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Abstract

The kernel function and its hyperparameters are the central model selection choice
in a Gaussian process [Rasmussen and Williams, 2006]. Typically, the hyper-
parameters of the kernel are chosen by maximising the marginal likelihood, an
approach known as Type-II maximum likelihood (ML-II). However, ML-II does
not account for hyperparameter uncertainty, and it is well-known that this can
lead to severely biased estimates and an underestimation of predictive uncertainty.
While there are several works which employ a fully Bayesian characterisation
of GPs, relatively few propose such approaches for the sparse GPs paradigm. In
this work we propose an algorithm for sparse Gaussian process regression which
leverages MCMC to sample from the hyperparameter posterior within the varia-
tional inducing point framework of [Titsias, 2009]. This work is closely related
to Hensman et al. [2015b], but side-steps the need to sample the inducing points,
thereby significantly improving sampling efficiency in the Gaussian likelihood case.
We compare this scheme against natural baselines in literature along with stochastic
variational GPs (SVGPs) along with an extensive computational analysis.

1 Introduction

Gaussian processes (GPs) are a prominent class of models for supervised learning which can quantify
uncertainty and incorporate inductive biases in function space via the kernel function. Hand-crafting a
kernel function is a powerful way to incorporate prior knowledge. In many instances not all properties
of a kernel function can be specified from prior knowledge alone, and parameters are chosen via ML-
II. However, defining a complex kernel function with a large number of hyperparameters can make
the marginal likelihood prone to multiple local optima and overfitting. Further, several local optima
may correspond to priors that do not sensibly model the data. Weakly identified hyperparameters
can manifest in flat ridges in the marginal likelihood surface1 making gradient based optimisation
extremely sensitive to starting values [Warnes and Ripley, 1987]. Overall, the ML-II point estimates
for the hyperparameters are subject to high variability and underestimate prediction uncertainty.

The problem of ridges in the marginal likelihood surface also does not necessarily go away as more
observations are collected. For example, if f1 and f2 are Brownian motions, �f1(x/`) is equal in
distribution to

p
↵�f2(x/↵`), which means observations do not provide any information about the

product �`. More generally, for a greater class of kernels, including the Matérn–1/2 kernel, �f1(x/`)
1where different combinations of hyperparameters give very similar marginal likelihood values
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Figure 1: Negative log marginal likelihood surface as a function of two hyperparameters: �2
f and l for a squared

exponential kernel and 1d function. The red cross indicates the true hyperparameters. The hyperparameters
selected via gradien- based optimisation are sensitive to the initialisation due to the long ridge of almost identical
height at values of the hyperparameters not concordant with the ground truth.

is equivalent to
p
↵�f2(x/↵`), which means that is not possible to consistently estimate the product

�` from data, no matter how many observations are collected in a fixed domain [Chapter 6, Stein,
1999]. This implies that one cannot estimate the individual hyperparameters (�, `) consistently. It
also motivates why there can be benefits to estimating the hyperparameter posterior even in large
data regimes, and ML-II may be insufficient. A more satisfactory treatment of hyperparameters
involves placing a prior over the hyperparameters and performing Bayesian inference to compute a
(hyper)posterior. For large datasets, this motivates using scalable GP inference (e.g. sparse methods)
in conjunction with Markov chain Monte Carlo (MCMC) for the hyperparametrs.

The Bayesian treatment of weakly identified hyperparameters may also be fraught with difficulties.
Gradient-based samplers like Hamiltonian Monte Carlo [Neal et al., 2011] and its variants have
difficulty navigating regions of high curvature and flat ridges where the gradient offers no information
for transition [Betancourt, 2017]. This leads to over-concentration of samples from the flat region.
(Usually, this can at least partially be rectified with informative priors.) These pathologies are also
typical of other hierarchical models [Betancourt and Girolami, 2015]. Figure 1 shows that the GP
marginal likelihood surface can manifest these pathologies. The evidence lower bound (ELBO) used
in hyperparameter selection for variational sparse GPs relying on inducing points inherits similar,
or even less favourable, characteristics to the exact marginal likelihood. As a result, for weakly
informative priors, gradient based samplers are susceptible to getting stuck at the boundary of these
pathological regions hence biasing the sample estimates. The effective sample size metric, used for
diagnosing mixing in MCMC, is indicative of this behaviour when directly observing the phase space
of the target distribution, but is infeasible in high-dimensions.

