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ABSTRACT

Machine learning (ML) models for code clone detection determine whether two pieces
of code are semantically equivalent, which in turn is a key building block for software-
engineering tasks like refactoring and security tasks like vulnerability and malware detec-
tion. While these models are predominantly trained on clean, structured code datasets,
real-world code often undergoes a variety of semantic-preserving transformations, includ-
ing refactoring, minification, automated formatting, and compiler optimizations. To ad-
dress this critical gap between training and test data, we propose Auto-SPT, a novel frame-
work to automatically construct synthetic-data generators for code. Auto-SPT is designed
to produce Semantic Preserving Transformations (SPTs) that alter a program’s syntactic
structure while preserving its functionality and is instantiated on top of Large Language
Models (LLMs). In particular, we use LLMs to craft a diverse set of SPTs, generate strong
implementations for these SPTs, and compose them to result into strong transformations.
Our formal analysis shows that the diversity of SPTs impacts the strength of their compo-
sition. We then empirically demonstrate that Auto-SPT generates more diverse SPTs than
existing approaches and these SPTs significantly drop the performance of state-of-the-art
code clone detectors. Further experiments show Auto-SPT can be used to enhance code
datasets for training, to produce code-clone detection models that are robust to real-world,
adversarial code transformations.

1 INTRODUCTION

Machine learning (ML) is rapidly transforming the field of programming, enabling automated tasks such as
code generation, bug detection, and vulnerability analysis. One of the most important tasks is code clone
detection, where a model determines whether two pieces of code are semantically equivalent. This task
enables code search, code clustering, code reuse detection, code quality assessment, and the identification
of copyright violations, all common tasks in software development (Wei & Li, 2017; Juergens et al., 2009).
Existing ML-based code clone models are trained and evaluated on datasets derived from clean and well-
structured code repositories like GitHub and Stack Overflow (Alam et al., 2023; Svajlenko et al., 2014), with
limited exposure to perturbed examples. However, at test time, these models might process code samples that
underwent transformations because of code refactoring, minification, application of automated formatting
rules, or as a result of compiler optimizations. There is a need to evaluate whether ML-based code cloning
models are robust to real-world transformations of code (Zhang et al., 2023; Srikant et al., 2021).

Existing research has developed approaches to systematically transform code by applying Semantic Preserv-
ing Transformations (SPTs) to alter a program’s syntactic structure while preserving its functionality (Hooda
et al., 2024a; Wang et al., 2022; Le-Cong et al., 2024; Allamanis et al., 2021; Dong et al., 2024). Thus far,
existing work utilized simple transformations like swapping independent code blocks, replacing while loops
with for loops, switching if conditions, and renaming variables (See Table 5). While simple to implement,
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such approaches face several shortcomings. First, by not exploring the space of possible transformations,
they lack diversity in the types of transformations applied. Second, they often adopt heuristic-based imple-
mentations, making it hard to gauge the strength of the transformation applied. Third, they require significant
implementation overhead to tailor and correctly apply the transformation. Because of these shortcomings,
existing SPTs do not enable the realistic evaluation of the robustness of code cloning models.

In this work, we address this need through Auto-SPT, a framework to create and apply SPTs. First, Auto-SPT
generates diverse semantic preserving transformations that can induce alterations to all aspects of the code,
including its structure, syntax, and control. Second, Auto-SPT finds the implementation of each transforma-
tion that can maximally affects the performance of code cloning model. Third, Auto-SPT composes multiple
such transformations, which as we demonstrate result in modifications more complex than those from a
single transformation applied in isolation.

We instantiate this framework by leveraging Large Language Models (LLMs). LLMs demonstrate remark-
able capabilities in coding tasks such as generating and editing code. We use them to automatically design
and implement new SPTs. First, we use LLMs to synthetically craft a diverse set of SPTs. Then we utilize
LLM’s code generation capability combined with execution feedback (similar to Zheng et al. (2024)) to
generate strong implementations for each of the designed SPTs. Finally, we demonstrate that a composition
of these diverse SPTs significantly increases the strength of the resultant transformations and the robustness
of clone-detection models trained on thus transformed code.

