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ABSTRACT

Transformer models have demonstrated high accuracy in numerous applications
but have high complexity and lack sequential processing capability making them
ill-suited for many streaming applications at the edge where devices are heavily
resource-constrained. Thus motivated, many researchers have proposed reformu-
lating the transformer models as RNN modules which modify the self-attention
computation with explicit states. However, these approaches often incur signifi-
cant performance degradation. The ultimate goal is to develop a model that has
the following properties: parallel training, streaming and low-cost inference, and
state-of-the-art (SOTA) performance. In this paper, we propose a new direction to
achieve this goal. We show how architectural modifications to a fully-sequential
recurrent model can help push its performance toward Transformer models while
retaining its sequential processing capability. Specifically, inspired by the recent
success of Legendre Memory Units (LMU) in sequence learning tasks, we propose
LMUFormer, which augments the LMU with convolutional patch embedding and
convolutional channel mixer. Moreover, we present a spiking version of this ar-
chitecture, which introduces the benefit of states within the patch embedding and
channel mixer modules while simultaneously reducing the computing complexity.
We evaluated our architectures on multiple sequence datasets. Of particular note
is our performance on the Speech Commands V2 dataset (35 classes). In compari-
son to SOTA transformer-based models within the ANN domain, our LMUFormer
demonstrates comparable performance while necessitating a remarkable 53× re-
duction in parameters and a substantial 65× decrement in FLOPs. Furthermore,
when benchmarked against extant low-complexity SNN variants, our model es-
tablishes a new SOTA with an accuracy of 96.12%. Additionally, owing to our
model’s proficiency in real-time data processing, we are able to achieve a 32.03%
reduction in sequence length, all while incurring an inconsequential decline in
performance. Our code is publicly available here.

1 INTRODUCTION

In recent years, Transformers (Vaswani et al., 2017) have become the most prevalent deep learning
models for many applications. The global attention mechanism enables Transformers to capture
long-distance dependencies in input data. Moreover, their state-less structure makes their training
easily parallelizable, helping them perform well with large-scale datasets, leading to SOTA accu-
racy in a wide range of applications, including Natural Language Processing (NLP) (Brown et al.,
2020; Touvron et al., 2023), Computer Vision (CV) (Dosovitskiy et al., 2020; Liu et al., 2021),
and spoken term classification (STC) (Gulati et al., 2020; Gong et al., 2021). However, their self-
attention mechanism imposes compute and memory complexity that is quadratic in the sequence
length N . Moreover, the nature of the self-attention computation prevents the underlying hardware
from performing much of the computation until after the entire input sequence is available.

In contrast, Recurrent Neural Network (RNN) models are designed to process data sequentially and
their complexity is only O(N) making them an attractive low-complexity alternative to transform-
ers. However, RNN models traditionally have higher training time as the training procedure must

1

https://github.com/zeyuliu1037/LMUFormer.git


Published as a conference paper at ICLR 2024

accommodate the long sequence of dependencies within the model, making parallelization more dif-
ficult. Moreover, unlike transformers, RNN models like LSTMs (Hochreiter & Schmidhuber, 1997)
and GRUs (Cho et al., 2014) can only leverage past and current information and traditionally suffer
from forgetting due to having a limited memory horizon. Recently, however, Legendre Memory
Units(Voelker et al., 2019) have been proposed that have the ability to remember information over
a theoretically infinite time horizon. Benefiting from this property, LMU-based models outperform
many RNN models while still underperforming compared to Transformer alternatives. We hypoth-
esize that the remaining performance gap between LMUs and Transformers is not only because
Transformers benefit from future information, but also because they possess more complex network
structures, such as the self-attention computation, and thus have higher representational capacity.

In an attempt to explore this hypothesis, we propose a novel sequential network architecture, dubbed
LMUFormer, that augments the LMU module with convolutional patch embedding and convolu-
tional channel mixers. Importantly, our convolutional patch embedding only interacts with neigh-
boring input samples and our convolutional channel mixers and the final classifier only operate on
the current state of the LMU. Therefore, our LMUFormer model can process data sequentially.
Moreover, we present a spiking version of this architecture which extends the benefits of state that is
explicit in the LMU implicitly to the patch embedding and channel mixing structures to improve ac-
curacy while simultaneously further enabling complexity reduction. In summary, this paper makes
the following contributions:

• We propose a novel architecture LMUFormer which outperforms most existing RNN mod-
els with similar complexity on a wide range of sequence learning tasks. On evaluat-
ing the Speech Commands dataset, our LMUFormer model, when benchmarked against
transformer-based models with competitive performance levels, manifests a significant re-
duction — accounting for 53× fewer parameters and 65× diminished FLOPs.

• We further devised a spiking variant of the LMUFormer that not only achieves state-of-
the-art (SOTA) performance within the realm of SNN models on the Speech Commands
dataset but also presents comparable results on the Long Range Arena benchmark.

