = 100k bioR data (on the 12-layer, 20-head, 1280-dim GPT2) are pre-
sented in Figure 10(a).

• The results for the N = 100k bioS data (on the 12-layer, 12-head, 768-dim Llama) are presented
in Figure 10(b).

• The results for the N = 100k bioR data (on the 12-layer, 20-head, 1280-dim Llama) are pre-
sented in Figure 10(c).

• The results for the bioR(10x, 20x, 50x) data are presented in Figure 10(d), in particular:
– GPT2(2x), Llama(2x), Mistral(2x) are 6-layer, 24-head, 1536-dim architectures. They are

roughly 2x larger than GPT2 small.
– GPT2(5.5x), Llama(5.5x), Mistral(5.5x) are 24-layer, 20-head, 1280-dim architectures. They

are roughly 5.5x larger than GPT2 small.21

Remark B.1. When utilizing the Llama and Mistral architectures, we have also adopted their original
tokenizers. It is noteworthy that GPT2’s tokenizer converts years (e.g., 19xx) and days into single

17LoRA finetuning has been proven to be a better choice compared to full finetuning, as it prevents overfitting
and yields higher QA test accuracies. A detailed comparison can be found in (Allen-Zhu & Li, 2024a).

18The optimizer is AdamW with weight decay 0.1, ε = 10−6, initial learning rate 0.001, 1000-step linear
warmup, and cosine learning rate decay (decreasing to 0.0001). The models are trained using a batch size of
96 with 80,000 steps (for bioS) or with 150,000 steps (for bioR). Recall the context window size was 512. We
use beam=4 without sampling for model generation (and the results are similar if disabling beam).

19In this paper, we choose α = 4. This choice only affects the learning rate and does not require tuning. (Hu
et al., 2021)

20Indeed, Allen-Zhu & Li (2024a) indicates that a large rank-r update for the query/value matrices is not
crucial. However, a large rank-r′ update on the embedding layer is beneficial to address the input distribution
shift.

21The commercial versions of Llama/Mistral were larger than these and we downsized them for our purpose.
For Mistral, we used group-query attention with 4 groups.
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tokens, whereas the Llama/Mistral tokenizers treat them as four separate tokens. This accounts for
certain discrepancies in the partial retrieval accuracies for birth days and birth years.

QA bday
QA byear

QA bcity
+cname

QA cname+bcity

QA univ+major

QA major+univ

QA cname+ccit
y

QA ccit
y+cname

QA bdate
QA bcity

QA univ
QA major

QA cname
QA ccit

y

baseline
bioR single                   
bioR single                    + fullname
bioR single + permute5
bioR multi3                   
bioR multi3                    + fullname
bioR multi5                   
bioR multi5                    + fullname

3.6 0.5 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.5 0.3 1.0 0.4 13.7
27.8 19.8 0.3 0.3 0.3 0.3 1.6 1.3 25.1 13.9 2.4 5.5 2.0 14.1
57.3 46.5 16.3 16.7 23.4 20.8 33.4 11.3 61.3 44.8 36.6 47.9 37.4 19.9
67.5 34.0 12.6 13.3 26.3 26.3 38.7 14.3 71.8 29.7 45.7 45.0 43.1 19.3
96.2 74.5 84.9 87.2 90.8 91.0 86.3 70.7 99.5 95.0 88.2 95.0 86.1 71.7
96.7 90.0 94.0 97.0 94.4 94.0 93.0 81.4 99.3 96.9 91.7 97.2 91.9 81.6
98.6 80.5 94.5 95.1 92.7 93.8 92.7 87.7 100 96.3 91.0 96.8 91.9 89.1
95.4 86.0 95.5 97.8 95.1 93.2 93.8 89.9 99.6 97.4 90.5 97.3 94.2 90.9

(a) the same as Figure 3 but for GPT2 on the bioR datasets

QA bday
QA byear

QA bcity
+cname

QA cname+bcity

QA univ+major

QA major+univ

QA cname+ccit
y

QA cci
ty+cname

QA bdate
QA bcity

QA univ
QA major

QA cname
QA cci

ty

baseline
bioS single                   
bioS single                    + fullname
bioS single + permute1
bioS single + permute2
bioS single + permute5
bioS single + permute1 + fullname
bioS single + permute2 + fullname
bioS single + permute5 + fullname
bioS multi2                   
bioS multi2                    + fullname
bioS multi2 + permute 
bioS multi2 + permute  + fullname
bioS multi5                   
bioS multi5                    + fullname
bioS multi5 + permute 
bioS multi5 + permute  + fullname