We formally analyze how the diversity of SPTs impacts their composition and propose a diversity metric to
quantify it. We then empirically demonstrate that Auto-SPT generates stronger implementations for existing
SPTs and more diverse SPTs as compared to existing approaches. Finally, we show that composing SPTs
generated by Auto-SPT results in significantly stronger transformations. For example, our evaluation using
code samples from the CodeContests dataset (Li et al., 2022) over a fully finetuned CodeBERT model shows
that the average distance (where clones have a distance of 0 and non-clones have 1) between original code
samples and transformed samples (semantically equivalent) from Auto-SPT is 0.947 compared to 0.243 from
prior work. Even for state of the art embedding models like EmbeddingGemma (Gemma-Team et al., 2025),
Auto-SPT is able to find transformed samples with average distance > 0.8.

2 RELATED WORK

Clone Detection. Code clone detection is a critical area in software engineering, aiming to identify similar
code fragments within or across software systems, useful for maintenance, refactoring, bug fixing, and
ensuring software quality (Shan et al. (2023)). There are different types of code clones: Type-1 are identical
clones, modulo formatting and comments; Type-2 are lexical clones, where code literals and variable names
vary; Type-3 are syntactic clones, where code statements are added, removed, or modified; and Type-4 are
semantic clones, where functionality is preserved, but not the syntactic structure. Type-4 clones, the ones
we target in this work, are the most challenging type to detect, requiring understanding the underlying logic.
Early work in this space focused on Types 1, 2, and 3 through specially designed representations of the
source code and corresponding matching algorithms (Kamiya et al., 2002). More recent approaches have
used similarity of embeddings obtained from neural models (e.g., Alon et al. (2019b)’s code2vec, Alon
et al. (2019a)’s code2seq, Feng et al. (2020b)’s CodeBERT). Despite this recent progress, the detection of
Type-4 clones accurately and scalably remains an open problem, as observed through benchmarks such as
GPTCloneBench (Alam et al. (2023)), where the recall of code-clone detectors is quite low for real-world
code samples.

Semantic Preserving Transformations (SPTs). SPTs are code alterations that modify a program’s syn-
tactic or structural representation but maintain its original functionality. These transformations enable several
tasks in software engineering, including software testing, robustness evaluation, and data augmentation for
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training code-understanding models. Prior work has explored various semantic-preserving code transfor-
mations, notably variable renaming, conditional restructuring, loop transformations such as for/while loop
conversions, swapping if/else blocks, statement reordering, and loop unrolling (Allamanis et al. (2021);
Rabin et al. (2021); Bui et al. (2021); Henkel et al. (2022); Chakraborty et al. (2022); Yang et al. (2022);
Zhang et al. (2023); Wang et al. (2022); Hooda et al. (2024a); Dong et al. (2024)). Variable renaming is
widely studied across these works, whereas more sophisticated transformations, such as loop unrolling and
conditional restructuring, have received relatively less attention. Past work has also utilized SPTs to search
for adversarial programs against tasks such as program summarization (Srikant et al. (2021); Henkel et al.
(2022)) and clone detection (Zhang et al. (2023)). In this work, we characterize how the set of available
SPTs impacts the program search, and we provide an automated framework to generate new SPTs.

Large Code Models. LLMs have become powerful tools for various software engineering tasks, includ-
ing code generation, completion, bug detection, and automated refactoring. This ability has unlocked new
applications where the model generates code as an intermediate representation to solve downstream tasks in-
stead of directly outputting the final answer. For example, recent methods prompt LLMs to produce Python
programs for arithmetic or logical reasoning problems, thereby delegating computation to a reliable inter-
preter and achieving significantly higher accuracy than standard chain-of-thought reasoning alone (Chen
et al. (2022); Gao et al. (2023)). Huang et al. (2025) use LLMs to generate program-based labelers for weak
supervision. In this work, we employ the coding ability of LLMs to generate implementations for SPTs.

