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Abstract

The effect of regularizers such as weight decay when training deep neural net-
works is not well understood. We study the influence of weight decay as well
as L2-regularization when training neural network models in which parameter
matrices interact multiplicatively. This combination is of particular interest as
this parametrization is common in attention layers, the workhorse of transformers.
Here, key-query, as well as value-projection parameter matrices, are multiplied
directly with each other: WT

KWQ and PWV . We extend previous results and
show on one hand that any local minimum of a L2-regularized loss of the form
L(AB⊤) + λ(∥A∥2 + ∥B∥2) coincides with a minimum of the nuclear norm-
regularized loss L(AB⊤) + λ∥AB⊤∥∗, and on the other hand that the 2 losses
become identical exponentially quickly during training. We thus complement
existing works linking L2-regularization with low-rank regularization, and in par-
ticular, explain why such regularization on the matrix product affects early stages
of training. Based on these theoretical insights, we verify empirically that the
key-query and value-projection matrix products WT

KWQ, PWV within attention
layers, when optimized with weight decay, as usually done in vision tasks and
language modelling, indeed induce a significant reduction in the rank of WT

KWQ

and PWV , even in fully online training. We find that, in accordance with existing
work, inducing low rank in attention matrix products can damage language model
performance, and observe advantages when decoupling weight decay in attention
layers from the rest of the parameters.

1 Introduction

The influence of L2-regularization, as well as weight decay regularization when training deep neural
network models remains poorly understood and is still a subject of active research [van Laarhoven,
2017, Zhang et al., 2021, 2019, Loshchilov and Hutter, 2019, Zhang et al., 2021, Xie et al., 2023,
Andriushchenko et al., 2023]. Given a model parametrized by matrix W , the standard motivation of
adding λ

2 ∥W∥
2 to the optimization loss L(W ) comes from framing learning the model weights W

as maximum a posteriori (MAP) estimation and choosing a Gaussian prior with zero mean [Mackay,
1995, Krogh and Hertz, 1991].

Previous works have studied the effect of regularization on the rank of weight matrices when training
a model with gradient-based optimization [Ziyin and Wang, 2023, Arora et al., 2019, Li et al., 2021,
Razin and Cohen, 2020, Gunasekar et al., 2017]. Here, we focus on the effect of L2-regularization on
models using a factorized parametrization, where some weight matrices are parametrized as products

∗Equal contribution, order determined randomly

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



of (often lower rank) matrices, W = AB⊤. This parametrization is used heavily in attention layers
inside transformers [Vaswani et al., 2017] which we will focus on in the following.

Indeed, at the heart of the Transformer architecture is the attention operation which updates the T
tokens concatenated into a matrix E ∈ Rdm×T inside the network according to

E ← E + PWV Eϕ
(
(E⊤W⊤

KWQE)⊙M
)

(1)

where ϕ is typically a softmax operation applied column-wise and M is typically a causal mask.
The matrices WV ,WK ,WQ ∈ Rdk×dm are respectively the value, key, and query matrices that
linearly transform E into some typically smaller space of dimension dk [Phuong and Hutter, 2022],
which can potentially subsume bias terms by appending a constant 1 to the tokens. The weight
matrix P ∈ Rdm×dk projects the weighted sum of value vectors back into the original token
dimension. Therefore (multi-head) attention layers indeed consist of parameter matrix products i.e.
WQK = W⊤

KWQ as well as WV P = PWV , regardless of the choice of ϕ, or the presence or absence
of causal masks.

When optimizing neural network models with this particular parametrization in conjunction with
L2-regularization, and for any such two weight matrices A and B (e.g. the P and WV for a given
layer and a given head), we can rewrite the loss as:

LL2(A,B, θ) := L(AB⊤, θ) +
λ

2
(∥A∥2 + ∥B∥2), (2)

where θ accounts for all the remaining parameters. We will see in the following that optimizing
such losses has in practice implications on regularizing the rank of W = AB⊤. In fact, while it is
classically known that the summed Frobenius norm 1

2 (∥A∥
2 + ∥B∥2) is a tight upper bound on the

nuclear norm ∥AB⊤∥∗ [Srebro and Shraibman, 2005, Tibshirani, 2021], we theoretically show in the
following that gradient-based optimization of the above objective result in the upper bound becoming
tight exponentially quickly, for arbitrary loss, and thus directly optimizes for the nuclear norm which
is known to induce low rank.

We highlight the relevance of this study since high weight decay is commonly used when training
Transformer models. For example, GPT-3 [Brown et al., 2020], LLaMa [Touvron et al., 2023],
LLaMa 2 [Touvron et al., 2023] and ViT [Dosovitskiy et al., 2021] report a weight decay strength
of λ = 0.1. Interestingly, this is even true when fine-tuning, for example with low-rank adaptation
(LoRA) [Hu et al., 2021a].

We summarize our contributions below:

• We show that for models with factorized parametrization, all local minima of any loss
regularized by the Frobenius norm of A,B coincide with local minima of the same loss
regularized by the nuclear norm of W . We further show theoretically that the discrepancy
between the 2 regularizations vanishes exponentially quickly during training, thus implying
that training such models with weight regularization can be subjected to low rank inducing
pressure long before convergence.

• We empirically validate our result on various experimental settings, including when opti-
mization with decoupled weight decay [Loshchilov and Hutter, 2019], on models ranging
from deep linear networks to language models as well as Vision Transformers Dosovitskiy
et al. [2021]. Intriguingly, we observe that this inductive bias of factorized parametrization
with weight decay seems to hurt the performance on some tasks, raising the question of
whether it is a feature or a bug.

• We provide evidence suggesting that this rank-regularizing effect in fact seems to affect the
pretraining of popular pre-trained foundation models such as LLAMA 2 [Touvron et al.,
2023] and Vision Transformer [Wu et al., 2020], by analyzing their pre-trained weights.

2 Related Work

The setting we study is closely related to a setting extensively studied in the Matrix Completion
literature [Srebro and Shraibman, 2005, Sun and Luo, 2016, Candes and Tao, 2009], where the goal
is to recover an unknown low-rank matrix for which only a subset of its entries are specified. Nuclear
norm regularization is often used as a convex relaxation of the problem [Hu et al., 2021b], and
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its equivalence at the global optimum with the L2-regularization on factorized matrix [Srebro and
Shraibman, 2005], which has the advantage of being differentiable everywhere, has been exploited as
a popular approach for large-scale matrix completion. Extensive prior work has focused in this setting
on the theoretical guarantee of the factorization formulation to recover the underlying low-rank matrix
correctly [Sun and Luo, 2016, Candes and Tao, 2009]. Similarly, similar loss landscape analyses were
performed in the context of unconstrained features models [Zhu et al., 2021]. In contrast, our analysis
does not rely on assumptions about the data, the loss (other than its differentiability) or convergence.

In a different line of work, recent efforts have focused on the effect of gradient-based optimization of
deep networks on the parametrized matrix. For example, small weight initialization in this setting
was shown to induce low rank in deep linear networks [Jacot et al., 2022, Arora et al., 2019, Li
et al., 2021]. More recently, [Jacot, 2023] has shown the representation cost of deep networks with
homogeneous nonlinearity converges to a notion of rank over nonlinear functions. More related to our
work, equivalence between L2 regularization applied on factorized matrices and a low-rank inducing
Lp-Schatten norm on the matrix they parametrize has been shown in several prior works [Dai et al.,
2021, Tibshirani, 2021]. This is particularly relevant as L2 regularization can be applied explicitly or
implicitly, such as when training deep networks with homogeneous activation coupled with e.g. the
cross entropy loss [Jacot et al., 2022, Arora et al., 2019]. Crucially, however, these existing works
characterize the low-rank inducing bias on neural networks that globally minimize L2 regularization
while fitting training data.

Recently, [Galanti et al., 2023] have studied the effect of SGD with L2-regularization on a general
architecture. Similarly to our work, they consider a general differentiable loss, but bound the rank of
matrices at sufficiently large training steps, employing a theoretical argument that crucially does not
leverage low-rank inducing norms due in part to the generality of the architecture they consider. [Wang
and Jacot, 2023] have studied the same effect in the context of deep fully connected linear networks,
showing that SGD strengthens the already existing low-rank bias induced by L2-regularization, albeit
on matrix completion problems. Similarly to our work, they draw for the first time, to the best of our
knowledge, an equivalence between the critical points of L2-regularized loss on the factorized matrix
and Nuclear norm regularized loss on the parametrized matrix.

