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ABSTRACT

We introduce Transformer-VQ, a decoder-only transformer computing softmax-
based dense self-attention in linear time. Transformer-VQ’s efficient attention
is enabled by vector-quantized keys and a novel caching mechanism. In our
large-scale experiments, Transformer-VQ is shown highly competitive in quality,
obtaining 0.99 bpb on Enwik8, 26.6 ppl on PG-19, and 3.16 bpb on ImageNet64.
In addition, the optimized implementation of Transformer-VQ is over 3x faster
than a comparable quadratic-time transformer at sequence length 8k, is over 12x
faster at 32k, and can scale to 131k with similar throughput. Code available:
https://github.com/transformer-vq/transformer_vq
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Figure 1: Schematic of the VQ-Attention approximation. The colorful and blank boxes depict the
keys and attention weights, respectively. The keys on the right have been vector-quantized. Since the
green keys k2, k5 map to the same code, they have the same attention weights in this attention head.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) language models would ideally scale to long sequences, since
their predictive abilities often improve as context length increases (Dai et al., 2019; Kaplan et al.,
2020). Unfortunately, the standard transformer uses a self-attention mechanism with a quadratic time
complexity with respect to sequence length. This limits the practicality of applying transformers to
very long sequences, since increasing the sequence length by a factor of 10n increases the attention
computations by a factor of 100n. Transformer variants that overcome this efficiency bottleneck have
the potential to facilitate new long-context applications and enable new breakthroughs.

Up to this point, a variety of efficient transformers (Tay et al., 2020b) have been proposed to scale
to long sequences. Techniques include sparsity (Child et al., 2019; Ye et al., 2019; Beltagy et al.,
2020; Kitaev et al., 2020; Qiu et al., 2020; Roy et al., 2021; Tay et al., 2020a; Sukhbaatar et al.,
2021; Wu et al., 2022; Liu et al., 2023; Zhang et al., 2023), compression (Liu et al., 2018; Rae et al.,
2020; Ainslie et al., 2020; Zhu et al., 2021; Ren et al., 2021; Nawrot et al., 2021; 2023), low-rank
approximations (Wang et al., 2020; Vyas et al., 2020; Katharopoulos et al., 2020; Xiong et al., 2021;
Tay et al., 2021; Choromanski et al., 2021), and cross-attention operations (Dai et al., 2019; Ma et al.,
2021; Hutchins et al., 2022; Hawthorne et al., 2022). Other efficient sequence models have also been
proposed (Gu et al., 2022; Lee-Thorp et al., 2022; Mehta et al., 2022; Smith et al., 2022; Hasani et al.,
2022; Poli et al., 2023; Peng et al., 2023).

In this paper, we present Transformer-VQ, a transformer decoder with dense self-attention computible
in linear time with respect to sequence length. This is made possible through a combination of vector-
quantized keys, localized positional biases, and compressive cache that can be attended to efficiently,
while yielding the same results as an uncompressed variable-length cache. Transformer-VQ is also
simple to implement sampling for.
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2 PRELIMINARIES

2.1 NOTATION

The real numbers are denoted by R and the extended real numbers R ∪ {−∞,∞} by R̄. Zero-based
indices are used for all tensors. When indexing a matrix M along the first axis, we use Mi to denote
a column vector and Mi,: to denote a row vector. The functions LN(·), Softmax(·), Concat(·) denote
LayerNorm (Ba et al., 2016), softmax, and concatenation, each applied row-wise. The symbols
,,∝,�, exp(·), δa,b,SG(·) denote equality by definition, proportionality, element-wise product,
element-wise exponentiation, Kronecker delta function, and the stop-gradient operator. We slightly
abuse notation to write inner products of vectors u,v as u>v, and outer products as uv>.

We assume familiarity with transformers (Vaswani et al., 2017), and use the notation Dm to denote
the model width, Dk to denote the query/key vector width, and Dv to denote the value vector width.

2.2 VECTOR QUANTIZATION

Vector quantization (VQ) is a technique used extensively throughout this work. In this subsection we
briefly review vector quantization, motivate its use in self-attention, and discuss the backpropagation-
compatible VQ scheme introduced by van den Oord et al. (2017).

2.3 VECTOR QUANTIZERS AND CODEBOOKS

Definition 2.1. A vector quantizer is a function VQ(·; C) with domain RD and codomain RD. For
an input x, its output x̂ is given by

z , arg min
s
||x−Cs||2 (1)

x̂ , Cz (2)

where C ∈ RS×D is known as the codebook. The row indices {0, . . . , S − 1} of C are called
shortcodes, and the rows themselves are called codewords.
Theorem 2.2 (Based on Guo et al. (2019)). Let q ∈ RD be a random variable with Eq[qq>] = σ2ID
for some σ > 0, and let k ∈ RD be a random variable independent of q. Let ϕ : RD → RD be a
deterministic function. Then

Eq,k||q>k− q>ϕ(k)||2 ∝ Ek||k− ϕ(k)||2. (3)

Corollary 2.3. Let the conditions of Theorem 2.2 hold. Given the constraint that ϕ(RD) = {Cs}S−1s=0 ,
the choice ϕ(·) = VQ(·; C) minimizes Eq,k||q>k− q>ϕ(k)||2.

Corollary 2.4. Let the conditions of Theorem 2.2 hold. With k̂ = VQ(k; C) we have

arg min
C

Eq,k||q>k− q>k̂||2 = arg min
C

Ek||k− k̂||2. (4)

Remark 2.5. Fnding the global minimizer C∗ = arg minC Ek||k− k̂||2 is expensive, so in practice
we approximate it using the method from van den Oord et al. (2017); Razavi et al. (2019).

2.4 VECTOR-QUANTIZED REPRESENTATION LEARNING

Definition 2.6 (Based on van den Oord et al. (2017)). A vector-quantizer with straight-through
estimator is a function STVQ(·; C) with domain RD and codomain RD. For an input x, its output x̂
is given by

z , arg min
s
||x−Cs||2 (5)

x̂ , x + SG(Cz − x). (6)

Remark 2.7. For any x ∈ RD, STVQ(x; C) evaluates to VQ(x; C). However, for purposes of
backpropagation, the Jacobian of the quantizer w.r.t. its input will now be an identity matrix
everywhere, instead of a zero matrix almost everywhere. Intuitively, when using STVQ, gradients
w.r.t. the quantizer outputs are copied ‘straight through’ to the inputs.
Remark 2.8. We overload the notation STVQ(·; C) to operate row-wise on matrix-valued inputs.
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3 TRANSFORMER-VQ

We now propose Transformer-VQ, a decoder-only transformer that can compute dense self-attention
in linear time. Proofs for all theoretical results are given in Appendix A.