3 PRELIMINARIES

3.1 NOTATION

Let X be the space of programs and T ⊆ XX the space of program transformations. A functional equiv-
alence oracle A : X × X → {0, 1} is a binary function that evaluates if two programs are semantically
equivalent. A common implementation of an equivalence function is to verify if the two programs produce
identical outputs for a set of test inputs. Let T ∈ T be a semantics-preserving transformation that perturbs a
program but preserves the semantics, i.e. T : X → X s.t. ∀x ∈ X , A(x, T(x)) = 1. Single SPTs can be
combined to form a set T ⊂ T . Now, we define M : X ×X → [0, 1] as a clone-detector model that outputs
the likelihood of two input programs being functional equivalents of each other. The binary classification
(clone vs. non clone) is usually done using a threshold. A perfect clone detector would be an equivalence
oracle, but that is unrealizable due to the undecidability of program equivalence (Rice (1953)).

3.2 WORST-CASE TRANSFORMATIONS FOR CLONE-DETECTION MODELS

For clone detectors, a worst-case transformation is a functionally equivalent program that is classified as a
non clone. We represent this problem as finding a semantic adversarial perturbation against a clone-detector
model. For a program x ∈ X and a clone-detector model M , we can find a transformed x′ by solving the
following optimization:

argmax
x′∈X

L(x, x′) s.t. A(x, x′) = 1, (1)

where L(x, x′) = 1−M(x, x′) is the distance between programs x and x′ according to the clone detector.
A solution to this optimization problem needs to be a program that is (1) valid (syntactically correct) and (2)
functionally equivalent to the original program x. Solving this problem, while satisfying these requirements,
is challenging because of the complexity of both the search space and the equivalence constraint.
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3.3 SEMANTICS-PRESERVING TRANSFORMATIONS (SPTS) AND TRANSFORMATION SETS

Semantics-preserving transformations provide a way to enumerate programs satisfying the validity and
equivalence requirements. These transformations operate through symbolic manipulations of an input pro-
gram and are carefully designed to preserve the program’s semantics. For example, consistently renaming
all occurrences of a variable throughout its scope is a basic SPT, satisfying both validity and equivalence.
Given the set of SPTs: T ⊂ T , we can rewrite Equation 1 as finding a sequence of transforms:

(Tk, . . . , T1) = arg max
Tk,...,T1∈T

L(x, (T1 ◦ · · · ◦ Tk)(x)), (2)

where the transformed code is x′ = (Tk ◦ · · · ◦ T1)(x), and k is the length of the transformation sequence.

3.4 STRENGTH AND DIVERSITY OF TRANSFORMATION SETS

Finding a worst-case transformation that is successful against a clone detector (i.e., a solution to Equation 1)
corresponds to finding a set of diverse SPTs of sufficient strength. Strength, in this context, refers to the de-
gree to which a transformation increases the distance between the original program and transformed program
according to the clone detector. Transformations that induce significant alterations to the code’s structure,
complexity, or predictability tend to be stronger. For instance, stronger transformations often modify larger
sections of the code or fundamentally change its control or data flow patterns. SPTs like converting for
loops to while or related control-flow constructs, and function in-lining are stronger whereas swapping in-
dependent instructions, variable renaming, or changing the order of operands in an expression are examples
of weaker SPTs. Additionally, diversity of SPTs is important: relying solely on a single type of transforma-
tion, even a strong one, is insufficient to effectively explore the vast space of equivalent programs and solve
Equation 1. This limitation stems from the specialized nature of individual SPTs, which typically target only
specific aspects of the program.

We capture this intuition by providing an upper bound on the strength of a sequence of transformations as a
function of their diversity. First, we define the diameter of a transformation.