3.6 0.5 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.5 0.3 1.0 0.4 13.7
27.8 5.8 0.0 0.2 0.0 0.2 0.8 0.9 3.8 2.3 1.0 2.3 1.0 13.1
41.2 20.3 4.7 3.2 7.2 4.7 17.2 4.4 14.4 23.5 22.8 18.7 19.9 13.2
27.9 6.7 0.5 0.8 1.0 1.8 6.7 5.4 3.6 10.9 10.5 13.3 6.7 16.5
32.4 15.4 4.7 4.7 6.2 7.0 23.3 22.5 18.0 20.5 23.7 28.1 23.8 34.5
49.2 19.4 17.0 15.8 5.5 5.8 71.5 72.9 20.4 24.1 20.6 27.3 69.5 89.6
37.6 14.4 6.2 5.8 3.9 4.7 31.5 28.5 7.6 23.8 24.7 20.3 31.6 42.9
41.7 19.4 15.2 15.5 8.4 8.4 53.3 54.0 9.8 29.1 33.6 22.9 54.1 69.6
42.0 18.1 18.0 17.3 6.8 8.8 69.5 71.5 11.4 25.6 30.8 26.1 73.0 94.0
73.7 50.4 0.9 0.8 2.1 2.6 2.0 1.4 91.6 40.8 14.3 12.3 1.8 13.0
80.6 76.2 69.7 69.5 68.3 52.8 74.6 11.0 94.9 92.7 75.9 61.4 73.1 13.0
96.9 89.3 57.7 63.8 74.8 79.5 69.0 66.3 93.1 87.8 83.5 87.5 68.4 72.4
79.5 76.3 89.5 92.3 84.6 88.3 92.0 92.2 97.8 94.5 87.2 93.4 90.5 96.1
80.0 68.6 0.9 0.8 4.6 0.9 1.5 0.8 92.9 63.5 11.6 4.2 1.0 13.1
67.8 49.4 60.0 58.5 56.2 35.5 66.1 9.5 96.3 90.1 58.0 61.3 66.2 13.0
74.4 60.2 90.4 90.7 86.3 87.4 93.3 91.4 95.9 94.8 86.0 95.7 92.5 97.3
76.0 70.4 92.1 91.5 86.8 88.4 91.3 91.6 96.4 94.8 86.4 92.5 90.9 94.7

Llama

(b) the same as Figure 3 but for Llama on the bioS datasets
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QA cci
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QA bcity
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QA major

QA cname
QA cci

ty

baseline
bioR single                   
bioR single                    + fullname
bioR single + permute5
bioR multi3                   
bioR multi3                    + fullname
bioR multi5                   
bioR multi5                    + fullname

3.6 0.5 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.5 0.3 1.0 0.4 13.7
20.4 5.6 0.2 0.2 0.2 0.2 1.4 0.9 20.4 7.1 1.2 2.7 1.8 14.8
43.2 20.6 2.9 2.5 4.7 5.0 16.9 5.7 40.0 20.9 14.5 23.1 16.2 14.8
60.8 31.2 9.0 6.3 14.2 14.1 32.4 12.2 61.9 24.1 34.8 31.8 32.8 15.4
97.7 78.9 53.6 54.3 62.7 70.9 58.2 34.1 91.0 82.1 72.1 78.1 48.8 33.1
87.1 70.9 86.7 89.0 84.1 85.9 90.4 73.6 95.8 91.1 82.7 90.2 87.5 72.0
95.2 82.6 86.2 90.3 87.5 88.6 89.8 78.8 96.6 94.5 88.3 95.2 88.0 80.3
89.2 84.2 93.3 94.3 90.0 89.1 94.8 88.2 96.9 96.3 87.4 95.6 92.5 88.4

Llama

(c) the same as Figure 3 but for Llama on the bioR datasets

QA bday
QA byear

QA bcity
+cname

QA cname+bcity

QA univ+major

QA major+univ

QA cname+ccit
y

QA ccit
y+cname

QA bdate
QA bcity

QA univ
QA major

QA cname
QA ccit

y

baseline
bioS(10x) multi  + permute | llama(2x)
bioS(10x) multi  + permute | gpt2(2x)
bioS(10x) multi  + permute | mistral(2x)
bioS(20x) multi  + permute | llama(5.5x)
bioS(20x) multi  + permute | mistral(5.5x)
bioS(20x) multi  + permute | gpt2(5.5x)
bioS(50x) multi  + permute | llama(5.5x)
bioS(50x) multi  + permute | mistral(5.5x)
bioS(50x) multi  + permute | gpt2(5.5x)

3.6 0.5 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.5 0.3 1.0 0.4 13.7
83.7 85.0 93.5 91.9 89.8 90.1 94.5 93.7 94.6 97.2 86.7 98.2 92.4 98.4
63.9 32.9 96.4 97.4 90.3 90.9 98.3 97.4 97.9 97.3 86.1 98.6 95.3 98.6
90.3 76.3 95.1 92.3 91.0 90.9 92.3 97.7 96.8 96.7 91.1 99.8 90.8 97.9
99.7 94.7 91.0 94.0 91.8 91.8 93.3 95.1 98.1 96.2 89.5 97.5 93.1 96.5
99.7 95.3 93.9 95.7 91.3 88.2 96.3 97.7 98.7 98.4 89.6 98.4 93.3 97.1
91.0 38.4 94.9 96.2 91.5 93.4 97.5 94.7 97.5 96.4 87.7 98.4 93.4 96.9
92.9 71.2 84.2 85.6 85.7 88.3 90.7 87.3 87.4 93.3 87.6 95.5 88.2 93.5
97.6 77.0 92.1 93.6 87.9 88.3 94.7 94.4 97.3 96.4 88.7 96.7 91.1 96.0
25.4 14.6 88.7 91.4 82.3 86.5 93.9 91.9 90.6 96.9 88.2 94.0 92.1 95.2

larger data | larger model

(d) the same as Figure 3 but for larger GPT2/Llama/Mistral models on 10x to 50x larger bioS datasets