3.1 QUADRATIC-TIME FORMULATION

Definition 3.1. Vector-Quantized Self-Attention is a function VQAttn(·; C,W{Q,K,V,G,O}) with
domain RT×Dm and codomain RT×Dm . For an input X, its output Y is defined via

X̃ , LN(X) ∈ RT×Dm (7)

Q , τ−0.5LN(X̃WQ) ∈ RT×Dk (8)

K , τ−0.5LN(X̃WK) ∈ RT×Dk (9)

V , φv(X̃WV ) ∈ RT×Dv (10)

G , φg(X̃WG) ∈ RT×Dv (11)

K̂ , STVQ(K; C) ∈ RT×Dk (12)

W , φw(QK̂> + B) ∈ RT×T (13)

O , (WV)�G ∈ RT×Dv (14)

Y , X + OWO ∈ RT×Dm (15)

where each W• denotes a trainable projection, B denotes positional biases and/or mask, τ is a fixed
constant, and the φv, φg, φw are element-wise or row-wise nonlinearities. The query/key LayerNorms
use unit gain and zero bias, and STVQ(·; C) denotes row-wise application of vector-quantization
with a straight-through gradient estimator (van den Oord et al., 2017).
Remark 3.2. Our attention mechanism is applied to a gated attention unit (GAU) design inspired by
Hua et al. (2022). GAU is a single-headed gated attention mechanism and generally uses a small key
width Dk = 128, and a large value width Dv = 2Dm, with two GAUs replacing a single transformer
layer. This yields a similar parameter count and compute requirement as the usual transformer layer.
Remark 3.3. Prior work has also applied LayerNorm or similar to the queries and keys in attention
(Henry et al., 2020; Roy et al., 2021; Zhu et al., 2021; Wu et al., 2022; Hutchins et al., 2022; Dehghani
et al., 2023; Elsen et al., 2023), generally finding it to improve numerical stability and convergence.

3.2 WARMUP: LINEAR-TIME ENCODER ATTENTION

To simplify the theorems for decoder-only attention and build intuition, we first discuss a setting
where there is no causal mask.
Theorem 3.4. Suppose Bi,j = 0 for all i, j, and φw is an element-wise nonlinearity. Then the
attention weights in Definition 3.1 can be factored:

W , φw(QK̂> + B) (16)

= φw(QK̂>) (17)

= φw(QC>)∆ (18)

where φw(QC>) ∈ RT×S , ∆ ∈ RS×T and ∆s,t , δs,zt . Here, δ·,· denotes the Kronecker delta
function and zt is the VQ shortcode for timestep t.

Theorem 3.5. Suppose Bi,j = 0 for all i, j, and φw is the row-wise softmax nonlinearity. Then the
attention weights in Definition 3.1 can be factored:

W , φw(QK̂> + B) (19)

= φw(QK̂>) (20)

= Diag(exp(QC>)∆1)−1 exp(QC>)∆ (21)

where 1 ∈ RT , Diag(exp(QC>)∆1)−1 exp(QC>) ∈ RT×S , ∆ ∈ RS×T and ∆s,t , δs,zt . Here,
δ·,· denotes the Kronecker delta function and zt is the VQ shortcode for timestep t.
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φw(QK̂>) ∈ RT×T

×

V ∈ RT×Dv

=

φw(QC>) ∈ RT×S

×

∆V ∈ RS×Dv

Figure 2: Schematic of the VQ-Attention factorization with element-wise φw. The column set of
W = φw(QK̂>) ∈ RT×T has size ≤ S due to VQ, so the attention output O = WV can be
obtained by computing the unique attention scores φw(QC>) and using them to further aggregate to
the grouped-sum ∆V. Transformer-VQ uses a softmax-based extension of this idea for its cache.

3.3 LINEAR-TIME DECODER ATTENTION

Theorem 3.6. Let L be a divisor of T . Suppose Bi,j = −∞ for j > i (causal masking), and
Bi,j = 0 for j < i − L (no bias outside a sliding window). Define ∆ ∈ RS×T with ∆s,t , δs,zt .
Let φw be an element-wise nonlinearity with φw(−∞) = 0. For a tensor M, let M(...,n,...) denote
the slice M...,nL:(n+1)L,..., where unsliced dimensions will be denoted by ‘:’. Then the product WV
in Definition 3.1 can be computed using the following block-level recurrence:

U(n) ,

{
U(n− 1) + ∆(:,n)V(n,:) if n ≥ 0

0 otherwise
(22)

(WV)(n,:) = φw(Q(n,:)C
>)U(n− 2) (23)

+ φw(Q(n,:)K̂>(n−1,:) + B(n,n−1))V(n−1,:) (24)

+ φw(Q(n,:)K̂>(n,:) + B(n,n))V(n,:) (25)

where any tensor slice M(...,n,...) is defined as a zero tensor of width L in the sliced dimension if any
block slice index n is less than zero (zero-padding).

Theorem 3.7. Let the assumptions of Theorem 3.6 hold, but suppose φw is now the row-wise softmax
nonlinearity. Let 1 ∈ RT . Let A , exp(QK̂> + B). Then the product WV in Definition 3.1 can
be computed using the following block-level recurrence:

U(n) ,

{
U(n− 1) + ∆(:,n)V(n,:) if n ≥ 0

0 otherwise
(26)

L(n) ,

{
L(n− 1) + ∆(:,n)1(n) if n ≥ 0

0 otherwise
(27)

(AV)(n,:) = exp(Q(n,:)C
>)U(n− 2) (28)

+ exp(Q(n,:)K̂
>
(n−1,:) + B(n,n−1))V(n−1,:) (29)

+ exp(Q(n,:)K̂
>
(n,:) + B(n,n))V(n,:) (30)

(A1)(n) = exp(Q(n,:)C
>)L(n− 2) (31)

+ exp(Q(n,:)K̂
>
(n−1,:) + B(n,n−1))1(n−1) (32)

+ exp(Q(n,:)K̂
>
(n,:) + B(n,n))1(n) (33)

(WV)(n,:) = Diag((A1)(n))
−1(AV)(n,:). (34)

Remark 3.8. Theorem 3.7 provides an algorithm to compute VQ-Attention from the queries, keys,
values, gates, and codebook in O(L(S + 2L)(Dk + Dv)) time per query block, and therefore
O(T (S + 2L)(Dk +Dv)) time per sequence.
Remark 3.9. For numerical stability, we use an equivalent implementation of Theorem 3.7 that stores
the running mean of the value vectors assigned to a given shortcode, instead of the sum as done by
U(n− 2). The result is made equivalent by moving the logarithm of the counts L(n− 2) inside the
exponentials exp(Q(n,:)C

>) appearing in (AV)(n,:) and (A1)(n). See pseudocode in Appendix E.
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Remark 3.10. The general strategy of computing un-normalized softmax and its denominator is
also used by many prior methods, including Memory-Efficient Attention (Rabe & Staats, 2021),
FlashAttention (Dao et al., 2022), and RWKV (Peng et al., 2023); however, the first two techniques
do not run in linear time, and the last one couples a recurrent state size to the model width, which is
contrary to the principle of transformers.