In contrast to these past works, we show both theoretically and empirically that for any arbitrary
differentiable loss, the two regularizations become exponentially quickly identical during gradient-
based optimization, and thus, that the low-rank inducing effect comes into play very early in during
training. This brings a theoretical understanding to empirical observations made in previous works
[Khodak et al., 2022], and is particularly relevant for many practical settings, in which learning does
not converge, such as foundation model trained online, as is commonly done for large language
models (LLMs) and large vision models.

Finally, given the significance of self-attention models, there has been work trying to understand
the implicit inductive biases of some of their design choices. [Bhojanapalli et al., 2020] shows,
in particular, the head size heuristic commonly used causes a low-rank bottleneck and limits the
expressive power of the multi-head attention layer. Recent work has shown indeed that reducing
the rank of attention matrices post-training of LLMs can hurt downstream performance [Sharma
et al., 2023]. Our empirical work complements these observations and sheds light on the potentially
damaging effect of the implicit rank-reducing effect of weight decay in the context of Attention
layers, an unintended side effect contrary to the matrix completion setting.

3 Theoretical results

3.1 Preliminaries

We begin by reviewing the definition of the nuclear norm of a matrix and its upper bound when
applied to a factorized matrix. We denote by ∥ · ∥ the Frobenius norm when applied on matrices.

3.1.1 Nuclear norm

The nuclear norm (also known as trace norm) of a real-valued matrix W , denoted by ∥W∥∗, is defined
as

∥W∥∗ = Tr(
√
WW⊤) (3)
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When using the singular value decomposition (SVD) of W , W = USV ⊤, denoting (si)i the singular
values, we can see that

∥W∥∗ = Tr(
√
USV ⊤V SU⊤) = Tr(S) =

∑
i

si (4)

i.e. the nuclear norm is the sum of the singular values of W .

The nuclear norm is often used in the low-rank regularization literature [Hu et al., 2021b] as it
intuitively is a convex relaxation of the rank, and regularizing it typically induces low rank by
injecting sparsity in the singular values.

3.1.2 Upper bound of the nuclear norm of a factorized matrix

Let two matrices A,B such that W = AB⊤. Then, using the Cauchy-Schwarz inequality, we have
that

∥W∥∗ = Tr(S) = Tr(U⊤AB⊤V ) (5)

≤
√
Tr(U⊤AA⊤U) Tr(B⊤V V ⊤B) (6)

= ∥A∥∥B∥ ≤ 1

2
(∥A∥2 + ∥B∥2) (7)

3.1.3 Considered losses

We will consider L2 losses of the format

LL2(A,B) := L(AB⊤) +
λ

2
(∥A∥2 + ∥B∥2), (8)

and their L⋆ counterpart
L∗(AB⊤) := L(AB⊤) + λ∥AB⊤∥∗. (9)

As a consequence of the above inequality, the L2-regularized objective (8) is an upper bound of the
nuclear norm-regularized objective.

The meticulous reader should spot that those objectives don’t account for the remaining parameters θ
as in (2), while those parameters also evolve through learning. In fact, one can convince oneself that
this can be safely ignored without loss of generality. The reader is referred to appendix D for more
details about this point.

3.2 Equivalence of optimization solution

In the following, we will first show that in fact, any objective of the form in (8) will coincide at any
stationary point with the nuclear-norm regularized loss in (9), thus introducing a low-rank inducing
bias in the solution found. We assume A,B to have a bottleneck, i.e. to have the number of rows
greater or equal to the number of columns, as is usual in attention layers. All proofs can be found in
Appendix B.

We start by providing a sufficient condition under which the averaged Frobenius norm of two matrices
would correspond to the nuclear norm of their product.

Proposition 3.1. Let A,B be matrices such that A⊤A = B⊤B. Then, denoting AB⊤ = USV ⊤

the SVD of AB⊤, there exist an orthogonal matrix O such that A = U

( √
S
0

)
O⊤ and B =

V

( √
S
0

)
O⊤. In particular, ∥AB⊤∥∗ = 1

2 (∥A∥
2 + ∥B∥2).

This condition states that the scalar product of any two columns of A should match the scalar product
of corresponding columns of B. We will show next that at any stationary point of the objective LL2,
that condition is fulfilled. We assume the loss L is differentiable and λ > 0.

Lemma 3.2. At any stationary point A,B of LL2 we have that A⊤A = B⊤B.
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The above Lemma, together with Proposition 3.1, implies that at a stationary point A,B, LL2(A,B)
and L∗(AB⊤) coincide. However, this is not enough to claim that finding a (local) minimum of LL2

will in fact find a (local) minimum of L∗. We now provide a result which shows that this claim is true.

Theorem 3.3. A,B is a local minimum of LL2, if and only if 1) W = AB⊤ is a local minimum
of L∗, constrained to matrices of rank r where r is the maximum rank achievable by AB⊤, and 2)
A⊤A = B⊤B.

A more general formulation of the above results, albeit without a bottleneck dimension, was recently
shown in [Wang and Jacot, 2023] (c.f. Theorem 3.1) where it was applied in the matrix completion
context. We restate and prove it here for completion in the context of self-attention and transformer
models.

The Theorem states that there is in fact a one-to-one mapping between the local minima of LL2(A,B)
and (the equivalence class of) local minima of L∗(AB⊤), for a general unregularized loss L.

In particular, if one wishes to optimize L∗ for some matrix W , potentially under rank constraint, one
can reparametrize W as a product of two matrices A,B and optimize the differentiable objective LL2

on A,B without introducing bad minima, and obtain rank-regularized solutions. In principle, one
can still converge to a bad minimum for a general loss, but this is not due to the reparametrization.

On the other hand, the theorem shows that naively optimizing the L2-regularized loss with a factorized
parametrization will (often inadvertently) result in actually finding solutions that exactly minimize
the nuclear-norm regularized loss, introducing unintended low-rank inducing bias to the solution.

Note that however, the two parametrizations may result in different optimization, and thus different
solutions, even if the loss landscape shares the same local minima.

3.3 Optimization dynamic in the gradient flow limit

The above result establishes equivalence of the local minima of the two losses. Our next result shows
that the two losses will in fact coincide exponentially quickly during training.

Theorem 3.4. Consider the gradient flow limit over the loss LL2. If ∥A∥, ∥B∥ remain bounded
during training, then we have that

∣∣LL2(A,B)− L∗(AB⊤)
∣∣ converges exponentially to 0.

In order to prove the theorem, we first show that during gradient flow optimization, the condition from
Proposition 3.1 becomes true exponentially quickly. This is then followed by a new bound bounding
the gap between ∥AB⊤∥∗ and 1

2 (∥A∥
2 + ∥B∥2) by the norm of A⊤A−B⊤B. For completeness,

we also provide a general result bounding the analogous gap for a L-layer deep linear network.

We provide in the appendix a similar result when considering gradient flow with noise, as well as
with momentum and decoupled weight decay. We furthermore provide in appendix B.5 a discussion
about the soundness condition.

The above result complements Theorem 3.3 by showing that optimizing LL2 will result in co-
optimizing L∗ very quickly during training, long before stationary points are found. The theorem
also confirms previous empirical observations [Khodak et al., 2022].

3.4 Case study: 2-layer linear network

To illustrate the low-rank inducing bias of the factorized parametrization coupled with weight decay,
we will study in the following the optimization within a 2-layer linear network and characterize
the network at equilibrium. Such a network corresponds in fact to a drastically simplified softmax
attention layer with T = 1. The derivations are similar to those used when studying deep linear
networks [Ziyin et al., 2022, Saxe et al., 2013] and the redundant parameterization studied in [Ziyin
and Wang, 2023].