Figure 10: Partial (left) and dual (middle) knowledge retrieval, vs. single knowledge extraction (right).
For descriptions of the datasets (rows), see Appendix A; for architecture and training details, see
Appendix B.
Note: Unlike real-life QA tasks, our synthetic experiment is trained and fine-tuned on sufficiently
clean data for an adequate duration, making it generally unnecessary to increase the model size
further; similar results are typically expected.
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C MORE DETAILS ON KNOWLEDGE CLASSIFICATION AND COMPARISON

Recall from Section 4 that we take a model trained on sufficiently augmented BIO data bioS
multi5+permute; it is either simply BIO-pretrained, denoted as M , or already QA finetuned on six
knowledge extraction QA tasks, denoted as M ′.22 We further analyze their performances on knowl-
edge manipulation, particularly on classification or comparison tasks built on certain knowledge
attributes.

Consider knowledge comparison as an example. We examine two types of training. One involves
direct finetuning of M or M ′ using manipulation task QAs, such as

Was Anya Briar Forger born in a month in a year later than Sabrina Eugeo Zuberg? No.

This method is referred to as “train without hint”. Once more, we divide the N individuals into two
halves Ptrain and Ptest, apply LoRA fine tuning using QAs for pairs of individuals in Ptrain, and test
its out-of-distribution generation accuracy on QAs for pairs of individuals in Ptest. We use beam=4
without sampling for model generation (and the results are similar if disabling beam). These results
are displayed in the “test acc” column of Figure 4 and 11.

The other training type involves finetuning M or M ′ using manipulation task QAs with the addition
of hints, exemplified below:
Was Anya Briar Forger born in a month in a year later than Sabrina Eugeo Zuberg? October; September. No.

This method enables the model to extract relevant knowledge, then learn to manipulate this knowl-
edge directly. We call this “train with hint”, and we again perform LoRA fine tuning using QAs on
pairs of individuals in Ptrain. For each pair of individuals, hints are added with a 50% probability;
therefore, during LoRA fine tuning, the model sees knowledge manipulation QAs both with and
without hints. The model’s out-of-distribution generation accuracy is then tested on the QAs for
individuals in Ptest, again with or without hints. These results are displayed in the “test acc (with
hint)” and “test acc (w/o hint)” columns of Figure 4 and 11.

Additionally, we document the model’s accuracy at correctly generating hints for each individual.
This information is presented in the “hint acc” column of Figure 4 and 11.

Parameters. The BIO-pretrained model M and QA-finetuned model M ′ were obtained in the same
environment as (Allen-Zhu & Li, 2024a), following the same AdamW parameters as described in
Appendix B.

Throughout the experiment for both “train without / with hint”, we utilize a LoRA finetuning strategy
with the rank-16 update on the query/value matrices and rank-128 update on the embedding layer.
Additionally, we employ the AdamW optimizer with ε = 10−6. The weight decay is set at 0.01,
and the initial learning rate is 0.001. (For the larger Mistral experiment, see below, we use initial
learning rate 0.0003 for a better result.) We do not utilize warmup, but we do implement cosine
learning rate scheduling, reducing to 10% of the initial learning rate. The batch size is set at 48 with
a total of 50,000 training steps. We used a mixture of V100/A100 GPUs for the experiment but the
GPU type is irrelevant.

All the results. For the GPT2 (12-layer, 12-head, 768-dim) architecture we present our complete
results in Figure 11, and a selective set of them in Figure 4 in the main body. Note that not only
have we included more classification/ranking/subtraction tasks in Figure 11, but we have also added
ranking/subtraction tasks on the birth day attribute, such as “Was [name1] born on a day of the
month later than [name2]?” One may note that unlike birth month or major of study, the knowledge
of “birth day” can only be retrieved with a less perfect test accuracy of 82.3%. Therefore, one should
expect that even with hints added, the knowledge ranking/subtraction accuracy may still be far from
perfect. See the last two rows in Figure 4.

We repeat this same experiment for Llama (12-layer, 12-head, 768-dim) in Figure 12 and find the
results are almost identical.

