
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

Auto-SPT: AUTOMATING SEMANTIC PRESERVING TRANS-
FORMATIONS FOR CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning (ML) models for code clone detection determine whether two pieces
of code are semantically equivalent, which in turn is a key building block for software-
engineering tasks like refactoring and security tasks like vulnerability and malware detec-
tion. While these models are predominantly trained on clean, structured code datasets,
real-world code often undergoes a variety of semantic-preserving transformations, includ-
ing refactoring, minification, automated formatting, and compiler optimizations. To ad-
dress this critical gap between training and test data, we propose Auto-SPT, a novel frame-
work to automatically construct synthetic-data generators for code. Auto-SPT is designed
to produce Semantic Preserving Transformations (SPTs) that alter a program’s syntactic
structure while preserving its functionality and is instantiated on top of Large Language
Models (LLMs). In particular, we use LLMs to craft a diverse set of SPTs, generate strong
implementations for these SPTs, and compose them to result into strong transformations.
Our formal analysis shows that the diversity of SPTs impacts the strength of their compo-
sition. We then empirically demonstrate that Auto-SPT generates more diverse SPTs than
existing approaches and these SPTs significantly drop the performance of state-of-the-art
code clone detectors. Further experiments show Auto-SPT can be used to enhance code
datasets for training, to produce code-clone detection models that are robust to real-world,
adversarial code transformations.

1 INTRODUCTION

Machine learning (ML) is rapidly transforming the field of programming, enabling automated tasks such as
code generation, bug detection, and vulnerability analysis. One of the most important tasks is code clone
detection, where a model determines whether two pieces of code are semantically equivalent. This task
enables code search, code clustering, code reuse detection, code quality assessment, and the identification
of copyright violations, all common tasks in software development (Wei & Li, 2017; Juergens et al., 2009).
Existing ML-based code clone models are trained and evaluated on datasets derived from clean and well-
structured code repositories like GitHub and Stack Overflow (Alam et al., 2023; Svajlenko et al., 2014), with
limited exposure to perturbed examples. However, at test time, these models might process code samples that
underwent transformations because of code refactoring, minification, application of automated formatting
rules, or as a result of compiler optimizations. There is a need to evaluate whether ML-based code cloning
models are robust to real-world transformations of code (Zhang et al., 2023; Srikant et al., 2021).

Existing research has developed approaches to systematically transform code by applying Semantic Preserv-
ing Transformations (SPTs) to alter a program’s syntactic structure while preserving its functionality (Hooda
et al., 2024a; Wang et al., 2022; Le-Cong et al., 2024; Allamanis et al., 2021; Dong et al., 2024). Thus far,
existing work utilized simple transformations like swapping independent code blocks, replacing while loops
with for loops, switching if conditions, and renaming variables (See Table 5). While simple to implement,

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

such approaches face several shortcomings. First, by not exploring the space of possible transformations,
they lack diversity in the types of transformations applied. Second, they often adopt heuristic-based imple-
mentations, making it hard to gauge the strength of the transformation applied. Third, they require significant
implementation overhead to tailor and correctly apply the transformation. Because of these shortcomings,
existing SPTs do not enable the realistic evaluation of the robustness of code cloning models.

In this work, we address this need through Auto-SPT, a framework to create and apply SPTs. First, Auto-SPT
generates diverse semantic preserving transformations that can induce alterations to all aspects of the code,
including its structure, syntax, and control. Second, Auto-SPT finds the implementation of each transforma-
tion that can maximally affects the performance of code cloning model. Third, Auto-SPT composes multiple
such transformations, which as we demonstrate result in modifications more complex than those from a
single transformation applied in isolation.

We instantiate this framework by leveraging Large Language Models (LLMs). LLMs demonstrate remark-
able capabilities in coding tasks such as generating and editing code. We use them to automatically design
and implement new SPTs. First, we use LLMs to synthetically craft a diverse set of SPTs. Then we utilize
LLM’s code generation capability combined with execution feedback (similar to Zheng et al. (2024)) to
generate strong implementations for each of the designed SPTs. Finally, we demonstrate that a composition
of these diverse SPTs significantly increases the strength of the resultant transformations and the robustness
of clone-detection models trained on thus transformed code.

We formally analyze how the diversity of SPTs impacts their composition and propose a diversity metric to
quantify it. We then empirically demonstrate that Auto-SPT generates stronger implementations for existing
SPTs and more diverse SPTs as compared to existing approaches. Finally, we show that composing SPTs
generated by Auto-SPT results in significantly stronger transformations. For example, our evaluation using
code samples from the CodeContests dataset (Li et al., 2022) over a fully finetuned CodeBERT model shows
that the average distance (where clones have a distance of 0 and non-clones have 1) between original code
samples and transformed samples (semantically equivalent) from Auto-SPT is 0.947 compared to 0.243 from
prior work. Even for state of the art embedding models like EmbeddingGemma (Gemma-Team et al., 2025),
Auto-SPT is able to find transformed samples with average distance > 0.8.