Consider the following model

f(AB⊤) : x→ AB⊤x (10)

where B⊤ ∈ Rd2×d1 , A ∈ Rd3×d2 . For simplicity of presentation, we assume d3 = d1 = d1,3, but
the result can be easily extended to the general case. Given D data points (xi, yi)1≤i≤D, in matrix
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Figure 1: Optimization by gradient descent of two 5-by-5 matrices A,B on the L2-regularized loss
∥AB⊤−D∥2 + λ

2 (∥A∥
2 + ∥B∥2) where D = diag(0.2, 0.4, 0.6, 0.8, 1), with various regularization

strength λ. t denotes the number of optimization steps. Left: difference between the nuclear norm
∥AB⊤∥∗ with the Frobenius norm 1

2∥A∥
2 + 1

2∥B∥
2 throughout optimization. For all cases, other

than λ = 0, the trajectory converges exponentially quickly to 0 as predicted by our theory. Center left:
Norm of the discrepancy between A⊤A and B⊤B over training steps. As predicted the discrepancy
exponentially vanishes, with a time constant proportional to the λ. Center right: Singular values of
the matrix AB⊤ at t = 1000, for various regularization strength λ. As predicted, si decays linearly
with λ, until λ ≥ si, at which point the singular value vanishes. Right: Singular values of the matrix
AB⊤ during optimization, for λ = 0.4.

form, the L2-regularized mean squared error can be expressed as

L =
1

2
∥Y −AB⊤X∥2 + λ

2
(∥B∥2 + ∥A∥2) (11)

where X = (xi)i ∈ Rd1×D, Y = (yi)i ∈ Rd3×D, and λ > 0.

Using full batch gradient flow, the differential equation governing the parameter dynamic becomes

τḂ⊤ = A⊤(ΣY X −AB⊤ΣXX)− λB⊤ (12)

τȦ = (ΣY X −AB⊤ΣXX)B − λA (13)

where ΣY X = Y X⊤, ΣXX = XX⊤, and τ is a constant controlling the learning rate.

To further simplify the above equations, we follow [Saxe et al., 2013] and assume ΣXX = I , an
assumption which holds exactly for whitened input data. Finally, without loss of generality, we
perform a change of basis such that ΣY X = S where S is the diagonal matrix which diagonal consists
of the singular values (si)i∈[1..d1,3] of Y X⊤.

At equilibrium, we thus have the following set of equations

λB⊤ = A⊤(S −AB⊤) (14)

λA = (S −AB⊤)B. (15)

Denoting by ai, bi the i-th row of A,B, and assuming the (si)i∈[1..d1,3] are all non-zero and distinct,
we have the following conditions at equilibrium (cf Appendix C)

∀i ∈ [1..d1,3], ai = bi (16)

∀i, j ∈ [1..d1,3]
2 s.t. i ̸= j, a⊤i bj = 0. (17)

In particular, this implies, for any i, λ∥ai∥2 = (si − ∥ai∥2)∥ai∥2. Clearly, if λ ≥ si, then the
equation can only be true if ai = 0. If on the other hand λ < si, either ai = 0 or ∥ai∥2 = si − λ
satisfy the equilibrium condition, with the former being an unstable equilibrium point if the number
of hidden units d2 is greater than the number of elements in {i ∈ [1..d1,3] | si > λ}.
To highlight the result, let us consider the case where the hidden layer has enough capacity, i.e.
d2 ≥ d1,3. In that case, the result tells us that at a stable equilibrium, AB⊤ will drop all singular
values s that are less than λ, while keeping those that are larger. In other words, it performs a sort
of low rank approximation of the input-output correlation matrix where the rank is controlled by λ.
A related result was already obtained in the analyses of [Saxe et al., 2013] who studied the exact
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solutions of 11 without the regularization term but introducing a bottleneck in the hidden layer,
i.e. d2 < d1,3. Remarkably here, regularization achieves a similar effect even in an overcomplete
network, where increasing λ gradually prunes the hidden neurons to ignore the smallest variations of
the data, i.e. reducing d2 adaptively. We confirm these results empirically in Figure 1.

Importantly, this result is only obtained because the regularization is applied to the parametrization
involving a matrix multiplication. If AB⊤ were replaced by a single matrix W ∈ Rd1,3×d1,3 , then the
equilibrium condition would be W = 1

1+λS, whose rank remains constant w.r.t. the regularization
strength.

3.5 Weight decay with Adam optimizer

While the regularized loss is a convenient setting for studying what happens to the parameters at
equilibrium, in the vast majority of practical settings, decoupled weight decay [Loshchilov and Hutter,
2019], simply referred to as weight decay in the following, is used instead optimizing a regularized
loss. A popular choice of optimizer for deep neural networks, including those with self-attention
layers, is AdamW [Loshchilov and Hutter, 2019], which update the weights by using the Adam
optimizer on the non-regularized loss while simultaneously applying weight decay.

While it is non-trivial to analyze the equilibrium points of AdamW in general, we show in Appendix E
that under some simplifying assumptions, they coincide with those of a L2-regularized loss with a
different regularization strength.

4 Empirical results

Figure 2: Left: The rank of weight matrix product PWV of the first layer of a 2-layer Transformer
trained on the associative recall task, during training, with AdamW, for various decay strengths. To
better account for the effect of weight decay on the attention layers, only the decay strength applied
to attention layers is varied, while the strength for all other layers is fixed at 0.1. We observe that
rank reduction correlates strongly with weight decay strength. Center: Norm of the discrepancy
between P⊤P and WV W

⊤
V , during training. As predicted, the difference seems to converge to 0

when λ > 0 towards the end of training. While for AdamW we no longer have the guarantee of an
exponential decay, we see that the discrepancy nonetheless vanishes quickly, with a time constant
which perfectly correlates with the decay strength. Right: The difference of the nuclear norm of
WV P with the Frobenius norm upper bounding it. As the discrepancy between P⊤P and WV W

⊤
V

decreases, the difference approaches 0, and thus the bound becomes tight. The optimization of LL2

thus gradually switches to that of L∗, explaining the rank regularization. Qualitative findings are
identical when studying W⊤

KWQ.

The primary objective of our experimental analysis is to empirically validate the theoretical findings
in more practical settings. Specifically, we aim to investigate the effect of decoupled weight decay,
adaptive optimizers, as well as noisy gradient and lack of exact convergence to stationary points on
the theoretical findings.

The second objective is to establish that the theory is relevant in the training of large neural network
models. Due to the large computational costs we chose to avoid re-training large scale models but
trained small-scale language models as well as a Vision Transformer without changing common
hyperparameters. We aim to demonstrate that their typical training is affected by the rank-regularizing
effect predicted by our theory. Finally, we investigate pre-trained weights of the relevant foundation
models to show that they are consistent with rank-regularizing training.
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To quantitatively measure the rank of matrices in the context of our experiments with attention layers,
we use the following definition of pseudo rank: Let W be a weight matrix with singular values
σ1, σ2, ..., σn, ordered such that σ1 ≥ σ2 ≥ ... ≥ σn. The pseudo rank (referred to simply as rank in
the following) of W is defined as k

n where k is the smallest number such that:∑k
i=1 σi∑n
i=1 σi

≥ 0.95.

In simpler terms, it represents the fraction of the largest singular values required to capture at least
95% of the sum of all singular values of the matrix W .

Figure 3: Left, center left: The rank of weight matrix products W⊤
KWQ and PWV averaged across

heads of layer 5 of an autoregressive transformers trained on the Pile [Gao et al., 2020]. Center right,
right: The rank of weight matrix products W⊤

KWQ and PWV averaged over all heads and all layers
of a Vision Transformer trained following [Irandoust et al., 2022] on the ImageNet dataset [Deng
et al., 2009]. In both settings, the decay strength applied to attention layers is varied, while keeping
the strength for all other layers fixed. In all cases, we observe again that rank reduction correlates
strongly with weight decay strength when optimizing with AdamW. The weight decay strength of 0.1
commonly used to pretrain some known large foundation models in fact noticeably reduces the rank
of the generated matrices compared to when weight decay is turned off.

4.1 Associative recall task

In this simple memory task, a model is presented with a sequence of paired tokens
[x1, y1, . . . , xT , yT , xT+1]. Specifically, the task is parameterized by an integer N , representing
the number of unique tokens that can be mapped to N corresponding tokens. The sequence presented
to the model therefore consists of 2N + 1 tokens (with T = N ), and the final token is repeated and
appears in the sequence before, i.e. xT+1 = xj for some j ∈ [0, . . . , T ]. The model is trained to
remember the correct association observed in-context and predict yj . This task has been attributed
and proposed as a proxy for language modelling [Fu et al., 2023, Poli et al., 2023].