3.4 LEARNING ALGORITHM

3.4.1 TRAINING LOSS

Let θ denote the set of non-codebook parameters of a transformer with N VQ-Attention layers,
and let C = {C(`)}N−1`=0 denote the set of the layers’ codebooks. For autoregressive modeling of a
sequence X = {xt}Tt=0, we define the Transformer-VQ training loss as

L(X;θ, C) = LCE(X;θ, C) + βLVQ(X;θ, C) (35)
where β > 0 is a hyperparameter known as the commit loss coefficient, and

LCE(X;θ, C) , 1

T

T−1∑
t=0

− ln p(xt+1|x≤t,θ, C) (36)

LVQ(X;θ, C) , 1

T

T−1∑
t=0

N−1∑
`=0

||K(`)
t − SG(C(`)

zt )||22. (37)

Thus, the training loss is the average next-token cross-entropy loss, plus the average token’s com-
mitment losses (van den Oord et al., 2017), summed over layer codebooks. The non-codebook
parameters θ receive a gradient from both loss terms. Following van den Oord et al. (2017); Razavi
et al. (2019), codebooks are parameterized using EMA-smoothed k-means.

3.4.2 TRAINING UPDATES

Instead of updating on the full sequence loss given above, we generally update every W/L query
blocks, where W � T , which resembles a strategy used in prior works (Dai et al., 2019; Wu et al.,
2022; Hutchins et al., 2022).

Each update is obtained by backpropagating through a window of W timesteps, with gradients
computed on the corresponding terms in the per-token average losses above. Codebooks are also
updated every W/L query blocks.

When W/L = 1, using Theorem 3.7 is an efficient equivalent to a variable-length key-value cache.
When W/L > 1, a learning signal is sent through any value vectors added to the compressed cache
within the backpropagation window.

4 RELATED WORK

4.1 HIERARCHICAL ATTENTION

Combiner (Ren et al., 2021) proposes an approximation of softmax using a simple graphical model,
and parameterizes its internal probabilities using max-pooling over query/key features, enabling
decoder-only self-attention in subquadratic time. H-Transformer-1D (Zhu & Soricut, 2021) uses
average-pooling operations over queries/keys to reduce the complexity of encoder-only self-attention.
Transformer-LS (Zhu et al., 2021) uses dynamic projections to downsample long-range features in
transformers by a user-specified factor. Hourglass Transformer (Nawrot et al., 2021) and MegaByte
(Yu et al., 2023) eschew pooling in favor of convolutions or reshaping for temporal downsampling,
and apply these techniques to reduce computation in the interior layers of decoder-only transformers.

Transformer-VQ differs from these works in that it uses vector quantization (VQ), a well-understood
method for compression, instead of newly-designed heuristic methods. In addition, it does not rely
on token contiguity to guide the compression process. Instead, it utilizes an equivalence to dense
attention. Notably, Transformer-VQ is easier to sample from compared to previous hierarchical
attention models; since the cache update logic can be equivalently applied every token instead of
every L tokens, there are no sporadic ‘feature consolidation’ operations required during sampling.
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4.2 KERNELIZABLE ATTENTION

Kernelizable attention (Katharopoulos et al., 2020; Choromanski et al., 2021; Peng et al., 2021;
Qin et al., 2022b) computes query and key features and applies the same nonlinearity to both of
them separately, omitting additional nonlinearities when computing attention weights. By using the
associativity of matrix multiplication, kernelized attention reduces attention to linear complexity.
Transformer-VQ is distinguished from kernelizable attention through an asymmetric treatment of
queries and keys, a deterministic equivalence to softmax-based attention, training stability, and strong
quantitative results on long-context autoregressive modeling benchmarks.

Clustering attention (Vyas et al., 2020) uses vector-quantized queries and is also kernelizable.
However, it requires learning per-layer codebooks for each sequence and uses a modified form
of Lloyd’s iterations based on Hamming distance and locality-sensitive hashing. This yields a
complex non-causal algorithm which is only suitable for non-causal attention and is slow on TPUs.
Transformer-VQ is strongly differentiated from clustering attention by its simplicity, applicability to
decoder-only tasks, efficiency on TPUs, and large-scale experimental validation.

4.3 COMPRESSIVE ATTENTION

Compressive Transformers (Rae et al., 2020) directly learn a compression function for long-range
features. LUNA (Ma et al., 2021) and Recurrent Transformers (Bulatov et al., 2022; Hutchins
et al., 2022) use cross-attention to compress long-range features into a recurrent state. Notably,
our model implements a kind of block-recurrent mechanism for its cache, but is significantly more
parameter-efficient than the mechanisms proposed by Ma et al. (2021); Hutchins et al. (2022).
More generally, Transformer-VQ differs from compressive/recurrent transformers in that it has an
equivalence to quadratic-time attention over vector-quantized keys. In other words, if the keys are
already vector-quantized, the Transformer-VQ cache losslessly reduces the cost to linear time.

Perceivers (Jaegle et al., 2021; Hawthorne et al., 2022) use cross-attention to attend to long sequences,
and compute self-attention over only a narrow stack of ‘latents’. Transformer-VQ differs from
Perceivers in that it computes dense self-attention in linear time, instead of just cross-attention. Thus,
while Perceivers’ long-range layers incur a quadratic time complexity during sampling, Transformer-
VQ generates sequences in linear time.

4.4 GATED SEQUENCE MODELS

Gated attention was introduced in FLASH (Hua et al., 2022) as a fusion of attention sublayers
(Vaswani et al., 2017) and GLU-based MLP sublayers (Shazeer, 2020). Various gating mechanisms
have previously been used to stabilize training of transformers (Parisotto et al., 2019) and other
sequence models including S4 (Gu et al., 2022), GSS (Mehta et al., 2022), MEGA (Ma et al., 2023)
and RWKV (Peng et al., 2023). Transformer-VQ uses the original gating formulation from Hua et al.
(2022), and develops a new attention mechanism.

4.5 VQ, K-MEANS, AND BEYOND

Ideas relating to k-means, vector quantization, and/or codebooks have also been applied in transform-
ers for sparse attention (Roy et al., 2021; Wang et al., 2021; 2022), feature learning (Mao et al., 2022;
Roy et al., 2022), sparsely-activated MLPs (Lample et al., 2019), and expert selection (Roller et al.,
2021). These works generally feature codebooks or similar within a transformer architecture. Several
works also have proposed models that feature a codebook somewhere outside a transformer, e.g.,
when transformers are priors for VQ-VAEs (Kaiser et al., 2018; Dhariwal et al., 2020; Ramesh et al.,
2021; Lee et al., 2022; Zhou et al., 2022). Transformer-VQ uses one codebook within each layer and,
in contrast to all of the aforementioned works, computes dense self-attention in linear time.

Transformer-VQ is not directly related to methods which quantize the weights of a transformer e.g.,
Dettmers et al. (2022); Dettmers & Zettlemoyer (2023); Frantar et al. (2023). Such methods are
typically applied after training to reduce the memory overhead of the model weights, while still
computing in higher precision. As such, they do not affect the bitwidth of the queries, keys, or
values, nor the complexity of self-attention. However, if applying our method to large models, these
approaches may be complementary during inference.
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5 EXPERIMENTS

Transformer-VQ is implemented in Jax (Bradbury et al., 2018) and Flax (Heek et al., 2023). For
training, we use TPU v3 pod slices (Jouppi et al., 2017). Hyperparameters follow Appendix C unless
specifically mentioned. Generated samples for all models are provided in Appendix D.

5.1 PRELIMINARY STUDIES

5.1.1 CODEBOOK SIZE ABLATIONS

Larger codebook sizes may allow more flexible attention patterns and could improve the fidelity of
the gradients, both of which are likely to benefit model quality at the expense of additional wall time.
To investigate, we ablate the codebook size S using the Enwik8 dataset (described in § 5.2.1), and
report the lowest validation bits-per-byte (BPB, lower is better) obtained by each model in Table 1.

