
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MASKED TEMPORAL INTERPOLATION DIFFUSION FOR
PROCEDURE PLANNING IN INSTRUCTIONAL VIDEOS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we address the challenge of procedure planning in instructional
videos, aiming to generate coherent and task-aligned action sequences from start
and end visual observations. Previous work has mainly relied on text-level super-
vision to bridge the gap between observed states and unobserved actions, but it
struggles with capturing intricate temporal relationships among actions. Building
on these efforts, we propose the Masked Temporal Interpolation Diffusion (MTID)
model that introduces a latent space temporal logical interpolation module within
the diffusion model. This module leverages a learnable interpolation matrix to
generate intermediate latent features, thereby augmenting visual supervision with
richer mid-state details. By integrating this enriched supervision into the model,
we enable end-to-end training tailored to task-specific requirements, significantly
enhancing the model’s capacity to predict temporally coherent action sequences.
Additionally, we introduce an action-aware mask projection mechanism to restrict
the action generation space, combined with a task-adaptive masked proximity loss
to prioritize more accurate reasoning results close to the given start and end states
over those in intermediate steps. Simultaneously, it filters out task-irrelevant ac-
tion predictions, leading to contextually aware action sequences. Experimental
results across three widely used benchmark datasets demonstrate that our MTID
achieves promising action planning performance on most metrics. The code is
available at https://anonymous.4open.science/r/MTID-E2E3/README.md.

1 INTRODUCTION

Recently, procedure planning has exhibited critical reasoning capability for solving real-world chal-
lenges in complex domains, such as robotic navigation (Sermanet et al., 2024; Bhaskara et al., 2024)
and autonomous driving (Wang et al., 2024; Liao et al., 2024). Among them, procedure planning
in instructional videos (Zhao et al., 2022; Wang et al., 2023b; Li et al., 2023) has been widely con-
cerned because of its wide application scenarios, which involve identifying and generating coherent
action sequences that align with the task’s objectives, given the start and end visual observations.

In the field of procedure planning in instructional videos, the primary challenge lies in modeling
the temporal evolution mechanism among actions and identifying pertinent conditions that can ef-
fectively steer the generation of intermediary actions in scenarios where information is scarce. As
depicted in Figure 1(a), many scholars have resorted to capturing different forms of auxiliary in-
formation about the intermediate states to bridge the gap between observed states and unobserved
actions. For example, event-based supervision (Wang et al., 2023a) leverages key task events to help
the model learn temporal action structures, while task label supervision (Wang et al., 2023b) uses
task-specific labels for better alignment with the task objective. The probabilistic procedure knowl-
edge graph (Nagasinghe et al., 2024) provides structured knowledge to enhance the understanding
of action dependencies. Additionally, Niu et al. (2024) leverage large language models (LLMs) to
describe state changes, improving the model’s grasp of causal relationships by combining visual
and language descriptions. However, all these methods are limited to providing text-level supervi-
sion, resulting in less detailed and comprehensive information, and failing to precisely capture the
temporal relationships between actions. Additionally, these methods decouple the acquisition of
supervisory information from the intermediate action reasoning process, hindering effective collab-
oration and interaction between the two. Consequently, it becomes challenging to fully integrate and
adapt to current action reasoning tasks.

1

https://anonymous.4open.science/r/MTID-E2E3/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The core idea to solve procedure planning with previous methods and ours.

Based on the above analysis, we propose the Masked Temporal Interpolation Diffusion (MTID)
model for procedure planning in instructional videos. As shown in Figure 1(b), the core concept is
to leverage intermediate latent visual features, generated synchronously by a latent space temporal
logical interpolation module, to provide comprehensive visual-level information for mid-state super-
vision. In the meanwhile, the generated visual features are directly injected into the action reasoning
model, ensuring the generation of intermediate supervision information can be effectively applied
to the current action reasoning task through end-to-end training.

Specifically, MTID comprises three core components: a task classifier, a latent space temporal logi-
cal interpolation module, and a diffusion model framework that integrates both a U-Net and a DDIM
strategy. Additionally, MTID inherits the input matrix, conditional projection, U-Net model, and
MSE loss from PDPP. In the first stage, a transformer-based classifier predicts the task class label c
for the entire instructional video, given the start and end observations. This prediction serves as the
foundation for subsequent reasoning and action generation. The latent space temporal logical inter-
polation module is designed to capture and model temporal relationships. It employs an observation
encoder to transform the visual features of the observations into latent features that maintain tempo-
ral dependencies and discard object details. A latent space interpolator then generates intermediate
features using a learnable interpolation matrix, which dynamically adjusts the interpolation ratio to
fit task-specific requirements. These interpolated features are refined through transformer blocks,
enhancing their temporal coherence and capturing the dependencies between action sequences. In
the third stage, during the denoising phase for generating action sequences, the input matrix is con-
structed by concatenating the task class label, observed visual features, and Gaussian noise sampled
from N (0, I). A masked projection is applied to exclude irrelevant actions, ensuring that the gen-
erated actions remain within the desired range. To accelerate inference, DDIM is used throughout
the iterative process. To further ensure task relevance, a task-adaptive masked proximity loss is in-
troduced. This loss function gradually decreases its focus toward the central features, reinforcing
supervision on intermediate latent features while penalizing irrelevant actions, thereby constraining
the generation process. By leveraging detailed information from both the start and end observations
Vs and Vg , our model accurately predicts target action sequences, as demonstrated by experimental
results on the CrossTask, COIN, and NIV datasets.

The main contributions of this paper are as follows:
• We propose a Masked Temporal Interpolation Diffusion model with a mask to limit action initial-

ization and a task-adaptive masked proximity loss to enhance accuracy.
• We use a latent space temporal logical interpolation module to extract intermediate visual features

with temporal relationships from the start and end states to guide the diffusion process.
• Extensive experiments are conducted on several widely used benchmarks, showing significant

performance improvements on multiple tasks using the proposed method.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Procedure Planning in Instructional Videos. Procedure planning involves generating goal-
directed action sequences from visual observations in unstructured videos. Our work builds on
PDPP (Wang et al., 2023b), which models action sequences using diffusion processes. Earlier ap-
proaches focused on learning sequential latent spaces (Chang et al., 2020) and adversarial policy
learning (Bi et al., 2021). Recent methods introduced linguistic supervision for step prediction (Zhao
et al., 2022), mask-and-predict strategies for step relationships (Wang et al., 2023a), and breaking
sequences into sub-chains by skipping unreliable actions (Li et al., 2023). KEPP (Nagasinghe et al.,
2024) incorporated probabilistic knowledge for step sequencing, while SCHEMA (Niu et al., 2024)
tracked state changes at each step. However, none of these methods focus on the visual-level tempo-
ral logic between actions. Our approach introduces mid-state temporal logical supervision to capture
these relationships, resulting in more accurate and efficient predictions.

Diffusion Probabilistic Models for Long Video Generation. Recent advances in diffusion proba-
bilistic models (Croitoru et al., 2023), originally popularized for image generation (Rombach et al.,
2022), have achieved significant progress in generating long video sequences (Weng et al., 2024;
Zhou et al., 2024a; Jiang et al., 2024). StreamingT2V (Henschel et al., 2024) excels in producing
temporally consistent long videos with smooth transitions and high frame quality, overcoming the
typical limitations of short video generation. StoryDiffusion (Zhou et al., 2024b) further enhances
sequence coherence through consistent self-attention, enabling the creation of detailed, visually co-
herent stories. These innovations address challenges like maintaining temporal coherence and gen-
erating realistic motion, inspiring the implementation of auxiliary temporal coherence mechanisms
in our approach.

3 METHOD

3.1 OVERVIEW

Following Chang et al. (2020), given an initial visual observation Vs and a target visual observation
Vg , both are short video clips indicating different states of the real-world environment extracted from
an instructional video, the procedure planning task aims to generate a sequence of actions a1:T that
transforms the environment from Vs to Vg , where T denotes the number of planning time steps. This
problem can be formulated as p(a1:T | Vs, Vg).

