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ABSTRACT

Supervised fine-tuning (SFT) is the predominant method for adapting large lan-
guage models (LLMs), yet it often struggles with generalization compared to re-
inforcement learning (RL). In this work, we posit that this performance disparity
stems not just from the loss function, but from a more fundamental difference:
SFT learns from a fixed, pre-collected dataset, whereas RL utilizes on-policy data
sampled from the current policy. Building on this hypothesis, we introduce one-
token rollout (OTR), a novel fine-tuning algorithm that guides SFT with the policy
gradient method. OTR reframes the autoregressive learning process by treating
each token generation as a single-step reinforcement learning trajectory. At each
step, it performs a Monte Carlo “rollout” by sampling multiple candidate tokens
from the current policy’s distribution. The ground-truth token from the super-
vised data is then used to provide a reward signal to these samples. Guided by
policy gradient, our algorithm repurposes static, off-policy supervised data into a
dynamic, on-policy signal at the token level, capturing the generalization benefits
of on-policy learning while bypassing the costly overhead of full sentence genera-
tion. Through extensive experiments on a diverse suite of challenging benchmarks
spanning mathematical reasoning, code generation, and general domain reason-
ing, we demonstrate that OTR consistently outperforms standard SFT. Our find-
ings establish OTR as a powerful and practical alternative for fine-tuning LLMs
and provide compelling evidence that the on-policy nature of data is a critical
driver of generalization, offering a promising new direction for fine-tuning LLMs.

1 INTRODUCTION

Supervised fine-tuning (SFT) has become a cornerstone for adapting large language models (LLMs)
to downstream tasks (Ouyang et al., 2022; Chung et al., 2022; Zhang et al., 2025). However, a grow-
ing body of evidence suggests that while SFT excels at mimicking expert demonstrations, it often
struggles with generalization compared to methods based on reinforcement learning (RL) (Chu et al.,
2025a; Huan et al., 2025; Shenfeld et al., 2025). Recent research Chu et al. (2025a) has proposed
the view that “SFT memorizes, while RL generalizes”. This limitation is particularly concerning
as SFT can disrupt the well-formed distributions learned during pre-training, leading to a degrada-
tion of general capabilities—a phenomenon sometimes referred to as catastrophic forgetting (Kumar
et al., 2022; Huan et al., 2025; Shenfeld et al., 2025).

This generalization gap motivates a deeper investigation into the fundamental differences between
SFT and RL, with the goal of enhancing the generalization of SFT by borrowing principles from RL.
Recent advancements in RL have demonstrated that even simplified methods, such as GPG (Chu
et al., 2025b), which directly optimize an objective structurally similar to a weighted SFT loss, can
achieve performance comparable to more complex algorithms like PPO (Schulman et al., 2017) or
GRPO (Shao et al., 2024). This suggests that the performance disparity between SFT and RL may
not solely stem from the loss function, but also from a more fundamental difference: the nature of
the data used for updates. SFT typically relies on a static, pre-collected set of expert demonstrations,
which is known as off-policy data, whereas RL methods utilize on-policy data sampled iteratively
from the current policy.

As RL becomes an increasingly popular paradigm for fine-tuning LLMs, the critical role of on-policy
data has garnered significant attention (Tajwar et al., 2024; Ren & Sutherland, 2024; Shenfeld et al.,
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2025). Tajwar et al. (2024) has shown that on-policy sampling is crucial for RL to discover optimal
policies, especially when the target behavior lies in low-probability regions of the initial model. It
provides a more stable and effective learning signal by ensuring that policy updates are made in
regions the model can already reach, thereby preventing drastic and potentially harmful shifts in
the output distribution (Ren & Sutherland, 2024; Shenfeld et al., 2025). This suggests that the on-
policy nature of RL is a key factor contributing to its superior generalization and ability to preserve
pre-trained knowledge.

Inspired by these insights, we propose one-token rollout (OTR) algorithm, a novel fine-tuning
method that aims to enhance the generalization of SFT from a data-centric perspective. OTR guides
the fine-tuning process with the policy gradient method, treating each token-generation step as an
individual, on-policy learning event. By performing a Monte Carlo “rollout” at each token position
which samples candidate tokens from the current policy and using the ground-truth token as a reward
signal, OTR transforms the off-policy supervised data into a token-level on-policy signal.