We train a 2-layer self-attention only Transformer with AdamW optimizer on minibatches of size
128, for N = 20. To simulate additional noise, we perturb 5% of the labels with random labelling
[Zhang et al., 2021].

Figure 4 shows that even in this setting, the stationary condition of a L2-regularized loss in Lemma 3.2
is approached, and the gap between the nuclear norm and the Frobenius norm in (5) vanishes, thus
confirming that AdamW in fact also optimizes for the nuclear norm. Furthermore, the convergence
speed is perfectly correlated with the weight decay strength. The results furthermore show that
AdamW leads indeed to a consistent decrease in the rank in both parameter weight products as the
decay strength increases. This aligns with the effect of optimizing the nuclear norm of these matrices.

4.2 Language Modelling

In order to validate our theoretical findings in larger scale experiments, we now present results when
training standard small scale Transformer models, with 125 million parameters, on the Pile [Gao
et al., 2020] - a common language modeling dataset. All design decisions such as the Transformer
architecture as well as the optimizer and training schedule are identical to the ones proposed in the
GPT-3 paper [Brown et al., 2020], which are now used in various other studies e.g. [Fu et al., 2023,
von Oswald et al., 2023]. Details can be found in the Appendix G.

First, we confirm again that increasing weight decay with AdamW drastically reduces the rank of
WT

KWQ as well as PWV , on average across depth and heads, of the trained models (c.f. Figure 3.
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Table 1: Test set perplexity of 125 million Transformer models trained on the Pile for 10 billion
tokens with AdamW and different weight decays λ for the self-attention (SA) and the feed-forward
(MLP) weights. ± standard error of the mean computed over 5 seeds.

SA-λ = 0.0 SA-λ = 0.01 SA-λ = 0.025 SA-λ = 0.1 SA-λ = 0.25

MLP-λ = 0.0 12.00±0.03 12.01 ±0.05 11.98 ±0.00 11.92 ±0.02 12.02 ±0.01

MLP-λ = 0.01 11.94±0.02 11.95±0.01 11.94±0.03 11.89±0.02 11.97±0.03

MLP-λ = 0.025 11.89±0.01 11.90±0.04 11.90±0.04 11.80±0.03 11.92±0.02

MLP-λ = 0.1 11.72±0.02 11.71±0.03 11.68±0.03 11.67±0.03 11.70±0.02

MLP-λ = 0.25 11.63±0.02 11.65±0.04 11.62±0.04 11.52±0.03 11.58±0.03

Appendix Figure 7). Furthermore, we observe that while increasing the weight decay strength of MLP
beyond 0.1 is generally beneficial, see Table 1, doing the same for attention matrices starts slightly
hurting performance. Results are averaged over 3 seeds. We observe a sweet spot around weight
decay strength of 0.1 applied to self-attention weights, indicating that some rank regularization is
beneficial for this task. Nevertheless, too much weight decay and therefore rank regularization seems
to be detrimental. Finally, applying weight decay to the MLP weights seems to more important with
a generally higher effect on performance. We leave a more nuanced investigation of decoupling the
weight decay strength of matrices affected by our theory from the rest of the parameters for future
research.

4.3 Vision Transformers

Next, we focus on computer vision tasks and train a Vision Transformer on the ImageNet dataset
[Deng et al., 2009] for 24 hours, following the exact training protocol of [Irandoust et al., 2022]. We
follow the previous section and vary the decay strength only in the attention layers, while keeping
every other hyperparameter fixed. We observe a similar effect of the decay strength on the ranks of
the matrices WQK ,WV P (c.f. Fig 3).

4.4 Pretrained foundation models

Finally, we turn to pre-trained foundation models, and provide some evidence that their training is
also impacted by the rank-regularizing effect of weight decay. Specifically, following Proposition B.4,
it is sufficient to observe that the matrices WQW

⊤
Q resp. P⊤P are close to WKW⊤

K resp. WV W
⊤
V .

Because the matrices WQ,WK ,WV , P
⊤ are typically wide rectangular matrices, the off-diagonal

elements of WQW
⊤
Q , etc, are mostly 0. For LL2 to approximately correspond to L∗, it thus suffices

that the diagonal elements of WQW
⊤
Q resp. P⊤P are close to those of WKW⊤

K resp. WV W
⊤
V .

Figure 4, 6 shows that this is mostly the case, for all layers of the model. For each layer and head, we
further find that the gap from (5) is indeed mostly tight, consistent with a rank regularizing training.

Figure 4: Analyses of attention layers in the pretrained LLAMA 2 model with 7 Billion parameters
[Touvron et al., 2023]. The leftmost (resp. center left) shows the squared norm of every row of WQ

(resp. WV ), for the first head of each layer, against the norm of the corresponding row of WK (resp.
column of P ). The condition WKW⊤

K = WQW
⊤
Q would require these norms to be equal, which in

fact is mostly true. While the model has not reached a stationary point, this indicates the optimization
has advanced enough for this sufficient condition for L∗ to be identical to LL2 to emerge. In fact,
the center right (resp. rightmost) plot show the scatter plot mapping the Frobenius norm against the
nuclear norm for all heads across all layers. The two norms almost perfectly coincide.

9



5 Discussion

Our results provide further insights into the interplay between L2-regularization and weight decay
regularization and the optimization of models that consist of parameter matrix products. This is
of particular interest since attention layers in transformer exhibit this parametrization as key-query,
as well as value-projection parameter matrices, are multiplied directly with each other: WT

KWQ

and PWV . Our empirical findings strongly support our theoretical predictions about the impact of
weight decay on the rank of attention layers and clearly show a rank-regularizing effect even without
convergence. We provide evidence that the training of some foundation models such as Llama are in
fact in practice affected by the same regularization.

Furthermore, we find that decoupling weight decay in the attention weights and tuning its weight
decay strength can improve performance, for example in our language modelling experiments. These
findings complement the recent observation that reducing the rank of language model MLP matrices
post-training improves their reasoning performance, while doing the same for attention layer matrices
mostly hurt it [Sharma et al., 2023]. In particular, our findings suggest that the conventional practice of
applying uniform regularization strategies across all layers may not be optimal for other deep learning
architectures as well. This finding opens up new avenues for model- or layer-specific regularization
strategies that could significantly enhance the performance of these models.

Our findings once more highlight the complexity of understanding optimization techniques in con-
junction with particular neural network models, particularly transformers. For example, the difficulty
of understanding the effect when varying regularization strengths on different components of these
models underscores the need for a more nuanced theoretical understanding of layer-specific regular-
ization. We are particularly excited about further research that aims to disentangle the role of weight
decay in in-weight vs. in-context learning within MLPs and self-attention layers, building on [Singh
et al., 2023]. In conclusion, while our findings mark a step forward in understanding and improving
the usage of weight decay when training deep neural networks, in particular transformers, our study
shed light on the intricate interplay of neural network regularization and its parametrization.
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A Compute budget

We estimate the total compute budget to 4 Nvidia RTX 4090 for two months. The LLMs were
punctually trained on a cluster of 16xA100 GPUs for 4 days.

B Proofs of theoretical results

B.1 Proof of Proposition 3.1

Proof. Using singular value decomposition, we write A = UAΣAV
⊤
A and B = UBΣBV

⊤
B , with

ΣA =

(
SA

0

)
and ΣB =

(
SB

0

)
. Substituting in the equation A⊤A = B⊤B, we get

VAS
2
AV

⊤
A = VBS

2
BV

⊤
B

By positivity and uniqueness of singular values, necessarily, ΣA = ΣB =

(
S
0

)
. Furthermore, by

rearranging the above equation, we get S2V ⊤
A VB = V ⊤

A VBS
2, i.e. that V ⊤

A VB commutes with S.
We rewrite A as

A = UAΣAV
⊤
A VBV

⊤
B = UA

(
SV ⊤

A VB

0

)
V ⊤
B

= UA

(
V ⊤
A VBS
0

)
V ⊤
B = UA

(
V ⊤
A VB 0
0 I

)
ΣAV

⊤
B

Redefining UA as UA

(
V ⊤
A VB 0
0 I

)
, setting Σ = ΣA, and V = VB , we can write A = UAΣV

⊤

and B = UBΣV
⊤.