Considering the weak temporal reasoning ability caused by the absence of intermediate visual states,
especially in long video scenarios, we propose the Masked Temporal Interpolation Diffusion
(MTID) framework, which employs a denoising diffusion model to rapidly predict the intermedi-
ate action sequence a1:T . As outlined in the following formula, MTID decomposes the procedure
planning task into three sub-problems,

p(a1:T | Vs, Vg) =

∫∫
p(a1:T | υ1:M , c, Vs, Vg)p(υ1:M | Vs, Vg)p(c | Vs, Vg)dυ1:Mdc. (1)

The first sub-problem entails capturing information about the task to be completed about the whole
instructional video, serving as the basis for subsequent reasoning. As shown in Figure 2, this task
supervision stage solves a standard classification problem using a transformer encoder to extract
features from observation pair {Vs, Vg} and transform them into task class label c.

The second sub-problem focuses on reconstructing M intermediate visual features υ1:M from Vs and
Vg to address the lack of mid-state visual supervision and reveal hidden temporal logic within the
action sequences, which is achieved through our latent space temporal logical interpolation module.

The final sub-problem involves generating action sequence a1:T based on the task information and
interpolated intermediate features. Specifically, we first construct the input matrix x̂N for the denois-
ing steps, which consists of three dimensions. The task class dimension contains the captured task
information c for each reasoning step. The observation dimension contains the visual observations
of the start and goal states {Vs, Vg}, where the intermediate states are set to zero. The action dimen-
sion ā1:T represents the target intermediate action sequence, which is initialized by ϵ ∼ N (0, I)
and further constrained by our action mask mechanism to reduce the action space to be predicted.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Overview of our Masked Temporal Interpolation Diffusion (prediction horizon T = 3).
With a transformer classifier to guide from observations, x̂n is processed in a U-Net with latent space
module for temporal supervision. Starting with denoising through masked projection, we derive the
final actions needed to compute the task-adaptive masked proximity loss for iterative optimization.

Hence, the iteration matrix x̂n ∈ RT×(C+A+O) is expressed as,

x̂n =

[
c c · · · c c
â1 â2 · · · âT−1 âT
Vs 0 · · · 0 Vg

]
, (2)

where n ranges from 0 to N , C is the number of task classes, A is the number of actions and O
is the observation visual feature dimension. Next, the intermediate latent features generated from
the latent space temporal logical interpolation module will be injected into the diffusion model to
iteratively optimize the matrix x̂n. During the iteration process, we adopt DDIM to accelerate the
sampling process with fewer steps while maintaining strong performance. Lastly, we introduce the
task-adaptive masked proximity loss Ldiff to enhance the reliability of the reasoning results.

3.2 MTID: MASKED TEMPORAL INTERPOLATION DIFFUSION

3.2.1 PRELIMINARIES

Denoising Diffusion Implicit Model (DDIM) (Song et al., 2021) improves sampling efficiency by
making the reverse process deterministic, which reduces stochastic noise and establishes a direct
mapping between the initial noise matrix x̂N and the final output matrix x̂0 across N non-Markovian
steps. This approach reduces the number of steps needed while preserving sample quality.

Based on these advantages, we adopt the DDIM sampling strategy with the U-Net model (Ron-
neberger et al., 2015) for its ability to accelerate sampling with fewer steps while maintaining strong
performance. This is especially useful in scenarios where the quality of results remains comparable
to that of Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020; Nichol & Dhariwal,
2021), despite its deterministic approach.

The forward process is parameterized as:
x̂N =

√
ᾱN x̂0 +

√
1− ᾱN ϵ, (3)

where ᾱN =
∏N

s=1 αs, ϵ ∼ N (0, I), and αs = 1 − βs, which represents the noise schedule
controlling the amount of Gaussian noise added at each step s. The forward process starts with the
original data x̂0 and progressively adds noise, resulting in the final noisy matrix x̂N .

In DDIM, the reverse process is defined as:

x̂n−1 =
√
ᾱn−1

(
x̂n −

√
1− ᾱnfθ (x̂n)√

ᾱn

)
+
√

1− ᾱn−1 · fθ (x̂n) , (4)

where fθ (x̂n) is the neural network’s prediction of the noise component added to x̂n. This reverse
process reconstructs the original data x̂0 from x̂N by iteratively removing the noise introduced dur-
ing the forward diffusion process. Unlike DDPM, DDIM’s deterministic reverse process improves

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Latent space temporal logical interpolation module. (b) Residual temporal block & cross-attention module.

Figure 3: Module in Figure 3a generates temporally coherent latent features from observations,
while the block in Figure 3b refines these features with temporal dependencies, guiding coherent
action sequence generation.

sampling efficiency by directly mapping the noisy input x̂N to the final output x̂0. This makes
DDIM an efficient method for generating or enhancing samples with fewer steps.

3.2.2 LATENT SPACE TEMPORAL LOGICAL INTERPOLATION

As shown in Figure 3a, the Latent Space Temporal Logical Interpolation Module consists of
three core components: an observation encoder, which transforms observation visual features into
latent features; a latent space interpolator, which generates multiple features to fill the intermediate
supervision; and transformer encoder blocks, which refine the generated features and enhance the
module’s ability to model the temporal correlations among action sequences.

Specifically, this module first employs an observation encoder E, consisting of convolutional layers,
to transform the visual observations Vs and Vg into their respective latent features Ls and Lg:

Ls, Lg = E(Vs, Vg). (5)

In the latent space, we perform linear interpolation between Ls and Lg to generate a sequence of
interpolated features {I1, I2, . . . , IM}. Unlike fixed linear interpolation, our method dynamically
adjusts the interpolation through the learnable interpolation matrix ϕ ∈ RM×O to facilitate smooth
and task-specific transitions. This matrix, restricted between 0 and 1, is responsible for weighting
the latent features Ls and Lg to generate the intermediate latent features as follows:

ϕ = Sigmoid(W · τ + k),

Ij = (1− ϕj) · Ls + ϕj · Lg,
(6)

where W ∈ RM×O and k ∈ RM×O are the parameters of the linear layer, and O represents the
observation dimension. The matrix τ ∈ RM×O is a learnable matrix initialized with a constant
value, controlling a variable ratio between Ls and Lg . This method requires no parameter tuning
and offers better adaptability to different tasks. The number of latent features M depends on the
number of residual temporal blocks in the model.

The sequence of interpolated features {I1, I2, . . . , IM} is then passed through a series of transformer
encoder blocks TF to obtain the enhanced latent features:

F1, F2, . . . , FM = TF (I1, I2, . . . , IM). (7)

The self-attention mechanism in the transformers captures dependencies between latent features
at different time steps by computing attention scores across all latent features. Stacking multiple
transformer blocks allows the model to iteratively refine these features, ensuring that temporal and
contextual relationships are effectively learned.

To integrate the interpolated latent features {F1, F2, . . . , FM} into the model during the denoising
process, we incorporate cross-attention layers (Khachatryan et al., 2023) into the residual temporal
blocks of the U-Net, as shown in Figure 3b. This allows the model to dynamically focus on relevant
latent features through a learnable matrix, enhancing its ability to capture complex relationships
with more latent temporal logical information and improving the quality of action predictions.

In this setup, the latent feature Fj , processed through a linear layer, serves as the key and value,
while x̂n, processed through a convolutional block and combined with t (sampled from random

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

integers), acts as the query. The cross-attention is computed as:

x̂n = softmax

(
[CB(x̂n) + TM(t)] · LFT

j√
O

)
· LFj , (8)

where CB denotes a 1D convolution block, TM represents a time MLP, and LFj refers to the result
obtained from passing Fj through a linear layer. This design enables the model to effectively capture
temporal logical relationships, thereby improving the overall quality of action prediction.