2 RELATED WORK

Clone Detection. Code clone detection is a critical area in software engineering, aiming to identify similar
code fragments within or across software systems, useful for maintenance, refactoring, bug fixing, and
ensuring software quality (Shan et al. (2023)). There are different types of code clones: Type-1 are identical
clones, modulo formatting and comments; Type-2 are lexical clones, where code literals and variable names
vary; Type-3 are syntactic clones, where code statements are added, removed, or modified; and Type-4 are
semantic clones, where functionality is preserved, but not the syntactic structure. Type-4 clones, the ones
we target in this work, are the most challenging type to detect, requiring understanding the underlying logic.
Early work in this space focused on Types 1, 2, and 3 through specially designed representations of the
source code and corresponding matching algorithms (Kamiya et al., 2002). More recent approaches have
used similarity of embeddings obtained from neural models (e.g., Alon et al. (2019b)’s code2vec, Alon
et al. (2019a)’s code2seq, Feng et al. (2020b)’s CodeBERT). Despite this recent progress, the detection of
Type-4 clones accurately and scalably remains an open problem, as observed through benchmarks such as
GPTCloneBench (Alam et al. (2023)), where the recall of code-clone detectors is quite low for real-world
code samples.

Semantic Preserving Transformations (SPTs). SPTs are code alterations that modify a program’s syn-
tactic or structural representation but maintain its original functionality. These transformations enable several
tasks in software engineering, including software testing, robustness evaluation, and data augmentation for

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

training code-understanding models. Prior work has explored various semantic-preserving code transfor-
mations, notably variable renaming, conditional restructuring, loop transformations such as for/while loop
conversions, swapping if/else blocks, statement reordering, and loop unrolling (Allamanis et al. (2021);
Rabin et al. (2021); Bui et al. (2021); Henkel et al. (2022); Chakraborty et al. (2022); Yang et al. (2022);
Zhang et al. (2023); Wang et al. (2022); Hooda et al. (2024a); Dong et al. (2024)). Variable renaming is
widely studied across these works, whereas more sophisticated transformations, such as loop unrolling and
conditional restructuring, have received relatively less attention. Past work has also utilized SPTs to search
for adversarial programs against tasks such as program summarization (Srikant et al. (2021); Henkel et al.
(2022)) and clone detection (Zhang et al. (2023)). In this work, we characterize how the set of available
SPTs impacts the program search, and we provide an automated framework to generate new SPTs.

Large Code Models. LLMs have become powerful tools for various software engineering tasks, includ-
ing code generation, completion, bug detection, and automated refactoring. This ability has unlocked new
applications where the model generates code as an intermediate representation to solve downstream tasks in-
stead of directly outputting the final answer. For example, recent methods prompt LLMs to produce Python
programs for arithmetic or logical reasoning problems, thereby delegating computation to a reliable inter-
preter and achieving significantly higher accuracy than standard chain-of-thought reasoning alone (Chen
et al. (2022); Gao et al. (2023)). Huang et al. (2025) use LLMs to generate program-based labelers for weak
supervision. In this work, we employ the coding ability of LLMs to generate implementations for SPTs.

3 PRELIMINARIES

3.1 NOTATION

Let X be the space of programs and T ⊆ XX the space of program transformations. A functional equiv-
alence oracle A : X × X → {0, 1} is a binary function that evaluates if two programs are semantically
equivalent. A common implementation of an equivalence function is to verify if the two programs produce
identical outputs for a set of test inputs. Let T ∈ T be a semantics-preserving transformation that perturbs a
program but preserves the semantics, i.e. T : X → X s.t. ∀x ∈ X , A(x, T(x)) = 1. Single SPTs can be
combined to form a set T ⊂ T . Now, we define M : X ×X → [0, 1] as a clone-detector model that outputs
the likelihood of two input programs being functional equivalents of each other. The binary classification
(clone vs. non clone) is usually done using a threshold. A perfect clone detector would be an equivalence
oracle, but that is unrealizable due to the undecidability of program equivalence (Rice (1953)).

3.2 WORST-CASE TRANSFORMATIONS FOR CLONE-DETECTION MODELS

For clone detectors, a worst-case transformation is a functionally equivalent program that is classified as a
non clone. We represent this problem as finding a semantic adversarial perturbation against a clone-detector
model. For a program x ∈ X and a clone-detector model M , we can find a transformed x′ by solving the
following optimization:

argmax
x′∈X

L(x, x′) s.t. A(x, x′) = 1, (1)

where L(x, x′) = 1−M(x, x′) is the distance between programs x and x′ according to the clone detector.
A solution to this optimization problem needs to be a program that is (1) valid (syntactically correct) and (2)
functionally equivalent to the original program x. Solving this problem, while satisfying these requirements,
is challenging because of the complexity of both the search space and the equivalence constraint.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

3.3 SEMANTICS-PRESERVING TRANSFORMATIONS (SPTS) AND TRANSFORMATION SETS

Semantics-preserving transformations provide a way to enumerate programs satisfying the validity and
equivalence requirements. These transformations operate through symbolic manipulations of an input pro-
gram and are carefully designed to preserve the program’s semantics. For example, consistently renaming
all occurrences of a variable throughout its scope is a basic SPT, satisfying both validity and equivalence.
Given the set of SPTs: T ⊂ T , we can rewrite Equation 1 as finding a sequence of transforms:

(Tk, . . . , T1) = arg max
Tk,...,T1∈T

L(x, (T1 ◦ · · · ◦ Tk)(x)), (2)

where the transformed code is x′ = (Tk ◦ · · · ◦ T1)(x), and k is the length of the transformation sequence.