Historical justification for ML-II (also called the evidence framework) comes from [MacKay, 1994]
which highlighted several conditions for ML-II to yield reasonable estimates for the hyperparameters.
Crucially, the evidence is unlikely to manifest multiple local optima for a model well-matched to the
data and with a high signal-to-noise ratio. Transferring this insight to the Gaussian process paradigm
we show how the evidence can have a significant tail or no well-defined maximum in settings with
a low signal-to-noise ratio which arises with high aleatoric uncertainty or sparse data, frequently
both. In these settings, a point estimate may not adequately summarise the hyperparameter posterior
and the benefits of marginalisation stand out. The situation is only exacerbated in high-dimensions
(i.e. when there are many hyperparameters) where increasingly more volume of the posterior is
captured in a thin shell making the density peak extremely unrepresentative of the posterior. Unlike
the likelihood of parameters, the marginal likelihood inherently contains a trade-off between the
data-fit and complexity penalty term. This is one of the main properties that makes the marginal
likelihood objective a viable choice for model selection [Rasmussen and Williams, 2006]. For
example, for the Gaussian process regression model,

yn = f(xn) + ✏n, ✏n ⇠ N (0,�
2
), f ⇠ GP(0, k✓) (1)

the marginal likelihood takes the form,

log p(y|✓) = log

Z
p(y|f)p(f |✓)df = c

data fit termz }| {
�

1
2y

T
(K✓ + �

2
I)

�1y�

complexity penaltyz }| {
1
2 |K✓ + �

2
I| (2)
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where c is a constant, p(y|f) denotes the data likelihood and ✓ denotes kernel hyperparameters. This
trade-off is a well-established idea which embodies the automatic Occam’s razor effect [Rasmussen
and Ghahramani, 2001] where models well-suited to the data are automatically selected just by using
the marginal likelihood objective.

This may seem to contradict earlier claims regarding overfitting, but by shying away from dealing
with the hyperparameter posterior we risk overfitting even with the marginal likelihood approach.
In other words, the evidence framework subdues the overfitting effect induced by the canonical
maximum likelihood approach which does not have any complexity penalty term. The parameters in
the canonical approach are free to fit the data as well as possible making them prone to overfitting and
poor generalisation. Overparameterized kernels based on neural networks like deep kernel models
[Wilson et al., 2016] are well known to exacerbate overfitting [Ober et al., 2021].

The main motivation for this work is to highlight that fully Bayesian schemes in sparse Gaussian
process models are practically beneficial. While several works in the literature employ fully Bayesian
scheme of integrating out the hyperparameters (see table 1), in this work we attempt to analyse
them in an orthogonal direction, focusing on comparison with the evidence framework and other
benchmarks by extending the main sparse variational formulation in the literature Titsias [2009].
We present a generalised inference scheme for fully Bayesian GP regression and counteract some
of the computational cost of sampling both inducing variables and hyperparameters by deriving a
doubly collapsed bound which selects the optimal distribution over the inducing points analytically
and targets the kernel hyperparameters with HMC.

2 Related Work

Table 1: Existing literature on fully Bayesian inference in GPs, sparse GPs and generic likelihoods.

Index Reference Sparse Posterior (f /u) Posterior (✓) Methods

1. Murray and Adams [2010a] 7 sampling / NA sampling Slice Sampling
2. Filippone et al. [2013] 7 sampling / NA sampling MH + HMC + MA-LA
3. Filippone and Girolami [2014] 7 Gaussian / NA sampling Deterministic + Pseudo-Marginal
4. Hensman et al. [2015b] 3 Gaussian / sampling sampling HMC
5. Bui et al. [2018] 3 Gaussian / (sampling & VFE) sampling / VFE MCMC
6. Lalchand and Rasmussen [2020] 7 Gaussian / NA sampling / VFE NUTS / VI
7. Rossi et al. [2021] 3 Gaussian / sampling sampling SG-HMC
8. Simpson et al. [2021] 7 Gaussian / NA sampling NUTS / Nested Sampling
9. This work 3 Gaussian / (sampling & VFE) sampling HMC / NUTS