• Attributable to the real-time data processing capabilities inherent to our models, we evalu-
ate the performance of the model when different proportions of sequences are received. We
demonstrate that our model can achieve 99% of the original performance while reducing
32.03% sequence length.

2 PRELIMINARIES

Legendre Memory Unit & Parallel Training: The Legendre Memory Unit (LMU) is a mem-
ory cell proposed by Voelker et al. (2019) designed to efficiently capture and represent temporal
dependencies in sequential data rooted in the mathematical properties of Legendre polynomials.
Mathematically, the LMU is based on two state-space matrices (A,B) that approximate a linear
transfer function in continuous time as follows

ṁ(t) = Am(t) +Bu(t), (1)

where u(t) represents the input signal and m(t) represents the memory state vector. This continuous-
time system is mapped onto discrete time with time step t as follows

m[t] = Ām[t− 1] + B̄u[t], (2)

where Ā and B̄ are the discretized version of Ā and B̄.

To better support parallel training, we adopt the same module design as Chilkuri & Eliasmith (2021)
to get u[t] from x[t], which is the input signal of the LMU cell in t time step, as follows

u[t] = Actu(Wux[t] + bu) (3)

and obtain the output of the LMU module as described as follows

o[t] = Acto(Wmm[t] +Wxx[t] + bo), (4)

where Wu, Wm, and Wx are the learnable parameter matrices. Note that Actu and Acto repre-
sent the activation functions. Therefore, the module only has one recurrent connection and can be

2



Published as a conference paper at ICLR 2024

regarded as a linear time-invariant (LTI) system which can be solved in a non-iterative way which
is the key for parallel training. We also adopt fast Fourier transform (FFT) as Chilkuri & Eliasmith
(2021) to further reduce the training complexity to O(N log2(N) · dc), where N is the length of the
sequence and dc is the feature dimension of the input x.

Spiking Neural Network: As the third-generation neural network (Maass, 1997), SNNs have
gained a lot of attention for their potential for higher energy efficiency than traditional ANNs. Mim-
icking the behavior of biological neurons which communicate using brief electrical pulses, SNNs
use binary ”spikes” to process and transmit information. However, to convert sequential multi-bit
input data such as audio or text into spikes, a coding scheme is required. Rate coding (Lee et al.,
2016) and direct coding (Wu et al., 2019) are two of the most commonly used methods. Rate coding
translates the input sequence into a spike train across T time steps, with the spike count correlating
to input magnitude and spikes following a Poisson distribution (Lee et al., 2020). In direct coding, in
contrast, the multi-bit inputs are fed to the first convolution layer in the models and spikes are used
only in subsequent portions of the network. If the dataset does not contain temporal information,
the outputs of the 1st convolution layer need to be repeated T time steps, and converted to binary or
multi-bit spikes through spiking neurons.

In this paper, we use direct coding as well as the Leaky Integrate-and-Fire (LIF) (Maass, 1997)
neuron model. The behavior of the LIF neuron is described as follows:

ut
l = λut−1

l +wlo
t
l−1 − vthl ot−1

l−1 ot−1
l =

{
1, if ut−1

l ≥ vthl ;

0, otherwise
(5)

ut
l represents the membrane potential tensor of the lth layer at the tth time step, λ is a leak factor

that varies between 0 and 1, wl is the weight connecting layers (l−1) and l, ot
l−1 is the spike output

of the (l−1)
th layer at the tth time step, vthl is the threshold that is kept constant for layer l.

3 RELATED WORK

SNN for sequential learning: In the domain of computer vision, various SNN models have been
proposed, serving purposes ranging from image recognition (Fang et al., 2021; Meng et al., 2022)
to object detection (Kim et al., 2020; Barchid et al., 2023), and these models have demonstrably
achieved competitive performance relative to their ANN counterparts. Notwithstanding, the explo-
ration of SNNs in sequential tasks, such as text classification and spoken term classification, remains
notably limited, with scant literature (Lotfi Rezaabad & Vishwanath, 2020; Datta et al., 2023; Lv
et al., 2022) addressing these applications.

Recurrent Transformers: Since the inception of the work Katharopoulos et al. (2020) that pro-
posed linear transformers, many researchers focused on modifying the self-attention mechanism to
make transformer-based model have lower costs during inference. Linformer (Wang et al., 2020) in-
corporates fixed-size linear projections, facilitating a streamlined approximation of attention across
longer sequences. Similarly, Nystromformer (Xiong et al., 2021)leverages the Nyström method to
realize an approximation of the standard self-attention mechanism, achieving linear complexity. In
a distinct approach, Peng et al. (2023) proposed a novel model architecture, Receptance Weighted
Key Value (RWKV). Notably, the time-mixing block within RWKV can arguably be interpreted as
computing the product of the matrices K and V, subsequently multiplied by R, suggesting its founda-
tional roots in the Transformer paradigm. Building upon this foundation, Zhu et al. (2023) design the
SpikeGPT based on RWKV which has demonstrated competitive performance across both Natural
Language Generation (NLG) and Natural Language Understanding (NLU) tasks.