3.4 STRENGTH AND DIVERSITY OF TRANSFORMATION SETS

Finding a worst-case transformation that is successful against a clone detector (i.e., a solution to Equation 1)
corresponds to finding a set of diverse SPTs of sufficient strength. Strength, in this context, refers to the de-
gree to which a transformation increases the distance between the original program and transformed program
according to the clone detector. Transformations that induce significant alterations to the code’s structure,
complexity, or predictability tend to be stronger. For instance, stronger transformations often modify larger
sections of the code or fundamentally change its control or data flow patterns. SPTs like converting for
loops to while or related control-flow constructs, and function in-lining are stronger whereas swapping in-
dependent instructions, variable renaming, or changing the order of operands in an expression are examples
of weaker SPTs. Additionally, diversity of SPTs is important: relying solely on a single type of transforma-
tion, even a strong one, is insufficient to effectively explore the vast space of equivalent programs and solve
Equation 1. This limitation stems from the specialized nature of individual SPTs, which typically target only
specific aspects of the program.

We capture this intuition by providing an upper bound on the strength of a sequence of transformations as a
function of their diversity. First, we define the diameter of a transformation.

Definition 3.1. (Diameter of a transformation set.) The k-step diameter of a set of transformations T ⊂ T
is

DT
k (x) = max

T1,...Tk∈T
T′1,...T

′
k∈T

L((Tk ◦ ... ◦ T1)(x), (T
′
k ◦ ... ◦ T′1)(x)).

Second, we introduce a measure to quantify the diversity of SPT sets. This measure captures the increase in
the diameter of a transformation set when adding a new transformation.

Definition 3.2. (Diversity of an SPT set.) The k-step diversity of a set of semantics-preserving transforma-
tions T ⊂ T is given by

∆T
k (x) =

DT
k (x)

E
t∈T

DT\t
k (x)

.

Third, we observe that the strength of transformation achievable through the application of k SPTs from a
given set is upper bounded by the diversity of its subsets.

Lemma 3.3. Upper bound for k-step transformation strength.

max
T1,...,Tk∈T

L(x, (T1 ◦ · · · ◦ Tk)(x)) ≤
k∏

i=1

∆Ti

k , where Ti := Ti−1 ∪ {arg max
t∈T\Ti−1

DTi−1∪t
k (x)}

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Limitations of Existing SPTs SPTs have been explored for many applications, including robustness eval-
uation and data augmentation for code models. Most approaches only consider simple SPTs, like swapping
independent code blocks, replacing while loops with for loops, switching if conditions, and renaming vari-
ables, in isolation. While some do perform compositions of individual SPTs, they only consider a small
number of distinct transformation types. For instance, the prior works summarized in Table 5, in total, uti-
lize a limited set of eight distinct SPTs. To automatically perform these transformations, existing approaches
use heuristic based or ad-hoc implementations that may not apply the strongest version of that transformation
type. As a result of Lemma 3.3, existing SPTs, even if composed, are neither strong nor diverse enough to
yield optimal solutions for the problem in Equation 1. We confirm this observation empirically in section 5,
where we show SPTs from existing approaches are not strong against code clone detectors.

4 THE Auto-SPT FRAMEWORK

We propose Auto-SPT, an LLM-based automation framework to (1) design diverse SPTs, (2) generate their
strong implementations, and (3) combine them to create stronger transformations.

4.1 STEP 1: DESIGNING NEW SPTS

We use LLMs to automatically design new SPTs. However, as highlighted by previous work (Chen et al.
(2024); Hooda et al. (2024b)), naively prompting the LLMs does not work. LLMs suffer from a lack of
randomness (Zhang et al., 2024), which restricts the diversity of the designed transformations. Moreover,
LLMs are prone to hallucinations, which can affect the correctness of transformations. We address these
problems through iterative prompting, where we employ a specially crafted generator prompt. This prompt
instructs the LLM to generate SPTs that are distinct from the list of transformations generated so far. This
instruction helps to guide the generation of new and diverse transformation. We use this prompt template:

You are a python programming language expert. Your goal is to design new semantic preserving transfor-
mations. I will give you 5 python programs and you have to suggest a transformation that can be applied to
all the 5 programs. Give an exact description of the transformation such that it can be used to implement
the transformation. The output format should be:

• Transformation Name: <name>

• Description: <description>

The transformation should be distinct from the list of following transformations:
{transformation list}
PROGRAMS:
{programs}

Table 1 lists a set of 20 new SPTs generated in this step. As evident from the table, these transformations
target different aspects of the code, including arithmetic operations, data structures, control flow, function
execution, and variable names. They target both low-level computation (e.g., arithmetic and bitwise manipu-
lations) and higher-level program behaviors (e.g., nested functions, deferred execution, generator chaining).