We then shoot for a stronger result by using the Mistral (24-layer, 20-head, 1280-dim) in Figure 13
for bioS(50x) dataset (which has N = 5 million individuals and even maximum data augmentations,
see Remark A.1). Yet, the model is still incapable of learning to compare two majors (among 100

22This QA finetuning is also performed by leveraging LoRA finetuning with rank 8 on the query/value
matrices and rank 128 on the embedding layer.
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50.0 60.4 77.8 65.2 64.5 61.9 80.4 65.2 69.1
50.0 67.3 87.3 72.7 80.3 68.0 89.5 72.8 83.9
50.0 75.9 94.2 80.3 91.0 76.4 95.0 79.9 92.8
50.0 86.4 98.6 91.1 97.8 87.1 98.8 90.9 98.4
50.0 95.3 99.5 97.5 99.2 96.3 99.7 97.5 99.5
16.7 42.1 64.4 48.6 61.8 45.9 68.0 49.8 66.0
16.7 55.6 79.6 62.0 78.1 63.0 82.1 64.4 80.8
16.7 76.4 90.2 75.4 89.4 79.3 92.9 78.7 92.4
16.7 91.9 97.5 91.5 97.2 92.8 98.5 92.1 98.4
16.7 98.2 99.4 98.0 99.3 98.4 99.6 98.4 99.6
8.3 51.5 61.5 53.7 61.5 58.3 64.1 53.8 64.0
8.3 74.2 79.0 70.1 79.0 80.3 82.5 75.0 82.4
8.3 91.6 92.0 86.8 92.0 93.5 94.7 91.2 94.7
8.3 97.9 98.5 96.8 98.5 98.9 99.2 98.3 99.2
8.3 99.4 99.5 99.4 99.5 99.6 99.8 99.7 99.8

54.2 53.7 65.4 59.6 44.2 57.3 65.5 57.6 44.9
54.2 59.2 75.5 63.4 63.6 62.5 75.1 63.1 62.6
54.2 65.4 87.7 67.0 82.7 65.9 88.9 66.3 83.9
54.2 75.6 96.7 75.8 95.4 78.3 97.4 72.5 96.3
54.2 85.6 99.0 86.7 98.5 88.6 98.9 82.9 98.3
8.3 7.0 15.6 7.9 36.5 7.1 17.0 8.5 38.1
8.3 9.9 34.3 9.8 57.3 8.7 32.7 12.5 55.9
8.3 18.8 61.5 17.4 78.1 25.1 62.0 25.0 78.3
8.3 46.7 87.0 43.7 93.7 57.0 91.4 48.2 95.4
8.3 67.2 95.4 63.0 97.8 78.1 96.1 69.1 97.7

20.0 23.6 86.4 24.1 84.5 22.8 89.6 23.9 87.9
20.0 24.6 96.7 26.8 96.3 24.8 97.7 27.0 97.2
20.0 31.6 99.3 34.2 99.2 30.0 99.5 33.9 99.4
5.0 9.6 72.6 14.5 72.1 8.8 78.3 12.0 78.1
5.0 22.6 90.6 27.3 90.4 17.8 92.3 23.8 92.1
5.0 33.4 97.8 36.4 97.7 32.3 98.0 37.4 97.9
1.0 30.1 78.7 34.6 79.0 8.9 75.8 22.2 76.1
1.0 79.3 96.0 74.4 96.0 80.0 95.6 77.1 95.3
1.0 91.7 99.0 90.7 99.1 91.8 98.3 92.5 98.1

50.5 52.5 88.8 54.1 86.2 52.4 90.3 54.1 88.3
50.5 52.2 96.4 53.7 97.3 52.6 96.9 53.6 97.5
50.5 53.9 99.6 55.0 99.5 53.6 99.4 55.0 99.3
1.0 1.1 21.6 1.1 82.5 1.0 23.2 1.1 84.3
1.0 1.1 89.1 1.2 96.7 1.2 84.7 1.2 97.0
1.0 1.1 98.4 1.2 99.3 1.1 97.3 1.2 99.0

51.8 56.7 80.0 56.0 69.0 56.8 80.5 55.8 69.6
3.6 4.0 45.0 4.1 68.1 4.2 45.2 4.1 69.1

baseline

BIO pretrained model QA finetuned model
trained
w/o hint trained with hint trained

w/o hint trained with hint

test acc test acc
(with hint)

test acc
(w/o hint) hint acc test acc test acc

(with hint)
test acc

(w/o hint) hint acc

birthmonth classify %2 (2.5k)
birthmonth classify %2 (5k)
birthmonth classify %2 (10k)
birthmonth classify %2 (25k)
birthmonth classify %2 (50k)
birthmonth classify %6 (2.5k)
birthmonth classify %6 (5k)
birthmonth classify %6 (10k)
birthmonth classify %6 (25k)
birthmonth classify %6 (50k)
birthmonth classify %12 (2.5k)
birthmonth classify %12 (5k)
birthmonth classify %12 (10k)
birthmonth classify %12 (25k)
birthmonth classify %12 (50k)
birthmonth ranking (2.5k)
birthmonth ranking (5k)
birthmonth ranking (10k)
birthmonth ranking (25k)
birthmonth ranking (50k)
birthmonth subtraction (2.5k)
birthmonth subtraction (5k)
birthmonth subtraction (10k)
birthmonth subtraction (25k)
birthmonth subtraction (50k)

major classify %5 (10k)
major classify %5 (25k)
major classify %5 (50k)
major classify %20 (10k)
major classify %20 (25k)
major classify %20 (50k)
major classify %100 (10k)
major classify %100 (25k)
major classify %100 (50k)
major ranking (10k)
major ranking (25k)
major ranking (50k)
major subtraction (10k)
major subtraction (25k)
major subtraction (50k)

birthday ranking (50k)
birthday subtraction (50k)

field task #train
individuals

Figure 11: An extended version of the GPT2 experiment in Figure 4, to give more examples on knowledge
classification and comparison tasks.