MLP-Mixer: The MLP-Mixer (Tolstikhin et al., 2021) has emerged as a novel paradigm in the field
of computer vision, diverging from the conventional approaches of Convolutional Neural Networks
(CNNs) and Vision Transformers (ViTs). The MLP-Mixer leverages multilayer perceptrons (MLPs)
for both spatial and channel-wise data processing. By sequentially employing independent MLPs,
it avoids convolution and attention mechanisms, resulting in a streamlined architecture. Inspired by
this, we followed a similar framework to design our LMUFormer but further improved it to handle
data with temporal information.
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Figure 1: The overall network architectures of LMUFormer.

(a) (b)

Figure 2: (a) The structure of the convolutional patch embedding; (b) The delay analysis of the
convolutional patch embedding.

4 PROPOSED SPIKING LMUFORMER

We propose spiking LMUFormer as shown in Fig. 1, which can be trained in parallel and process
data sequentially during inference. Our model is primarily based on LMU and augmented with
several techniques from Transformers. Specifically, our model consists of a convolutional patch
embedding, LMU block, convolutional channel mixers, and a final fully-connected layer as the
classification head. This section first introduces the structure of the patch embedding and channel
mixers and then elaborates on how to convert the model to an efficient spiking version.

4.1 CONVOLUTIONAL PATCH EMBEDDING

Embedding is the first component of Transformer models and is responsible for converting
words/tokens into continuous vectors. For NLP tasks, we simply use the built-in PyTorch embedding
module to model the embedding functionality. For STC tasks, we design two types of Convolutional
patch embedding. The first is inspired by Gong et al. (2021) and Xiao et al. (2021) which used
a series of 2D convolutional layers to split the spectrogram into a sequence of N 16×16 patches.
Specifically, we create a new dimension for the embedding features and regard the spectrogram as
an image to perform convolution. This structure mixes temporal and frequency information to ex-
tract superior feature representations. However, it also yields significant algorithmic delays when
processing sequential input data, hindering real-time processing.

To mitigate this concern, we propose to use several 1D convolutional layers with a kernel size of 3
for patch embedding, as we illustrate in Fig. 2(a). When the kernel size is 1, the patch embedding
layer is ideal for processing sequential data with no algorithmic latency but also suffers from poor
performance. We empirically observed that a convolution kernel of size 3 can dramatically improve
the performance since it can capture information about nearby samples and, as analyzed in Fig. 2(b),
the added latency is negligible. As an example, the blue lines in Fig. 2(b) represent that to obtain
the first output in layer 5, i.e., the output of the patch embedding, we need to wait until the 9th

input sample arrives. After that, for each input sample fed into the model, the patch embedding can
calculate an output, as shown by the red lines. Thus, our network can process the input sequence
in real-time after a delay of only 9 samples, which is negligible compared to the total number of
samples (typically at least a few hundreds) present in any sequence learning task.
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4.2 CONVOLUTIONAL CHANNEL MIXER

Inspired by Tolstikhin et al. (2021), we expect the LMU module to be primarily responsible for
mixing information across tokens due to the presence of the state variables. To effectively capture
the information across the different feature channels, we augment the LMU module with a channel
mixer module, that consists of BN and non-linear activation layers followed by 1×1 convolutional
layers as described in Eq. 6. The first activation layer employs Gaussian Error Linear Units (GELU)
as introduced by Hendrycks & Gimpel (2016), while the subsequent activation layer utilizes the
Rectified Linear Units (ReLU) (Krizhevsky et al., 2012). Since the convolutional layer, BN layer,
and non-linear activation layer do not interact with temporal information, we omit the time notation
T in Eq. 6 for simplicity. We also add a residual connection (He et al., 2016) between the input
Xi and the output Xo of the convolutional channel mixer and refer to this enhanced structure as the
Conv Channel Mixer Block.

X = Conv1(GELU(BN1(Xi))), Xo = Conv2(ReLU(BN2(X))) (6)

4.3 SPIKING LMUFORMER NETWORK STRUCTURE

To further improve the energy efficiency, we propose a spiking version of the LMUFormer, named
spiking LMUFormer.

For NLP tasks, we use the batch normalization and the spiking LIF (SN) layer in the first LMU block
to convert the floating point values to spikes, that results in sparsity and accumulate-only operations.
For STC tasks, we use the first convolution layer together with its followed BN and SN layer in the
patch embedding as the direct encoder. Inspired by (Yao et al., 2023), we also adjust the positions of
residual shortcuts to make sure the output is the addition between two floating point numbers rather
than the spikes.