Fully Bayesian Gaussian processes have been used by several authors spawning several variants. In
early accounts, Neal [1998], Williams and Rasmussen [1996] explore the integration over covariance
hyperparameters using HMC in the regression setting. Barber and Williams [1997] extend this to the
classification setting using HMC for sampling in the hyperparameter space and Laplace approximation
for the integrand over function values. Murray and Adams [2010a] and Filippone et al. [2013] focused
on MCMC schemes to sample covariance hyperparameters in conjunction with latent function values,
mainly mitigating the coupling effect through reparameterisation. Hensman et al. [2015b] considered
joint sampling of inducing variables and hyperparameters from the optimal variational posterior
distribution while [Bui et al., 2018] consider inference schemes for fully Bayesian sparse GPs in
a streaming setting. More recently, Rossi et al. [2021] studied fully Bayesian sparse GPs using
SG-HMC. Rossi et al. [2021] modify the generative model by adding a prior over the inducing inputs,
and peform inference using SG-HMC over the joint (Z, u, ✓) space. We list the most recent works in
Table 1.

3 Background

Let f ⇠ GP(0, k✓) be a Gaussian process prior with kernel function k✓ depending on hyperpa-
rameters ✓. We are given noisy observations y = (yn)

N
n=1 ✓ R of f = (f(xn))

N
n=1 at input

data X = (xn)
N
n=1 ✓ RD. We consider a Gaussian likelihood which factorises over the data,

p(y|f) =
QN

n=1 N (yn|fn,�
2
). We wish to compute the posterior p(f |y,✓). In this section, we

recapitulate the canonical inducing variable approximation of p(f |y,✓) by Titsias [2009] and its
extension to a Bayesian treatment of the hyperparameters.
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3.1 Sparse variational inference in Gaussian processes

Following Titsias [2009], we consider a set of inducing variables u = {f(zm)}
M
m=1 ✓ R at inducing

inputs Z = {zm}
M
m=1, zm 2 Rd. The complete generative model can then be factored as,

p(y, f,u|✓) = p(y|f,✓)p(f |u,✓)p(u|✓) (3)

We approximate the posterior p(f,u|y,✓) with a variational distribution:

p(f,u|y,✓) ⇡ q(f,u|✓) = p(f |u,✓)q(u) (4)

where q(u) is chosen to minimise the Kullback–Leibler divergence KL(q(f |✓) k p(f |y,✓)). Min-
imising this KL divergence corresponds to maximising the evidence lower bound [Matthews et al.,
2016], henceforth called the ELBO:

ELBO(q(u),✓) = Eq(f |✓)[ log p(y|f,✓)]�KL(q(u|✓) k p(u|✓)) (5)

Because the ELBO still depends on q(u), this bound is called uncollapsed. Hensman et al. [2013,
2015a] let q(u) be a Gaussian, which is optimal if the likelihood is Gaussian [Titsias, 2009], approx-
imate the expectation using Monte Carlo, and maximise the ELBO using stochastic optimisation.
On the other hand, if the likelihood is Gaussian, Titsias [2009] computes the optimal form for q(u)
directly:

q
⇤
(u|✓) = argmaxq(u) ELBO(q(u),✓) / p(u|✓) expEp(f |u,✓)[log p(y|f,✓)] (6)

Plugging q
⇤
(u|✓) back into equation (5), the resulting bound is called collapsed, because it now

only depends on ✓ and Z. The collapsed bound, denoted L✓,Z , is the objective that Titsias [2009]
proposes:

log p(y|✓) � logN (y;0,KnmK
�1
mmKmn+�

2
I)�

1

2�2
Tr(Knn�KnmK

�1
mmKmn) =: L✓,Z , (7)

where Knn is the prior covariance matrix of f , Kmm is the prior covariance matrix over u and Knm

is crosss-covariance matrix formed by f and u. Using the collapsed bound, approximate ML-II
consists of finding,

✓⇤
2 argmax✓,Z L✓,Z . (8)

Predictions at new functions values can be made in O(M
2
) after an initial cost of O(NM

2
). Under

certain assumptions on the data generating process, even when M ⌧ N , the approximate posterior
closely resembles the posterior, and equation (7) is a provably accurate approximation to equation (2)
[Burt et al., 2020].

3.2 Bayesian treatment of hyperparameters and sparse methods

The extension of the sparse variational framework to a Bayesian treatment of the hyperparameters
has been previously considered by Hensman et al. [2015b]. Extend the generative model with a prior
p(✓) over the hyperparameters ✓, and let the variational approximation of the posterior p(f,u,✓|y)
be q(f,u,✓) = p(f |u,✓)q(u,✓). The analogue of equation (5) is

ELBO(q(u,✓)) = Eq(f,✓)[log p(y|f,✓)]� Eq(✓)[KL(q(u) k p(u|✓))]�KL(q(✓) k p(✓)) (9)

and the optimal form for q(u,✓) can again be determined:

q
⇤
(u,✓) / p(u,✓) expEp(f |u,✓)[log p(y|f,✓)]. (10)

The distribution q
⇤
(u,✓) does not have a closed form, and for general likelihoods, Hensman et al.