3.2.3 MASKED PROJECTION FOR INITIALIZATION

While our model handles procedure planning tasks effectively, the denoising sampling process in
diffusion models does not always guarantee that the generated actions fall within the desired range.
To mitigate this issue, we introduce a masked projection that constrains the action space during
the training denoising process. This approach is inspired by the masked latent modeling scheme
proposed by Gao et al. (2023).

Since each task has a specific action scope, we activate only the actions associated with the current
task class label c and deactivate the others. When constructing the input matrix x̂N for the denoising
process, we add the initial Gaussian noise solely to the active action positions, while setting the
non-active action positions to zero. This process can be expressed as follows:

ât,d =

{
ϵ, if d ∈ Task(c)

0, if d /∈ Task(c)
, (9)

where d denotes the action ID spanning the action dimension A, and ϵ ∼ N (0, 1). The function
Task(c) represents the set of actions corresponding to task c. By restricting the initial noise in
the input matrix x̂N to the relevant action scope, the model ensures that the procedure planning is
confined to the active actions.

3.3 TASK-ADAPTIVE MASKED PROXIMITY LOSS

Our training process consists of two main stages: (a) training a task classifier to extract task-related
information based on the given start and goal visual observations. (b) utilizing a masked temporal
interpolation diffusion model fθ to fit the distribution of the target action sequence.

In the first stage, we minimize the cross-entropy loss between the predicted and true task classes to
optimize the transformer-based task classifier.

In the second stage, we employ a diffusion-based training scheme and introduce a task-adaptive
masked proximity loss to model the target action sequence, defined as follows:

Ldiff =

T∑
t=1

A∑
d=1

wt ·mt,d · (at,d − āt,d)
2, (10)

where at,d refers to the predicted action ID extracted from the final output x̂0, and āt,d denotes the
ground truth action. This loss function computes the weighted mean squared error (MSE) between
the predicted and ground truth actions at each planning time step. The term wt is a time-dependent
weight that controls the contribution of each time step, and mt,d is a mask matrix that highlights
specific action dimensions or planning time steps according to the task requirements.

The weight wt is defined as:

wt = w0 + (1− w0) ·
min(t, T − t+ 1)− 1

⌈T/2⌉ − 1
, (11)

where w0 is the initial weight. Since the task only observes the start and goal features, Vs and Vg ,
higher weights are assigned to predictions near these endpoints, thereby enhancing performance at
a1 and aT . Lower weights are assigned to the intermediate steps, allowing the model to balance the
endpoints and middle states without placing too much emphasis on the endpoints. Unlike Wang et al.
(2023b), who weights both start and end actions, our approach uses intermediate latent features for
continuous supervision. This provides more comprehensive guidance, allowing us to apply gradient
weights for better alignment of the entire action sequence.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison with other methods on CrossTask dataset. Features extracted by the
HowTo100M-trained encoder and settings of PDPP are marked with †, while other features are
provided directly by CrossTask. Note that we compute mIoU by calculating average of every
IoU of a single action sequence rather than a mini-batch.

T = 3 T = 4 T=5 T = 6
Models SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ SR↑
Random <0.01 0.94 1.66 <0.01 0.83 1.66 <0.01 <0.01
Retrieval-Based 8.05 23.30 32.06 3.95 22.22 36.97 2.40 1.10
WLTDO 1.87 21.64 31.70 0.77 17.92 26.43 — —
UAAA 2.15 20.21 30.87 0.98 19.86 27.09 — —
UPN 2.89 24.39 31.56 1.19 21.59 27.85 — —
DDN 12.18 31.29 47.48 5.97 27.10 48.46 3.10 1.20
PlaTe 16.00 36.17 65.91 14.00 35.29 55.36 — —
Ext-GAIL 21.27 49.46 61.70 16.41 43.05 60.93 — —
P3IV 23.34 49.96 73.89 13.40 44.16 70.01 7.21 4.40
EGPP 26.40 53.02 74.05 16.49 48.00 70.16 8.96 5.76
PDPP† 37.2 64.67 66.57 21.48 57.82 65.13 13.45 8.41
KEPP† 38.12 64.74 67.15 24.15 59.05 66.64 14.20 9.27
SCHEMA† 38.93 63.80 79.82 24.50 58.48 76.48 14.75 10.53
MTID (Ours)† 40.45 67.19 69.17 24.76 60.69 67.67 15.26 10.30

Additionally, a mask matrix mt,d is applied to selectively emphasize certain planning time steps and
action dimensions. This matrix is defined as:

mt,d =

{
ρ, if ât,d is active
1, otherwise

, (12)

where ρ is a scaling coefficient applied when the action is active, thereby increasing the penalty for
unrelated actions. By this mechanism, actions that are unrelated to the current task are discouraged
from appearing in the output, ultimately enhancing planning accuracy.

4 EXPERIMENTS

4.1 EVALUATION PROTOCOL

Datasets. We evaluate our MTID method on three instructional video datasets: CrossTask (Zhukov
et al., 2019), COIN (Tang et al., 2019), and NIV (Alayrac et al., 2016). CrossTask consists of
2,750 videos across 18 tasks, covering 105 actions, with an average of 7.6 actions per video. COIN
contains 11,827 videos spanning 180 tasks, with an average of 3.6 actions per video. NIV includes
150 videos from 5 tasks, with an average of 9.5 actions per video. We randomly split each dataset
into training (70% of videos per task) and testing (30%), following previous works (Sun et al., 2022;
Wang et al., 2023b; Niu et al., 2024).

Metrics. Following previous works (Sun et al., 2022; Zhao et al., 2022; Wang et al., 2023b; Niu
et al., 2024; Nagasinghe et al., 2024), we evaluate the models using three key metrics: (1) Success
Rate (SR) is the strictest metric, where a procedure is considered successful only if every predicted
action step exactly matches the ground truth. (2) mean Accuracy (mAcc) computes the average
accuracy of predicted actions at each time step, where an action is deemed correct if it matches
the ground truth action at the corresponding time step. (3) mean Intersection over Union (mIoU)
quantifies the overlap between the predicted procedure and the ground truth by calculating mIoU
as |{at}∩{ât}|

|{at}∪{ât}| , where {at} represents the set of ground truth actions, and {ât} denotes the set of
predicted actions.

4.2 RESULTS

Results for Task Classifier. The first stage of our approach involves predicting the task class based
on the given start and goal observations. We implement this using transformer models, replacing
the two-layer Res-MLP architecture employed in Wang et al. (2023b), and train it using a simple

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Classification results on all datasets.

CrossTaskHow COIN NIV
Models T = 3 T = 4 T = 5 T = 6 T = 3 T = 4 T = 3 T = 4

PDPP 92.43 92.98 93.39 93.20 79.42 79.42 100.00 100.00
MTID (Ours) 93.67 94.03 94.02 94.26 81.47 81.47 100.00 100.00

Table 3: Comparisons on COIN and NIV datasets. Note: only this table uses the KEPP’s settings.

COIN NIV

Models T = 3 T = 4 T = 3 T = 4
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

Random <0.01 <0.01 2.47 <0.01 <0.01 2.32 2.21 4.07 6.09 1.12 2.73 5.84
DDN 13.90 20.19 64.78 11.13 17.71 68.06 18.41 32.54 56.56 15.97 27.09 53.84
P3IV 15.40 21.67 76.31 11.32 18.85 70.53 24.68 49.01 74.29 20.14 38.36 67.29
EGPP 19.57 31.42 84.95 13.59 26.72 84.72 26.05 51.24 75.81 21.37 41.96 74.90
PDPP 19.42 43.44 - 13.67 42.58 - 22.22 39.50 86.66 21.30 39.24 84.96
KEPP 20.25 39.87 51.72 15.63 39.53 53.27 24.44 43.46 86.67 22.71 41.59 91.49
SCHEMA 32.09 49.84 83.83 22.02 45.33 83.47 27.93 41.64 76.77 23.26 39.93 76.75

MTID 30.44 51.70 59.74 22.74 49.90 61.25 28.52 44.44 56.46 24.89 44.54 57.46

cross-entropy (CE) loss. The classification results are presented in Table 2. Our method consistently
outperforms previous approaches in all evaluated aspects.