50.0 65.8 81.7 69.7 69.0 63.6 81.3 66.4 70.0
50.0 77.5 89.5 81.6 81.1 78.7 89.9 80.7 83.7
50.0 86.3 93.8 86.9 89.0 86.1 92.2 87.8 89.4
50.0 91.6 96.9 92.7 94.7 92.4 95.7 93.0 94.4
50.0 95.0 98.2 95.1 96.9 95.7 99.0 96.3 98.1
16.7 60.6 68.9 60.5 64.7 56.6 73.8 64.1 71.6
16.7 75.2 82.1 76.1 80.3 74.3 82.7 78.3 81.5
16.7 85.1 89.4 83.4 88.4 85.5 90.8 85.7 90.4
16.7 92.3 94.1 90.7 92.8 92.2 92.4 91.5 92.1
16.7 95.0 95.6 94.6 95.0 95.8 98.0 96.4 97.9
8.3 63.8 63.1 59.9 62.9 58.7 69.7 66.1 70.2
8.3 80.6 80.7 78.2 80.5 78.9 79.0 82.7 79.6
8.3 89.2 88.7 86.0 88.7 89.6 80.8 89.3 86.2
8.3 94.6 94.6 93.1 94.6 94.9 93.9 94.7 94.5
8.3 96.8 97.1 96.3 97.1 97.5 98.0 97.8 98.0

54.2 52.5 65.3 57.7 45.4 52.0 65.8 55.9 46.7
54.2 57.4 69.8 58.9 54.8 59.0 71.6 58.7 58.4
54.2 56.8 78.8 64.9 68.3 68.1 76.9 62.2 68.1
54.2 61.4 90.9 75.3 86.3 75.1 90.6 76.3 87.4
54.2 64.3 95.0 73.8 92.9 82.9 93.5 83.7 91.0
8.3 7.3 13.3 7.7 32.6 7.9 14.3 7.3 33.8
8.3 8.0 18.4 8.0 40.6 8.8 22.1 8.0 44.8
8.3 14.6 36.1 17.8 59.1 14.0 37.8 16.6 60.7
8.3 29.7 52.1 32.5 70.3 31.7 60.5 13.7 76.3
8.3 43.7 69.0 43.4 79.6 46.0 74.6 45.3 79.9

20.0 24.2 64.1 23.8 56.3 23.0 69.1 25.4 62.6
20.0 26.9 78.0 30.4 73.2 26.4 77.6 29.7 72.9
20.0 30.6 84.1 35.8 80.9 31.1 88.7 34.6 86.7
5.0 9.3 57.3 9.7 56.8 9.9 61.2 16.1 60.1
5.0 16.7 69.3 24.2 68.2 17.4 70.0 25.7 68.7
5.0 28.2 79.0 33.1 78.3 29.9 84.2 33.2 83.5
1.0 22.3 62.0 18.9 62.4 18.5 62.1 29.7 62.2
1.0 52.7 81.7 56.3 81.9 54.9 77.9 59.1 77.9
1.0 70.5 89.2 68.9 89.3 70.5 90.7 70.5 90.8

50.5 52.5 71.5 53.5 54.0 53.6 79.3 53.4 68.0
50.5 54.1 88.4 53.6 84.3 54.7 89.5 54.5 85.3
50.5 54.6 93.0 55.4 90.9 55.6 93.5 55.7 90.8
1.0 0.9 12.7 1.0 62.6 0.9 14.8 1.0 64.0
1.0 0.9 46.0 1.0 82.1 1.0 52.0 1.0 82.2
1.0 1.0 74.3 1.0 89.0 0.9 75.6 1.1 89.8