Table 1: Codebook size ablations.

Setting Val. BPB Latency (Rel.)

S = 256 1.010 0.927
S = 512 1.005 1.0
S = 1024 1.000 1.109

Table 2: Compressive cache ablation.

Compressive cache Val. BPB Latency (Rel.)

No 1.026 0.836
Yes 1.010 0.927

Table 1 confirms the intuition that larger codebooks improve the prediction quality (lower BPB)
in return for additional wall time per training step. In particular, for this dataset and model size,
increasing the codebook size by a factor of two appears to decrease the validation BPB by about a
factor of 0.995. This result may suggest that the validation loss follows a power-law scaling (Kaplan
et al., 2020) w.r.t. codebook size, though more experiments are needed to verify this phenomenon,
and it is subject to the caveat that the validation loss must eventually level off (Henighan et al., 2020;
Hoffmann et al., 2022), as the model cannot be expected to obtain zero loss at infinite codebook size.

5.1.2 COMPRESSIVE CACHE ABLATION

Since our model has several architectural differences from most prior works, the benefit of the
compressive cache must be shown directly. To investigate, we train a model with the compressive
cache omitted, using codebook size S = 256. We report the validation BPB for Enwik8 in Table 2.

As shown in Table 2, removing the compressive cache reduces the wall time per step by a factor of
about 1.1 at the evaluated model size, but leads to a significant drop in quality (higher bits-per-byte).
This confirms the importance of our compressive cache mechanism.

5.1.3 LATENCY AND THROUGHPUT

We now measure the training latency (seconds per step) and compute the training throughput (tokens
per second). The latter is computed as tokens per batch divided by latency, and allows a direct
efficiency comparison across different sequence lengths. We benchmark on a TPU v3 with 8 cores,
using a global batch size of 8 sequences. For these experiments, we scale the sequence length T by
multiples of 4×, and backpropagate through the entire sequence length.

We compare an unquantized quadratic-time full attention baseline (‘Full’) to our proposed linear-time
VQ-Attention (‘VQ’) using Theorem 3.7. Since this theorem does not require access to the output
gates, VQ-Attention can be extended to multi-head attention variants as well. For each attention
type, we therefore benchmark three head types: multi-head attention (‘MHA’; Vaswani et al. (2017)),
multi-query attention (‘MQA’; Shazeer (2019)), and single-head gated attention (‘SHGA’ aka GAU;
Hua et al. (2022)). For VQ-attention, we use codebook size S = 512 and block length L = 512,
which is the same as our later experiments. All models use roughly 190M parameters total.

As shown in Table 6, our model has a 3x lower latency/3x higher throughput than the quadratic
attention baseline at T = 8192 when using SHGA for both. Moreover, Transformer-VQ is over 6x
faster than the quadratic-time baselines when using MQA/MHA for both models. As the sequence
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length increases to T = 32768, Transformer-VQ is over 12x faster than the quadratic time baseline
when both use SHGA. For MQA/MHA, the quadratic-time attention gives an out-of-memory error at
T = 32768, while Transformer-VQ maintains comparable or better throughput than with 4x shorter
sequences. Table 7 even shows that Transformer-VQ can scale to sequences of length T = 131072
without a substantial decrease in throughput and without running out of memory.

5.2 QUANTITATIVE RESULTS

To assess the ability of Transformer-VQ to learn long-range dependencies, we now conduct a series
of large-scale experiments, benchmarking on several long-range autoregressive modeling tasks. For
fair comparison, we only benchmark against models (a) trained without using any extra data or
augmentation, and (b) evaluated with fixed parameters. In all cases, we use codebook size S = 512.

5.2.1 ENWIK8

Table 3: Test bits-per-byte on Enwik8.

Model BPB

Dai et al. (2019) - XL 0.99
Child et al. (2019) - Sparse 0.99
Beltagy et al. (2020) - Longform. 0.99
Roy et al. (2021) - Routing 0.99
Sukhbaatar et al. (2019) - Adapt. 0.98
Nawrot et al. (2021) - Hourglass 0.98
Rae et al. (2020) - Compress. 0.97
Zhu et al. (2021) - Long-Short 0.97
Fan et al. (2020b) - Feedback 0.96
Lei (2021) - SRU++ 0.95
Sukhbaatar et al. (2021) - Expire. 0.95
Lutati et al. (2023) - Focus Attn. 0.94

Transformer-VQ 0.99

Enwik8 is a byte-level language modeling dataset con-
sisting of 100 million bytes of unprocessed English-
language Wikipedia articles (Mahoney, 2011), with
long-term dependencies that may span tens of thou-
sands of bytes. Per convention, it is split into train,
validation, and test sets of 90 million, 5 million, and
5 million bytes, respectively (Child et al., 2019; Rae
et al., 2020).

For this dataset, we trained a Transformer-VQ with
190M parameters, smaller than the model by Dai et al.
(2019). We report test bits-per-byte (BPB) in Table 3.

Transformer-VQ obtains a BPB of 0.99, notably match-
ing the result of the large Transformer-XL model from
Dai et al. (2019), while using 33% fewer parameters
and a 75% shorter cache that covers a longer context.

For this dataset, we found overfitting was a significant issue, and due to the compressive cache
mechanism, using i.i.d. attention dropout was not possible. Sweeping over the residual dropout rate,
weight decay coefficient, and layerdrop (Fan et al., 2020a) rate, we found a setting yielding good
generalization. Nonetheless Transformer-VQ does fall short of state-of-the-art here, with several
works using complex recurrence or forgetting mechanisms and obtaining better Enwik8 results.

5.2.2 PG-19

PG-19 is an open-vocabulary language modeling dataset consisting of 11 gigabytes of text from
over 28,000 freely-available Project Gutenberg books published prior to 1919 (Rae et al., 2020).
The average number of words per book is nearly 70,000, enabling learning long-term dependencies,
especially in novels (Sun et al., 2021; Hutchins et al., 2022).

For this dataset, we trained a Transformer-VQ with 1.3B parameters, similar to the largest model by
Hutchins et al. (2022). Since PG-19 is an open-vocabulary dataset, we first learned a SentencePiece
vocabulary (Kudo & Richardson, 2018) of size 32,000 using the BPE method. Following the
calculations of Rae et al. (2020), we report the test set word-level perplexity (WLP) in Table 4.

Transformer-VQ obtains a WLP of 26.6, very close to the state-of-the-art by Block-Recurrent
Transformers (Hutchins et al., 2022). Interestingly, since our Transformer-VQ design is equivalent to
using dense self-attention with vector-quantized keys, our strong result shows that models using self-
attention only (no recurrence) can also be highly competitive on PG-19. This affirms the efficacy of
standalone self-attention as a method for sequence processing at scale. Furthermore, compared to the
Block-Recurrent Transformer, our model can be implemented via intra-block sums and cross-block
reductions, a strategy also used by FLASH (Hua et al., 2022) and shown to be faster in Appendix B.
Lastly, we avoid the instabilities of FLASH (Qin et al., 2022a; Ma et al., 2023) thanks to softmax
normalization and our cache normalization (§ 3.9).
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Table 4: Test word-level perplexity on PG-19.