Comparisons on CrossTask. We evaluate performance on CrossTask using four prediction hori-
zons, with the results shown in Table 1. The results in Table 1 demonstrate that our method outper-
forms all other approaches across all metrics, except for the SR at T = 6, where our model ranks
second. These improvements are consistent across longer prediction horizons (T = 4, 5, 6) and
other step-level metrics, including mAcc and mIoU.

Comparisons on NIV and COIN. Table 3 presents our evaluation results on the NIV and COIN
datasets, demonstrating that our approach consistently outperforms or matches the best-performing
methods across both datasets. These results highlight that our model performs robustly across
datasets of varying sizes.

4.3 ABLATION STUDIES

Table 4: Ablation studies on our loss function.
Note: W: Weights on Both Sides, GW: Gradient
Weights, M: Mask.

ID MSE W GW M SR↑
1 ✓ 11.89
2 ✓ ✓ 13.90
3 ✓ ✓ 15.10
4 ✓ ✓ 13.26
5 ✓ ✓ ✓ 13.93
6 ✓ ✓ ✓ 15.26

Task-Adaptive Masked Proximity Loss. Ta-
ble 4 demonstrates the effectiveness of our
proposed loss strategy with T = 5 on the
CrossTask dataset, using Mean Squared Error
(MSE) as the base loss. The results show
that both the task-adaptive mask and gradient
weights improve performance. While MSE
alone results in lower scores, adding masks and
fixed weights provides moderate improvement.
Our approach, which incorporates gradient-
weighted loss and intermediate supervision,
significantly boosts performance by leveraging richer task-relevant features.

Table 5: Ablation study on projection and phase
when T = 3 on CrossTask dataset. Note: “CP”
denotes the condition projection.

Models SR↑ mAcc↑ mIoU↑
CP on both 39.17 66.49 68.38
MP on iteration 3.38 10.17 9.66
MP on initialization 40.45 67.19 69.17

Masked Projection. Table 5 demonstrates that
our masked projection (MP) on x̂N as input
to the U-Net enhances performance by filter-
ing out irrelevant actions, allowing the model
to focus on task-relevant actions. We also ex-
perimented with applying the mask during it-
erations, but this approach proved ineffective.
During the denoising process, the input matrix
contains both positive and negative logits, and
in some cases, negative values can improve the final score. Masking at this stage disrupted the
natural behavior of the logits and the diffusion denoising process. Furthermore, applying the mask

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

before the condition projection led to sub-optimal results due to inaccurate task labels. Therefore,
we apply the mask only after the condition projection for optimal performance.

(a) Ablation studies on different simple initializa-
tion methods.

(b) Ablation studies on different return values.

(c) Ablation studies on selection with different in-
terpolated features.

(d) Ablation studies on different fusion methods.

Figure 4: Ablation Studies for Interpolation Strategy. Figure 4a shows different initialization coef-
ficient values τ ; Figure 4b illustrates the features generated by the interpolator, where “copy(Lg)”
means Ij = Lg , and “copy(Lt)” indicates Ij = Ls for j ≤ M

2 and Ij = Lg for j > M
2 . In

Figure 4c, Ii to I−i indicates that we use interpolated features from the i-th to the last i-th for the
second interpolation. In Figure 4d, “all F” denotes that each cross-attention module receives F1:M

as input, “step F” means we input one FM
2

at the start and gradually increase the number of features
inputted towards both sides, and “-all” indicates that we omit inputting Fj during the upsampling,
middle-sampling, and downsampling processes in U-Net.

Table 6: Component ablation. Note: Int: Interpolation,
Enc: Encoder, Trans: Transformer.

ID Int Enc Trans SR↑ mAcc↑ mIoU↑
1 ✓ 37.86 65.42 67.32
2 ✓ ✓ 39.23 66.62 68.44
3 ✓ ✓ 39.49 66.81 68.68
4 ✓ ✓ ✓ 40.45 67.19 69.17

Latent Space Temporal Logical Inter-
polation Module. To evaluate the impact
of various components within the mod-
ule, we conduct ablation studies on the
CrossTask dataset with T = 3. Table 6
presents the results. The findings indi-
cate that the observation encoder effec-
tively transforms visual observations into
latent features, enhancing causal inference
and capturing temporal logic. The interpolator enriches these features by generating multiple inter-
polated versions, which aids in reasoning. The transformer encoder further refines these features,
ensuring both mathematical interpolation and logical consistency, thereby improving the model’s
inference capabilities.

Interpolation Strategy. Figure 4 illustrates our adapted interpolation strategies for contrast. Ini-
tially, we test different initialization τ values in Figure 4a. The highest score occurs when ϕ is
initialized to 1, which proves to be the most stable and achieves the best overall performance, indi-
cating that ϕ converges close to 1. Further experiments in Figure 4b compare the use of Ls, Lg , or a
combination of both through copying and direct return. The results show that directly returning Lg

performs well, suggesting that Vg may play a critical role in action sequence inference. Although
Ls and Lg are unadjusted features, the transformer encoder blocks can refine them to capture richer
temporal logic and filter out irrelevant details, resulting in relatively reasonable scores. Additionally,
we perform a second interpolation using the obtained Fj (Figure 4c). This experiment shows that
as the features shift towards the center (from Fi to F−i), performance declines due to the loss of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

original information, aligning with our intuition. In Figure 4d, we examine different fusion strate-
gies for cross-attention. The “all F” approach results in sub-optimal performance, potentially due
to the inclusion of numerous features being limited by the capacity of the layers, which diminishes
the amount of information each feature can carry and introduces disorder. Similarly, the “step F”
strategy may suffer from the same issue. When cross-attention is removed from various stages of the
U-Net, we observe that the more layers are removed, the worse the results become. However, when
all layers are removed, the results improve slightly, suggesting that introducing latent features into
the U-Net without sufficient information disturbs the original distribution, leading to sub-optimal
outcomes.

4.4 UNCERTAINTY MODELING

We present the uncertainty modeling results for CrossTask and NIV in Table 7. Two baselines from
Wang et al. (2023b) are used for comparison: the Noise baseline, which samples from random noise
and uses the given observations and task class condition to obtain results in a single step without the
diffusion process, and the Deterministic baseline, where x̂N = 0 and the model predicts a fixed
outcome. We evaluate performance using KL divergence, NLL, ModeRec, and ModePrec, as
outlined in Zhao et al. (2022).

Our approach outperforms the baselines on CrossTask, particularly in modeling uncertainty and
generating diverse plans. Compared to Wang et al. (2023b), our model excels in the deterministic
setting with T = 3, demonstrating its ability to capture latent temporal relationships even with fewer
time steps. For the NIV dataset, we observe that despite its small size, our diffusion-based process
still delivers improvements. Additional visualizations are provided in the appendix.

Table 7: The results of uncertain modeling on the CrossTask and NIV datasets.