As depicted in Fig. 3, the spiking LMU block encompasses several layers, structured sequentially as:
a BN layer, followed by a SN layer, succeeded by the core spiking LMU cell, which is then coupled
with a Conv layer, and concluded with another BN layer. Notably, the integration strategy we
employed capitalizes on the inherent temporal dynamics of both the LMU and the SNN. Considering
the concurrent updates of both the memory and hidden states in the LMU at every discrete time step,
in conjunction with the analogous updates of the membrane potentials and spikes within the SNN,
we have devised a merged process to optimize the overall operational efficiency of their integration.

In particular, we feed the input spikes XS [t] into a convolutional layer and a BN layer to get the
input signal of the memory cell.

U [t] = BN(Conv1d(XS [t])) (7)

Meanwhile, they are also regarded as the input of spike neurons. As we adopt the Leaky Integrate-
and-Fire (LIF) neuron (Maass, 1997) model, the update of the membrane potential UH [t] at time
step t is described below (Wu et al., 2018)

UH [t] = UV [t− 1] +
1

τ
(U [t]− (UV [t− 1]− Ureset

V )), (8)

where UV [t− 1] means the membrane potential after emitting spikes at time step t− 1, τ is the time
constant, and Ureset

V represents the reset potential. The firing of spikes is then described as follows

US [t] = F (UH [t]− U th
V ) (9)

where US [t] means the spikes of the input signal of the memory cell and F denotes the firing func-
tion, which outputs 1 when the input is greater than 0, and 0 otherwise. Finally, to reset the mem-
brane potential UV at time step t we use the following equation

UV [t] = UH(t) · (1− US [t]) + Ureset
V · US [t]. (10)

After obtaining US [t] and the memory vector M [t − 1] in the last time step, we can formulate the
update of M [t] as shown below

M [t] = Ā ·MS [t− 1] + B̄ · US [t], (11)
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Figure 3: The network architectures of spiking LMU block and the details within the spiking LMU
cell.

where Ā and B̄ are the discretized space metric from Voelker et al. (2019). To simplify the notation,
we use the function Spiking Neuron SN(·) as the abbreviation of Eqs. (8) to (10). Therefore, as
shown below

MS [t] = SN(M [t]), O[t] = SN(BN(Conv1d([MS [t], XS [t]]))) (12)

we first feed the M [t] into the spiking neurons to get the spikes of the memory state at time step t.
Then we concatenate MS [t] and XS [t] along the feature dimension and feed them into the 1D Conv
layer, BN layer, and SN to get the output spikes of the LMU block at time step t.

5 EXPERIMENTS

5.1 PERMUTED SEQUENTIAL MNIST

Model SNN Acc (%)
LSTM (Voelker et al., 2019) N 89.86
LMU (Voelker et al., 2019) N 97.15

HiPPO-LegS (Gu et al., 2020) N 98.3
PLMU (Chilkuri & Eliasmith, 2021) N 98.49

LMUFormer N 98.55
LMUFormer Y 97.92

Table 1: Performance comparison of our LMUFormer mod-
els and previous works on psMNIST dataset.

To evaluate the performance of our
models on vision task, we use the
permuted sequential MNIST (psM-
NIST) dataset (Le et al., 2015). Un-
like the original MNIST dataset (Le-
Cun et al., 1998) showing each 28×
28 grayscale image as a whole, psM-
NIST presents the pixels of each im-
age as a sequence, typically in a per-
muted order. It results in this task
being much more challenging than
the original task since the models
need to remember and integrate in-
formation over time, i.e., have the ability to handle long-range dependencies. psMNIST contains 10
classes, involving handwritten digits from 0 to 9 and we split 50k images as training dataset, 10k
images as validation dataset, and the rest 10k images as test images.

As shown in Table .3, our models not only outperform all the RNN models but also surpass the
existing LMU-based models. Since the psMNIST dataset is relatively small, directly applying our
LMUFormer model could easily lead to overfitting, so we used a simplified version. We only use
one Conv layer as well as a BN layer as the patch embedding and remove the channel mixer.
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Table 2: Performance comparison of our LMUFormer models and previous works on Speech Com-
mands dataset. (Spikformer∗ and Spike-driven ViT∗ represent models in which we replace our LMU
module with Spiking Self Attention Zhou et al. (2022) and Spike-Driven Self-Attention Yao et al.
(2023) modules, respectively.)