4.2 STEP 2: IMPLEMENTING SPTS

After designing the SPTs, the next step is to apply them to programs. We prompt an LLM to automatically
generate a (source code) implementation of a desired SPT. We directly use the transformation descriptions
generated in the previous stage and use temperature sampling to generate multiple candidate implementa-
tions for each SPT. We then use a subset of 1000 randomly selected programs (with accompanying unit

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Table 1: New Semantic Preserving Transformations. The number in the braces shows correct-
ness+applicability on 1000 programs. Although some of the transformations are only applicable to a small
set of programs, each program has atleast 9 applicable transformations. We check for correctness by running
unit tests, and applicability by ensuring that the transformed program is not identical to the original.

Modular Arithmetic Distribution (568)
Nested Function Encapsulation with Dynamic Execution (615)
Recursive List Comprehension Flattening (128)
Modular Index Obfuscation with Dynamic Range Mapping (471)
Cyclic Variable Rotation with Lambda Chaining (11)
Conditional Expression Vectorization with Boolean Masking (193)
State Variable Accumulation with Bitwise Memory (840)
Exponential Base Conversion with Dynamic Radix Chaining (398)
Modular State Threading with Generator Chaining (649)
State Machine Enumeration with Dynamic Dispatch (13)

Temporal State Inversion with Deferred Execution Queue (229)
Dimensional Array Flattening with Dynamic Offset Mapping (272)
Probabilistic Control Flow Injection with State Preservation (264)
Circular Buffer State Threading with Modular Iteration (412)
Iterative State Composition with Delayed Resolution (91)
Arithmetic Expression Decomposition with Modular Chain Substitution (439)
Modular State Interleaving with Conditional Aggregation (97)
Modular State Accumulation with Circular Buffer Mapping (713)
Cumulative State Mapping with Modular Dictionary Encoding (141)
Positional State Encoding with Circular Dependency (85)

tests) to estimate the correctness and strength of the candidate implementations. For this set of validation
programs {x1, ..., xn} and a transformation candidate T ∈ T , we use the following reward function:

R(T) =
1

n

n∑
i=1

A(xi, T (xi)) · L(xi, T (xi),

where A : X × X → {0, 1} checks for functional equivalence by executing unit tests. We use this re-
ward function for our Best-of-N sampling to select the strongest implementation for each SPT. We use the
following prompt template.

Write a python program that takes in a string (from std input) that represents another python program,
mutates it according to the following transformation and prints the result (do not print anything else).
Transformation: {transformation description}

• the obfuscator should ensure that the program is still valid python code

• the obfuscator should be semantic preserving

• remember to input the entire program which can include multiple lines

Table 3 compares the applicability and correctness of the automatically generated transformations from this
step to manually implemented ones. We check for correctness by running unit tests, and applicability by
ensuring that the transformed program is not identical to the original. Measured over a random sample of
1000 programs (that were not part of the generation prompt), the automatically generated transformations by
Auto-SPT apply and result in correct behavior to roughly the same number programs as those manipulated
through manual transformation. This result highlights the effectiveness of this approach in automatically
transforming code. Further, Table 1 shows the applicability and correctness of the new SPTs. This table
highlights that the new SPTs apply to varied sets of programs, according to the coding style and implemen-
tations. Although some of the transformations are only applicable to a small set of programs, each program
has atleast 9 applicable transformations.

In conclusion, this approach has three benefits. First, it automatically generates the transformation code,
avoiding the overhead of manual implementation from prior work. Second, it finds a strong implementation
of a given transformation. Third, it obviates the need to prompt the LLM to apply the transformation for each
code sample. Doing so would incur prohibitive cost and affect the consistency of applied transformations.

4.3 STEP 3: COMBINING SPTS

Solving the optimization problem in Equation 2 requires searching the potentially vast space of programs
x′ that are semantically equivalent to the original program x. We employ an iterative beam search strategy,

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

guided by the clone detector score M and utilizing a set of available SPTs T = {T1, T2, . . . , TN}. This
search maintains a beam of the B most promising candidate transformation at each step, starting with just
the original program x. Each iteration involves three stages. The expansion stage applies every available
SPT from the set T to each of the current best programs residing within the beam to expand the set of
next-step candidates. The filtering stage prunes the expanded pool to ensure they syntactically valid and
semantically equivalent to the original program. The third stage, selection, chooses top B candidates that
are most distant from the original program using the clone detector. This cycle of expansion, filtering, and
selection repeats for a predefined number of iterations N . The process terminates by selecting the single
program from the final beam that achieved the overall lowest score M(x, x′) during the search, representing
the best transformation found. Algorithm 1 describes the procedure in detail.

5 EXPERIMENTS

Our evaluation answers three key research question:

RQ1: How effective is Auto-SPT at evading clone detectors as compared to existing transformations?

RQ2: Why are Auto-SPT’s SPTs more effective than existing transformations?

RQ3: Do Auto-SPT’s SPTs help train more robust clone detectors?