OTR enhances generalization by narrowing the data-side gap between SFT and RL, while its de-
sign as a token-level method bypasses the costly generation of complete, sentence-level on-policy
training data. Our extensive experiments demonstrate that this on-policy simulation consistently
improves the generalization of fine-tuned models across a wide array of challenging mathematical,
coding, and general reasoning benchmarks. These results not only validate the efficacy of OTR as a
powerful alternative for fine-tuning LLMs but also provide strong evidence for the critical role that
on-policy data plays in the generalization performance of fine-tuned language models.

Our contributions can be summarized as follows:

• We introduce One-Token Rollout, a novel fine-tuning algorithm that guides SFT with the
policy gradient method. By treating each token generation as a single-step reinforcement
learning task, OTR improves model generalization without incurring the high computa-
tional cost of full sentence generation.

• We provide a new data-centric perspective on the SFT-RL generalization gap, positing that
the on-policy nature of training data is a critical factor. The success of our token-level
on-policy simulation serves as strong evidence for this viewpoint.

• We conduct extensive experiments on a wide array of challenging benchmarks across math-
ematical, coding, and general reasoning domains. Our results empirically demonstrate that
OTR consistently outperforms SFT, validating its efficacy as a powerful and practical alter-
native for fine-tuning LLMs.

2 PRELIMINARIES

2.1 SUPERVISED FINE-TUNING

The standard approach for adapting pre-trained LLMs to specific downstream tasks is Supervised
Fine-Tuning. Given a dataset of prompt-response pairs, where the response X is a sequence of
tokens {x1, x2, . . . , xT }, SFT aims to maximize the conditional probability of the ground-truth
sequence. This is typically achieved by minimizing the negative log-likelihood loss, autoregressively
training the model πθ to predict the next token xt given the preceding context x1:t−1:

LSFT(θ) = − 1

T

T∑
t=1

log πθ(xt|x1:t−1). (1)

2.2 POLICY GRADIENT

Policy gradient represents a class of reinforcement learning algorithms that directly optimize a pa-
rameterized policy, πθ. In this framework, the text generation process is modeled step-by-step. At
each timestep t, the state st is the sequence of previously generated tokens x1:t−1, and the action at
is the next token selected by the policy from the vocabulary.
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The core objective is to adjust the policy’s parameters, θ, to maximize the expected total reward.
This objective function, J(θ), is defined as the expected cumulative reward:

J(θ) = Eτ∼πθ

[
T∑

t=1

r(st, at)

]
, (2)

where r(st, at) is the scalar reward received after taking action at in state st, and τ is the entire
sequence of states and actions (s1, a1, s2, a2, . . . ), known as a trajectory.

The policy is improved by ascending the gradient of this objective, ∇θJ(θ). The foundational policy
gradient theorem provides a way for the gradient computation:

∇θJ(θ) = Eτ∼πθ

[(
T∑

t=1

∇θ log πθ(at | st)

)(
T∑

t=1

r(st, at)

)]
, (3)

where ∇θ log πθ(at | st) indicates the direction in the parameter space that would be used to update
the policy πθ. This direction is then weighted by the sum of all rewards in the trajectory, effectively
reinforcing action sequences that lead to higher overall rewards.

3 METHODOLOGY

We introduce the One-Token Rollout algorithm, a novel fine-tuning method that adapts the principles
of Policy Gradient to the token level. OTR reframes the standard fine-tuning process by treating each
individual token generation step as a complete, single-step trajectory. This conceptual shift allows us
to simplify the general policy gradient framework into a highly efficient, token-level reinforcement
learning algorithm, where the supervised training data is repurposed to provide a reward signal.

3.1 FROM POLICY GRADIENT TO ONE-TOKEN ROLLOUT

Our starting point is the foundational policy gradient theorem introduced in the Section 2. The core
innovation of OTR is to consider the generation of a single token from a state st to an action at as
a complete trajectory of length one. In this micro-trajectory, the summations over timesteps present
in Equation (3) collapse, as there is only a single state-action pair. Consequently, the summations
of ∇θ log πθ(at | st) and r(st, at) over T tokens in the original formula both reduce to terms for an
individual token, and sampling a full trajectory τ simplifies to sampling a single action at from the
policy πθ(·|st). The policy gradient for this single step thus simplifies dramatically to:

∇θJ(θ) = Eat∼πθ(·|st) [∇θ log πθ(at | st) · r(st, at)] . (4)

To implement this, we approximate the expectation E[·] using Monte Carlo estimation. At each
timestep t of the original sequence, we perform a “rollout” by sampling multiple candidate actions
from the current policy. This transforms the optimization problem into a practical, sample-based
loss function.