Model Sequential
Inference

Parallel
Training SNN Accuracy (%)

RNN (Bittar & Garner, 2022) Yes No No 92.09
Attention RNN (De Andrade et al., 2018) No No No 93.9

liBRU (Bittar & Garner, 2022) Yes No No 95.06
Res15 (Vygon & Mikhaylovskiy, 2021) Yes Yes No 97.00

KWT2 (Berg et al., 2021) No Yes No 97.74
AST (Gong et al., 2021) No Yes No 98.11

LIF (Bittar & Garner, 2022) Yes Yes Yes 83.03
SFA (Salaj et al., 2021) Yes No Yes 91.21

Spikformer∗ (Zhou et al., 2022) No Yes Yes 93.38
RadLIF (Bittar & Garner, 2022) Yes No Yes 94.51

Spike-driven ViT∗ (Yao et al., 2023) No Yes Yes 94.85
LMUFormer Yes Yes No 96.53

LMUFormer (with states) Yes Yes No 96.92
Spiking LMUFormer Yes Yes Yes 96.12

5.2 SPEECH RECOGNITION

We use the Speech Commands V2 dataset (Warden, 2018) contains 105,829 audio files of 35 differ-
ent words. Each recording lasts up to 1 second and the sampling rate is 16KHz. We use the official
dataset splits, where the training, validation, and test dataset contains 84,843, 9,981, and 11,005
samples, respectively. We chose the hardest classification task with 35 classes to test our models.

As shown in Table 2, our LMUFormer model outperforms the existing RNN models. Although
there is still about a 1.5% drop in test accuracy between our model with the SOTA transformer-based
model, our model has fewer parameters (1.622 Million vs. 86.933 Million, 86.933/1.622 ≈ 53.66),
fewer FLOPs (1.89 × 108 vs. 1.24 × 1010, 124/1.89 ≈ 65.61) and can handle data sequentially.
Additionally, our evaluations indicate that the LMUFormer (with states) achieves a noteworthy
performance of 96.92%. This empirical outcome substantiates our initial hypothesis that the
integration of states within patch embedding and the channel mixer block can enhance model
performance. In pursuit of unparalleled energy efficiency, we convert this model to the 1-bit SNN
model, i.e., the spiking LMUFormer, which surpasses all the contemporary SNN models with mere
3.09× 107 theoretical synaptic operations (SOPs) (Merolla et al., 2014).

Model Params. (M) OPs (G)
AST (Gong et al., 2021) 86.93 12.4

LMUFormer 1.62 0.189
Spiking LMUFormer 1.69 0.0309

Table 3: Comparison of the number of model parameters
and operational counts between our LMUFormer models
and AST model. (OPs refers to FLOPs in ANNs, and
SOPs in SNNs)

In addition, we also added the result
of two experiments for two transformer-
based SNN models, Spikeformer (Zhou
et al., 2022) and Spike-driven ViT (Yao
et al., 2023), that achieve the SOTA per-
formance in the vision tasks. Because
they do not provide the official version
of their models for the SC dataset, we
tested new models in which we use their
proposed structure of self-attention as a
substitute for the LMU module in our
model. It is important to note that the
Spikformer (Zhou et al., 2022) model has a dramatic drop compared with the non-spiking
transformer-based AST (Gong et al., 2021). This suggests that if we restrict the patch embedding
to only mix the information from neighboring samples, the power of the original global attention
in transformer models will be degraded. On the contrary, the Spike-driven ViT (Yao et al., 2023)
can preserve a higher accuracy which indicates its linear attention is more robust to the degrada-
tion of the features extracted by the patch embedding. Moreover, our spiking LMUFormer achieves
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Table 4: Performance comparison of our LMUFormer models and previous works on Long Range
Arena (LRA) Dataset.

Model ListOps
(2K) Text(4K) Retrieval

(4K) Image(1K) Pathfinder
(1K) Avg

S4 58.35 76.02 87.09 87.26 86.05 80.48
Linear Trans. 16.13 65.90 53.09 42.34 75.30 50.55

Linformer 35.70 53.94 52.27 38.56 76.34 51.36
Transformer 36.37 64.27 57.46 42.44 71.40 54.39

BigBird 36.05 64.02 59.29 40.83 74.87 55.01
Nystromformer 37.15 65.52 79.56 41.58 70.94 58.95

LMUFormer 34.43 68.27 78.65 54.16 69.9 61.08
Spiking LMUFormer 37.30 65.80 79.76 55.65 72.68 62.24

Table 5: Ablation study on different patch embeddings and channel mixers in the LMUFormer
model in Speech Commands V2 dataset. ( “Naive LMU” means only using the LMU cell as the
token mixer while “LMU Block” means adding a Conv layer and BN layer after the LMU cell.
“Conv PE” means our convolutional patch embedding and “Conv CM” means our convolutional
channel mixer.)

Model type Patch Embedding Token Mixer Channel Mixer Acc. (%) ∆ (%)
Non-spiking Identity Naive LMU Identity 76.17 0.0
Non-spiking One-layer Conv Naive LMU Identity 89.28 13.11
Non-spiking One-layer Conv LMU Block Identity 89.8 0.52
Non-spiking Conv PE LMU Block Identity 95.57 5.77
Non-spiking Conv PE LMU Block Conv CM 96.53 0.96

Spiking One-layer Conv Naive LMU Identity 83.78 0.0
Spiking One-layer Conv LMU Block Identity 87.88 4.1
Spiking Conv PE LMU Block Identity 95.20 7.32
Spiking Conv PE LMU Block Conv CM 96.12 0.92

a further 1.27% increase in accuracy, demonstrating that our model is superior to the traditional
transformer-based spiking models when handling information with temporal information.