CrossTask NIV
Metric Method T = 3 T = 4 T = 5 T = 6 T = 3 T = 4

KL-Div ↓
Deterministic 3.12 3.88 4.39 4.04 5.40 5.29
Noise 2.75 3.16 4.37 4.74 5.36 6.03
Ours 2.66 2.81 2.12 1.97 4.65 5.47

NLL ↓
Deterministic 3.70 4.45 4.98 5.34 5.48 5.42
Noise 3.33 4.04 4.95 5.32 5.44 6.12
Ours 3.24 3.69 3.22 3.27 4.74 5.56

ModePrec ↑
Deterministic 52.76 41.13 31.46 18.65 27.77 26.48
Noise 54.30 46.15 22.52 19.09 23.19 32.39
Ours 56.19 47.05 32.75 22.98 30.75 35.88

ModeRec ↑
Deterministic 31.71 20.55 18.70 4.63 26.48 21.57
Noise 43.92 22.35 21.53 17.53 32.39 23.75
Ours 47.34 37.97 39.64 35.03 35.88 29.90

5 CONCLUSION

In this paper, we introduced the Masked Temporal Interpolation Diffusion (MTID) model, specif-
ically designed for procedure planning in instructional videos. Our model employs a latent space
temporal logical interpolation module within a U-Net architecture to capture intermediate states and
temporal relationships between actions. By incorporating a task-adaptive masked strategy during
both inference and loss calculation, MTID improves the accuracy and consistency of generated ac-
tion sequences. Extensive experiments across the CrossTask, COIN, and NIV datasets demonstrate
that our model consistently outperforms existing methods on key metrics. For future work, we aim
to further optimize the memory efficiency of the model to handle larger datasets more effectively.
Additionally, refining the mask mechanism to enhance control over intermediate state generation
and exploring more diverse interpolation strategies remain promising directions. We also plan to
extend the application of the temporal interpolation module to broader procedural learning tasks,
including more complex conditional planning scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yazan Abu Farha and Juergen Gall. Uncertainty-aware anticipation of activities. In Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops, 2019.

Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, and Simon
Lacoste-Julien. Unsupervised learning from narrated instruction videos. In Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016.

Rashmi Bhaskara, Hrishikesh Viswanath, and Aniket Bera. Trajectory prediction for robot nav-
igation using flow-guided markov neural operator. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), 2024.

Jing Bi, Jiebo Luo, and Chenliang Xu. Procedure planning in instructional videos via contextual
modeling and model-based policy learning. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2021.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017.

Chien-Yi Chang, De-An Huang, Danfei Xu, Ehsan Adeli, Li Fei-Fei, and Juan Carlos Niebles.
Procedure planning in instructional videos. In European Conference on Computer Vision, 2020.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):
10850–10869, 2023.

Kiana Ehsani, Hessam Bagherinezhad, Joseph Redmon, Roozbeh Mottaghi, and Ali Farhadi. Who
let the dogs out? modeling dog behavior from visual data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer
is a strong image synthesizer. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Roberto Henschel, Levon Khachatryan, Daniil Hayrapetyan, Hayk Poghosyan, Vahram Tadevosyan,
Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Streamingt2v: Consistent, dynamic,
and extendable long video generation from text. arXiv preprint arXiv:2403.14773, 2024.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen, R Channing
Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, et al. Cnn architectures for
large-scale audio classification. In 2017 ieee international conference on acoustics, speech and
signal processing (icassp), 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Yuming Jiang, Tianxing Wu, Shuai Yang, Chenyang Si, Dahua Lin, Yu Qiao, Chen Change Loy, and
Ziwei Liu. Videobooth: Diffusion-based video generation with image prompts. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
are zero-shot video generators. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhiheng Li, Wenjia Geng, Muheng Li, Lei Chen, Yansong Tang, Jiwen Lu, and Jie Zhou. Skip-plan:
Procedure planning in instructional videos via condensed action space learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2023.

Haicheng Liao, Zhenning Li, Huanming Shen, Wenxuan Zeng, Dongping Liao, Guofa Li, and
Chengzhong Xu. Bat: Behavior-aware human-like trajectory prediction for autonomous driving.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated video
clips. In Proceedings of the IEEE/CVF international conference on computer vision, 2019.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

Kumaranage Ravindu Yasas Nagasinghe, Honglu Zhou, Malitha Gunawardhana, Martin Renqiang
Min, Daniel Harari, and Muhammad Haris Khan. Why not use your textbook? knowledge-
enhanced procedure planning of instructional videos. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2024.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, 2021.

Yulei Niu, Wenliang Guo, Long Chen, Xudong Lin, and Shih-Fu Chang. SCHEMA: State CHanges
MAtter for procedure planning in instructional videos. In The Twelfth International Conference
on Learning Representations, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, 2015.

Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta Dwibedi, Keerthana Gopalakrishnan,
Christine Chan, Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J Joshi, et al. Robovqa: Mul-
timodal long-horizon reasoning for robotics. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal plan-
ning networks: Learning generalizable representations for visuomotor control. In International
Conference on Machine Learning, 2018.

Jiankai Sun, De-An Huang, Bo Lu, Yun-Hui Liu, Bolei Zhou, and Animesh Garg. Plate: Visually-
grounded planning with transformers in procedural tasks. IEEE Robotics and Automation Letters,
7(2):4924–4930, 2022.

Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie
Zhou. Coin: A large-scale dataset for comprehensive instructional video analysis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

An-Lan Wang, Kun-Yu Lin, Jia-Run Du, Jingke Meng, and Wei-Shi Zheng. Event-guided proce-
dure planning from instructional videos with text supervision. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023a.

Hanlin Wang, Yilu Wu, Sheng Guo, and Limin Wang. Pdpp: Projected diffusion for procedure
planning in instructional videos. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, and Zhaoxiang Zhang. Driving into the
future: Multiview visual forecasting and planning with world model for autonomous driving. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Wenming Weng, Ruoyu Feng, Yanhui Wang, Qi Dai, Chunyu Wang, Dacheng Yin, Zhiyuan Zhao,
Kai Qiu, Jianmin Bao, Yuhui Yuan, et al. Art-v: Auto-regressive text-to-video generation with
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), 2018.

He Zhao, Isma Hadji, Nikita Dvornik, Konstantinos G Derpanis, Richard P Wildes, and Allan D
Jepson. P3iv: Probabilistic procedure planning from instructional videos with weak supervision.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Shangchen Zhou, Peiqing Yang, Jianyi Wang, Yihang Luo, and Chen Change Loy. Upscale-a-video:
Temporal-consistent diffusion model for real-world video super-resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024a.

Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffu-
sion: Consistent self-attention for long-range image and video generation. arXiv preprint
arXiv:2405.01434, 2024b.

Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk Cinbis, David Fouhey, Ivan Laptev, and
Josef Sivic. Cross-task weakly supervised learning from instructional videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

APPENDIX

A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE DETAILS

In the first learning stage, we aim to predict the task class label given the observations {Vs, Vg}.
We employ a simple 4-layer transformer model for this task and use cross-entropy loss to train the
model by comparing its output with the ground truth task class labels.

The classifier is a neural network based on the transformer architecture. It first embeds the input data
through a linear layer, after which the embedded data is processed by multiple stacked transformer
encoder layers. The output of the encoder layers is averaged and then passed through a series of
fully connected layers with ReLU activation functions. Finally, the processed data is passed through
a linear layer to generate the final output. Dropout layers are applied throughout the model to prevent
overfitting.

Next, our main model is based on a 3-layer U-Net (Ronneberger et al., 2015), similar to Wang
et al. (2023b), but adapted for temporal action prediction. Each layer consists of two residual tem-
poral blocks (He et al., 2016), followed by either downsampling or upsampling. Each residual
temporal block includes two convolutional layers, group normalization (Wu & He, 2018), Mish ac-
tivation (Misra, 2019), and a cross-attention module for feature fusion. Temporal embeddings are
generated via a fully connected layer and added to the output of the first convolution. To handle the
short planning horizon (T = {3, 4, 5, 6}), we employ 1D convolutions with a kernel size of 2, stride
of 1, and no padding for downsampling/upsampling used by Wang et al. (2023b), instead of the
max-pooling approach, ensuring the horizon length remains unchanged. The middle block consists
of only two residual temporal blocks.

The input matrix x̂n is a concatenation of the task class, action sequences, and observation features,
with a dimension of fusion dim = C + A + O, where C, A, and O represent the number of task
classes, action labels, and visual features, respectively. During the downsampling phase, the input
is embedded through [fusion dim → 256 → 512 → 1024], with the reverse process occurring
during the upsampling phase.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The latent space temporal logical interpolation module consists of three main components: an ob-
servation encoder, a latent space interpolator, and transformer encoder blocks. The observation
encoder reduces the input dimensionality using two 1D convolutional layers with ReLU activations.
The latent space interpolator generates intermediate features between two encoded representations
via linear interpolation, guided by a learnable linear layer initialized with matrix τ . The generated
matrix is passed through a Sigmoid function to compute Ij . Finally, standard transformer encoder
blocks apply attention mechanisms to enhance the temporal logical relationships in Fj , ultimately
producing transformed latent features with a shape of [M,O], where M refers to the number of
residual temporal blocks in the U-Net.