51.8 64.0 77.0 63.8 56.1 64.5 77.3 66.3 56.0
3.6 4.0 26.8 3.9 54.9 4.0 23.0 4.4 54.9

baseline

BIO pretrained model QA finetuned model
trained
w/o hint trained with hint trained

w/o hint trained with hint

test acc test acc
(with hint)

test acc
(w/o hint) hint acc test acc test acc

(with hint)
test acc

(w/o hint) hint acc

birthmonth classify %2 (2.5k)
birthmonth classify %2 (5k)
birthmonth classify %2 (10k)
birthmonth classify %2 (25k)
birthmonth classify %2 (50k)
birthmonth classify %6 (2.5k)
birthmonth classify %6 (5k)
birthmonth classify %6 (10k)
birthmonth classify %6 (25k)
birthmonth classify %6 (50k)
birthmonth classify %12 (2.5k)
birthmonth classify %12 (5k)
birthmonth classify %12 (10k)
birthmonth classify %12 (25k)
birthmonth classify %12 (50k)
birthmonth ranking (2.5k)
birthmonth ranking (5k)
birthmonth ranking (10k)
birthmonth ranking (25k)
birthmonth ranking (50k)
birthmonth subtraction (2.5k)
birthmonth subtraction (5k)
birthmonth subtraction (10k)
birthmonth subtraction (25k)
birthmonth subtraction (50k)

major classify %5 (10k)
major classify %5 (25k)
major classify %5 (50k)
major classify %20 (10k)
major classify %20 (25k)
major classify %20 (50k)
major classify %100 (10k)
major classify %100 (25k)
major classify %100 (50k)
major ranking (10k)
major ranking (25k)
major ranking (50k)
major subtraction (10k)
major subtraction (25k)
major subtraction (50k)

birthday ranking (50k)
birthday subtraction (50k)

field task #train
individuals

Llama

Figure 12: A repeated experiment of Figure 11 but using Llama architecture of the same size.

possibilities) when fine-tuned with more than 2.5 million samples — see Figure 13.
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51.8 66.7 74.4 71.5 57.5 68.9 80.1 72.7 69.6
51.8 69.2 82.0 73.6 70.6 71.2 84.4 75.2 76.4
51.8 74.6 79.9 76.6 77.0 76.9 87.7 76.9 86.3
51.8 75.0 86.5 79.7 82.1 80.1 90.8 81.3 88.0
51.8 82.3 87.9 82.6 86.9 81.8 92.3 83.7 90.4
51.8 87.0 94.5 86.7 93.3 88.0 95.7 87.0 93.7
3.6 4.4 20.1 7.0 59.4 6.3 29.9 8.4 72.2
3.6 5.6 23.2 9.0 68.6 9.3 42.6 9.0 79.2
3.6 12.5 44.8 14.8 76.8 14.3 51.9 17.2 85.9
3.6 25.0 51.6 23.5 83.9 25.3 54.6 22.8 87.5
3.6 35.1 59.9 36.6 43.7 39.4 63.1 32.1 89.2
3.6 49.9 75.6 45.2 92.8 51.6 71.6 44.9 92.3

50.5 51.4 65.6 57.2 46.9 52.9 73.8 57.0 57.7
50.5 52.2 68.4 58.9 56.1 53.6 77.3 60.1 65.3
50.5 52.8 72.9 57.0 66.3 56.1 82.7 60.8 78.0
50.5 56.1 81.3 60.9 74.6 59.1 84.8 60.3 77.5
50.5 63.8 85.1 66.7 80.8 63.0 87.8 63.1 82.9
50.5 69.7 94.4 73.2 92.5 73.0 95.7 72.0 93.7
1.0 1.0 9.4 1.1 46.1 1.0 14.3 1.1 61.6
1.0 1.1 15.8 1.1 61.2 1.1 20.3 1.1 68.3
1.0 1.1 27.4 1.1 69.4 1.0 35.4 1.2 73.1
1.0 1.1 52.4 1.1 81.0 1.2 49.6 1.5 77.4
1.0 1.1 61.0 1.1 82.1 1.5 58.5 1.2 79.7
1.0 1.2 78.9 1.2 90.7 3.8 82.6 1.2 91.1

baseline

BIO pretrained model QA finetuned model
trained
w/o hint trained with hint trained

w/o hint trained with hint

test acc test acc
(with hint)

test acc
(w/o hint) hint acc test acc test acc

(with hint)
test acc

(w/o hint) hint acc

birthday ranking (50k)
birthday ranking (100k)
birthday ranking (250k)
birthday ranking (500k)
birthday ranking (1m)
birthday ranking (2.5m)
birthday subtraction (50k)
birthday subtraction (100k)
birthday subtraction (250k)
birthday subtraction (500k)
birthday subtraction (1m)
birthday subtraction (2.5m)

major ranking (50k)
major ranking (100k)
major ranking (250k)
major ranking (500k)
major ranking (1m)
major ranking (2.5m)
major subtraction (50k)
major subtraction (100k)
major subtraction (250k)
major subtraction (500k)
major subtraction (1m)
major subtraction (2.5m)

field task #train
individuals

bioS(50x) | Mistral(5.5x)

Figure 13: A larger experiment than Figure 11, using a 5.5x larger Mistral architecture and 50x training data.

Observation: The accuracy of knowledge comparison without CoT remains notably low unless
a very large fine-tune dataset is used. For example, the task of subtracting two majors (we have
100 majors, numbered from 0 to 99) cannot be performed better than random guessing even after
providing 2.5 million fine-tuning examples. Adding CoTs significantly reduces the required number
of samples.
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D MORE DETAILS ON KNOWLEDGE INVERSE SEARCH

In Section 5, we examine 10 knowledge inverse search tasks, asking for a person’s first or full
name given (part or all) of their attributes. We consider the bioS data family with all knowledge
augmentation choices as discussed in Appendix A.1.