5.3 LONG RANGE ARENA BENCHMARK

To showcase the capability of our LMUFormer with longer tokens, we utilize the Long Range Arena
(LRA) benchmark introduced by Tay et al. (2020). The LRA benchmark assesses machine learn-
ing models on long-context understanding through subtasks including text classification, document
retrieval, image classification, pathfinder, and listops, highlighting their performance across various
domains. Adhering to the evaluation protocol from Tay et al. (2020), which establishes specific
train/test splits, we report the classification accuracy for each task and present an aggregated perfor-
mance measure across all tasks.

We conducted a comparative study involving five transformer-based models: the vanilla trans-
former (Vaswani et al., 2017), Linear Trans. (Katharopoulos et al., 2020), Linformer (Wang et al.,
2020), BigBird (Zaheer et al., 2020) and Nystromformer (Xiong et al., 2021). And the results of the
first four models are from Tay et al. (2020). As detailed in Table 4, there is still a significant gap
in the performance between our models with the recent S4-based models (Gu et al., 2021), but our
LMUFormer excels against these transformer-based models in almost all tasks except Pathfinder.
Furthermore, our spiking variant of LMUFormer surpasses them in the ListOps and Retrieval tasks.

Notably, our spiking LMUFormer is the inaugural SNN model to not only demonstrate comparable
performance on the LRA dataset but also to outshine the majority of its transformer-based coun-
terparts. Intriguingly, the spiking LMUFormer outperforms the regular LMUFormer by an average
margin of 0.53%, suggesting the potential of SNN models to harness their inherent temporal dynam-
ics for superior performance with long sequences.
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5.4 ABLATION STUDY

We first conducted extensive ablation studies to show the impact of the different patch embeddings
and channel mixers in our proposed LMUFormer model on the final performance. All the models
have one final linear layer that acts as the classification head and are trained and tested on the
Speech Command V2 dataset with 35 classes. As shown in Table 5, a naive LMU module with
a classification head, same as a pLMU, can only achieve 76.17% accuracy while simply adding
a convolution layer can boost the result to 89.28%. Although the performance of the non-spiking
model with our LMU block is only slightly better than the model with a naive LMU, our LMU block
significantly improves the performance of the spiking model by 4.1% (an increase from 83.78%
to 87.88%). Moreover, the results show our convolutional patch embedding can further improve
the accuracy of the models compared to models with a simple convolution layer. Finally, using a
convolutional channel mixer, our models achieve a final accuracy of 96.53% for the non-spiking
model and 96.12% for the spiking model.

5.5 RECURRENT PROCESSING

Figure 4: Plot of test accuracy as the number of
samples in the sequence increases.

To more clearly showcase our model’s profi-
ciency with sequential data, we evaluated the
trained spiking LMUFormer on the Speech
Command V2 test dataset, gradually increas-
ing the sequence length from 0 to its full length
of 128 samples. As shown in Fig. 4, the in-
crease in the model’s accuracy with the num-
ber of samples first accelerates continuously
and then levels off. This indicates that af-
ter a certain number of samples have been ob-
tained, the model has been able to predict the
results almost correctly. Specifically, our model
achieves 99% of its original performance while
getting a 32.03% (1 - 87/128) reduction in the
sequence length, yielding results of 95.17%
compared to 96.12% which is even higher than
the spikformer model (93.38%) which utilizes
all the information from the whole sequence.

6 CONCLUSIONS

The transformer model excels across various domains, particularly with large-scale datasets, owing
to its exceptional performance and straightforward parallel training. However, its O(N2) complexity
during inference, coupled with the necessity to acquire the complete sequence before calculating the
self-attention, limits its utility in resource-constrained environments demanding low latency. Hence,
we introduce the LMUFormer and Spiking LMUFormer models, uniquely designed to switch be-
tween parallel and recurrent forwarding when training and testing. Through extensive experiments,
we demonstrate that our non-spiking model achieves close to the performance of state-of-the-art
(SOTA) models while markedly reducing the model size by approximately 53× and computational
complexity by roughly 65×. Furthermore, our Spiking LMUFormer achieves SOTA performance,
registering a notable accuracy of 96.12% among prevailing SNN models evaluated on the Speech
Commands V2 dataset, without compromising on efficiency. It is our aspiration that this contribution
serves as a catalyst for further exploration and advancements in model design for SNNs, particularly
in the domain of sequence learning tasks.
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Sami Barchid, José Mennesson, Jason Eshraghian, Chaabane Djéraba, and Mohammed Bennamoun.
Spiking neural networks for frame-based and event-based single object localization. Neurocom-
puting, pp. 126805, 2023.