[2015b] propose to approximate the expectation in (10) with quadrature and to sample from q
⇤
(u,✓)

using HMC. While this approach is quite general, in the case of Gaussian regression, it vastly
increases the dimensionality of the state space over which HMC must be run relative to HMC in GPR,
since the u are sampled in addition to the ✓. This increases the cost of the procedure, and impacts the
success of the sampler.

An alternative approach to approximately inferring hyperparameters is to assume a parametric form
for q(u,✓) and maximise equation (9) with respect to the variational parameters. Bui et al. [2018]
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Table 2: Comparison of a variety of approaches to approximating the posterior over hyperparameters in
Gaussian process regression. Compares the quality of the posterior (QUALITY); the time complexity per
iteration (TIME/IT.); the memory complexity per iteration (MEM./IT.); the number of parameters and/or variables
(PARS/VARS); and whether the approach supports non-Gaussian likelihoods (LIK.).

APPROACH QUALITY TIME/IT. MEM./IT. PARS/VARS LIK.

Maximum a posteriori [MacKay, 1994] � n
3

n
2

n✓ 7
VI
Inducing points; non-collapsed [Titsias and Lázaro-Gredilla, 2014] ± nm

2
m

2
n
2
✓ +m

2 X
Inducing points; collapsed [Bui et al., 2018] ± nm

2
m

2
n
2
✓ 7

SAMPLING
Exact with Gaussian lik.[Simpson et al., 2021] + n

3
n
2

n✓ 7
Exact with non-Gaussian lik.[Murray and Adams, 2010b] + n

3
n
2

n✓ + n X
Inducing points; non-collapsed [Hensman et al., 2015b] ± m

3
m

2
n✓ +m X

Inducing points; collapsed (ours) ± nm
2

m
2

n✓ 7

took such an approach, assuming that q(u,✓) = q(u)q(✓), with both distributions Gaussian. Similar
approaches have been applied to variational inference in state-space modelling, sometimes leveraging
the optimal form of q(u|✓) discussed earlier.

The QUALITY column in Table 2 indicates the ability of the method to faithfully represent the
hyperparameter posterior. If VI is run to convergence, a potentially significant amount of error will be
incurred by the Gaussian approximation to the non-Gaussian posterior over the hyperparameters (red).
On the opposite extreme, if no sparsity assumption is made, MCMC over the hyperparameters without
sparse approximations is asymptotically consistent (green). The inducing point approximations
combined with MCMC lie somewhere in-between these methods (yellow).

3.3 Making predictions

The predictive posterior distribution for unknown test inputs X⇤ integrates over the joint posterior,

p(f⇤
|y) ⇡

Z
p(f⇤

|f ,u,✓)p(f |u,✓)q(u|✓)q(✓)dfdud✓, (11)

where we have suppressed the conditioning over inputs X,X
⇤ for brevity. The inner integral

simplifies to
R
p(f⇤

|f ,u,✓)p(f |u,✓)df = p(f⇤
|u,✓). We discuss the predictive posterior in such

models in section 4.3.

4 Fully Bayesian SGPR with HMC: Doubly collapsed formulation

In the previous section, we observed that a major drawback of the approach taken in Hensman et al.
[2015b] is the need to sample u, which for high-dimensional inputs or in cases where many inducing
points are needed could introduce thousands of additional variables to sample. In this section, we
leverage the optimal form of q(u|✓) derived in Titsias [2009] to alleviate this sampling problem.

4.1 Collapsing the evidence lower bound (again)

We first derive the lower bound for this formulation and provide pseudo-code for the algorithm in
Algorithm 1. Following the usual derivation of the ELBO,

log p(y) �

Z
q(✓) log p(y |✓)d✓ �KL(q(✓) k p(✓)) (12)

�

Z
q(✓)L✓,Zd✓ �KL(q(✓) k p(✓)) =

Z
q(✓) log

M✓,Zp(✓)

q(✓)
d✓ =: L

⇤
Z(q(✓)), (13)

where log p(y |✓) � L✓,Z with L✓,Z defined in equation (7), and where we assign M✓,Z = e
L✓,Z .