Model WLP

Yu et al. (2023) - MegaByte 36.4
Rae et al. (2020) - XL 36.3
Rae et al. (2020) - Compressive 33.6
Roy et al. (2021) - Routing 33.2
Hawthorne et al. (2022) - Perceiver AR 28.9
Hutchins et al. (2022) - Block-Recur. 26.5

Transformer-VQ 26.6

Table 5: Validation bits-per-byte on ImageNet64.

Model BPB

Kingma et al. (2021) - VDM 3.40
Hawthorne et al. (2022) - Perceiver AR 3.40
Yu et al. (2023) - MegaByte 3.40
Grcic et al. (2021) - DenseFlow 3.35
Lipman et al. (2023) - Flow Matching 3.31
Hazami et al. (2022) - Efficient VDVAE 3.30

Transformer-VQ (190M) 3.22
Transformer-VQ (1.2B) 3.16

5.2.3 IMAGENET64

ImageNet64 is an image dataset consisting of over 1.2 million images downsampled to 64x64
resolution (Chrabaszcz et al., 2017; Deng et al., 2009). Flattening the images yields an autoregressive
density estimation task on sequences of over 12,000 bytes each. Note since the official test set is not
public for this dataset, we report results on the official validation set. For validation purposes we used
a held-out set of about 80,000 examples from the training split.

For this dataset, we trained Transformer-VQ models with 190M and 1.2B parameters, similar to the
Enwik8 and PG-19 models, respectively. We report the bits-per-byte on the official validation set in
Table 5. Several of the earlier baselines used an earlier variant of downsampled ImageNet prepared
by van den Oord et al. (2016) with a different downsampling algorithm. Since that variant has been
unavailable through official channels for about a year, we used the newer variant following Lipman
et al. (2023). We emphasize that our results using the newer variant cannot be directly compared with
baselines using the earlier variant; however, due to several reporting ambiguities, Table 5 does not
symbolically distinguish variants used.

Figure 3: Generated samples from our large ImageNet64 model; nucleus 1.0.

Transformer-VQ with 190M parameters is roughly the same size as the Efficient VDVAE (Hazami
et al., 2022), but obtains a better result of 3.22 BPB, setting a new state-of-the-art for small models.
Transformer-VQ with 1.2B parameters obtains a 3.16 BPB, setting a new absolute state-of-the-art on
this dataset, and generates high-fidelity samples on par with Perceiver AR while using 33% fewer
steps, omitting its image-specific architectural adjustments, and generating samples in linear time.

6 CONCLUSION

Transformer-VQ is a transformer decoder computing softmax-based self-attention in linear time.
Its efficient attention is enabled by vector-quantized keys, which allow our cache to be attended to
in compressed form, while yielding the same result as uncompressed attention over the same keys.
Large-scale experiments show Transformer-VQ is an efficient and flexible autoregressive model, with
state-of-the-art results or near on PG-19 and ImageNet64. Future work directions include formal
scaling laws, larger models, and porting to lower-level frameworks like Pallas, Triton, or CUDA.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility, our attention mechanism is described mathematically in Section 3, and
pseudocode is provided in Appendix E. In addition, our hyperparameters and other implementation
details are given in Appendix C, and our implementation is open-sourced at the link in the abstract.
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A THEOREMS

A.1 PROOF OF THEOREM 2.2

Proof. This proof is based on Guo et al. (2019). Invoking the fact that q,k, ϕ(k) ∈ RD, the assumed
independence between q and k, the law of iterated expectations, and the isotropy assumption on q,
i.e., Eq[qq>] = σ2ID for σ2 > 0, we have

Eq,k[q>k− q>ϕ(k)]2 (38)

= Eq,k[q>(k− ϕ(k))]2 (39)

= Eq,k[q>(k− ϕ(k))]>[q>(k− ϕ(k))] (40)

= Eq,k(k− ϕ(k))>qq>(k− ϕ(k)) (41)

= Ek(k− ϕ(k))>Eq[qq>](k− ϕ(k)) (42)

∝ Ek(k− ϕ(k))>ID(k− ϕ(k)) (43)

= Ek||k− ϕ(k)||2. (44)

A.2 PROOF OF COROLLARY 2.3

Proof. By definition, VQ(k; C) , arg minc∈{Cs}S−1
s=0
||k− c||2. In other words, ϕ(k) = VQ(k; C)

minimizes ||k− ϕ(k)||2 under the constraint that the outputs of ϕ are limited to the rows of C, i.e.,
ϕ(RD) = {Cs}S−1s=0 . Since this choice is a pointwise minimizer under the given constraint, it is also
a minimizer of the expectation Ek||k− ϕ(k)||2 under the same constraint.

Under the assumptions of Theorem 2.2, the aforementioned expectation is equal to Eq,k||q>k −
q>ϕ(k)||2 up to a positive proportionality constant σ2. As a result, VQ(k; C) is also a minimizer of
the expectation Eq,k||q>k− q>ϕ(k)||2 under the same constraint on the output of ϕ.

A.3 PROOF OF THEOREM 3.4

Proof. When φw is an element-wise nonlinearity, φ(c) is well-defined, where c is any scalar. Then
using definitions alone, we have

[φw(QC>)∆]i,j = φw(QC>)i,:∆:,j (45)

=

S−1∑
s=0

φw(QC>)i,s∆s,j (46)

=

S−1∑
s=0

φw(Qi,:C
>
s,:)δs,zj (47)

= φw(Qi,:C
>
zj ,:) (48)

= φw(Qi,:K̂
>
j,:) (49)

= [φw(QK̂>)]i,j (50)

A.4 PROOF OF THEOREM 3.5

Proof. By Theorem 3.4 with φw(·) = exp(·), we have exp(QK̂>) = exp(QC>)∆. Invoking the
definition of row-wise softmax and applying substitution, we have

Softmax(QK̂>) = Diag(exp(QK̂>)1)−1 exp(QK̂>) (51)

= Diag(exp(QC>)∆1)−1 exp(QC>)∆. (52)
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A.5 PROOF OF THEOREM 3.6

Proof. For n = 0, 1 the result follows by inspection.

For n ≥ 2, by the definition of U(n− 2) we have

U(n− 2) =

(n−1)L−1∑
j=0

∆:,jVj,: = ∆(:,0:n−1)V(0:n−1,:). (53)

Note that in our notation, the superscripts’ block index range is non-inclusive on the ending value, so
∆(:,0:n−1)V(0:n−1,:) is equal to the sum of the matrix products for the matrix blocks from 0 to n− 2.

Thus, by substitution, we have

φw(Q(n,:)C
>)U(n− 2) = φw(Q(n,:)C

>)∆(:,0:n−1)V(0:n−1,:) (54)

We invoke the same argument as in the proof of Theorem 3.4 to conclude φw(Q(n,:)C
>)∆(:,0:n−1) =

W(n,0:n−1). Substituting this expression into the right-hand side above gives

φw(Q(n,:)C
>)U(n− 2) = W(n,0:n−1)V(0:n−1,:). (55)

Substituting this expression into the formula for (WV)(n,:) claimed in the theorem statement, and
invoking the same argument as in the proof of Theorem 3.4 on the middle term, we see the claimed
formula has the form W(n,0:n−1)V(0:n−1,:) + W(n,n−1)V(n−1,:) + W(n,n)V(n,:). The diagonal
block W(n,n) of W is causally masked, so the sum of the three terms indeed equals (WV)(n,:).