In particular, AB⊤ = UAΣΣ
⊤U⊤

B , which is a valid SVD of AB⊤. It remains to show that, if AB⊤

is diagonal, then there exists an orthogonal matrix O such that A = ΣO⊤ and B = ΣO⊤.

Let us assume the diagonality, i.e. AB⊤ = ΣΣ⊤. Then, we have

(AB⊤)2 = UAΣΣ
⊤ΣΣ⊤U⊤

A = ΣΣ⊤ΣΣ⊤ = UBΣΣ
⊤ΣΣ⊤U⊤

B

i.e. that UA, UB commute with ΣΣ⊤, and thus that they are block diagonal. Furthermore,
ΣΣ⊤UAU

⊤
B = ΣΣ⊤. They can then be written as

UA =

(
U 0
0 U ′

A

)

UB =

(
U 0
0 U ′

B

)
where U,U ′

A, U
′
B are orthogonal matrices, and the block of U corresponds to the non zero singular

values of ΣΣ⊤.

We can then rewrite A,B as A = Σ

(
U 0
0 I

)
V ⊤ and B = Σ

(
U 0
0 I

)
V ⊤, which conclude

the proof by setting O =

(
U 0
0 I

)
V ⊤.

Finally, AB⊤ = UAΣΣ
⊤U⊤

B , and therefore ∥AB⊤∥∗ = ∥UAΣΣ
⊤U⊤

B ∥∗ = Tr(ΣΣ⊤) = 1
2 (∥A∥

2 +

∥B∥2).
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B.2 Proof of Lemma 3.2

Proof. Let A,B a stationary point of the unregularized loss L in LL2. One can show that the gradient
of L(W = AB⊤) with respect to A (resp. B) is

∂AL =

(
∂L

∂W

∣∣
W=AB⊤

)
B (18)

∂BL =

(
∂L

∂W

∣∣
W=AB⊤

)⊤

A (19)

where ∂L
∂W

∣∣
W=AB⊤ is a matrix, which we denote by −G. Differentiating L, at the stationary point,

the following equations must then be satisfied

λA = GB (20)

λB = G⊤A (21)

In particular, A⊤A = 1
λA

⊤GB = 1
λ (G

⊤A)⊤B = B⊤B.

B.3 Proof of Theorem 3.3

Proof. (⇐) We start by proving the backward implication, by contradiction. Let M a local minimum
of L∗, and A,B such that M = AB⊤ and A⊤A = B⊤B. Then by Proposition 3.1, LL2(A,B) =
L∗(M). Assume A,B is not a local minimum of LL2, i.e. there exists an infinitesimally perturbed
matrices A′, B′ such that LL2(A

′, B′) < LL2(A,B). By continuity of matrix multiplication, M ′ =
A′B′⊤ is an infinitesimally perturbed matrix M . Since L∗(M

′) ≤ LL2(A
′, B′) < LL2(A,B) =

L∗(M), we get a contradiction.

(⇒) Assume now that A,B is a local minimum of LL2, and that W = AB⊤ is not a local minimum
of L∗ constrained to rank r matrices. Then, we can construct a sequence (Wn)n of rank r matrices
such that limn→∞ Wn = W , and for all n, L∗(Wn) < L∗(W ). For all n, let Wn = UnSnV

⊤
n the

SVD of Wn. By continuity of the mapping from a matrix to its singular values, limn→∞ Sn = S,
where S are the singular values of W . Because the set of orthogonal matrices is compact, there exists
a subsequence of ((Un, Vn))n which converges to some orthogonal matrices (U, V ). Without loss
of generality, we redefine the sequence to this converging subsequence. By continuity of matrix
multiplication, necessarily USV ⊤ = W . USV ⊤ is a valid SVD of W . Since by local minimality
of A,B, following Lemma 3.2 and Proposition 3.1, we get that A = UΣO⊤ and B = V ΣO⊤

where Σ =

( √
S
0

)
and O is some orthogonal matrix. Let for all n, An = UnΣnO

⊤ and Bn =

VnΣnO
⊤, where Σn =

( √
Sn

0

)
. Then, limn→∞(An, Bn) = (A,B) and yet, because for all n,

A⊤
nAn = B⊤

n Bn and AnB
⊤
n = Wn, we have LL2(An, Bn) = L∗(Wn) < L∗(W ) = LL2(A,B).

This is a contradiction.

B.4 Proof of Theorem 3.4

In order to prove the theorem, we first show that during optimization, the condition from Proposi-
tion 3.1 becomes true exponentially quickly. This is then followed by a new bound bounding the gap
between ∥AB⊤∥∗ and 1

2 (∥A∥
2 + ∥B∥2) by the norm of A⊤A−B⊤B.

B.4.1 Exponential decay of A⊤A−B⊤B

We provide the result for the vanilla gradient flow limit, but also provide an alternative proof for
the stochastic gradient flow with momentum and decoupled weight decay, to illustrate that the
exponential decay would hold in many practical settings. We note that the gradient flow limit is a
good approximation for a small learning rate in the discrete dynamic.
Lemma B.1. In the gradient flow limit over the loss LL2, A⊤A−B⊤B will converge exponentially
to 0.
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Proof. For any i, we denote by ai, bi the i-th column of A and B. The columns follow the following
differential equations:

τ ȧi = Gbi − λai (22)

τ ḃi = G⊤ai − λbi (23)

where G = − ∂L
∂W

∣∣
W=AB⊤ , and τ is some time constant controlling the learning rate. Given a pair

i, j, we can now look at the dynamic of ai⊤aj − bi⊤bj :

τ
d

dt
(ai⊤aj − bi⊤bj) = τ(aj⊤ȧi + ai⊤ȧj − ḃj⊤bi − ḃi⊤bj)

= aj⊤Gbi − λaj⊤ai

+ ai⊤Gbj − λai⊤aj

− (aj⊤Gbi − λbj⊤bi)

− (ai⊤Gbj − λbi⊤bj)

= −2λ(ai⊤aj − bi⊤bj)

Therefore, we have A⊤A − B⊤B = Qe−
2λt
τ , where Q is A⊤A − B⊤B at initialization, and in

particular, every entry of A⊤A−B⊤B converge to 0 exponentially.

We now provide a similar result, in the gradient flow regime but with momentum, as well as decoupled
weight decay - a tractable approximation to AdamW as shows the following proposition:
Proposition B.2. We consider the following dynamics approximating stochastic gradient flow with
weight decay:

dHA
t = µ(GtBtdt+ σdWA

t −HA
t dt)

dHB
t = µ(G⊤

t Atdt+ σdWB
t −HB

t dt)

dAt = −η(HA
t + λAt)dt

dBt = −η(HB
t + λBt)dt

where µ, η, σ > 0 and WA and WB are independent matrix Wiener processes. Initial condition are
HA

0 = 0 and HB
0 = 0. HA (resp. HB) is the momentum gradient with respect to A (resp. B). Then,

HA
t =µ

∫ t

0

e−µ(t−s)GsBsds+

√
µσ2

2
WA

1−e−2µt (24)

HB
t =µ

∫ t

0

e−µ(t−s)G⊤
s Asds+

√
µσ2

2
WB

1−e−2µt (25)

At =e−ηλtA0 − η

∫ t

0

e−ηλ(t−s)HA
s ds (26)

Bt =e−ηλtB0 − η

∫ t

0

e−ηλ(t−s)HB
s ds (27)

A⊤
t At −B⊤

t Bt =e−2ηλt(A⊤
0 A0 −B⊤

0 B0) (28)

− η

∫ t

0

e−2ηλ(t−s)(HA⊤
s As +A⊤

s H
A
s −HB⊤

s Bs −B⊤
s HB

s )ds. (29)

Proof. We have
d(eµtHA

t ) = eµt(µHA
t dt+ dHA

t )

= µeµt(GtBtdt+ σdWA
t )

such that

HA
t = e−µt

(
HA

0 + µ

∫ t

0

eµs(GsBsds+ σdWA
s )

)
= µ

∫ t

0

e−µ(t−s)GsBsds+

√
µσ2

2
WA

1−e−2µt
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Note that the second term is an abuse of notation. The derivation of the integral form of HB
t , At and

Bt follows the same logic.