4.1.1 Deriving q
⇤
(✓)

We can interpret L⇤
Z(q(✓)) as a negative KL divergence as long as we account for a normalisation

constant CZ =
R
M✓,Zp(✓)d✓ for the un-normalised numerator M✓,Zp(✓). Hence, we can re-write

L
⇤
Z(q(✓)) as,

L
⇤
Z(q(✓)) = logCZ �KL(q(✓) k q⇤(✓)) (14)
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where q
⇤
(✓) = M✓,Zp(✓)/CZ . By inspecting equation (14), we observe that the optimal variational

distribution over ✓ is given by q
⇤
(✓).2 Crucially, by sampling directly from q

⇤
(✓) using MCMC we

eliminate the need to sample the variables u. By evaluating L
⇤
Z at q⇤(✓), we find the doubly collapsed

ELBO L
⇤⇤
Z := L

⇤
Z(q

⇤
(✓)) = logCZ . Although the value of L⇤⇤

Z is computationally intractable,
given samples (✓j)Jj=1 from q

⇤
(✓), gradients of L⇤⇤

Z with respect to Z can be estimated using the
stochastic estimate of the canonical ELBO equation (7): using the chain rule,

d
dZ

L
⇤⇤
Z =

@

@Z
L
⇤
Z(q)

����
q=q⇤(✓)

+

*

⇠⇠⇠⇠⇠⇠⇠⇠�

�q
L
⇤
Z(q)

����
q=q⇤(✓)

,
@

@Z
q
⇤
(✓)

+
⇡

1

J

JX

j=1

@

@Z
L✓j ,Z (15)

where �
�qL

⇤
Z(q) is the functional derivative of L⇤

Z(q) with respect to q, which is zero at q = q
⇤
(✓),

because q⇤ optimises L⇤
Z (it is a critical point, so the derivative is zero). Further, the partial derivative

of L⇤
Z with respect to Z concerns just the first term of the LHS of equation (13) as the KL term

KL(q(✓) k p(✓)) is independent of Z.

4.2 Performing approximate inference

We deploy HMC to (approximately) sample from the optimal variational posterior q⇤(✓) along with
optimising the inducing inputs Z in a hybrid scheme. We alternate between the two steps allocating
longer intervals for optimising Z for every HMC sampling run for the hyperparameters. We note that
this hybrid scheme is much more computationally efficient than sampling u and ✓ jointly where one
has to tackle the coupling between inducing variables and hyperparameters in joint space. Further,
joint sampling is only feasible for moderate number of inducing variables while this scheme can scale
to much larger datasets as the efficiency of sampling in the hyperparameter space is only dependent
on the dimensionality of the hyperparameter space rather than the number of inducing variables. The
entire inference scheme is summarized in Algorithm 1. The warm-start strategy (of optimizing both
(Z,✓) jointly for a few gradient steps) is used to find a good region for the sampler to initialise ✓.

Figure 2: Top - 1d regression with Left: SGPR, Middle: SGPR + HMC, Right: Joint HMC [Hensman et al.,
2015b], Below - Left: Samples from the mixture posterior, Middle: Length-scale distribution under SGPR+HMC
and ML-II. Note that the data is generated through a parameteric function and hence there is no ground truth
lengthscale. Right: Noise std. deviation distribution from SGPR+HMC and ML-II.

2KL divergence reaches its minimal value of zero when the two input probability distributions are equal, and
we seek to maximise L

⇤
Z(q(✓)) which entails minimizing the KL.
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Algorithm 1 Fully Bayesian Sparse GPR with HMC
1: Input: ELBO objective L✓,Z := L(✓, Z) (equation (7)), gradient based optimiser optim()
2:
3: procedure WARM-START
4: for fixed number of steps do
5: Gradient step: Z,✓  � optim(L(✓, Z))
6: return initial values Zinit and ✓init

7:
8: procedure TRAIN
9: ## Initialisation protocol

10: I Initialise L✓,Z at warm-start values L(✓init, Zinit), lets call this L̂
11: I Freeze kernel hyperparameters in the ELBO objective by setting requires grad=False.
12:
13: while not converged do
14: for t = 1 . . . T do ## start of training loop
15:
16: • Gradient step: Zopt  � optim(L̂) (## equation (15) shows the validity of

taking the derivative of the stochastic ELBO)
17: if t mod L == 0 then
18: (## For every L gradient steps)
19:
20: • Draw J samples from the optimal hyperparameter variational distribution
21: log q⇤(✓) / L(✓, Zopt) + log p(✓) keeping Zopt fixed.