Definition 3.1. (Diameter of a transformation set.) The k-step diameter of a set of transformations T ⊂ T
is

DT
k (x) = max

T1,...Tk∈T
T′1,...T

′
k∈T

L((Tk ◦ ... ◦ T1)(x), (T
′
k ◦ ... ◦ T′1)(x)).

Second, we introduce a measure to quantify the diversity of SPT sets. This measure captures the increase in
the diameter of a transformation set when adding a new transformation.

Definition 3.2. (Diversity of an SPT set.) The k-step diversity of a set of semantics-preserving transforma-
tions T ⊂ T is given by

∆T
k (x) =

DT
k (x)

E
t∈T

DT\t
k (x)

.

Third, we observe that the strength of transformation achievable through the application of k SPTs from a
given set is upper bounded by the diversity of its subsets.

Lemma 3.3. Upper bound for k-step transformation strength.

max
T1,...,Tk∈T

L(x, (T1 ◦ · · · ◦ Tk)(x)) ≤
k∏

i=1

∆Ti

k , where Ti := Ti−1 ∪ {arg max
t∈T\Ti−1

DTi−1∪t
k (x)}

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Limitations of Existing SPTs SPTs have been explored for many applications, including robustness eval-
uation and data augmentation for code models. Most approaches only consider simple SPTs, like swapping
independent code blocks, replacing while loops with for loops, switching if conditions, and renaming vari-
ables, in isolation. While some do perform compositions of individual SPTs, they only consider a small
number of distinct transformation types. For instance, the prior works summarized in Table 5, in total, uti-
lize a limited set of eight distinct SPTs. To automatically perform these transformations, existing approaches
use heuristic based or ad-hoc implementations that may not apply the strongest version of that transformation
type. As a result of Lemma 3.3, existing SPTs, even if composed, are neither strong nor diverse enough to
yield optimal solutions for the problem in Equation 1. We confirm this observation empirically in section 5,
where we show SPTs from existing approaches are not strong against code clone detectors.

4 THE Auto-SPT FRAMEWORK

We propose Auto-SPT, an LLM-based automation framework to (1) design diverse SPTs, (2) generate their
strong implementations, and (3) combine them to create stronger transformations.

4.1 STEP 1: DESIGNING NEW SPTS

We use LLMs to automatically design new SPTs. However, as highlighted by previous work (Chen et al.
(2024); Hooda et al. (2024b)), naively prompting the LLMs does not work. LLMs suffer from a lack of
randomness (Zhang et al., 2024), which restricts the diversity of the designed transformations. Moreover,
LLMs are prone to hallucinations, which can affect the correctness of transformations. We address these
problems through iterative prompting, where we employ a specially crafted generator prompt. This prompt
instructs the LLM to generate SPTs that are distinct from the list of transformations generated so far. This
instruction helps to guide the generation of new and diverse transformation. We use this prompt template:

You are a python programming language expert. Your goal is to design new semantic preserving transfor-
mations. I will give you 5 python programs and you have to suggest a transformation that can be applied to
all the 5 programs. Give an exact description of the transformation such that it can be used to implement
the transformation. The output format should be:

• Transformation Name: <name>

• Description: <description>

The transformation should be distinct from the list of following transformations:
{transformation list}
PROGRAMS:
{programs}

Table 1 lists a set of 20 new SPTs generated in this step. As evident from the table, these transformations
target different aspects of the code, including arithmetic operations, data structures, control flow, function
execution, and variable names. They target both low-level computation (e.g., arithmetic and bitwise manipu-
lations) and higher-level program behaviors (e.g., nested functions, deferred execution, generator chaining).

4.2 STEP 2: IMPLEMENTING SPTS

After designing the SPTs, the next step is to apply them to programs. We prompt an LLM to automatically
generate a (source code) implementation of a desired SPT. We directly use the transformation descriptions
generated in the previous stage and use temperature sampling to generate multiple candidate implementa-
tions for each SPT. We then use a subset of 1000 randomly selected programs (with accompanying unit
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Table 1: New Semantic Preserving Transformations. The number in the braces shows correct-
ness+applicability on 1000 programs. Although some of the transformations are only applicable to a small
set of programs, each program has atleast 9 applicable transformations. We check for correctness by running
unit tests, and applicability by ensuring that the transformed program is not identical to the original.