For the last two equations, we get

d(A⊤
t At −B⊤

t Bt) =dA⊤
t At +A⊤

t dAt − dB⊤
t Bt −B⊤

t dBt

=− η
((

HA
t + λAt

)⊤
At +A⊤

t

(
HA

t + λAt

))
+ η

((
HB

t + λBt

)⊤
Bt +B⊤

t

(
HB

t + λBt

))
=− 2ηλ(A⊤

t At −B⊤
t Bt)− η(HA⊤

t At +A⊤
t H

A
t −HB⊤

t Bt −B⊤
t HB

t )dt

:=− 2ηλ(A⊤
t At −B⊤

t Bt) +Qtdt

which gives

A⊤
t At −B⊤

t Bt = e−2ηλ(A⊤
0 A0 −B⊤

0 B0) +

∫ t

0

e−2ηλ(t−s)Qsds

Before analyzing the implications of this proposition, let us state a lemma that will allow us to bound
the probability of a Brownian motion diverging:

Lemma B.3. [Lévy, 1940] Let (Bt) be a 1D Wiener process. Then, for t, L > 0, P[maxs∈[0,t] Bs >
L] = 2P[Bt > L].

Let us now analyse the consequences of Proposition B.2. We will assume that At and Bt remain
L2-bounded by M > 0 (which is true for all converging dynamic modulo steady state noise), and
that Gt remains L2-bounded by K (either using a Lipschitzian loss, or using clipping).

First observe that, using lemma B.3, for ε > 0, with probability 1− ε, the term
√

µ
2σW

A
1−e−2µt and

the correspond B will remain bounded by σ
√
µnd ln 4nd

ε .

This way, HA and HB will with probability 1− ε remain bounded by KM + σ
√
µnd ln 4nd

ε . With
that same probability, the term

η

∫ t

0

e−2ηλ(t−s)(HA⊤
s As +A⊤

s H
A
s −HB⊤

s Bs −B⊤
s HB

s )ds

will remain bounded by 4ηM
λ

(
KM ++σ

√
µnd ln 4nd

ε

)
. This is the same order of magnitude as

the stochastic term. Until A⊤A−B⊤B is of that order, it exponentially decays.

B.4.2 Upper bound of
∥∥∥AB⊤∥∗ − 1

2 (∥A∥
2 + ∥B∥2)

∥∥
Finally, we provide the following general result, bounding the gap between ∥AB⊤∥∗ and 1

2 (∥A∥
2 +

∥B∥2) by the norm of A⊤A−B⊤B.

Proposition B.4. For any matrices A,B, we have∣∣∥AB⊤∥∗ − ∥A∥2F
∣∣ ⩽√∥A⊤A−B⊤B∥∗∥A∥∗.

In particular, ∣∣∣∣∥AB⊤∥∗ −
∥A∥2F + ∥B∥2F

2

∣∣∣∣
⩽
√
∥A⊤A−B⊤B∥∗

∥A∥∗ + ∥B∥∗
2

.
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Proof. Let Q := A⊤A−B⊤B. Using singular value decomposition, we write A = UAΣAV
⊤
A and

B = UBΣBV
⊤
B , with ΣA =

(
SA

0

)
and ΣB =

(
SB

0

)
. Substituting in the previous equation,

we get

VAS
2
AV

⊤
A = VBS

2
BV

⊤
B +Q

i.e.

VASAV
⊤
A =

√
VBS2

BV
⊤
B +Q = VB(SB +∆)V ⊤

B (30)

where VB∆V ⊤
B :=

√
VBS2

BV
⊤
B +Q −

√
VBS2

BV
⊤
B . By the Powers-Stormer inequality [Powers

and Størmer, 1970], we have ∥∆∥2F = ∥VB∆V ⊤
B ∥2F ⩽ ∥Q∥∗.

From there, we rewrite A as

A = UAΣAV
⊤
A VBV

⊤
B = UA

(
SAV

⊤
A VB

0

)
V ⊤
B (31)

(30)
= UA

(
V ⊤
A VB(SB +∆)

0

)
V ⊤
B (32)

= UA

(
V ⊤
A VB 0
0 I

)(
ΣB +

(
∆
0

))
V ⊤
B (33)

Consequently, ∥AB⊤∥∗ = ∥S2
B +∆SB∥∗ and∣∣∥AB⊤∥∗ − ∥B∥2F

∣∣ ⩽ ∥∆SB∥∗ ⩽ ∥∆∥∥SB∥∗ ⩽ ∥∆∥F ∥SB∥∗
⩽
√
∥Q∥∗∥B∥∗.

Similarily, we have
∣∣∥AB⊤∥∗ − ∥A∥2F

∣∣ ⩽√∥Q∥∗∥A∥∗.

The second inequality is obtained by using the triangle inequality.

B.4.3 Upper bound of
∥∥∥∥∏l Al∥2/L2/L −

1
L

∑
∥Al∥2F

∥∥∥
We here provide a more general version of Proposition 3.1.

Proposition B.5. Let q ≥ r > 0, A1 ∈ Mq,r, Al ∈ Mr,r for l ∈ [2..L − 1], AL ∈ Mq,r and
A =

∏L
l=1 Al. Let ε > 0. We assume that the sequence (Al)l∈[1..L] is ε-balanced, i.e. that for

l ∈ [1..L− 1], ∥∥A⊤
l Al −Al+1A

⊤
l+1

∥∥
∗ ⩽ ε.

Furthermore, assume that

ε ≤ 1

L4
min

l
∥Al∥L∗ .

Then for k ∈ [1..L], we have∣∣∣∣∣∣
∥∥∥∥∥

L∏
l=1

Al

∥∥∥∥∥
2/L

2/L

− ∥Ak∥2F

∣∣∣∣∣∣ ≤ r∥Ak∥L−1
∗ e2/LL4/Lε1/L

In particular, ∣∣∣∣∣∣
∥∥∥∥∥

L∏
l=1

Al

∥∥∥∥∥
2/L

2/L

− 1

L

L∑
l=1

∥Al∥2F

∣∣∣∣∣∣ ≤ r

L

∑
l

∥Al∥L−1
∗ e2/LL4/Lε1/L
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Proof. We will assume for this proof that the Al are square matrices for all l ∈ [1..L]. This proof
holds as it is for the more general case, with more cumbersome notations, and with the trick used in
equation 33. For l ∈ [1..L], we denote by Al = UlΣlV

⊤
l be the SVD of Al. Let k ∈ [1..L]. We first

show by recurrence that we can write

Al = Ol−1(Σk +∆l)Ol
⊤ for l ∈ [1..L]

for an appropriate choice of orthogonal matrices (Ol)l∈[0..L] and symmetric matrices (∆l)l∈[1..L],
and such that : Ok−1 = Uk, Ok = Vk and ∥∆l∥F ⩽

√
ε|l − k| for l ∈ [1..k]. The recurrence is

symmetric for l ⩽ k and for l ⩾ k. We will prove it in the latter case. For l = k, the statement holds.
Let l ∈ [k..L− 1]. We assume we can write Al = Ol−1(Σk +∆l)Ol

⊤, with ∥∆l∥F ⩽
√
ε(l − k).

Let Q := A⊤
l Al −Al+1A

⊤
l+1. We have

Ol(Σk +∆l)
2Ol

⊤ = Ul+1Σ
2
l+1U

⊤
l+1 +Q.

Similar to the previous proof, we can write

Ol(Σk +∆l +∆)Ol
⊤ = Ul+1Σl+1U

⊤
l+1

with ∆ symmetric verifying

∥∆∥2F ⩽ ∥Q∥∗ ⩽ ε.

We can rewrite

Al+1 = Ul+1Σl+1V
⊤
l+1

= OlOl
⊤Ul+1Σl+1V

⊤
l+1

= Ol(Σk +∆l +∆)Ol
⊤Ul+1V

⊤
l+1.

We set Ol+1 = Vl+1U
⊤
l+1Ol, ∆l+1 = ∆l +∆ to get the desired result. We verify that ∥∆l+1∥F ⩽√

ε(l − k + 1).