Similar to knowledge retrieval outlined in Appendix B, given a BIO pretrained model checkpoint,
we apply LoRA finetuning on top of it. We do this by utilizing the QA texts of the 10 inverse knowl-
edge search tasks for half of the individuals and test its out-of-distribution generation accuracies for
answering those QAs on the remaining half. We use the same LoRA and optimization settings as
discussed in Appendix B, in particular, rank 8 or 16 for the query/value matrices and rank 128 for
the embedding layer, initial learning rate 0.0003, among other parameters. We again use beam=4
without sampling for model generation (and the results are similar if disabling beam).

Furthermore, since we are presenting a negative result, we also consider BIO+QA mixed training.
Specifically, we train the model using both the BIO data from all individuals and also the inverse
knowledge search QA data from half of them. For simplicity, each training sequence of 512 to-
kens comes either entirely from the BIO entries or entirely from the QA entries (from randomly
sampled individuals, concatenated using <EOS> tokens). We introduce a parameter QAr to control
the frequency of using QA entries. Both QAr = 0.5 and QAr = 0.8 are tested, and we present
the better result of the two. We evaluate the model’s generation accuracy using inverse knowledge
search questions from the other half of the individuals.23

Our results for the GPT2 (12-layer, 12-head, 768-dim) architecture are in Figure 6. We then repeat
this same experiment for Llama (12-layer, 12-head, 768-dim) architecture and Llama tokenizer in
Figure 14(a), and the same result holds. We further increased model size and dataset (in the same
way as Appendix B) and observed almost identical result in Figure 14(b).

23As shown in (Allen-Zhu & Li, 2024a), it is deduced that QAr = 0.8 (specifically, a 2 : 8 ratio between BIO
and QA entries in terms of the number of pre-trained tokens) is a good choice for mixed training. However, in
the context of inverse knowledge search, the average length of QAs tends to be longer than that of the original
knowledge extraction QAs. For this reason, we also explore the alternative option of QAr = 0.5 to account for
this discrepancy.
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(a) The same as Figure 6 but using Llama architecture of the same size.
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(b) Using GPT2/Llama/Mistral of larger sizes and larger data.

Figure 14: We repeat Figure 6 but with more/larger architectures and larger datasets.
For descriptions of the datasets (rows), see Appendix A; for architecture and training details, see
Appendix D.

Note: Unlike real-life QA tasks, our synthetic experiment is trained and fine-tuned on sufficiently
clean data for an adequate duration, making it generally unnecessary to increase the model size
further; similar results are typically expected.
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E MORE DETAILS ON CHATGPT EXPERIMENTS

All of our experiments on GPT-3.5 / GPT-4 were conducted between June and September of 2023
using the latest models gpt-3.5-turbo and gpt-4 at the moment.

E.1 INVERSE KNOWLEDGE SEARCH

In Figure 7 in Section 5, we argued that even massive language models such as GPT-3.5/GPT-4 also
perform poorly in inverse knowledge search. We consider four such tasks.

JANE AUSTEN NOVEL TASK. We select pairs of consecutive sentences in the six novels of Jane
Austen, and let GPT-3.5/4 generate the next/previous sentence given the other in the pair. Here,
generating the previous sentence can be considered inverse knowledge search, and generating the
next sentence can be considered forward knowledge search.

In more detail, we select only those pairs of consecutive sentences when both of them have between
50 and 300 characters (so that we skip short sentences like “What is his name?”). After this filtering,
we consider:

• 2873 sentence pairs in Pride and Prejudice, out of 5909 sentences;
• 2296 sentence pairs in Sense and Sensibility, out of 4897 sentences;
• 2730 sentence pairs in Persuasion, out of 3634 sentences;
• 1446 sentence pairs in Northanger Abbey, out of 3655 sentences;
• 3234 sentence pairs in Emma, out of 8477 sentences;
• 2730 sentence pairs in Mansfield Park, out of 6907 sentences.

We then ask GPT3.5/4, “In [bookname], what’s the sentence before/after: [sentence]?”

WIKIBIO TASK. We use the wikibio dataset Lebret et al. (2016), which contains biographies of
individuals extracted from Wikipedia. Our goal is to have GPT3.5/4 identify people’s names based
on their attribute values.

The wikibio dataset consists of 582,659 individuals. We first select only those individuals who have
fully specified birth dates, birth places, occupations, and death dates. This results in a total of 33,617
individuals. We then query GPT-3.5 once with the prompt “Answer short: what’s the birth day and
year of [name] who is a [occupation] and was born in [birthplace]?” and select 4,779 individuals
whose birth dates can be corrected answer. This ensures that we only consider individuals that
GPT-3.5 has has clearly encountered during its pretraining.