Modular Arithmetic Distribution (568)
Nested Function Encapsulation with Dynamic Execution (615)
Recursive List Comprehension Flattening (128)
Modular Index Obfuscation with Dynamic Range Mapping (471)
Cyclic Variable Rotation with Lambda Chaining (11)
Conditional Expression Vectorization with Boolean Masking (193)
State Variable Accumulation with Bitwise Memory (840)
Exponential Base Conversion with Dynamic Radix Chaining (398)
Modular State Threading with Generator Chaining (649)
State Machine Enumeration with Dynamic Dispatch (13)

Temporal State Inversion with Deferred Execution Queue (229)
Dimensional Array Flattening with Dynamic Offset Mapping (272)
Probabilistic Control Flow Injection with State Preservation (264)
Circular Buffer State Threading with Modular Iteration (412)
Iterative State Composition with Delayed Resolution (91)
Arithmetic Expression Decomposition with Modular Chain Substitution (439)
Modular State Interleaving with Conditional Aggregation (97)
Modular State Accumulation with Circular Buffer Mapping (713)
Cumulative State Mapping with Modular Dictionary Encoding (141)
Positional State Encoding with Circular Dependency (85)

tests) to estimate the correctness and strength of the candidate implementations. For this set of validation
programs {x1, ..., xn} and a transformation candidate T ∈ T , we use the following reward function:

R(T ) =
1

n

n∑
i=1

A(xi, T (xi)) · L(xi, T (xi),

where A : X × X → {0, 1} checks for functional equivalence by executing unit tests. We use this re-
ward function for our Best-of-N sampling to select the strongest implementation for each SPT. We use the
following prompt template.

Write a python program that takes in a string (from std input) that represents another python program,
mutates it according to the following transformation and prints the result (do not print anything else).
Transformation: {transformation description}

• the obfuscator should ensure that the program is still valid python code

• the obfuscator should be semantic preserving

• remember to input the entire program which can include multiple lines

Table 3 compares the applicability and correctness of the automatically generated transformations from this
step to manually implemented ones. We check for correctness by running unit tests, and applicability by
ensuring that the transformed program is not identical to the original. Measured over a random sample of
1000 programs (that were not part of the generation prompt), the automatically generated transformations by
Auto-SPT apply and result in correct behavior to roughly the same number programs as those manipulated
through manual transformation. This result highlights the effectiveness of this approach in automatically
transforming code. Further, Table 1 shows the applicability and correctness of the new SPTs. This table
highlights that the new SPTs apply to varied sets of programs, according to the coding style and implemen-
tations. Although some of the transformations are only applicable to a small set of programs, each program
has atleast 9 applicable transformations.

In conclusion, this approach has three benefits. First, it automatically generates the transformation code,
avoiding the overhead of manual implementation from prior work. Second, it finds a strong implementation
of a given transformation. Third, it obviates the need to prompt the LLM to apply the transformation for each
code sample. Doing so would incur prohibitive cost and affect the consistency of applied transformations.

4.3 STEP 3: COMBINING SPTS

Solving the optimization problem in Equation 2 requires searching the potentially vast space of programs
x′ that are semantically equivalent to the original program x. We employ an iterative beam search strategy,
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guided by the clone detector score M and utilizing a set of available SPTs T = {T1, T2, . . . , TN}. This
search maintains a beam of the B most promising candidate transformation at each step, starting with just
the original program x. Each iteration involves three stages. The expansion stage applies every available
SPT from the set T to each of the current best programs residing within the beam to expand the set of
next-step candidates. The filtering stage prunes the expanded pool to ensure they syntactically valid and
semantically equivalent to the original program. The third stage, selection, chooses top B candidates that
are most distant from the original program using the clone detector. This cycle of expansion, filtering, and
selection repeats for a predefined number of iterations N . The process terminates by selecting the single
program from the final beam that achieved the overall lowest score M(x, x′) during the search, representing
the best transformation found. Algorithm 1 describes the procedure in detail.