5.1 SETUP

Dataset. We use the CodeContests dataset from Li et al. (2022) to construct clone and non-clone code
pairs. Each problem in this dataset comes with multiple solutions (submitted by actual users via platforms
like Codeforces, CodeChef, etc.) as well as unit tests. We use solutions belonging to the same problem
to construct clone pairs and those belonging to distinct problems to construct non-clone pairs. In total, we
randomly select 2000 distinct problems. Then, we split this to get 1500 training, 250 validation, and 250 test
sets of problems. The split is done to test the generalization performance of the clone detection task across
different functionalities. For each set, we construct 250 clone pairs per problem, leading to a total of 375000
clone pairs in the training set. We construct an equal number of non-clone pairs to get a balanced dataset. We
ensure that we only consider solutions that pass all the unit tests associated with the corresponding problem.
Our evaluation focuses on Python programs, but our method should apply to any programming language.

Clone Detection Models. We evaluate Auto-SPT using four different model architectures – Code-
BERT (Feng et al., 2020b), GraphCodeBERT (Guo et al., 2021), EmbeddingGemma (Gemma-Team et al.,
2025), and Snowflake’s Arctic Embed M (Merrick et al., 2024). We perform full finetuning for the Code-
BERT model using the training set and select the best checkpoint based on the accuracy of the validation set.
For the other models, we use the pretrained weights and fine-tune the final layer.

Auto-SPT Hyperparameters. We use Gemini 2.5 Pro to design and implement SPTs (i.e., as the LLM for
Steps 1 and 2 of Auto-SPT). We use a temperature of 0.1 for the design step and 0.8 for the implementation
step. We use the remaining solutions from CodeContest (disjoint from the 2000 problems considered during
dataset generation) to populate the example programs in the generator prompt. We use N = 20 for Best-
of-N sampling during the implementation step. Again, we sample the validation programs to estimate the
reward function from the remaining CodeContest solutions. For the beam search, we use a beam size of 5
and apply each SPT to all the candidates in the beam. We use the following notation to denote different
transformation sets. VarRename, Conditional, ForWhile and IfElseFlip are together described as Orig-4.
We use Auto-SPT to generate 5 different implementations for each of the above four transformations, which
is described by Orig-20. The transformations mentioned in Table 1 are represented by New-20.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Table 2: Worst Case Transformation for different transformation sets when searching over 10 iterations.
Auto-SPT achieves the strongest transformations.

Clone Detection Model Worst Case Distance
Wang et al. (2022) Auto-SPT (Orig-4) Auto-SPT (Orig-20) Auto-SPT (New-20)

CodeBERT 0.243 ± 0.395 0.514 ± 0.467 0.533 ± 0.484 0.947 ± 0.218
GraphCodeBERT 0.092 ± 0.229 0.115 ± 0.266 0.147 ± 0.279 0.721 ± 0.319
EmbeddingGemma 0.285 ± 0.369 0.292 ± 0.378 0.390 ± 0.434 0.803 ± 0.383
snowflake-arctic-embed-m-v2.0 0.067 ± 0.193 0.097 ± 0.215 0.194 ± 0.325 0.929 ± 0.227

Compute. We run all experiments on a machine with 4 NVIDIA H100 GPUs, 40 Intel(R) Xeon(R) Silver
4410T CPUs, and 126GB of RAM. More details on compute requirements of Auto-SPT are in Appendix C.

5.2 RQ1: ATTACK EFFECTIVENESS

Table 2 shows distance measured by the clone detector model for the worst-case transformation against
four different types of clone detection models. For the search, we consider four different settings which
correspond to four different sets of SPTs and their implementations –Wang et al. (2022) (Orig-4), Auto-SPT
(Orig-4), Auto-SPT (Orig-20) and Auto-SPT (New-20), where the third type is constructed by taking distinct
implementations (5 each) of the Orig-4 transformations. Across the three models, we make two main
observations: (1) For the same type of transformations, Auto-SPT outperforms implementations provided
by past work, and (2) SPTs designed by Auto-SPT can be composed to perform stronger transformations as
compared to existing SPTs. Interestingly, even recent and state-of-art code embedding models are not robust
against transformations from prior work and SPTs from Auto-SPT.

5.3 RQ2: TRANSFORMATION SET DIVERSITY

Table 2 reveals an important observation: improving diversity of transformations makes them stronger. We
can observe this along two dimensions – (1) Increasing the diversity of implementations for the same set of
SPTs improves transformation strength (Auto-SPT Orig-20> Auto-SPT Orig-4), (2) Increasing the diversity
of the types of SPTs further makes transformations stronger (Auto-SPT New-20 > Auto-SPT Orig-20). To
delve deeper into this observation, we use the search procedure described in subsection 4.3 to estimate the
diversity (Definition 3.2) of the sets of transformations. In Table 4, we show the diversity values for an
increasing number of implementations from two different sets of transformations – Orig-4, and New-20. To
expand the Orig-4 set to 20 implementations, we use Auto-SPT to generate multiple implementations for
each SPT type. Due to the high computation cost of estimating diversity, we limit the maximum number of
search iterations to 5 (since estimating diversity for a set of k transformations requires running k search pro-
cedures). We see that the diversity of Orig-4 goes down rapidly as the number of transformations increases.
Going from 12 to 16 transformations has a minimal effect on the transformation strength. On the other hand,
New-20 maintains diversity even for 20 transformations.