Finally, we test these 4,779 individuals using either GPT-3.5 or GPT-4 with the inverse search ques-
tion “what’s the full name of the celebrity born on [date] in [city] who is a [occupation]?” or the
forward search question “what’s the birthday and year of [name] who is a [occupation] and was born
in [city]?” We assign a score of 1 if the answer is fully correct, and a score of 0.5 if the answer is
only partially correct.24

CHINESE IDIOM TASK. We prepared a list of 2,244 four-character Chinese idioms that are com-
monly used in both oral and written texts. We mask one of the four characters in each idiom and
ask GPT3.5/4 to fill in the masked character. In this task, generating the first character given the
remaining three characters is considered an inverse knowledge search. Here are a few examples of
the idioms that we have used:

1.实事求是;2.引人注目;3.成千上万;4.当务之急;5.一如既往; ... 2243.秉公守法;2244.等闲置之

We chose to use Chinese because the idioms are of equal length in characters, making it easy to
calculate per-character accuracy. An average Chinese individual with a middle school education
should be able to achieve an accuracy of over 80% when answering the first character given the
other three.

CHINESE POEM TASK. We prepared a list of 233 Chinese poem sentence pairs that are commonly
used in written Chinese. We mask either the first or second sentence and ask GPT-3.5/GPT-4 to

24If only the first or last name is correct, we assign a score of 0.5. If only the birth year is correct, or if both
the birth month and day are correct but the year is wrong, we also assign a score of 0.5.
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complete the other. We provide a few examples of the poem sentence pairs below:

1.两岸猿声啼不住，轻舟已过万重山 2.感时花溅泪，恨别鸟惊心 ...

... 232.千山鸟飞绝，万径人踪灭 233.东边日出西边雨，道是无晴却有晴

OTHER TASKS. Though we have only presented four tasks related to inverse knowledge search,
we have also experimented with a few other tasks not included in the paper. We mention these tasks
below for the benefit of interested readers.

• We have tested a wider set of Chinese poems (less frequently used) and Shakespeare’s 154 son-
nets (which consist of 14 lines of poems each). However, we found that ChatGPT is not very
capable at performing even forward search on such tasks. Therefore, it seemed less compelling
to test ChatGPT’s performance on the corresponding inverse search tasks.

• We have also tested ChatGPT on the Bible, asking it to identify the verse preceding each verse in
the same chapter. We found that ChatGPT is capable of performing this task, often with a Chain
of Thought (CoT).
Specifically, remember that the verses in the Bible are properly numbered (for instance, “Gen
15:18” refers to Genesis, chapter 15, verse 18), and the numbers may appear sometimes before
and sometimes after the verse. This allows ChatGPT to determine the chapter/verse numbering
for a given verse (forward knowledge), perform a “subtract by 1” operation (chain of thought),
and then identify the verse using this new number (forward knowledge).
In other words, we believe the task of asking for the verse preceding each verse in the Bible is
actually accomplished by ChatGPT through forward knowledge search + CoT. It is not truly an
inverse knowledge search task.

E.2 KNOWLEDGE CLASSIFICATION AND COMPARISON

For knowledge classification and comparison, we once again utilize the pool of 4779 individuals
selected from the WikiBio dataset (refer to Section E.1). We then perform the following tasks on
GPT-4:

• “Answer me yes or no concisely: for [name] who was a [occupation] and was born in [city] in
[year], was this person born in an even month?”
We pose this question for every individual in the pool of 4779 people. The baseline accuracy for
random guessing in this task is 50%.

• “Answer me yes or no concisely: was [name1] who was a [occupation1] and was born in [city1]
born earlier than [name2] who was a [occupation2] and was born in [city2]?”
We pose this question for 1000 randomly selected pairs of individuals from the pool of 4779
individuals who were either (1) born between 1900-1910, (2) born between 1900-1950, or (3)
born in any year. The baseline accuracies for random guessing in these three tasks are: 54.5%,
51.0%, and 50% respectively.

Note that in all cases, we prefixed the questions with “answer me yes or no concisely” to compel
the model to directly answer with Yes or No without generating a hint first. We present the results
in Figure 5.

In addition to the above experiment on WikiBio, we also present some real-life QA examples to
illustrate the necessity of the Chain of Thought (CoT). We ask GPT-4 to tell us whether the birth
months/days/years of certain politicians are even, as well as to compare the birth dates of some
politicians. From the response in Figure 15, it is evident that GPT-4 can easily make mistakes when
not using hints (i.e., when answering yes/no without stating the politician’s birthdate first), but is
capable of correcting such errors once CoT is employed.
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GPT4 birth month/day/year even-odd tests

GPT4 birth date comparison

Figure 15: Extension to Figure 2. This figure provides additional examples illustrating GPT-4’s difficulty in
answering simple manipulation questions based on a person’s attributes during inference, despite
possessing the necessary knowledge. However, when a Chain of Thoughts (CoT) approach is em-
ployed, in which the person’s attributes are explicitly stated, GPT-4 is able to correctly answer the
manipulation tasks.
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