5 EXPERIMENTS

Our evaluation answers three key research question:

RQ1: How effective is Auto-SPT at evading clone detectors as compared to existing transformations?

RQ2: Why are Auto-SPT’s SPTs more effective than existing transformations?

RQ3: Do Auto-SPT’s SPTs help train more robust clone detectors?

5.1 SETUP

Dataset. We use the CodeContests dataset from Li et al. (2022) to construct clone and non-clone code
pairs. Each problem in this dataset comes with multiple solutions (submitted by actual users via platforms
like Codeforces, CodeChef, etc.) as well as unit tests. We use solutions belonging to the same problem
to construct clone pairs and those belonging to distinct problems to construct non-clone pairs. In total, we
randomly select 2000 distinct problems. Then, we split this to get 1500 training, 250 validation, and 250 test
sets of problems. The split is done to test the generalization performance of the clone detection task across
different functionalities. For each set, we construct 250 clone pairs per problem, leading to a total of 375000
clone pairs in the training set. We construct an equal number of non-clone pairs to get a balanced dataset. We
ensure that we only consider solutions that pass all the unit tests associated with the corresponding problem.
Our evaluation focuses on Python programs, but our method should apply to any programming language.

Clone Detection Models. We evaluate Auto-SPT using four different model architectures – Code-
BERT (Feng et al., 2020b), GraphCodeBERT (Guo et al., 2021), EmbeddingGemma (Gemma-Team et al.,
2025), and Snowflake’s Arctic Embed M (Merrick et al., 2024). We perform full finetuning for the Code-
BERT model using the training set and select the best checkpoint based on the accuracy of the validation set.
For the other models, we use the pretrained weights and fine-tune the final layer.

Auto-SPT Hyperparameters. We use Gemini 2.5 Pro to design and implement SPTs (i.e., as the LLM for
Steps 1 and 2 of Auto-SPT). We use a temperature of 0.1 for the design step and 0.8 for the implementation
step. We use the remaining solutions from CodeContest (disjoint from the 2000 problems considered during
dataset generation) to populate the example programs in the generator prompt. We use N = 20 for Best-
of-N sampling during the implementation step. Again, we sample the validation programs to estimate the
reward function from the remaining CodeContest solutions. For the beam search, we use a beam size of 5
and apply each SPT to all the candidates in the beam. We use the following notation to denote different
transformation sets. VarRename, Conditional, ForWhile and IfElseFlip are together described as Orig-4.
We use Auto-SPT to generate 5 different implementations for each of the above four transformations, which
is described by Orig-20. The transformations mentioned in Table 1 are represented by New-20.

7
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Table 2: Worst Case Transformation for different transformation sets when searching over 10 iterations.
Auto-SPT achieves the strongest transformations.

Clone Detection Model Worst Case Distance
Wang et al. (2022) Auto-SPT (Orig-4) Auto-SPT (Orig-20) Auto-SPT (New-20)

CodeBERT 0.243 ± 0.395 0.514 ± 0.467 0.533 ± 0.484 0.947 ± 0.218
GraphCodeBERT 0.092 ± 0.229 0.115 ± 0.266 0.147 ± 0.279 0.721 ± 0.319
EmbeddingGemma 0.285 ± 0.369 0.292 ± 0.378 0.390 ± 0.434 0.803 ± 0.383
snowflake-arctic-embed-m-v2.0 0.067 ± 0.193 0.097 ± 0.215 0.194 ± 0.325 0.929 ± 0.227

Compute. We run all experiments on a machine with 4 NVIDIA H100 GPUs, 40 Intel(R) Xeon(R) Silver
4410T CPUs, and 126GB of RAM. More details on compute requirements of Auto-SPT are in Appendix C.