(✓j , pj)
HMC
 ��� H(✓,p), (where H is the Hamiltonian)

22: where p denotes the zero-mean auxilliary momentum variable in phase space with
23: the same dimensionality as ✓.

24: • Compute stochastic ELBO L̂ =
1
J

PJ
j=1 L(✓j , Zopt), where ✓j ⇠ q⇤(✓)

25: return Zopt, {✓}
J
j=1

4.3 Predictive posterior

It is ultimately the posterior predictive (PP) distribution that is of interest rather than point estimates
or the hyperparameter posterior. The Bayesian sparse GP predictive posterior entails integrating out
the posterior over inducing variables u and hyperparameters ✓. Once we have performed inference,
we can approximate this directly,

p(f⇤
|y) =

Z Z
p(f⇤

|u,✓)p(u,✓|y)dud✓ =

Z Z
p(f⇤

|u,✓)p(u|✓,y)p(✓|y)dud✓ (16)

⇡

Z Z
p(f⇤

|u,✓)q⇤(u|✓,y)p(✓|y)dud✓ =

Z
N (f⇤

|Am⇤
,K⇤⇤ +A(S

⇤
�Kmm)A

T
)p(✓|y)d✓

where q⇤(u|✓,y) = N (m⇤
, S

⇤
) is the optimal Gaussian variational distribution and A = K⇤mK

�1
mm

under the SGPR scheme (Section 4) is available in closed form with m⇤
= �

�2
(Kmm +

�
�2

KmnKnm) and S
⇤
= Kmm(Kmm + �

�2
KmnKnm)

�1
Kmm. In either case, the internal

integral with respect to the inducing variables is analytic and the outer integral can be estimated
using the samples collected from HMC to perform Monte Carlo estimation. This yields a mixture of
Gaussians,

p(f⇤
|y) ⇡

1

J

PJ
j=1N (µ✓j ,⌃

✓j ), ✓j ⇠ q
⇤
(✓), (17)

µ✓j = A
(✓j)m(✓j), ⌃

✓j = K
✓j
⇤⇤+A

(✓j)(S
✓j�K

(✓j)
mm)A

T (✓j) (18)

where J samples are (approximately) drawn from q
⇤
(✓) via HMC. The distribution inside the

summation is the Gaussian posterior predictive distribution for fixed hyperparameters with identical
mixing proportions. The compute cost for the predictive posterior scales the sparse GPR cost linearly
in the number of samples. The Monte Carlo approximation costs O(JNM

2
) for M inducing points

and J hyperparameter samples.
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Figure 3: Negative test log likelihoods with standard error of mean across 10 splits with 80% of the data reserved
for training. Our method is SGPR + HMC.

5 Experiments

In the previous section, we discussed a hybrid scheme which leverages MCMC within the variational
sparse inducing variable formulation leading to fully Bayesian sparse Gaussian processes. In the
experiments we demonstrate the feasibility of this scheme relative to several benchmarks and assess
regression performance on a 1-dimensional illustrative example and a range of other datasets. We
also compare with exact GPs where the cost of using a gradient based sampler is prohibitive for
even moderately large datasets requiring several inversions of the full covariance matrix. We show
that using the doubly collapsed scheme proposed in this work is a much more attractive alternative
for large datasets as compared to direct HMC in GPR, and sampling is more efficient than in the
uncollapsed bound used in Hensman et al. [2015b].

We henceforth refer to benchmark methods as follows: SGPR + HMC refers to Bayesian GPs
with doubly collapsed variational inference with NUTS, as described in section 3 (compatible
with Gaussian likelihoods); we benchmark this model against sparse GPs (SGPR) [Titsias, 2009]
and Stochastic Variational GPs (SVGP) both using approximate ML-II [Hensman et al., 2015a].
Additionally, we consider the sparse, joint sampling inference scheme proposed in [Hensman et al.,
2015b] which gives a natural benchmark. We call this model JointHMC. The FBGP method extends
the Bayesian treatment to the inducing locations similar to Rossi et al. [2021]; we use NUTS to
sample from the joint posterior over (Z,✓). It is not a direct comparison to Rossi et al. [2021] as the
latter explores free-form sampling of u along with (Z,✓) while we work with the collapsed bound
incorporating the optimal Gaussian variational distribution q

⇤
(u).