For the diffusion process, we employ a cosine noise schedule to generate {βn}Nn=1, which controls
the amount of noise added at each step. These values correspond to the variance of the Gaussian
noise introduced at each stage of diffusion.

A.2 DATASET DETAILS

Each video in the dataset is annotated with action labels and their corresponding temporal bound-
aries, denoted as {si, ei} for the i-th action, where si and ei represent the start and end times,
respectively. The total number of actions in the dataset is denoted as Num. We extract step se-
quences at:(t+T−1) from the videos, with the horizon T ranging from 3 to 6. Following the method
in previous work (Wang et al., 2023b), action sequences {[at, . . . , at+T−1]}Num−T+1

t=1 are generated
by sliding a window of size T over the Num actions. For each sequence, the video clip feature at
the start time of action at is used as the starting observation Vs, and the clip feature at the end time
of action at+T−1 is used as the goal state Vg . Both clips are 3 seconds in duration. The start and
end times of each sequence are rounded to ⌊st⌋ and ⌈et+T−1⌉, respectively, with the clip features
between these times used as Vs and Vg .

For the CrossTask dataset, we consider two types of pre-extracted features: (1) the 3200-dimensional
features provided by the dataset, which combine I3D, ResNet-152, and audio VGG features (Car-
reira & Zisserman, 2017; He et al., 2016; Hershey et al., 2017), and (2) features extracted using an
encoder trained on the HowTo100M dataset (Miech et al., 2019), as used in (Wang et al., 2023b). We
utilize the latter due to its smaller size. For the COIN and NIV datasets, we also use HowTo100M
features (Wang et al., 2023b) to maintain consistency and ensure fair comparison.

A.3 DETAILS OF METRICS

Previous works (Chang et al., 2020; Bi et al., 2021; Sun et al., 2022) computed the mIoU metric
over mini-batches, averaging the results across the batch size. However, this method introduces
variability depending on the batch size. For instance, if the batch size equals the entire dataset, all
predicted actions may be considered correct. In contrast, using a batch size of one penalizes any
mismatch between predicted and ground-truth sequences. To address this issue, we follow Wang
et al. (2023b) by standardizing mIoU calculation, computing it for each individual sequence and
then averaging the results, effectively treating the batch size as one. However, this approach may
result in our mIoU scores being lower than those reported by others.

A.4 TRAINING DETAILS

Following Wang et al. (2023b), we employ a linear warm-up strategy to train our model, with specific
protocols adjusted for different datasets. For the CrossTask dataset, we set the diffusion steps to 250
and train for 20,000 steps. The learning rate is linearly increased to 5 × 10−4 over the first 3,333
steps, then halved at steps 8,333, 13,333, and 18,333. For the NIV dataset, with 50 diffusion steps,
training lasts for 5,000 steps. The learning rate ramps up to 3×10−4 over the first 1,000 steps and is
reduced by 50% at steps 2,666 and 4,332. In the larger COIN dataset, we use 300 diffusion steps and
train for 30,000 steps. The learning rate increases to 1× 10−5 in the first 5,000 steps and is halved
at steps 12,500, 20,000, and 27,500, stabilizing at 2.5 × 10−6 for the remaining steps. Training is
performed using ADAM (Kingma, 2014) on 8 NVIDIA RTX 3090 GPUs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.5 DETAILS OF UNCERTAINTY MODELING

In the main paper, we investigate the probabilistic modeling capability of our model on the
CrossTask and COIN datasets, demonstrating that our diffusion-based model can generate both di-
verse and accurate plans. Here, we provide additional details, results, and visualizations to further
illustrate how our model handles uncertainty in procedure planning.

Details of Evaluating Uncertainty Modeling. For the Deterministic baseline, we sample once to
obtain the plan, as the result is fixed when the observations and task class conditions are given. For
the Noise baseline and our diffusion-based model, we sample 1,500 action sequences to calculate
the uncertainty metrics. To efficiently perform this process, we apply the DDIM (Song et al., 2021)
sampling method to our model, enabling each sampling process to be completed in 10 steps. This
accelerates sampling by 20 times for CrossTask and COIN, and by 5 times for NIV. It is important
to note that multiple sampling is only required when evaluating probabilistic modeling—our model
can generate a good plan with just a single sample.

Table 8: The results of uncertain modeling
on the COIN dataset.

Metric Method T = 3 T = 4

KL-Div ↓
Deterministic 4.47 4.40
Noise 5.12 4.88
Ours 4.74 4.47

NLL ↓
Deterministic 5.42 5.81
Noise 6.07 6.28
Ours 5.69 5.87

ModePrec ↑
Deterministic 34.04 32.47
Noise 23.16 22.18
Ours 28.83 26.91

ModeRec ↑
Deterministic 27.41 20.88
Noise 21.06 15.24
Ours 23.27 18.14

Additional Results on COIN. Results on the COIN
dataset are presented in Table 8. On the COIN
dataset, our model underperforms relative to the
Deterministic baseline. We attribute this to the
shorter action sequences, where reduced uncertainty
is more advantageous but less critical for long-
horizon procedural planning.

Visualizations for Uncertainty Modeling. In Fig-
ures 8a to 8d, we present visualizations of various
plans with the same start and goal observations, gen-
erated by our masked temporal interpolation diffu-
sion model on CrossTask for different prediction
horizons. We have observed that some results con-
tain repeated actions, which is due to the probabilis-
tic nature of our model’s prediction method, mak-
ing repeated action predictions unavoidable. The top
five predicted logits for the actions are passed through a softmax function, and the action with the
highest probability is selected to form the prediction figures.

B BASELINE METHODS

In this section, we describe the baseline methods used in our study.

• Random Selection. This method randomly selects actions from the available action space
within the dataset to generate plans.

• Retrieval-Based Approach. Given the observations {Vs, Vg}, this method retrieves the
nearest neighbor by minimizing the visual feature distance within the training dataset. The
action sequence associated with the retrieved neighbor is then used as the plan.

• WLT DO (Ehsani et al., 2018). This method employs a recurrent neural network (RNN)
to predict action steps based on the provided observation pairs.

• UAAA (Abu Farha & Gall, 2019). UAAA is a two-stage approach that uses an RNN-
HMM model to predict action steps in an auto-regressive manner.

• UPN (Srinivas et al., 2018). UPN is a path planning algorithm for physical environments
that learns a plannable representation to generate predictions. To produce discrete action
steps, a softmax layer is appended to the model’s output, as described in (Chang et al.,
2020).

• DDN (Chang et al., 2020). DDN is an auto-regressive framework with two branches de-
signed to learn an abstract representation of action steps and predict transitions in the fea-
ture space.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• PlaTe (Sun et al., 2022). PlaTe extends DDN by incorporating transformer modules into
its two branches for prediction tasks. PlaTe uses a different evaluation protocol compared
to other models.

• Ext-GAIL (Bi et al., 2021). Ext-GAIL addresses procedure planning using reinforcement
learning. Unlike our approach, Ext-GAIL divides the planning problem into two stages:
the first provides long-horizon information, which is then used by the second stage. In
contrast, our approach derives sampling conditions directly.

• P3IV (Zhao et al., 2022). P3IV is a transformer-based, single-branch model that incorpo-
rates a learnable memory bank and an additional generative adversarial framework. Similar
to our model, P3IV predicts all action steps simultaneously during inference.

• PDPP (Wang et al., 2023b). PDPP is a two-branch framework that models temporal de-
pendencies and action transitions using a diffusion process. Like our model, PDPP predicts
all actions simultaneously, refining predictions over multiple stages to enhance logical con-
sistency during inference.