A.6 PROOF OF THEOREM 3.7

Proof. Recall that we defined A , exp(QK̂> + B). The proposed expression for (AV)(n,:)
follows from Theorem 3.6 with φw(·) = exp(·). The proposed expression for (A1)(n) follows by a
substitution argument using (AV)(n,:). Normalizing (AV)(n,:) by (A1)(n) and iterating over n thus
yields all blocks of the product WV when the nonlinearity φw is row-wise softmax.
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B THROUGHPUT

We present throughput results for three methods to compute the cache variables: serial scan, matmul,
and associative scan. The first two are generalizations of the cross-block reduction methods from
FLASH (Hua et al., 2022), which were a simple cumulative sum and matrix multiplication by a
lower-triangular matrix of ones, respectively. We found our proposed generalizations were necessary
for stable training, an issue where FLASH has known weaknesses (Qin et al., 2022a; Ma et al., 2023).
Pseudocode for each of our stable reduction methods is given in Appendix E.

In addition to the three cross-block reduction methods to compute the cache variables from parallel-
computed per-block summaries, we also benchmark an input scanning implementation of VQ-
Attention inspired by Wu et al. (2022); Hutchins et al. (2022), such that all the operations for a
transformer layer are performed one input block at a time. To ground all comparisons, we benchmark
the throughput against a transformer using unquantized quadratic-time attention, the same attention
head type (SHGA, MQA, or MHA), and an identical non-codebook parameter count.

Table 6: Training throughput comparison (tokens/sec) on Google Cloud VM with 8 TPU v3 cores,
between Full Attention and VQ-Attention with serial scan reduction.

Model
Sequence Length

2048 8192 32768 131072

Full VQ Speedup Full VQ Speedup Full VQ Speedup Full VQ Speedup

SHGA 65.5k 63.0k 0.962× 23.9k 77.2k 3.230× 6.5k 82.1k 12.631× OOM OOM –
MQA 58.9k 63.0k 1.070× 10.4k 74.8k 7.192× OOM 79.7k – OOM OOM –
MHA 52.0k 49.6k 0.955× 9.5k 57.8k 6.084× OOM 60.7k – OOM OOM –

Table 7: Training throughput comparison (tokens/sec) on Google Cloud VM with 8 TPU v3 cores,
between Full Attention and VQ-Attention with matmul reduction.

Model
Sequence Length

2048 8192 32768 131072

Full VQ Speedup Full VQ Speedup Full VQ Speedup Full VQ Speedup

SHGA 65.5k 62.5k 0.954× 23.9k 75.2k 3.148× 6.5k 80.0k 12.250× OOM 69.5k –
MQA 58.9k 62.5k 1.061× 10.4k 74.9k 7.144× OOM 80.2k – OOM 67.7k –
MHA 52.0k 48.2k 0.926× 9.5k 58.2k 6.096× OOM 61.6k – OOM OOM –

Table 8: Training throughput comparison (tokens/sec) on Google Cloud VM with 8 TPU v3 cores,
between Full Attention and VQ-Attention with associative scan reduction.

Model
Sequence Length

2048 8192 32768 131072

Full VQ Speedup Full VQ Speedup Full VQ Speedup Full VQ Speedup

SHGA 65.5k 58.9k 0.899× 23.9k 62.2k 2.603× 6.5k 63.4k 9.754× OOM OOM –
MQA 58.9k 62.8k 1.066× 10.4k 74.2k 7.134× OOM 79.0k – OOM 67.0k –
MHA 52.0k 49.1k 0.944× 9.5k 55.4k 5.831× OOM 57.8k – OOM OOM –
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Table 9: Training throughput comparison (tokens/sec) on Google Cloud VM with 8 TPU v3 cores,
between Full Attention and VQ-Attention, both with input scanning.

Model
Sequence Length

2048 8192 32768 131072

Full VQ Speedup Full VQ Speedup Full VQ Speedup Full VQ Speedup

SHGA 32.0k 40.8k 1.275× 12.7k 47.4k 3.732× OOM 49.4k – OOM OOM –
MQA 36.2k 54.8k 1.514× 14.5k 64.9k 4.476× OOM 68.3k – OOM OOM –
MHA 30.0k 43.7k 1.457× 11.4k 50.7k 4.447× OOM 53.1k – OOM OOM –
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C TRAINING DETAILS

C.1 HYPERPARAMETERS

Per-dataset hyperparameters are provided below.

Table 10: Hyperparameters.

Name Symbol Enwik8 PG-19 ImageNet64 ImageNet64

parameter count 190M 1.3B 190M 1.2B

global batch size B 128 128 16 128
sequence length T 8192 8192 12288 12288
backprop length W 2048 2048 12288 2048

block length L 512 512 512 512

model dimension Dm 768 2048 768 2048
key dimension Dk 128 128 128 128

value dimension Dv 1536 4096 1536 4096
num code S 512 512 512 512
num gau N 48 48 48 48

sinusoid dropout rate pdropsin 0.2 0.1 0.1 0.1
residual dropout rate pdropres 0.5 0.1 0.0 0.0

layerdrop rate pdroplyr 0.3 0.1 0.0 0.0
weight decay 0.0002 0.0 0.0 0.0

optimizer adamw adafactor adamw adafactor
total steps 125000 500000 125000 500000

Note that the 190M parameter ImageNet64 result was added after the other experiments had concluded.
To avoid biasing its result, we use the exact same architectural hyperparameters as the Enwik8 model,
and the exact same regularization as the larger ImageNet64 model. The smaller ImageNet model
was trained in a newer version of our codebase optimized for higher throughput and faster compile
times, rather than training on long sequences in constant space via input scans and truncated backprop
through time. The attention in the optimized codebase was unit-tested to match the original.

C.2 IMPLEMENTATION

Weights and token embeddings were initialized following Chowdhery et al. (2022). For the small
model, the classifier layer omits LayerNorm and is independently parameterized. For the large model,
the classifier layer uses LayerNorm and its projection is tied with the token embedding table, then
scaled down by a large constant. For image datasets, we add absolute sinusoidal position embeddings,
scaled by a trainable scalar, to the token embeddings (Hua et al., 2022; Vaswani et al., 2017). We
used a maximum angular wavelength of 105 for all sinusoidal embeddings.

We used the pre-norm placement of LayerNorm (Radford et al., 2019), and always used the RMS
LayerNorm variant (Zhang & Sennrich, 2019). For the activations, we used φw = Softmax and
φv = φg = SiLU, the self-gated activation (Elfwing et al., 2017; Ramachandran et al., 2017). Several
models use LayerDrop for regularization (Fan et al., 2020a), and following the Transformer-XL
codebase (Dai et al., 2019) models apply dropout to the flipped sinusoidal embeddings used for (local)
relative positional biases.