5.4 RQ3: EVALUATING ROBUST DETECTORS

Next, we evaluate whether SPTs from Auto-SPT can improve the robustness of clone detectors. We choose
to perform this experiment on CodeBERT because it provides official support for finetuning for the clone
detection task (Feng et al., 2020a). We finetune CodeBERT using training data generated by applying trans-
formations from Orig-4. We consider two settings – SPT implemented by Wang et al. (2022) and Auto-SPT.
We transform each training point with a probability of 0.5, and then select a random SPT from the transfor-
mation set. Figure 1 shows the transformation effectiveness for all three settings. First, we find that training

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Table 3: Existing Semantic Preserving Transfor-
mations.
Transformation Method Correct + Applicable

(1000 programs)

VarRename
Wang et al. (2022) 989
Auto-SPT 760

Conditional
Wang et al. (2022) 680
Auto-SPT 458

ForWhile
Wang et al. (2022) 621
Auto-SPT 706

IfElseFlip
Wang et al. (2022) 241
Auto-SPT 218

Table 4: Diversity for increasing number of
transformations. The target clone detector model
is CodeBERT.

4 8 12 16 20
1

1.1

1.2

1.3

Number of Transformations

5-
st

ep
di

ve
rs

ity

Auto-SPT (Orig 4)
Auto-SPT (New)

0 10 20 30 40 50
0

0.2
0.4
0.6
0.8
1

Iterations

D
is

ta
nc

e

CodeBERT
No Augmentation

Wang et al. (2022) Auto-SPT (Orig-4) Auto-SPT (Orig-20) Auto-SPT (New-20)

0 10 20 30 40 50

Iterations

CodeBERT
Wang et al.

0 10 20 30 40 50

Iterations

CodeBERT
Auto-SPT (Orig-4)

Figure 1: Effectiveness of different transformation sets against clone detectors trained to be robust to SPTs.
Auto-SPT provides stronger transformations which lead to more robust clone detection models. The text in
violet describes the setting used to generate transformations for training.

on transformations from Wang et al. (2022) improves robustness the most against the same transformation
set. It provides minor improvements against Orig-4 or New-20 transformations from Auto-SPT. However,
training on Orig-4 transformations from Auto-SPT improves robustness against both Wang et al. (2022) and
Auto-SPT’s implementations. It slightly improves against New-20 transformations, suggesting that training
on stronger transformations helps improve robustness against weaker transformations of the same type.

6 CONCLUSION

In this paper, we presented Auto-SPT, a novel automated framework leveraging large language models to gen-
erate diverse and strong semantic-preserving transformations (SPTs). Auto-SPT addresses the limitations of
existing heuristic-based and manually implemented SPTs by automating the design and implementation of
transformations, thus significantly reducing manual effort and improving transformation strength and diver-
sity. Our theoretical analysis formalizes the relationship between transformation diversity and obfuscation
strength, while our empirical evaluation demonstrates that Auto-SPT-generated transformations significantly
degrade the performance of state-of-the-art code clone detectors compared to existing approaches.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Ajmain Inqiad Alam, Palash Ranjan Roy, Farouq Al-omari, Chanchal Kumar Roy, Banani Roy, and Kevin
Schneider. Gptclonebench: A comprehensive benchmark of semantic clones and cross-language clones
using gpt-3 model and semanticclonebench, 2023. URL https://arxiv.org/abs/2308.13963.

Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-supervised bug detection and repair.
Advances in Neural Information Processing Systems, 34:27865–27876, 2021.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from structured
representations of code, 2019a. URL https://arxiv.org/abs/1808.01400.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: learning distributed representations
of code. Proc. ACM Program. Lang., 3(POPL), January 2019b. doi: 10.1145/3290353. URL https:
//doi.org/10.1145/3290353.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. Self-supervised contrastive learning for code retrieval and
summarization via semantic-preserving transformations. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 511–521, 2021.

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T Devanbu, and Baishakhi Ray. Natgen:
generative pre-training by “naturalizing” source code. In Proceedings of the 30th ACM joint european
software engineering conference and symposium on the foundations of software engineering, pp. 18–30,
2022.

Jiuhai Chen, Rifaa Qadri, Yuxin Wen, Neel Jain, John Kirchenbauer, Tianyi Zhou, and Tom Goldstein.
Genqa: Generating millions of instructions from a handful of prompts. arXiv preprint arXiv:2406.10323,
2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Dis-
entangling computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588,
2022.

Zeming Dong, Qiang Hu, Xiaofei Xie, Maxime Cordy, Mike Papadakis, and Jianjun Zhao. Gencode:
A generic data augmentation framework for boosting deep learning-based code understanding. arXiv
preprint arXiv:2402.15769, 2024.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, Guihong Cao, and Ming Zhou Chen. Codebert: A pre-trained model for pro-
gramming and natural languages. https://github.com/microsoft/CodeBERT, 2020a. Microsoft GitHub
repository.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and natural
languages, 2020b. URL https://arxiv.org/abs/2002.08155.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In International Conference on Machine Learning, pp.
10764–10799. PMLR, 2023.