3.2 TOKEN-LEVEL ROLLOUT AND ON-POLICY REWARD

To facilitate the rollout, we first define a stochastic sampling policy and a reward mechanism.

Stochastic Policy for Exploration. For a given state st, the LLMs first compute a vector of raw,
unnormalized scores for every token in the vocabulary V . These scores are known as logits. Let
la denote the logit corresponding to a specific action a. The model’s base policy, πθ, is typically
derived by applying the softmax function directly to these logits.

To encourage exploration during the rollout, we create a new sampling policy, π′
θ, by introducing a

temperature parameter κ. The sampling policy is defined as:

π′
θ(a|st) = softmax

(
la
κ

)
. (5)

Consistent with its common use during model inference, the temperature adjusts the shape of the
final probability distribution. We utilize a temperature κ > 1 to flatten the distribution, which
increases the likelihood of sampling less probable tokens and thereby enhances exploration.
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Figure 1: An illustration of the computational divergence between SFT and OTR.

Rollout and Reward Definition. At each timestep t, we draw a set of K candidate actions from
our exploration policy:

A′
t = {a′t,j}Kj=1, where each a′t,j ∼ π′

θ(·|st). (6)

Crucially, we use the ground-truth token xt from the supervised dataset to construct an immediate
reward signal. Each sampled action a′t,j is evaluated against xt using the following reward function:

R(a′t,j , xt) =

{
1 if a′t,j = xt,

β if a′t,j ̸= xt.
(7)

Here, β is a hyperparameter where β < 1. A reward of 1 is given for “rediscovering” the ground-
truth token, while a lesser reward β is given for all other tokens. We finally set β = −0.1 for our
main experiments based on the ablation study detailed in Section 4.4.

This design elegantly converts the traditionally off-policy supervised data into an on-policy learning
signal at the token level. The actions A′

t we evaluate are sampled directly from the current policy
π′
θ, and the fixed ground-truth token xt is used simply to assign a real-time reward to these on-

policy actions. This avoids the complexities of importance sampling or other off-policy correction
techniques typically required in sentence-level RL.

3.3 THE OTR OBJECTIVE FUNCTION

Based on the token-level rollout and policy gradient in Equation (4), the loss at timestep t is the
Monte Carlo approximation of the negative policy gradient objective, averaged over the K samples:

Lt
OTR(θ) = − 1

K

K∑
j=1

[
sg
(
R(a′t,j , xt)

)
· log πθ(a

′
t,j |st)

]
, (8)

where πθ is the model’s original, non-temperature-scaled policy, and sg(·) is the stop-gradient oper-
ator. Given our defined reward function, we can decompose this loss. Let Ngt =

∑K
j=1 I(a′t,j = xt)

be the count of times the ground-truth token was sampled. The loss function simplifies to its final
form:

Lt
OTR(θ) = − 1

K

Ngt log πθ(xt|st) + β
∑

j s.t. a′
t,j ̸=xt

log πθ(a
′
t,j |st)

 . (9)

This per-timestep objective has an intuitive interpretation. The first term is a SFT-like loss for the
ground-truth token, but it is dynamically weighted by its sampling frequency Ngt. If the ground-
truth is never sampled, its loss contribution is zero. The second term acts as a regularizer, weighted
by β, which penalizes the model for assigning high probability to the incorrect tokens it sampled.

The total loss for an entire sequence of length T is the average of these per-timestep losses:

LOTR(θ) =
1

T

T∑
t=1

Lt
OTR(θ). (10)
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This objective allows OTR to focus its optimization effort, reinforcing correct predictions that are
already within the model’s reach while gently suppressing plausible alternatives, creating a more
nuanced and effective learning signal than SFT alone. To visually summarize the computational
divergence of the OTR update from the strandard SFT, we provide a detailed illustration in Figure 1.