5.2 RQ1: ATTACK EFFECTIVENESS

Table 2 shows distance measured by the clone detector model for the worst-case transformation against
four different types of clone detection models. For the search, we consider four different settings which
correspond to four different sets of SPTs and their implementations –Wang et al. (2022) (Orig-4), Auto-SPT
(Orig-4), Auto-SPT (Orig-20) and Auto-SPT (New-20), where the third type is constructed by taking distinct
implementations (5 each) of the Orig-4 transformations. Across the three models, we make two main
observations: (1) For the same type of transformations, Auto-SPT outperforms implementations provided
by past work, and (2) SPTs designed by Auto-SPT can be composed to perform stronger transformations as
compared to existing SPTs. Interestingly, even recent and state-of-art code embedding models are not robust
against transformations from prior work and SPTs from Auto-SPT.

5.3 RQ2: TRANSFORMATION SET DIVERSITY

Table 2 reveals an important observation: improving diversity of transformations makes them stronger. We
can observe this along two dimensions – (1) Increasing the diversity of implementations for the same set of
SPTs improves transformation strength (Auto-SPT Orig-20> Auto-SPT Orig-4), (2) Increasing the diversity
of the types of SPTs further makes transformations stronger (Auto-SPT New-20 > Auto-SPT Orig-20). To
delve deeper into this observation, we use the search procedure described in subsection 4.3 to estimate the
diversity (Definition 3.2) of the sets of transformations. In Table 4, we show the diversity values for an
increasing number of implementations from two different sets of transformations – Orig-4, and New-20. To
expand the Orig-4 set to 20 implementations, we use Auto-SPT to generate multiple implementations for
each SPT type. Due to the high computation cost of estimating diversity, we limit the maximum number of
search iterations to 5 (since estimating diversity for a set of k transformations requires running k search pro-
cedures). We see that the diversity of Orig-4 goes down rapidly as the number of transformations increases.
Going from 12 to 16 transformations has a minimal effect on the transformation strength. On the other hand,
New-20 maintains diversity even for 20 transformations.

5.4 RQ3: EVALUATING ROBUST DETECTORS

Next, we evaluate whether SPTs from Auto-SPT can improve the robustness of clone detectors. We choose
to perform this experiment on CodeBERT because it provides official support for finetuning for the clone
detection task (Feng et al., 2020a). We finetune CodeBERT using training data generated by applying trans-
formations from Orig-4. We consider two settings – SPT implemented by Wang et al. (2022) and Auto-SPT.
We transform each training point with a probability of 0.5, and then select a random SPT from the transfor-
mation set. Figure 1 shows the transformation effectiveness for all three settings. First, we find that training

8
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Table 3: Existing Semantic Preserving Transfor-
mations.
Transformation Method Correct + Applicable

(1000 programs)

VarRename
Wang et al. (2022) 989
Auto-SPT 760

Conditional
Wang et al. (2022) 680
Auto-SPT 458

ForWhile
Wang et al. (2022) 621
Auto-SPT 706

IfElseFlip
Wang et al. (2022) 241
Auto-SPT 218

Table 4: Diversity for increasing number of
transformations. The target clone detector model
is CodeBERT.
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Figure 1: Effectiveness of different transformation sets against clone detectors trained to be robust to SPTs.
Auto-SPT provides stronger transformations which lead to more robust clone detection models. The text in
violet describes the setting used to generate transformations for training.

on transformations from Wang et al. (2022) improves robustness the most against the same transformation
set. It provides minor improvements against Orig-4 or New-20 transformations from Auto-SPT. However,
training on Orig-4 transformations from Auto-SPT improves robustness against both Wang et al. (2022) and
Auto-SPT’s implementations. It slightly improves against New-20 transformations, suggesting that training
on stronger transformations helps improve robustness against weaker transformations of the same type.