We also present analysis where we fix inducing point locations at a random subset of the training data
(as opposed to interleaving as per Algorithm 1) and only learn hyperparameters using NUTS. We
provide several details about the experimental set-up in the supplementary.

5.1 One dimensional synthetic data

Table 3: Prediction performance in 1D synthetic re-
gression across SGPR, SGPR + HMC and JointHMC
methods with identical number of inducing points and
train/test split.

Method SGPR SGPR + HMC JointHMC

RMSE 0.580 0.537 0.682
NLPD 0.214 0.065 0.74

We sample noisy observations from f(x) =

sin(3x) + 0.3 cos(⇡x) with the constraint (x <

�2) and (x > 2). Figure 2 shows the results for
SGPR along with the fully Bayesian schemes.
We keep data split and noise identical across the
three models to facilitate a comparison. While
there is significant data to identify the hyper-
parameters we notice that the models mainly
differ in their extrapolation abilities away from
the training data. SGPR with ML-II overfits to
the training data and recovers a low lengthscale,
low noise solution while the SGPR + HMC scheme recovers a more moderate fit and performs
significantly better in terms of RMSE and NLPD on unseen data Table 3. We note that the JointHMC
scheme which samples both (u,✓) overfits in the central missing data region. We use M = 25

inducing locations across all methods which are optimised according to the protocol of each method
and recover a very similar spatial distribution.
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Table 4: A comparison of Sparse GP approaches for UCI benchmarks. RMSE (± standard error of mean)
evaluated on average of 10 splits with 80% of the data used for training. � indicates that the posterior over
hyperparameters is approximated by a point estimate under the respective scheme.

Dataset N d GPR + HMC SGPR SGPR + HMC SVGP JointHMC FBGP

|M | - - - 100 100 100 100 100

q(✓) - - free-form � free-form (ours) � free-form free-form (Z, ✓)

Boston 506 13 3.049 (0.14) 3.291 (0.11) 3.286 (0.09) 3.619 (0.11) 3.28 (0.11) 3.845 (0.103)
Concrete 1030 8 4.864 (0.12) 5.459 (0.09) 5.402 (0.05) 5.617 (0.09) 5.612 (0.09) 6.084 (0.11)
Energy 768 8 0.441 (0.01) 0.477 (0.008) 0.469 (0.009) 0.500 (0.01) 0.755 (0.02) 0.490 (0.011)
WineRed 1599 11 0.640 (0.01) 0.636 (0.008) 0.635 (0.008) 0.641 (0.007) 0.641 (0.007) 0.642 (0.007)
Yacht 308 6 0.353 (0.03) 0.412 (0.03) 0.387 (0.03) 0.606 (0.04) 0.794 (0.07) 0.569 (0.037)

Figure 4: Left: Test RMSE and NLPD for a range of inducing points for the Elevator dataset. Right: Sampling
performance measured in terms of the time it took to draw the combined set of samples during the training
phase (excluding tuning) as defined by the python standard library time.perf counter (wall time). We use the
pymc3 pm.NUTS sampler for GPR + HMC and SGPR + HMC, and tfp.mcmc.HamiltonianMonteCarlo for
JointHMC [Matthews et al., 2017]. All experiments were conducted on an Intel Core i7-10700 CPU @ 2.90GHz
x 16.

5.2 UCI regression benchmarks

We compare our approach across methods on 5 standard small to medium-sized UCI benchmark
datasets. Following common practice, we use a 20% randomly selected held out test-set [Rossi et al.,
2021, Havasi et al., 2018] and scale the inputs and outputs to zero mean and unit standard deviation
within the training set (we restore the output scaling for evaluation) [Salimbeni and Deisenroth, 2017].
While we could use any kernel, we choose the RBF-ARD kernel with a lengthscale for each dimension.
For consistency we initialise all the inducing locations (Z) identically across the methods, i.e. by
using the same random subset of training data split. We note that adapting the inducing locations
brings serious gains in prediction performance versus keeping them fixed (Figure 3). Further, the
JointHMC scheme underperforms SGPR (with ML-II) and SGPR + HMC. This is not surprising
given that the JointHMC bound equation (10) does not incorporate the optimal setting for q(u) and
was originally motivated by the need for a fully Bayesian scheme for generalised likelihoods. The
method SGPR + HMC significantly improves upon JointHMC in the specific Gaussian likelihood
case.