Axel Berg, Mark O’Connor, and Miguel Tairum Cruz. Keyword transformer: A self-attention model
for keyword spotting. arXiv preprint arXiv:2104.00769, 2021.

Alexandre Bittar and Philip N Garner. A surrogate gradient spiking baseline for speech command
recognition. Frontiers in Neuroscience, 16:865897, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Narsimha Reddy Chilkuri and Chris Eliasmith. Parallelizing legendre memory unit training. In
International Conference on Machine Learning, pp. 1898–1907. PMLR, 2021.
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Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Roman Vygon and Nikolay Mikhaylovskiy. Learning efficient representations for keyword spotting
with triplet loss. In Speech and Computer: 23rd International Conference, SPECOM 2021, St.
Petersburg, Russia, September 27–30, 2021, Proceedings 23, pp. 773–785. Springer, 2021.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 1311–1318, 2019.

Tete Xiao, Mannat Singh, Eric Mintun, Trevor Darrell, Piotr Dollár, and Ross Girshick. Early
convolutions help transformers see better. Advances in neural information processing systems,
34:30392–30400, 2021.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. 2021.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. arXiv preprint arXiv:2307.01694, 2023.

Manzil Zaheer, Guru Prashanth Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Al-
berti, Santiago Ontanon, Philip Minh Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Mahmoud El Houssieny Ahmed. Big bird: Transformers for longer se-
quences. 2020. URL https://proceedings.neurips.cc/paper/2020/file/
c8512d142a2d849725f31a9a7a361ab9-Paper.pdf.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Rui-Jie Zhu, Qihang Zhao, and Jason K. Eshraghian. Spikegpt: Generative pre-trained language
model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

12

https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf


Published as a conference paper at ICLR 2024

Table 6: The number of batch size and maximum learning rate for different subtasks in the LRA
dataset. The number in parentheses indicates the learning rate for spiking models if it is different
from the learning rate of the non-spiking models.

Hyperparameters ListOps
(2K) Text(4K) Retrieval

(4K) Image(1K) Pathfinder
(1K)

Batch size 32 32 32 256 256
Max. Learning rate 0.01 0.0001 0.0001(0.001) 0.01 0.001

Table 7: Performance comparison of our LMUFormer models and previous works on the LRA
dataset.

Model ListOps
(2K) Text(4K) Retrieval

(4K) Image(1K) Pathfinder
(1K) Avg

LMUFormer 34.43 68.27 78.65 54.16 69.9 61.08
Spiking LMUFormer 37.30 65.80 79.76 55.65 72.68 62.24

pLMU 22.83 63.72 74.1 53.50 68.32 56.49
Spiking pLMU 17.94 60.84 65.19 51.89 49.88 49.15

A APPENDIX

A.1 LRA BENCHMARK

The benchmark comprises:

• ListOps: A synthetic task where models operate on nested lists, gauging their understand-
ing of hierarchical structures.

• Text: Byte-level classification of IMDb reviews, pushing the boundaries on sequence
lengths.

• Retrieval: Document retrieval tasks centered around byte-level tokens.

• Image: Image classification, but uniquely handled as pixel sequences, sidestepping tradi-
tional 2D processing.

• Pathfinder: An image-based task assessing if an unobstructed path connects two high-
lighted points, challenging models on long-range spatial dependencies.

A.2 TRAINING HYPERPARAMETERS

For psMNIST dataset, we trained the models 50 epochs with Adam (Kingma & Ba, 2014) optimizer
and the initial learning rate is 0.0001 and the batch size is 100. As for the Speech Commands V2
dataset, the batch size is set to 128 during 100 (200) epochs with an initial learning rate of 0.00025
(0.0025) and weight decay of 5e−7. After the very first 5 (10) epochs, we multiply the learning
rate by 0.85 every 5 (10) epochs. The numbers in brackets are the settings for spiking models. For
the LRA dataset, we generally used the setting as Gong et al. (2021). For all subtasks, we adopted
AdamW (Loshchilov & Hutter, 2017) optimizer and the 1cycle learning rate policy (Smith & Topin,
2019). The weight decay for the ’Image’ task is 0.01 and 0 for other tasks. More hyperparameters
are shown in Table. 6.

A.3 MODEL BIAS & LIMITATIONS

There may be a few potential limitations or scenarios where LMUFormer may not perform very well.
For example, LMUFormer may lack the pre-training capabilities of a Transformer, that can enable
high performance when fine-tuned on a range of downstream tasks. Rather, it needs to be trained
on the streaming use-case directly by the user. That said, it is not very clear whether pre-training
on a large text corpus that empower Transformers, can improve the performance of our models on
streaming use-cases. Moreover, to our best knowledge, there is no large-scale streaming dataset,
such as the BookCorpus, that we can use to pre-train our models. Given a large-scale pre-trained
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Table 8: Performance, training time and memory comparison on LRA ‘Text’ subtask.