• KEPP (Nagasinghe et al., 2024). KEPP is a knowledge-enhanced procedure planning
system that leverages a probabilistic procedural knowledge graph (P2KG) learned from
training plans. This graph acts as a “textbook” to guide step sequencing in instructional
videos. KEPP predicts all action steps simultaneously with minimal supervision, achieving
leading performance.

• SCHEMA (Niu et al., 2024). SCHEMA focuses on procedure planning by learning state
transitions. It employs a transformer-based architecture with cross-modal contrastive learn-
ing to align visual inputs with text-based state descriptions. By tracking intermediate states,
SCHEMA predicts future actions using a large language model to capture temporal depen-
dencies and logical transitions, improving action planning in instructional videos.

C ADDITIONAL ABLATION STUDIES

Model Size. Due to the large size of the COIN dataset, we adjust the model size by modifying
the U-Net architecture. As shown in Table 9, increasing the model size results in higher scores for
the COIN dataset. We believe that optimizing the model to be more memory-efficient could further
improve performance, which we plan to explore in future work. In Table 9, increasing the size to
512 does not improve the scores on CrossTask. We believe this suggests overfitting, indicating that
a model size of 256 is sufficient for this task.

Table 9: Ablation study on the role of model size on COIN and CrossTask datasets.

T = 3 T = 4
Dataset Size SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

COIN
128 23.01 45.44 51.93 19.69 45.32 55.06
256 28.84 50.44 57.86 21.64 48.06 59.52
512 30.90 52.17 59.58 23.10 49.71 60.78

CrossTask
128 23.01 45.44 51.93 19.69 45.32 55.06
256 40.45 67.19 69.17 24.76 60.69 67.67
512 37.94 65.16 67.43 21.97 58.30 66.15

Components of Observation Encoder. Table 10 presents the impact of different encoder compo-
nents. Based on this ablation study, the optimal model consists of two 1D convolution layers with
ReLU activation, which achieves the best balance between depth and activation, resulting in the
highest scores across all metrics. Adding more layers does not consistently improve performance,
and activation functions like ReLU play a key role in enhancing model effectiveness. We believe
that ReLU introduces non-linearity, enabling the network to capture temporal latent features more
effectively. Moreover, by setting negative values to zero, ReLU promotes sparse activation, which
may aid in the extraction and construction of latent features.

Transformer Classifier Type. We conduct ablation studies on the CrossTask and COIN datasets
to evaluate the impact of our transformer-based classifier. As shown in Tables 11 and 12, the in-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 10: Ablation study on the observation encoder components (T = 3, CrossTask).

Models SR↑ mAcc↑ mIoU↑
1 1d conv. layer w/ ReLU 39.71 66.91 69.05
2 1d conv. layers w/ ReLU (Ours) 40.45 67.19 69.17
3 1d conv. layers w/ ReLU 36.04 64.41 66.55
1 1d conv. layer w/o ReLU 39.32 66.70 68.91
2 1d conv. layers w/o ReLU 39.38 66.73 68.65
3 1d conv. layers w/o ReLU 37.77 65.06 67.61

Table 11: Ablation study on the role of classifier type on CrossTask dataset.

T = 3 T = 4 T=5 T = 6
Models SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ SR↑
PDPP (Res-MLP) 37.2 55.35 66.57 21.48 57.82 65.13 13.58 8.47
PDPP (Transformer) 39.08 66.32 68.47 22.48 60.72 66.13 13.77 8.63
MTID (Transformer) 40.45 67.19 69.17 24.76 60.69 67.67 15.26 10.30

clusion of the transformer-based classifier significantly boosts the performance of PDPP. Although
the improvements are modest for longer horizons, this highlights the effectiveness of our temporal
interpolation module on CrossTask compared to PDPP with the same transformer classifier. How-
ever, the classifier’s performance may also limit further improvements. Additionally, we observe
that even with incorrect task class labels during supervision, the model still achieves strong scores,
demonstrating its robustness, fault tolerance, and error correction capabilities.

(a) Ablation studies on different complex initial-
ization methods with max value 6.

(b) Ablation studies on different complex initial-
ization methods with max value 1.

Figure 5: Ablation studies for interpolation strategy. Note: “always 1” indicates that τ is initialized
to ‘1’; “linear ↑” denotes that the values in the matrix τ increase linearly, with the first column
initialized to ‘1’ and the last column set to ‘6’ in Figure 5a, with a gradual linear increase in between,
and from ‘0’ to ‘1’ in Figure 5b; “linear ↓” represents the reverse process. “square ↑” indicates that
the value of τ increases following a square progression. “↑ & ↓” refers to a variation similar to our
gradient loss weights, where the value first increases linearly and then decreases.

More Interpolation Strategies. We experimented with both linear and non-linear strategies, as
shown in Figure 5. In Figure 5a, we found that using a maximum value of ‘6’ led to poor results,
particularly for the “square ↑” and “square ↓” strategies, indicating a significant deviation from
the desired final value. When we reduced the maximum value to ‘1’, the results still remained
unsatisfactory, suggesting that the final value of τ consistently converged around ‘1’, resulting in
sub-optimal performance.

Number of Transformer Encoder Layers. Figure 6a shows the scores of three metrics across
different numbers of layers in the transformer encoder blocks. The results indicate that using fewer
layers (1 or 2) results in a significant drop in performance, with SR being the most adversely affected.
As the number of layers increases, the metrics stabilize, with notable improvements, especially in
SR, which shows a significant positive shift at 6 and 7 layers. In contrast, mAcc and mIoU show
more subtle variations, with slight positive changes as the number of layers increases, reflecting a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 12: Ablation study on the role of classifier type on COIN dataset.

T = 3 T = 4
Models SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑
PDPP (Res-MLP) 21.33 45.62 51.82 14.41 44.10 51.39
PDPP (Transformer) 24.02 48.03 55.21 17.36 46.12 55.82
MTID (Transformer) 28.84 50.44 57.86 21.64 48.06 59.52

(a) Ablation studies on the number of transformer en-
coder block layers.

(b) Ablation studies on the scale of mask loss.

(c) Ablation studies on the weights coefficient of loss. (d) Accuracy changes of different actions at vari-
ous time steps as epochs progress when T=5.

Figure 6: Combined ablation studies of different coefficients. Note: “t1” refers to the number of
transformer encoder layers in Figure 6a; “0.8” represents the value of ρ in loss function in Figure 6b;
and “w3” indicates the value of the gradient-weighted loss w0 in Figure 6c.

steady trend. These results suggest that an optimal configuration of 6 or 7 layers delivers the best
overall performance.

Scale of Mask Loss. Figure 6b illustrates the impact of different values of ρ on the loss function.
We observe that when ρ = 1.3, the scores are higher than for other values. Therefore, we adopt this
value.

Weight Coefficient of Loss. Figure 6c shows the results for different values of w0, the weight
coefficient of the loss function. The results indicate that when w0 is set to 7, the scores are higher
than for other values.

Table 13: Performance comparison of T and M.

Method SR↑ mAcc↑ mIoU↑
T 38.64 66.13 68.05
M 40.45 67.19 69.17

Ablation for Our Different Methods.Table 14 presents the effects of our proposed methods. The
results demonstrate that each component significantly enhances the model’s performance.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 14: Ablation studies on different components on three datasets. Note: M: Our latent space
temporal logical interpolation module, K: mask projection, L: task-adaptive masked proximity loss.
The results of ID 1 are from PDPP. The setting on CrossTask is from PDPP, and on COIN and NIV
is from KEPP.