3.4 COMPARISON WITH DYNAMIC FINE-TUNING

Our work is related to the concurrent dynamic fine-tuning (DFT) method (Wu et al., 2025c), which
also seeks to improve the generalization of SFT from a reinforcement learning perspective. DFT’s
motivation stems from the insight that the standard SFT gradient contains an implicit, problematic
inverse-probability weighting (1/πθ) that leads to optimization instability. To address this, DFT
proposes to “rectify” the reward by reweighting the loss for the ground-truth token xt with its own
model probability πθ(xt|st). The resulting per-timestep DFT loss is:

Lt
DFT(θ) = −sg(πθ(xt|st)) log πθ(xt|st). (11)

The OTR framework can be seen as a generalization of DFT. This relationship becomes clear when
we consider the special case of our OTR objective where the hyperparameter β = 0. In this scenario,
the second term in Equation (9), which penalizes incorrect samples, vanishes. Then the OTR loss
can be formulated as:

Lt
OTR(θ)|β=0 = −Ngt

K
log πθ(xt|st), (12)

where Ngt/K represents the empirical frequency of sampling the ground-truth token during the roll-
out. This frequency is a direct Monte Carlo approximation of the ground-truth token’s probability,
i.e., Ngt

K ≈ πθ(xt|st). Thus, when β = 0, the OTR objective is functionally equivalent to the DFT
objective, as both methods effectively weight the loss of the ground-truth token by its estimated
probability.

However, when β ̸= 0, OTR extends beyond DFT’s formulation. In addition to reinforcing the
“rediscovered” ground-truth token, OTR’s objective incorporates a crucial second term: a regular-
ization penalty applied to the incorrect tokens sampled during the rollout. This allows OTR to not
only learn from the positive signal of the ground-truth but also to actively discourage the model from
assigning high probability to plausible but incorrect alternatives. Therefore, OTR provides a more
comprehensive learning signal by leveraging information from both successful and unsuccessful
samples within the model’s own distribution.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset and Models. We conduct experiments on the OpenR1-Math-220k dataset (OpenR1 Team,
2025), which consists of 220,000 mathematical problems with detailed reasoning traces. These
traces are generated by the DeepSeek R1 model (DeepSeek-AI et al., 2025) for problems originating
from the NuminaMath-1.5 dataset (LI et al., 2024). To efficiently manage computational resources
while ensuring data quality, we randomly sample a subset of 5,000 instances for our training set.
All selected instances have reasoning traces with lengths under 8192 tokens, and their lengths are
approximately uniformly distributed across different intervals. We utilize a suite of powerful and
contemporary open-source LLMs as base models. Specifically, we conduct our experiments on the
following models: Qwen2.5-3B (Qwen Team, 2024), Qwen2.5-7B (Qwen Team, 2024), Qwen3-4B-
Base (Qwen Team, 2025), and Qwen3-8B-Base (Qwen Team, 2025).

Training Details. Our implementation is built upon the Verl framework, and to ensure a fair com-
parison, both our proposed OTR algorithm and the SFT baseline are trained using identical settings.
We employ the AdamW optimizer with a learning rate of 5 × 10−6. The learning rate follows a
cosine decay schedule, which includes a warm-up ratio of 0.03 and decays to 1 × 10−6. For the
training configuration, we use a batch size of 64 and a maximum sequence length of 10240 tokens.
All models are trained for a total of 2 epochs.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main results on in-domain mathematical reasoning benchmarks. For each model, the best
result between SFT and OTR is in bold. The †symbol indicates performance degradation compared
to the base model.

Model Method GSM8K MATH Olympiad Minerva AIME24 AIME25 AMC23 Average

Qwen2.5-3B
Base 77.90 42.64 25.20 23.20 3.30 0.00 40.00 30.32

SFT 82.05 62.50 26.23 24.90 7.30 1.65 37.03† 34.52
OTR 82.93 63.95 27.05 25.00 7.71 2.91 40.78 35.76

Qwen2.5-7B
Base 85.36 49.80 36.40 28.30 6.70 3.30 42.50 36.05

SFT 88.18 67.75 31.53† 32.53 8.54 5.00 43.75 39.61
OTR 89.77 70.45 35.33† 33.45 8.33 6.87 44.38 41.23

Qwen3-4B
Base 86.90 54.10 38.20 29.80 3.30 6.70 55.00 39.14

SFT 74.13† 63.95 32.10† 29.60† 10.21 6.24† 42.66† 36.98†

OTR 91.98 75.30 40.63 36.68 10.22 11.67 52.81† 45.61

Qwen3-8B
Base 90.40 60.80 40.90 34.20 13.30 16.70 62.50 45.54

SFT 83.77† 77.40 41.70 37.70 15.20 15.63† 55.16† 46.65
OTR 91.63 79.45 42.43 39.35 14.80 14.17† 59.53† 48.77

Table 2: Out-of-domain performance on code generation and general reasoning benchmarks. For
each model, the best result between SFT and OTR is in bold. The †symbol indicates performance
degradation compared to the base model.