Model Text(4K) Params. (M) Peak memory
(MB) Training (s) Validation (s)

Linear Trans. 65.90 0.174 644 5.91 2.37
Linformer 53.94 0.698 1180 8.69 2.46

Transformer 64.27 0.174 1780 20.60 2.49
Nystromformer 65.52 0.174 836 11.24 4.09

LMUFormer 68.27 0.174 738 6.29 2.46
Spiking LMUFormer 65.80 0.175 928 12.02 5.66

pLMU 63.72 0.132 582 4.60 1.83
Spiking pLMU 60.84 0.132 684 8.68 3.75

dataset (and enough compute power), it may be possible for LMUFormer to scale up, and achieve
high performance when fine-tuned on downstream tasks. We hypothesize this may not be possible
by simply stacking LMUFormer blocks, and may require network architectural optimizations, which
is an important research direction.

Moreover, as shown in Table 4, LMUFormer, though yields higher performance compared to all
transformer variants, can not surpass the S4 models on LRA dataset, that evaluates model quality
under long-context scenarios. Improving the LMUFormer performance for such datasets is also an
important and interesting research direction.

A.4 COMPARISON BETWEEN DIFFERENT MODELS ON LRA

For the LRA dataset, we use the same word and position embedding for all the models, replacing
the patch embedding block we use for LMUFormer. This narrows the gap between LMUFormer and
pLMU models on LRA compared to Google Speech Commands as shown in Table 7. Overall, the
LMUFormer significantly outperforms pLMU, with comparable results only in Task ’Image’ and
Task ’Pathfinder’.

We also show a comparison of performance, model size, peak memory, training time, and inference
time for the pLMU model, LMUFormer, Spiking LMUFormer and other Transformer variants, using
the ”Text” subtask as an example. Our results are shown in the Table 8. As we can see, our LMU-
Former achieves the best performance while maintaining relatively decent training and inference
speeds, and requires less memory during training.

A.5 HARDWARE-SOFTWARE CO-DESIGN

We develop a hardware simulation framework for SNNs to estimate the energy, latency, and through-
put of our non-spiking and spiking LMUFormer models. We have also incorporated the overhead
due to the spike sparsity in our framework, which is minimal with high sparsity as obtained in this
work.

The total compute energy (CE) of the spiking LMUFormer (SpLMUCE) can be estimated as

SpLMUCE=

T∑
t=1

(
DNNop

1 Emac+

L∑
l=2

(St
lDNNop

l Eac + EspDNNop
l )+

L∑
l=1

DNN com
l Ecom

)
(13)

because the SNN receives full-precision input in the first layer (l=1) without any sparsity. Note
that DNN com

l denotes the total number of comparison (thresholding) operations in the layer l with
each operation consuming 1.64pJ energy in our 28nm Kintex-7 FPGA platform for floating point
(FP) reperesentation. Also, note that DNNop

l denote the total number of floating point (MAC or
AC) operations in layer l. Lastly, St

l denotes the activation sparsity of layer l at time step t, and
Esp = 0.05pJ denotes the energy overhead due to sparsity, that is incurred in checking whether the
binary activation is zero.
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The CE of the full-precision LMUFormer (LMUCE) is estimated as DNNCE =∑L
l=1 DNNop

l Emac, where we ignore the energy consumed by the non-linear activation operation
(significantly lower compared to thresholding operation).

The compute-efficiency of the spiking LMUFormer stems from two factors: 1) high activation spar-
sity, where

∑T
t=1 S

t
l=0.15 on average across all the layers, and 2) Use of only AC (1.8pJ) operations

that consume 7.4× lower compared to each MAC (13.32pJ) operation in our FPGA setup for float-
ing point (FP) representation. Note that the binary activations can replace the FP multiplications
with logical operations, i.e., conditional assignment to 0 with a bank of AND gates. These replace-
ments may be realized using existing hardware depending on the compiler and the details of their
data paths. Based on these two factors, we observe that our spiking LMUFormer incurs 27.2× lower
compute energy compared to LMUFormer on the Google speech commands at iso-parameter.

In contrast, the energy incurred in the memory access of the weights for both non-spiking and spiking
LMUFormer depend on the data re-use scheme and the underlying hardware. However, since both
the models have almost the same number of trainable parameters, they are expected to incur identical
memory energy. We also do not expect any additional latency or throughput improvement in SNN,
since we need to process the identical sequential input, and activation sparsity favors compute energy
(and not latency). That said, unlike existing SNNs that incur an additional temporal overhead and
suffers from high latency, our SNN re-uses the hidden memory dimension of the LMUformer to
incur the temporal dimension. Thus, our spiking LMUFormer can yield higher compute efficiency
with no overhead on latency.
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