Now that we have proven our lemma, let us observe that

L∏
l=1

Al = O0

(∏
l

(Σk +∆l)

)
OL

⊤

with ∥∥∥∥∥
L∏

l=1

Al

∥∥∥∥∥
2/L

=

∥∥∥∥∥∏
l

(Σk +∆l)

∥∥∥∥∥
2/L

.

Notice that
∥∥ΣL

k

∥∥2/L
2/L

= ∥Ak∥2F . Using the triangular inequality of A → ∥A∥pp for 0 < p ≤ 1, we
have

∣∣∣∣∣∣
∥∥∥∥∥

L∏
l=1

Al

∥∥∥∥∥
2/L

2/L

− ∥Ak∥2F

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∥∥∥∥∥

L∏
l=1

(Σk +∆l)

∥∥∥∥∥
2/L

2/L

−
∥∥ΣL

k

∥∥2/L
2/L

∣∣∣∣∣∣
≤

∥∥∥∥∥
L∏

l=1

(Σk +∆l)− ΣL
k

∥∥∥∥∥
2/L

2/L

.
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Furthermore, using the fact that ∥AB∥2/L ≤ ∥A∥2/L∥B∥F , we have∥∥∥∥∥
L∏

l=1

(Σk +∆l)− ΣL
k

∥∥∥∥∥
2/L

≤
L∑

l=1

(
L

l

)
∥ΣL−l

k ∥2/LLlεl/2

≤
L∑

l=1

(
L

l

)
rL/2∥ΣL−l

k ∥L/2
∗ Llεl/2

≤
L∑

l=1

(
L

l

)
rL/2∥Σk∥L/2(L−l)

∗ Llεl/2

≤rL/2(∥Σk∥L/2
∗ + Lε1/2)L − ∥Σk∥L

2/2
∗ )

≤rL/2∥Σk∥L
2/2

∗

((
1 + L

√
ε

∥Σk∥L∗

)L

− 1

)

≤rL/2∥Σk∥L
2/2

∗ eL2

√
ε

∥Σk∥L∗
≤rL/2∥Σk∥L(L−1)/2

∗ eL2ε1/2

where in the penultimate line, we used (1 + x)n − 1 ≤ enx whenever x < 1
n , and using the

assumption of the proposition.

Ultimately, we thus obtain

∣∣∣∣∣∣
∥∥∥∥∥

L∏
l=1

Al

∥∥∥∥∥
2/L

2/L

− ∥Ak∥2F

∣∣∣∣∣∣ ⩽ r∥Ak∥L−1
∗ e2/LL4/Lε1/L

which concludes the proof for the first inequality. The second inequality is obtained by using the
triangular inequality.

Note that the above proposition can be used to argue that optimizing a deep linear network of depth L
will very quickly co-optimize the Lp-Schatten norm of the product, with an exponential time constant
λ/L. In fact, even in a deep linear network, it can be shown that the matrices become exponentially
balanced using the same proof as in Lemma B.1. For the assumption ε ≤ 1

L4 minl ∥Al∥L∗ to hold,
it suffices that the matrix norm remains lower-bounded by a strictly positive value, a reasonable
assumption for loss functions of interest. Note however that this assumption is used only to obtain
the convenient upper bound expression, but the exponential decay is trivially true even without it.

B.5 On the boundness condition of A and B

We now examine the assumption that both A and B are bounded. It can be shown that, under
stochastic dynamics with momentum and for certain loss types, A and B will remain bounded with
high probability. Below, we present two examples of sufficient conditions on the loss function to
ensure this boundedness. Although one could formulate an expanding set of such sufficient conditions
to cover a broader class of losses that lead to bounded parameters, there are still practical scenarios
where certain losses might not satisfy these conditions. In these cases, practitioners often achieve
stable dynamics through hyperparameter tuning, and our theorem remains applicable, as it is designed
to accommodate these scenarios rather than exclude them. Therefore, the boundedness assumption is
broadly relevant in practice, particularly in training setups that use weight decay, and we leverage
this assumption to discuss the rank-regularization effect that impacts such training processes.

B.5.1 Sufficient conditions

Henceforth, we will refer by θ = (A,B).

20



Sufficient condition 1: Gradient flow with lower bounded loss function We consider a the
following gradient flow dynamics with weight decay:

θ̇ = −η(∇θL+ λθ)

η is the learning rate hyperparameter, and λ the weight decay strength.

A sufficient condition on the loss is that it is lower bounded, which is the case for most common
losses.

Indeed, the above dynamic is the gradient flow dynamic of the loss L′(θ) := L(θ) + λ∥θ∥2. Given
that L′ is also lower bounded, and that L′(θt) is a monotonically decreasing function of time, L′(θt)
must converge to a constant real value, i.e. L(θt)+λ∥θt∥2 →t→∞ c for some c. If ∥θ∥ is unbounded
from above, then necessarily L is unbounded from below, which is a contradiction.

Sufficient condition 2: Gradient flow with momentum with Lipschitz gradient We consider a
the following gradient flow dynamics with momentum and decoupled weight decay:

Ġ = µ(∇θL−G)

θ̇ = −η(G+ λθ)

where G is the exponential average of the gradient of θ. µ is the momentum hyperparameter, η the
learning rate, and λ the weight decay strength.

A sufficient condition on the gradient is to be min(1, ηλ
µ )-Lipschitz with respect to the parameters θ

sufficiently far, i.e. for ∥θ∥ > P for a given P :

The momentum makes the analysis of the dynamics more complicated. However, defining F =[
θ
G

]
, and M =

(
ηλ η
0 µ

)
and U =

[
0
∇θL

]
one can rewrite the equations as:

Ḟ = −MF + µU

The derivative of the squared norm of F verifies:

d

dt
∥F∥2 = Tr ḞFT

= −TrMFF⊤ + µTrU⊤F

⩽ −min(ηλ, µ)∥F∥2 + µTrU⊤F

⩽ −min(ηλ, µ)∥F∥2 + µ∥∇θL∥∥F∥

= µ∥F∥
(
∥∇θL∥ −min(1,

ηλ

µ
)∥F∥

)
⩽ µ∥F∥

(
∥∇θL∥ −min(1,

ηλ

µ
)∥θ∥

)
The dynamics of F are flow dynamics. Whenever ∥F∥ reaches P , its norm is decreasing. ∥F∥ can
thus never exceed P . As ∥F∥ is an upperbound on ∥θ∥, the same holds for ∥θ∥. We also observe
that the Lipschitz condition doesn’t need to hold for all θ > P . In fact, it suffices that it holds
for any borderless submanifold of codim -1 (for example the sphere of radius M) that contains the
initialization point.

Note on stochasticity To deal with stochasticity, we consider similar equations:

dG = µ(∇θLdt+ dW −Gdt)

dθ = −η(G+ λθ)dt
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which become:
dF = −MFdt+ µUdt+ µdW

The integral form is:

F = F (0) + µe−tM

∫
esMUds+ µe−tM

∫
esMdW

The process can diverge because of the stochasticity. However, similarly to proposition B.2, we
can fix for any δ > 0 an upper bound on W that holds with probability at least 1 − δ; this allows
to bound the contribution of the stochasticity. We deal with the gradient component similar to the
non-stochastic proof.

B.5.2 Pathological examples where the boundedness does not hold

An example of a loss for which the parameters will diverge is when we allow losses to be negative,
and diverge to minus infinity "stronger" than the weight regularization term.

An obvious, albeit constructed such loss is L(AB⊤) = −∥AB⊤∥2. Then, the gradient of L w.r.t. A
(resp. B) is∇AL = −AB⊤B (resp. ∇BL = −BA⊤A). Even with the decay term, one can see that
if A,B are initialized to be e.g. orthogonal matrices scaled by some α > λ, both A,B will diverge
to infinity.

Such negatively unbounded objective functions to be minimized may be found in e.g. the reinforce-
ment learning setting, when using undiscounted returns.

C Equilibrium condition of 2-layer Linear network

We assume λ > 0 and that the singular values of Y ⊤X are all non-zero and distinct.

We start with the following set of equations:

λB⊤ = A⊤(S −AB⊤) (34)

λA = (S −AB⊤)B (35)

Clearly, (34) implies

λB⊤B = A⊤(S −AB⊤)B (36)

λA⊤A = A⊤(S −AB⊤)B (37)

and thus that B⊤B = A⊤A.