We used float32 parameters, with bfloat16 precision for most computations (Rae et al., 2021). For
the AdamW optimizer (Loshchilov & Hutter, 2019), we used gradient clip 0.1, max learning rate
α = 0.0004 and hyperparameters β1 = 0.9, β2 = 0.98, ε = 10−9. For the Adafactor optimizer
(Shazeer & Stern, 2018), we used relative stepsizes, update clip 1.0, max learning rate α = 0.01,
and hyperparameters β̂1 = 0.0, β̂2,t = 1 − t−0.8. We used weight decay with a constant schedule
throughout training and omit decay on any one-dimensional parameter tensors (Radford et al., 2019).
The codebook commit coefficient was always β = 0.0001 and codebook EMA rate was always
γ = 0.99. Learning rates were linearly warmed up for 10,000 steps, then decayed by a 10x factor
using a cosine schedule.
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D GENERATED SAMPLES

D.1 QUALITATIVE ANALYSIS

D.1.1 PG-19

No effort has been made to explain elementary methods of photography, for the reason that such explanation has been
found in the publications of every leading technical journal. The endeavor has been to present what is

necessary to the amateur and the professional photographer, together with suggestions of how to make
apparatus for the student, and to give a chapter on lens building. The author is fully aware of the
imperfections in the methods described, and would like to emphasize the necessity of studying these methods
carefully before attempting to use them, if it is desired to make satisfactory photographs. The most
essential point in photography is the study of light. It is impossible to have success in photography unless
the operator knows what light is. The writer believes that much may be done to advance the art of photography
by the use of simple apparatus. The student must not overlook the fact that some simple apparatus is

necessary in order to get good results. A lens is necessary to bring the image on the sensitive plate up to
the focus of the lens. This lens is very expensive and only a few can be had of the best makers.

Figure 4: Sample excerpt from our PG-19 model, generated with nucleus 0.8.

We generated 128 sequences using nucleus sampling (Holtzman et al., 2020). In Figure 4, we observe
a sample except in which our PG-19 model synthesizes high-quality text, and maintains a consistent
tone, topic, and train of thought. These observations were found to hold for the vast majority of the
samples we generated.

D.1.2 IMAGENET64

Figure 5: Generated samples from our large ImageNet64 model; nucleus 0.999.

Figures 3 and 5 show a subset of samples with the same indices from two batches with different
nucleus settings. We see that our large ImageNet64 model synthesizes sequences of over 12,000
bytes and is capable of depicting relatively high-fidelity ocean water, shorelines, leaves, insects, trees,
animals, people, mountains, and architecture.

D.2 EXTENSIVE SAMPLES

Samples for Enwik8, PG-19, and ImageNet64 can be viewed at the anonymized URLs in Table 11.

Table 11: Generated samples’ URLs by dataset.

URL

https://www.dropbox.com/sh/vu0dvw2bcglerwg/AADTQ9B4imAyEIc1Oo849v3ua?dl=0
https://www.dropbox.com/sh/12civha5ulukulz/AAATnHL91RVax5kIb7QgS9ywa?dl=0
https://www.dropbox.com/sh/xqr0q2e9seoz5wn/AADFnl1LWCaddC2CYRP3QSvpa?dl=0

D.3 IMAGENET64 - FULL BATCH

24

https://www.dropbox.com/sh/vu0dvw2bcglerwg/AADTQ9B4imAyEIc1Oo849v3ua?dl=0
https://www.dropbox.com/sh/12civha5ulukulz/AAATnHL91RVax5kIb7QgS9ywa?dl=0
https://www.dropbox.com/sh/xqr0q2e9seoz5wn/AADFnl1LWCaddC2CYRP3QSvpa?dl=0


Published as a conference paper at ICLR 2024

25



Published as a conference paper at ICLR 2024

26



Published as a conference paper at ICLR 2024

E PSEUDOCODE

import flax.linen as nn
import jax
import jax.numpy as jnp
import chex

class VQAttn(nn.Module):
n_code: int
d_k: int
d_v: int

@nn.compact
def __call__(self, x):

"""Input shape: [batch size, num blocks, block length, model width]."""
B, R, C, D = x.shape
S, K, V = self.n_code, self.d_k, self.d_v
x_tilde = RMSLayerNorm(axis=−1)(x)
q = RMSLayerNorm(axis=−1)(nn.Dense(self.d_k)(x_tilde))
k = RMSLayerNorm(axis=−1)(nn.Dense(self.d_k)(x_tilde))
v = jax.nn.silu(nn.Dense(self.d_v)(x_tilde))
g = jax.nn.silu(nn.Dense(self.d_v)(x_tilde))
quantizer = VectorQuantizer(codebook_size=self.n_code, width=self.d_k)
k_hat, z, l_commit, l_codebook = quantizer(k) # quantized keys, shortcodes, etc
c = quantizer.get_codebook()

local_biases = XLBiasProducer(width=self.d_k, length=2∗C)(q)
chex.assert_shape(local_biases, [B, R, C, 2∗C])
local_biases_prev, local_biases_present = jnp.split(local_biases, 2, axis=−1)
scores_present = jnp.einsum("brik,brjk−>brij", q, k_hat)
scores_present += local_biases_present
scores_present −= 1e30 ∗ (1 − jnp.tril(jnp.ones_like(scores_present)))

k_hat_prev = jnp.pad(k_hat[:, :−1], ((0, 0), (1, 0), (0, 0), (0, 0)))
v_prev = jnp.pad(v[:, :−1], ((0, 0), (1, 0), (0, 0), (0, 0)))
scores_prev = jnp.einsum("brik,brjk−>brij", q, k_hat_prev)
scores_prev += local_biases_prev
scores_prev = jnp.pad(

scores_prev[:, 1:],
((0, 0), (1, 0), (0, 0), (0, 0)),
constant_values=−1e30,

)

scores_cache = jnp.einsum("brik,sk−>bris", q, c)
cache_u_div_l_by_block, cache_l_by_block = get_cache_vars(z, v, S)
chex.assert_shape(cache_u_div_l_by_block, [B, R, S, V])
chex.assert_shape(cache_l_by_block, [B, R, S])
count_biases = jnp.where(

jnp.greater(cache_l_by_block, jnp.zeros_like(cache_l_by_block)),
jnp.log(jnp.clip(cache_l_by_block, a_min=1.0)),
jnp.full_like(cache_l_by_block, fill_values=−1e30),

)
scores_cache += jnp.expand_dims(count_biases, axis=−2)

scores_present_max = jnp.max(scores_present, axis=−1)
scores_prev_max = jnp.max(scores_present, axis=−1)
scores_cache_max = jnp.max(scores_cache, axis=−1)
scores_max = jnp.maximum(

jnp.maximum(scores_present_max, scores_prev_max),
scores_cache_max,

)
scores_max = jax.lax.stop_gradient(scores_max)
scores_present −= scores_max[..., None]
scores_prev −= scores_max[..., None]
scores_cache −= scores_max[..., None]

a_present = jnp.exp(scores_present)
a_prev = jnp.exp(scores_prev)
a_cache = jnp.exp(scores_cache)
d = jnp.sum(a_present, axis=−1)
d += jnp.sum(a_prev, axis=−1)
d += jnp.sum(a_cache, axis=−1)
w_present = a_present / d[..., None]
w_prev = a_prev / d[..., None]
w_cache = a_cache / d[..., None]
wv = jnp.einsum("brij,brjv−>briv", w_present, v)
wv += jnp.einsum("brij,brjv−>briv", w_prev, v_prev)
wv += jnp.einsum("bris,brsv−>briv", w_cache, cache_u_div_l_by_block)
o = wv ∗ g
residual = nn.Dense(D)(o)
return x + residual, l_commit, l_codebook