Code General Reasoning

Model Method HumanEval+ MBPP+ Avg BBEH SuperGPQA MMLU-Pro Average

Qwen2.5-3B
Base 35.40 50.30 42.85 6.00 19.28 33.90 19.73

SFT 57.60 48.20† 52.90 7.23 18.67† 36.15 20.68
OTR 59.30 49.90† 54.60 7.88 19.22† 36.20 21.10

Qwen2.5-7B
Base 48.80 64.00 56.40 6.88 23.93 42.31 24.37

SFT 68.50 58.10† 63.30 10.44 26.25 51.24 29.31
OTR 69.00 59.20† 64.10 11.28 26.32 51.22 29.61

Qwen3-4B
Base 56.70 62.40 59.55 8.19 28.56 53.35 30.03

SFT 70.20 60.90† 65.55 9.27 28.11† 53.86 30.41
OTR 74.00 62.90 68.45 9.71 29.03 55.96 31.57

Qwen3-8B
Base 61.60 63.50 62.55 9.91 32.53 59.57 34.00

SFT 76.00 65.40 70.70 10.40 29.03† 53.82† 31.08†

OTR 77.70 66.50 72.10 10.02 30.49† 56.87† 32.46†

4.2 EVALUATION

Our evaluation is designed to accurately reflect the impact of the SFT and OTR fine-tuning algo-
rithms on the base models’ capabilities. To this end, we utilize a suite of challenging benchmarks
spanning mathematical, code, and general reasoning domains to test the generalization of the al-
gorithms, and we employ distinct evaluation settings for the base and fine-tuned models. For all
evaluations, the maximum generation length is set to 8192 tokens.

Benchmarks and Metrics. Our evaluation covers a suite of challenging benchmarks across three
domains. For mathematical reasoning, our evaluation includes Minerva Math (Lewkowycz et al.,
2022), MATH-500 (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), OlympiadBench (He
et al., 2024), AMC 2023, AIME 2024, and AIME 2025. For the highly challenging AMC 2023,
AIME 2024, and AIME 2025 benchmarks, we report mean@16 accuracy, while for the remaining
math benchmarks, we report mean@4 accuracy. For code generation, we use HumanEval Plus (Liu
et al., 2023) and MBPP Plus (Liu et al., 2023), with performance measured by the pass@1 metric.
Finally, for general domain reasoning, we evaluate on MMLU-Pro (Wang et al., 2024), SuperG-
PQA (Du et al., 2025a), and BBEH (Kazemi et al., 2025) using Exact Match (EM) accuracy.

Base Model Evaluation. To align with standard evaluation practices for base models, we use a
natural prompt template for testing. Specifically, we employ a 5-shot setting for the MATH-500 and

6
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Table 3: Ablation study on the hyperparameter β for in-domain mathematical reasoning.
Model Method GSM8K MATH Olympiad Minerva AIME24 AIME25 AMC23 Average

Qwen2.5-3B

SFT 82.05 62.50 26.23 24.90 7.30 1.65 37.03 34.52

OTR β =


-1.00
-0.10
0.00
0.01

83.10 63.05 26.05 25.75 6.88 2.91 37.66 35.06
82.93 63.95 27.05 25.00 7.71 2.91 40.78 35.76
83.65 63.10 27.48 22.35 8.34 2.69 39.53 35.31
83.75 63.70 27.30 24.65 5.43 2.69 36.72 34.89

Qwen3-4B

SFT 74.13 63.95 32.10 29.60 10.21 6.24 42.66 36.98

OTR β =


-1.00
-0.10
0.00
0.01

92.15 77.75 40.60 35.68 12.09 13.33 53.75 46.48
91.98 75.30 40.63 36.68 10.22 11.67 52.81 45.61
91.03 76.30 40.75 36.88 10.20 10.63 53.28 45.58
90.15 76.30 39.35 36.95 9.79 9.79 51.41 44.82

GSM8K benchmarks and use a greedy sampling strategy with a temperature of 0 for decoding for
all benchmarks.