Furthermore, (34) also implies

λAB⊤ = AA⊤(S −AB⊤) = AA⊤S −AA⊤AB⊤ (38)

λAB⊤ = (S −AB⊤)BB⊤ = SBB⊤ −AB⊤BB⊤ (39)

Using B⊤B = A⊤A, we get that AA⊤S = SBB⊤.

Denoting by ai, bi the i-th row of A,B, for any i, j ∈ [1..d1,3]
2, we have sia

⊤
i aj = sjb

⊤
i bj and

sja
⊤
j ai = sib

⊤
j bi. Thus, ∥ai∥2 = ∥bi∥2, and a⊤i aj = b⊤i bj = 0, since si, sj are distinct and

positive. Taken together, AA⊤ is a diagonal matrix, which we denote by D. We have D =
diag((∥ai∥2)i∈[1..d1,3]).

In particular, (38) implies λAB⊤ = D(S −AB⊤), i.e. (λI +D)AB⊤ = DS. Because the entries
of D are positive, (λI + D) is invertible, and thus AB⊤ = (λI + D)−1DS. In other words, the
off-diagonal entries of AB⊤ are zero, i.e. a⊤i bj = 0 for all i ̸= j, i, j ∈ [1..d1,3]

2.

In particular, for a given i, we have

λa⊤i bi = ∥ai∥2(si − a⊤i bi) (40)

λ∥ai∥2 = (si − a⊤i bi)a
⊤
i bi (41)

Using the positivity of si and λ, one can see that necessarily, ai = bi.
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D On the link between the full loss and the restricted loss

In the theoretical section, we study a pruned version of the total losses:

LL2(A,B, θ) := L(AB⊤, ) +
λ

2
(∥A∥2 + ∥B∥2),

L∗(AB⊤, θ) := L(AB⊤) + λ∥AB⊤∥∗,

where the remaining parameters are not accounted for. This in fact still accounts for the general case.
Indeed:

• stationary points of LL2 will be also stationary in (A,B), hence Lemma 3.2 still holds. In
fact, the latter condition suffices.

• For theorem 3.3, the same proof B.3 shows that (A,B, θ) is a local minima of LL2 iff
1) (W = AB⊤.θ) is a local minima of L∗ constrained to matrices W of rank r and 2)
A⊤A = B⊤B

• in the proof B.4.1 of theorem 3.4, the gradient G of the first lemma now hides a dependence
in θ, but the proof still hold as is. In the second lemma, the gradient Gt depends on the time,
and is indirectly hiding a dependence on θ.

E Link between solutions of AdamW and L2-regularization

Consider the following dynamic induced by AdamW, with λ > 0:

Gt ← β1 ·Gt−1 + (1− β1) · ∇WL(Wt)

Bt ← β2 ·Bt−1 + (1− β2) · ∇WL(Wt)
2

Ĝt ← Gt/(1− βt
1)

B̂t ← Bt/(1− βt
2)

Wt+1 ←Wt − η ·
(
Ĝt/

(√
B̂t + ε

)
+ λWt

)
where η represents the learning rate and β1, β2, ε are the common hyperparameters of Adam, Wt is
the parameter at time t, and where the various operations are applied element-wise.

Note that the term −λWt stems from weight decay.

If the dynamic converges, then necessarily, G∞ = ∇WL(W∞), B∞ = (∇WL(W∞))2, and
thus λW∞ = −∇WL(W∞)

|∇WL(W∞)|+ϵ . Clearly, this implies that λ|W∞| < 1. If we further assume that
λ|W∞| ≪ 1, then the condition becomes ϵλW∞ ≈ −∇WL(W∞), which is the equilibrium point
of a L2-regularized loss with regularization strength ϵλ

2 . Thus, the stationary points of the AdamW
optimizer can in practice correspond to stationary points of L2-regularized loss, and thus the same
low-rank inducing solutions can be found.

We show in Fig. 5 a toy experiments illustrating the equivalence in the solutions found by AdamW with
decay strength λWD and hyperparameter ϵ, with those found by Adam with L2-regularization with
regularization strength λL2 = λWDϵ. In particular, we illustrate how a factorized parametrization
in this setting will still result in solutions that minimize the nuclear norm, even when trained with
AdamW.

F Pretrained foundation models: ViT

We provide in Figure 6 the ViT counterpart of Figure 4.
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Figure 5: Trajectory of w1, w2 in the 2D plane when optimizing the underlying parameter for various
hyperparameters. At every coordinate in the plane, the loss is defined as the squared distance to the
surface S in orange. The red (resp. blue) cross represents the points on S minimizing the L2-norm
(resp. L1-norm). Left: w1, w2 are directly parametrized and optimized by AdamW with decoupled
weight decay (in solid line) or Adam with L2-regularization (in dotted line). As conjectured, the
convergence point of AdamW given the hyperparameter ϵ and decay strength λwd corresponds to that
of the equilibrium point of the L2-regularized loss with regularization strength λL2 = λwdϵ. Right:
w1, w2 are parameterized as a product of two scalars, i.e. w1 = a1b1, w2 = a2b2, where a1, b1, a2, b2
are now optimized by AdamW or Adam with L2 regularization. Again, the two optimizers find
the same convergence point for equivalent hyperparameters. However, the solution found now
corresponds to those of the loss regularized by the L1-norm of w1, w2, (corresponding to the nuclear
norm for scalars) as predicted.

Figure 6: Analyses of attention layers in the pre-trained Vision Transformer [Wu et al., 2020],
available on huggingface under the id "google/vit-base-patch16-224-in21k". The leftmost (resp.
center left) shows the squared norm of every row of WQ (resp. WV ), for the first head of each
layer, against the norm of the corresponding row of WK (resp. column of P ). The condition
WKW⊤

K = WQW
⊤
Q would require these norms to be equal, which in fact is mostly true. While the

model has not reached a stationary point, this indicates the optimization has advanced enough for this
sufficient condition for L∗ to be identical to LL2 to emerge. In fact, the centre right (resp. rightmost)
plot shows the scatter plot mapping the Frobenius norm against the nuclear norm for all heads across
all layers. The two norms almost perfectly coincide.

G Language modelling experimental details

Here, we present details of our language modeling experiments, employing standardized values
from the literature and consistent, untuned hyperparameters across all trials. Unless specified
otherwise, we utilize the conventional GPT-2 transformer architecture with LayerNorm (Ba et al.,
2016), incorporating MLPs between self-attention layers and applying skip-connections after each
layer. Training is conducted using a standard (autoregressively) masked cross-entropy loss, omitting
an input embedding layer but incorporating an output projection before computing logits. Further
details can be found in Table 2.
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Table 2: Hyperparameters for language modelling experiments.

Hyperparameter Value

Dataset The pile [Gao et al., 2020]
Tokenizer GPT-2 tokenizer - we append a special "EOS" token between every sequence
Context size 756
Vocabulary size 50257
Vocabulary dim 756
Optimizer Adam [Kingma and Ba, 2015] with ϵ = 1e−8, β1 = 0.9, β2 = 0.95
Weight decay See main text
Batchsize 128
Gradient clipping Global norm of 1.
Positional encodings We add standard positional encodings.
Dropout We use an embedding dropout of 0.1 right after adding positional encodings.
Architecture details 12 layers, 12 heads, key size 64, token size 756, no input- but output-embedding
Weight init W ∼ N (0, σ2) with σ = 0.02 and bias parameter to zero. We scale all

weight matrices before a skip connection with 1

2
√
N

with N the number of layers.
Learning rate sched-
uler

Linear warm-up starting from 1e−6 to 1e−3 in the first 8000 training steps, cosine
annealing to 10% of the learning rate after warm-up for the end of training

MLP size Widening factor 4 i.e. hidden dimension 4 ∗ 756 with ReLU
non-linearities [Hahnloser et al., 2000]

Figure 7: The rank of weight matrix products W⊤
KWQ and PWV averaged across heads of layer 7

(left and outer left) and layer 9 (right and outer right) of an autoregressive transformers trained on
the Pile [Gao et al., 2020]. For both layers, the decay strength applied to attention layers is varied,
while keeping the strength for all other layers fixed. In all cases, we observe again that rank reduction
correlates strongly with weight decay strength when optimizing with AdamW.
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