Code 1: Jax/Flax pseudocode for VQ-Attention.
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def get_cache_vars(z, v, n_code):
# throughout this function, we often use clipping of elementwise denominators at 1 to avoid nans.
# in the places where we do this, it does not alter the actual cache variable estimates
# since the corresponding entries in the numerator will be zero when the clip is applied.

delta = jax.nn.one_hot(z, num_classes=n_code, dtype=v.dtype, axis=−1)
delta1_by_block = jnp.einsum("bris−>brs", delta)
deltav_by_block = jnp.einsum("bris,briv−>brsv", delta, v)
deltav_by_block_normalized = jnp.divide(

deltav_by_block,
jnp.clip(delta1_by_block[..., None], a_min=1.0),

)

def scan_func(carry, in_dict):
# computes running average of the value vectors for each shortcode ("upper div lower"),
# and running count ("lower").
lower = carry["lower"]
lower_block = in_dict["delta1_by_block"]
lower_new = lower + lower_block
f1 = jnp.divide(lower, jnp.clip(lower_new, a_min=1.0))
f2 = jnp.divide(lower_block, jnp.clip(lower_new, a_min=1.0))
upper_div_lower_new = jnp.add(

f1[..., None] ∗ carry["upper_div_lower"],
f2[..., None] ∗ in_dict["deltav_by_block_normalized"],

)
carry_new = dict(

upper_div_lower=upper_div_lower_new,
lower=lower_new,

)
return carry_new, carry_new # state to carry, output to save

# before we scan, we have to transpose since jax only supports scans along axis 0.
# this is still fast, possibly because jnp.transpose might be choosing to return a view
deltav_by_block_normalized = jnp.transpose(deltav_by_block_normalized, (1, 0, 2, 3))
delta1_by_block = jnp.transpose(delta1_by_block, (1, 0, 2))
_, cache_vars = jax.lax.scan(

f=scan_func,
init=dict(

upper_div_lower=jnp.zeros(dtype=self.dtype, shape=deltav_by_block_normalized.shape[1:]),
lower=jnp.zeros(dtype=self.dtype, shape=delta1_by_block.shape[1:]),

),
xs=dict(

deltav_by_block_normalized=deltav_by_block_normalized,
delta1_by_block=delta1_by_block,

),
unroll=1,

)

cache_var_upper_div_lower = jnp.pad(
jnp.transpose(cache_vars["upper_div_lower"][:−2], (1, 0, 2, 3)),
((0, 0), (2, 0), (0, 0), (0, 0)),

)
cache_var_lower = jnp.pad(

jnp.transpose(cache_vars["lower"][:−2], (1, 0, 2)),
((0, 0), (2, 0), (0, 0)),

)
return cache_var_upper_div_lower, cache_var_lower

Code 2: Jax/Flax pseudocode to get cache variables for all blocks; serial scan version.
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def get_cache_vars(z, v, n_code):
# throughout this function, we often use clipping of elementwise denominators at 1 to avoid nans.
# in the places where we do this, it does not alter the actual cache variable estimates
# since the corresponding entries in the numerator will be zero when the clip is applied.

delta = jax.nn.one_hot(z, num_classes=n_code, dtype=v.dtype, axis=−1)
delta1_by_block = jnp.einsum("bris−>brs", delta)
deltav_by_block = jnp.einsum("bris,briv−>brsv", delta, v)
deltav_by_block_normalized = jnp.divide(

deltav_by_block,
jnp.clip(delta1_by_block[..., None], a_min=1.0),

)

delta1_by_block_tiled = jnp.einsum(
"brs,bgs−>bsrg",
jnp.ones_like(delta1_by_block),
delta1_by_block,

)
delta1_by_block_tiled = jnp.tril(delta1_by_block_tiled)
delta1_fracs_by_block = jnp.divide(

delta1_by_block_tiled,
jnp.clip(jnp.einsum("bsrg−>bsr", delta1_by_block_tiled)[..., None], a_min=1.0),

)
deltav_by_block_cumulative_normalized = jnp.einsum(

"bsrg,bgsv−>brsv", delta1_fracs_by_block, deltav_by_block_normalized
)
delta1_by_block_cumulative = jnp.cumsum(delta1_by_block, axis=1)

cache_var_upper_div_lower = jnp.pad(
deltav_by_block_cumulative_normalized[:, :−2],
((0, 0), (2, 0), (0, 0), (0, 0)),

)
cache_var_lower = jnp.pad(

delta1_by_block_cumulative[:, :−2], ((0, 0), (2, 0), (0, 0))
)
return cache_var_upper_div_lower, cache_var_lower

Code 3: Jax/Flax pseudocode to get cache variables for all blocks; matmul version
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def get_cache_vars(z, v, n_code):
# throughout this function, we often use clipping of elementwise denominators at 1 to avoid nans.
# in the places where we do this, it does not alter the actual cache variable estimates
# since the corresponding entries in the numerator will be zero when the clip is applied.

delta = jax.nn.one_hot(z, num_classes=n_code, dtype=v.dtype, axis=−1)
delta1_by_block = jnp.einsum("bris−>brs", delta)
deltav_by_block = jnp.einsum("bris,briv−>brsv", delta, v)
deltav_by_block_normalized = jnp.divide(

deltav_by_block,
jnp.clip(delta1_by_block[..., None], a_min=1.0),

)

def merge_func(a, b):
a_upper_div_lower = a[0]
b_upper_div_lower = b[0]
a_lower = a[1]
b_lower = b[1]
lower_new = a_lower + b_lower
term1 = jnp.multiply(

jnp.divide(a_lower, jnp.clip(lower_new, a_min=1.0))[..., None],
a_upper_div_lower,

)
term2 = jnp.multiply(

jnp.divide(b_lower, jnp.clip(lower_new, a_min=1.0))[..., None],
b_upper_div_lower,

)
upper_div_lower_new = term1 + term2
return upper_div_lower_new, lower_new

assoc_scan_output = jax.lax.associative_scan(
fn=merge_func,
elems=(deltav_by_block_normalized, delta1_by_block),
reverse=False,
axis=1,

)
deltav_by_block_normalized_cumulative = assoc_scan_output[0]
delta1_by_block_cumulative = assoc_scan_output[1]
cache_var_upper_div_lower = jnp.pad(

deltav_by_block_normalized_cumulative[:, :−2],
((0, 0), (2, 0), (0, 0), (0, 0)),

)
cache_var_lower = jnp.pad(

delta1_by_block_cumulative[:, :−2], ((0, 0), (2, 0), (0, 0))
)
return cache_var_upper_div_lower, cache_var_lower

Code 4: Jax/Flax pseudocode to get cache variables for all blocks; associative scan version
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