Gemma-Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah
Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard,
Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot,
Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton Tsit-
sulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil Mustafa,

10

https://arxiv.org/abs/2308.13963
https://arxiv.org/abs/1808.01400
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3290353
https://github.com/microsoft/CodeBERT
https://arxiv.org/abs/2002.08155

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter, Danila Sinopal-
nikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin Kumar, David Vilar,
Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu Sharma, Abheesht Sharma,
Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alex Feng, Alexander Kolesnikov, Alexei Ben-
debury, Alvin Abdagic, Amit Vadi, András György, André Susano Pinto, Anil Das, Ankur Bapna, An-
toine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu,
Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo,
CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Pa-
paras, Divyashree Shivakumar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Er-
win Huizenga, Eugene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi,
Hanna Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting,
Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black,
Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma, Nabila
Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen Sachdeva,
Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton, Philipp Schmid,
Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna, Renjie Wu, Renke
Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Gir-
gin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam,
Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant
Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yin-
lam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand
Rao, Kat Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin
Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol
Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-
Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,
Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report, 2025.
URL https://arxiv.org/abs/2503.19786.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. Graphcodebert: Pre-training code representations with data
flow, 2021. URL https://arxiv.org/abs/2009.08366.

Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh Jha, and Thomas Reps. Se-
mantic robustness of models of source code. In 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 526–537. IEEE, 2022.

Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, and Somesh Jha.
Do large code models understand programming concepts? Counterfactual analysis for code predicates.
In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 18738–18748. PMLR, 21–27 Jul 2024a.
URL https://proceedings.mlr.press/v235/hooda24a.html.

Ashish Hooda, Rishabh Khandelwal, Prasad Chalasani, Kassem Fawaz, and Somesh Jha. Policylr: A logic
representation for privacy policies. arXiv preprint arXiv:2408.14830, 2024b.

11

https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2009.08366
https://proceedings.mlr.press/v235/hooda24a.html

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Tzu-Heng Huang, Catherine Cao, Spencer Schoenberg, Harit Vishwakarma, Nicholas Roberts, and Frederic
Sala. Scriptoriumws: A code generation assistant for weak supervision. arXiv preprint arXiv:2502.12366,
2025.

Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner. Do code clones matter? In
2009 IEEE 31st International Conference on Software Engineering, pp. 485–495, 2009. doi: 10.1109/
ICSE.2009.5070547.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE Trans. Softw. Eng., 28(7):654–670, July 2002. ISSN
0098-5589. doi: 10.1109/TSE.2002.1019480. URL https://doi.org/10.1109/TSE.2002.1019480.

Thanh Le-Cong, Dat Nguyen, Bach Le, and Toby Murray. Towards reliable evaluation of neural program
repair with natural robustness testing. arXiv preprint arXiv:2402.11892, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation with alphacode.
Science, 378(6624):1092–1097, 2022.

Luke Merrick, Danmei Xu, Gaurav Nuti, and Daniel Campos. Arctic-embed: Scalable, efficient, and accu-
rate text embedding models, 2024. URL https://arxiv.org/abs/2405.05374.

Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and Mohammad Amin Alipour.
On the generalizability of neural program models with respect to semantic-preserving program transfor-
mations. Information and Software Technology, 135:106552, 2021.

H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions of the American
Mathematical Society, 74(2):358–366, 1953. ISSN 00029947, 10886850. URL http://www.jstor.org/
stable/1990888.

Junjie Shan, Shihan Dou, Yueming Wu, Hairu Wu, and Yang Liu. Gitor: Scalable code clone detection by
building global sample graph, 2023. URL https://arxiv.org/abs/2311.08778.

Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan, Gaoyuan Zhang, and Una-
May O’Reilly. Generating adversarial computer programs using optimized obfuscations. arXiv preprint
arXiv:2103.11882, 2021.

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Mohammad Mamun Mia. Towards
a big data curated benchmark of inter-project code clones. In 2014 IEEE International Conference on
Software Maintenance and Evolution, pp. 476–480, 2014. doi: 10.1109/ICSME.2014.77.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar, Samson
Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code generation models.
arXiv preprint arXiv:2212.10264, 2022. URL https://arxiv.org/abs/2212.10264.

Huihui Wei and Ming Li. Supervised deep features for software functional clone detection by exploiting
lexical and syntactical information in source code. In IJCAI, pp. 3034–3040, 2017.

Zhou Yang, Jieke Shi, Junda He, and David Lo. Natural attack for pre-trained models of code. In Proceedings
of the 44th International Conference on Software Engineering, pp. 1482–1493, 2022.

Huangzhao Zhang, Zhiyi Fu, Ge Li, Lei Ma, Zhehao Zhao, Hua’an Yang, Yizhe Sun, Yang Liu, and Zhi
Jin. Towards robustness of deep program processing models—detection, estimation, and enhancement.
ACM Trans. Softw. Eng. Methodol., 31(3), April 2022. ISSN 1049-331X. doi: 10.1145/3511887. URL
https://doi.org/10.1145/3511887.