6 CONCLUSION

In this paper, we presented Auto-SPT, a novel automated framework leveraging large language models to gen-
erate diverse and strong semantic-preserving transformations (SPTs). Auto-SPT addresses the limitations of
existing heuristic-based and manually implemented SPTs by automating the design and implementation of
transformations, thus significantly reducing manual effort and improving transformation strength and diver-
sity. Our theoretical analysis formalizes the relationship between transformation diversity and obfuscation
strength, while our empirical evaluation demonstrates that Auto-SPT-generated transformations significantly
degrade the performance of state-of-the-art code clone detectors compared to existing approaches.
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A EXISTING SEMANTIC PRESERVING TRANSFORMATIONS

Table 5: Existing Semantic Preserving Transformations.
Past Work Transformations

VarRename Conditional ForWhile IfElseFlip StmtSwap Unroll

Allamanis et al. (2021) ✓ ✓ ✓
Rabin et al. (2021) ✓ ✓ ✓ ✓
Bui et al. (2021) ✓ ✓ ✓
Henkel et al. (2022) ✓ ✓ ✓
Chakraborty et al. (2022) ✓ ✓ ✓
Yang et al. (2022) ✓
Zhang et al. (2022) ✓
Wang et al. (2022) ✓ ✓ ✓
Hooda et al. (2024a) ✓ ✓ ✓
Le-Cong et al. (2024) ✓ ✓
Dong et al. (2024) ✓ ✓

B COMPOSING TRANSFORMATIONS

Algorithm 1 Searching for the Strongest Composition of Transformations
Input: Original program x ∈ X , Set of SPTs T = {T1, . . . , Tk}, Equivalence checker A : X × X → {0, 1}, Clone

detector M : X × X → [0, 1], Beam size B ∈ N+, Number of iterations N ∈ N
Output: Worst Case Transformation x′

best ∈ X such that A(x, x′
best) = 1

1: Beam0 ← {x}
2: for i = 0 to N − 1 do
3: Candidatesi ← ∅
4: for xj ∈ Beami do
5: for Tk ∈ T do
6: Candidatesi ← Candidatesi ∪ {Tk(xj)} ▷ Expand beam
7: end for
8: end for
9: FilteredCandidatesi ← ∅

10: for x′ ∈ Candidatesi do
11: if IsValid(x′) and A(x, x′) = 1 then ▷ Filter for validity and equivalence
12: FilteredCandidatesi ← FilteredCandidatesi ∪ {x′}
13: end if
14: end for
15: ▷ Select B candidates that best minimize M
16: Beami+1 ← topB(FilteredCandidates,minM(xi, x))
17: end for
18: x′

best ← argmin
x′∈BeamN

M(x, x′) ▷ Select final best

19: return x′
best

C COMPUTE REQUIREMENTS OF Auto-SPT

Analyzing the cost of Auto-SPT involves looking at two separate stages:

Generating transformation implementations: This stages only needs to happen once and then the generated
transformation implementation can be deterministically used to transform a large number of programs with-
out requiring any LLM calls. As described in Section 4.1, we make 20 LLM calls to design 20 SPTs using
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the generator prompt. Then, we generate 20 implementations each (for best of N selection) for these 20
SPTs, resulting in a total of 400 LLM calls. Assuming an average input and output context of 10k tokens
each for these LLM calls (all our prompt context and generated outputs are well below 10k tokens each),
we get a total estimate of less than $50 for Gemini-2.5 Pro. Each of these 400 LLM calls can be done in
parallel, and each only takes around 1 minute to complete.

Applying and searching for transformation compositions: Applying the transform, checking for functional
equivalence and computing the reward for one candidate takes around 0.04 seconds for GraphCodeBERT.
This means that for beam size 5 and transformation set of size 4, each iteration takes around 0.8 seconds.
And therefore, the search for 50 steps takes around 40 seconds.
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