ID M K L CrossTask COIN NIV

SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑
1 37.20 64.67 66.57 19.42 43.44 - 22.22 39.50 86.66
2 ✓ 39.03 66.49 68.26 28.80 50.20 58.51 25.56 37.65 50.78
3 ✓ 38.88 66.36 68.35 20.32 44.13 52.57 23.33 41.48 51.62
4 ✓ 38.57 66.02 68.17 25.63 48.03 56.88 24.44 42.47 54.46
5 ✓ ✓ 39.64 66.74 68.77 29.25 50.54 58.74 26.67 43.95 54.17
6 ✓ ✓ 39.71 66.65 68.83 29.46 50.83 58.84 27.04 42.72 54.5
7 ✓ ✓ 39.17 66.49 68.38 27.34 49.20 58.61 24.81 40.62 53.91
8 ✓ ✓ ✓ 40.45 67.19 69.17 30.44 51.70 59.74 28.52 44.44 56.46

D MORE ANALYSIS FOR METHODS

More Explanation for M . Our MTID diffusion model takes as input a matrix containing action
sequences with T timesteps and is based on U-Net, which contains M residual temporal blocks in
the downsampling, upsampling, and middle layers for directly diffusing and generating T interme-
diate target actions. To ensure that each intermediate layer contains valid auxiliary information, our
Latent Space Temporal Logical Interpolation Module needs to generate M intermediate auxiliary
features. Subsequently, we apply cross-attention in residual temporal blocks across the M interpo-
lated features and the entire input matrix rather than individual timesteps, enabling better temporal
integration. We also conducted experiments to demonstrate the effect of M. Our results showed that
using interpolated features only for T steps led to suboptimal performance. This also supports our
decision to use interpolated features across all M modules.

Upper Bound of Visual Features Supervision. The comparison presented in Table 15 reveals that
results vary depending on dataset characteristics, particularly size, task types, and average action
sequence lengths. To explain this, we categorize our interpolated features into two parts: simple
memory and hard temporal logical relationships. For instance, COIN, which has the largest dataset
size but the shortest sequences, demonstrates that interpolated features excel in tasks focused on
simple memory. In contrast, NIV, being the smallest dataset with the longest sequences, shows
comparable performance between real and interpolated features. Meanwhile, CrossTask, character-
ized by large size and long sequences, exhibits a significant performance gap favoring real features.
These findings highlight a trade-off where interpolated features perform well in simpler datasets but
struggle with complex temporal relationships in larger, more diverse datasets. This underscores the
necessity for improved interpolation methods to effectively manage complex, temporally diverse
datasets in future research.

Table 15: Combined results for CrossTask, COIN, and NIV datasets with interpolated features and
original real features.

T = 3 T = 4 T=5 T = 6
Dataset Method SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ SR↑

CrossTask Interpolated 40.45 67.19 69.17 24.76 60.69 67.67 15.26 10.30
Real 49.05 73.62 73.23 36.55 70.42 72.09 24.88 24.02

COIN Interpolated 30.90 52.17 59.58 23.10 49.71 60.78 – –
Real 27.07 49.07 57.53 20.01 47.35 58.24 – –

NIV Interpolated 29.63 48.02 56.49 25.76 46.62 58.50 – –
Real 32.59 50.25 56.40 24.02 48.36 58.92 – –

More Visualization Analysis for Interpolated Features. Figure 7 presents the M intermediate
interpolated features. Due to the large size of the original features (256,1536), we applied down-
sampling (selecting one out of every 40 points) and z-score normalization for visualization. From

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: Interpolated visual feature maps after downsampling and normalization with two different
task matrices.

the figures, it is evident that while the overall patterns are consistent across tasks with similar in-
formation, the finer details vary according to differences in temporal logic and causal relationships.

Comparison with PDPP. The results on COIN and NIV under the PDPP settings, as presented in
Table Table 16, indicate that our performance on NIV is slightly lower due to two main factors.
First, the dataset size of NIV is significantly smaller than that of CrossTask and COIN, which leads
to the model excessively learning detailed patterns from the training data and consequently reducing
its generalization ability. Second, there are differences in experimental settings: PDPP defines states
as the window between start and end times, while KEPP uses a 2-second window around start and
end times. This difference allows PDPP to access more step information, particularly for short-
term actions, which may weaken the impact of our interpolation feature supplementation. Despite
these challenges with NIV under PDPP settings, our model demonstrates strong capabilities on the
larger CrossTask and COIN datasets, highlighting its effectiveness in temporal logic and memory
utilization.

Table 16: Comparisons between PDPP and MTID under the setting of PDPP.

COIN NIV

Models T = 3 T = 4 T = 3 T = 4
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

PDPP 21.33 45.62 51.82 14.41 44.10 51.39 30.20 48.45 57.28 26.67 46.89 59.45
MTID 30.90 52.17 59.58 23.10 49.71 60.78 29.63 48.02 56.49 25.76 46.62 58.50

E FURTHER DISCUSSIONS

Limitations. The limitations of our method are as follows. First, while the logical consistency
between the actions generated by our model is generally strong, there is no guarantee of perfect
alignment with the task. Mismatches were observed during the experiments, which is a common
issue in procedure planning models. This challenge arises because the labels for multi-task and
multi-action tasks in the dataset are replaced by data IDs, which may lead to issues with numerical
calculations.

Comparison Across Supervision Strategies and Mid-State Handling. Our MTID model intro-
duces several innovations that set it apart in terms of how it handles supervision and mid-state action
prediction: (1) Supervision Approach: Weak vs. Full Supervision: DDN, PlaTe, and Ext-GAIL
rely on fully supervised learning, requiring extensive annotations to model temporal dynamics. In
contrast, MTID uses a weakly supervised approach with a latent space temporal interpolation mod-
ule, capturing mid-state information without detailed annotations. Its diffusion process and latent
interpolation offer finer-grained supervision for intermediate steps, outperforming Ext-GAIL and
DDN in long-term predictions. (2) Intermediate State Supervision and Logical Structure: PDPP
uses task labels to bypass intermediate state supervision, and Skip-Plan reduces uncertainty by skip-
ping uncertain intermediate actions. However, both methods struggle to fully capture the logical
structure of intermediate steps. MTID addresses this by explicitly supervising mid-state actions

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

through latent space interpolation, ensuring that the generated sequences are both temporally logical
and well-aligned with the task requirements. (3) Handling of External Knowledge and Probabilistic
Guidance: P3IV leverages natural language instructions for weak supervision, while KEPP uses
a probabilistic procedural knowledge graph (P2KG) to guide the planning process. While both
methods aim to improve action prediction through external guidance, MTID distinguishes itself by
focusing on direct mid-state supervision via intermediate latent features from a diffusion model.
This approach provides more precise control over action generation, ensuring logical consistency
across the entire sequence. (4) State Representation and Visual Alignment: SCHEMA relies on
large language models (LLMs) to describe and align state changes with visual observations, focus-
ing on high-level state transitions. MTID, in contrast, directly uses mid-state supervision through
latent space temporal interpolation, which improves visual-level supervision and enhances temporal
reasoning, resulting in more accurate action sequence predictions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) Horizon T = 3

(b) Horizon T = 4

(c) Horizon T = 5

(d) Horizon T = 6

Figure 8: Visualization of diverse plans produced by our model with different horizons. Note: each
figure includes images depicting the start and goal observations, the first row labeled “GT” showing
the ground truth actions, the last row labeled “Failure” illustrating a plan that does not achieve the
goal, and the middle rows displaying multiple reasonable plans produced by our model. These
decimals represent the probability values obtained from action prediction.

22

	Introduction
	Related Work
	Method
	Overview
	MTID: Masked Temporal Interpolation Diffusion
	Preliminaries
	Latent Space Temporal Logical Interpolation
	Masked Projection for Initialization

	Task-Adaptive Masked Proximity Loss

	Experiments
	Evaluation Protocol
	Results
	Ablation Studies
	Uncertainty Modeling

	Conclusion
	Implementation Details
	Model Architecture Details
	Dataset Details
	Details of Metrics
	Training Details
	Details of Uncertainty Modeling

	Baseline Methods
	Additional Ablation Studies
	More Analysis for Methods
	Further Discussions