12

https://doi.org/10.1109/TSE.2002.1019480
https://arxiv.org/abs/2405.05374
http://www.jstor.org/stable/1990888
http://www.jstor.org/stable/1990888
https://arxiv.org/abs/2311.08778
https://arxiv.org/abs/2212.10264
https://doi.org/10.1145/3511887

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Weiwei Zhang, Shengjian Guo, Hongyu Zhang, Yulei Sui, Yinxing Xue, and Yun Xu. Challenging ma-
chine learning-based clone detectors via semantic-preserving code transformations. IEEE Transactions
on Software Engineering, 49(5):3052–3070, 2023.

Yiming Zhang, Avi Schwarzschild, Nicholas Carlini, Zico Kolter, and Daphne Ippolito. Forcing diffuse
distributions out of language models, 2024. URL https://arxiv.org/abs/2404.10859.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. Opencodeinterpreter: Integrating code generation with execution and refinement. arXiv preprint
arXiv:2402.14658, 2024.

13

https://arxiv.org/abs/2404.10859

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

A EXISTING SEMANTIC PRESERVING TRANSFORMATIONS

Table 5: Existing Semantic Preserving Transformations.
Past Work Transformations

VarRename Conditional ForWhile IfElseFlip StmtSwap Unroll

Allamanis et al. (2021) ✓ ✓ ✓
Rabin et al. (2021) ✓ ✓ ✓ ✓
Bui et al. (2021) ✓ ✓ ✓
Henkel et al. (2022) ✓ ✓ ✓
Chakraborty et al. (2022) ✓ ✓ ✓
Yang et al. (2022) ✓
Zhang et al. (2022) ✓
Wang et al. (2022) ✓ ✓ ✓
Hooda et al. (2024a) ✓ ✓ ✓
Le-Cong et al. (2024) ✓ ✓
Dong et al. (2024) ✓ ✓

B COMPOSING TRANSFORMATIONS

Algorithm 1 Searching for the Strongest Composition of Transformations
Input: Original program x ∈ X , Set of SPTs T = {T1, . . . , Tk}, Equivalence checker A : X × X → {0, 1}, Clone

detector M : X × X → [0, 1], Beam size B ∈ N+, Number of iterations N ∈ N
Output: Worst Case Transformation x′

best ∈ X such that A(x, x′
best) = 1

1: Beam0 ← {x}
2: for i = 0 to N − 1 do
3: Candidatesi ← ∅
4: for xj ∈ Beami do
5: for Tk ∈ T do
6: Candidatesi ← Candidatesi ∪ {Tk(xj)} ▷ Expand beam
7: end for
8: end for
9: FilteredCandidatesi ← ∅

10: for x′ ∈ Candidatesi do
11: if IsValid(x′) and A(x, x′) = 1 then ▷ Filter for validity and equivalence
12: FilteredCandidatesi ← FilteredCandidatesi ∪ {x′}
13: end if
14: end for
15: ▷ Select B candidates that best minimize M
16: Beami+1 ← topB(FilteredCandidates,minM(xi, x))
17: end for
18: x′

best ← argmin
x′∈BeamN

M(x, x′) ▷ Select final best

19: return x′
best

C COMPUTE REQUIREMENTS OF Auto-SPT

Analyzing the cost of Auto-SPT involves looking at two separate stages:

Generating transformation implementations: This stages only needs to happen once and then the generated
transformation implementation can be deterministically used to transform a large number of programs with-
out requiring any LLM calls. As described in Section 4.1, we make 20 LLM calls to design 20 SPTs using

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

the generator prompt. Then, we generate 20 implementations each (for best of N selection) for these 20
SPTs, resulting in a total of 400 LLM calls. Assuming an average input and output context of 10k tokens
each for these LLM calls (all our prompt context and generated outputs are well below 10k tokens each),
we get a total estimate of less than $50 for Gemini-2.5 Pro. Each of these 400 LLM calls can be done in
parallel, and each only takes around 1 minute to complete.

Applying and searching for transformation compositions: Applying the transform, checking for functional
equivalence and computing the reward for one candidate takes around 0.04 seconds for GraphCodeBERT.
This means that for beam size 5 and transformation set of size 4, each iteration takes around 0.8 seconds.
And therefore, the search for 50 steps takes around 40 seconds.

15

	Introduction
	Related Work
	Preliminaries
	Notation
	Worst-Case Transformations for Clone-Detection Models
	Semantics-Preserving Transformations (SPTs) and Transformation Sets
	Strength and Diversity of Transformation Sets

	The Auto-SPT Framework
	Step 1: Designing new SPTs
	Step 2: Implementing SPTs
	Step 3: Combining SPTs

	Experiments
	Setup
	RQ1: Attack Effectiveness
	RQ2: Transformation Set Diversity
	RQ3: Evaluating Robust Detectors

	Conclusion
	Existing Semantic Preserving Transformations
	Composing Transformations
	Compute Requirements of Auto-SPT