Sensitivity to M : We benchmark SGPR+HMC and JointHMC on the Elevator dataset (N =

16599, D = 18) which demands a larger M . SGPR+HMC outperforms JointHMC for this dataset
across different M but the advantage is more pronounced at smaller M . Further, our method took
1248 vs. 2109 wall clock sec. for the joint scheme for the same number of hyperparameter samples
and 500 inducing points.

5.3 Ablation study

In order to understand the efficacy of Algorithm 1 we conduct an ablation study where we perform
inference in the same manner, but keeping inducing locations fixed. Algorithmically, this implies
that we don’t need to compute the stochastic ELBO L̂ and just conduct a single sampling run for the
hyperparameters. The results across 10 splits are summarised in Table 5.
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Table 5: An ablation study for the doubly collapsed Sparse GPR scheme comparing performance with and
without adapting the inducing locations during training. We report test NLPDs and RMSEs over 10 splits.

Dataset Metric Boston Concrete Energy WineRed Yacht

Fixed Z RMSE 3.624 (0.110) 6.021 (0.12) 0.499 (0.014) 0.640 (0.007) 0.533 (0.036)
Adapt Z (ours) 3.286 (0.090) 5.405 (0.07) 0.469 (0.009) 0.635 (0.008) 0.387 (0.030)

Fixed Z NLPD 2.640 (0.020) 3.200 (0.06) 0.696 (0.014) 0.969 (0.012) 0.791 (0.130)
Adapt Z (ours) 2.524 (0.022) 3.065 (0.01) 0.644 (0.013) 0.961 (0.011) 0.391 (0.146)

5.4 Runtimes

While it is possible to train exact GPR with HMC for datasets of this size (in terms of N ) it is
important to look at the trade-off in terms of compute cost. In Figure 4 we record the average number
of wall clock seconds to draw 500 samples under each method. The cost of sampling is O(N) for
SGPR + HMC but O(N

3
) for Exact GPR + HMC. JointHMC deals with a higher dimensional phase

space (u,✓) hence requires more tuning. We don’t include tuning time for a fair comparison. For
further context we report the total training run-time for our scheme alongside ML-II, GPR + HMC
and FBGP in Table 6. The hybrid scheme we propose is significantly cheaper to canonical alternatives
with virtually no degradation in predictive performance.

Table 6: Wall clock seconds (this counts all the CPU time, including worker processes in BLAS and OpenMP as
defined by the python standard library time for a single training split).

Dataset Boston Concrete Energy WineRed Yacht

SGPR (ML-II) 22.17 (0.21) 33.06 (0.07) 30.36 (0.09) 39.96 (0.87) 20.41 (0.22)
SGPR + HMC (ours) 29.47 (0.34) 53.85 (2.36) 61.60 (1.47) 60.65 (0.63) 24.50 (0.40)
GPR + HMC 78.05 (2.36) 977.40 (13.82) 326.18 (15.87) 1426.25 (39.49) 31.71 (0.59)
FBGP 72.63 (8.29) 156.31 (4.30) 259.81 (11.58) 175.45 (13.14) 101.92 (2.27)

6 Discussion

The evidence framework continues to be the pre-dominant method for training Gaussian processes
since their inception into modern machine learning [Rasmussen and Williams, 2006]. While the
marginal likelihood is a compelling model selection objective as it offers an inherent trade-off
between data-fit and complexity, it is susceptible to overfitting and other pathologies leading to biased
inference. This work builds on existing methods that combine sparse Gaussian process regression
based on inducing variables with Bayesian hyperparameter inference.

Bayesian hyperparameter inference in GPs is however intractable and one has to consider balancing
between objectives of computational cost, prediction accuracy and robustness of uncertainty intervals.
While in straightforward conditions the fully Bayesian approach might be counter-productive, most
real-world applications of GPs rely on engineering sophisticated hand-crafted kernels involving many
hyperparameters where there risk of overfitting is pronounced and further, harder to detect. A more
robust solution is to incorporate prediction intervals that reflect these uncertainties in the model
choice. Studying full Bayesian inference in more sophisticated GP models like deep [Damianou and
Lawrence, 2013], warped [Snelson et al., 2004] and convolutional GPs [Van der Wilk et al., 2017]
will offer greater insight to this question and is an imminent direction of future work.
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