Fine-tuned Model Evaluation. For the chat models fine-tuned with SFT and OTR, we use their
respective chat templates and a 0-shot setting across all benchmarks. The decoding strategy is
stochastic sampling with a temperature of 0.7 and a top-p of 0.8.

4.3 RESULTS

We present the main experimental results in Table 1 for in-domain generalization and Table 2 for
out-of-domain (OOD) generalization. For all OTR experiments presented in this section, we set the
key hyperparameters for our algorithm: the temperature parameter κ = 1.3, the number of rollout
candidates K = 256, and the reward hyperparameter β = −0.1. The value for β was determined to
yield the best overall performance based on our ablation studies detailed in Section 4.4.

In-Domain Generalization. As shown in Table 1, OTR consistently demonstrates superior perfor-
mance over SFT on mathematical reasoning tasks. Across all four model families, OTR achieves a
higher average score. This highlights OTR’s effectiveness in enhancing the specialized capabilities
of the models within their training domain.

Furthermore, OTR shows greater generalization by mitigating the catastrophic forgetting often ob-
served during fine-tuning. The number of instances where performance degrades below the base
model (marked by the †symbol) is significantly lower for OTR (4 instances) compared to SFT (10
instances). Even in cases where both methods underperform, OTR’s performance drop is consider-
ably milder. For example, on the AMC23 benchmark with Qwen3-8B, SFT’s score drops by 7.34
points relative to the base model, whereas OTR’s score drops by only 2.97 points. This suggests that
OTR’s on-policy signal helps preserve the valuable knowledge learned during pre-training.

Out-of-Domain Generalization. The advantages of OTR extend to out-of-domain tasks, as detailed
in Table 2. On both code generation and general reasoning benchmarks, OTR consistently surpasses
SFT in average performance across all models. This trend demonstrates that OTR effectively lever-
ages its on-policy signal to achieve broader, more generalized capabilities that are not confined to
its training domain.

From the perspective of knowledge preservation, OTR again proves to be a more generalizable algo-
rithm. SFT underperforms its base model in 7 OOD instances, particularly showing vulnerability on
SuperGPQA and MMLU-Pro with larger models. In contrast, OTR underperforms in 5 instances and
shows consistent improvements on general reasoning for the Qwen3-4B model where SFT struggles.
This demonstrates that OTR provides a more reliable fine-tuning approach that not only enhances
target skills but also better maintains the model’s general intelligence, leading to superior overall
generalization. A supplementary experiment is detailed in Appendix A.

4.4 ABLATION STUDY

To investigate the impact of the reward hyperparameter β, we conduct a comprehensive ablation
study. We select four values for analysis, ranging from negative to positive: -1.0, -0.1, 0, and
0.01. The performance across in-domain and out-of-domain benchmarks is presented in Table 3
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Table 4: Ablation study on the hyperparameter β for out-of-domain generalization.
Code General Tasks

Model Method HumanEval+ MBPP+ Avg BBEH SuperGPQA MMLU-Pro Average

Qwen2.5-3B

SFT 57.60 48.20 52.90 7.23 18.67 36.15 20.68

OTR β =


-1.00
-0.10
0.00
0.01

57.90 49.70 53.80 7.28 19.07 36.26 20.87
59.30 49.90 54.60 7.88 19.22 36.20 21.10
58.90 49.20 54.05 8.38 19.39 36.16 21.31
60.50 49.90 55.20 7.59 19.08 36.49 21.05

Qwen3-4B

SFT 70.20 60.90 65.55 9.27 28.11 53.86 30.41

OTR β =


-1.00
-0.10
0.00
0.01

74.20 61.10 67.65 9.91 28.65 56.51 31.69
74.00 62.90 68.45 9.71 29.03 55.96 31.57
73.70 61.90 67.80 9.54 28.24 53.93 30.57
73.20 62.20 67.70 8.38 26.11 50.37 28.29
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(a) Effect of β on GT token counts.
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(b) GT token counts for larger models.

Figure 2: Analysis of the number of GT tokens sampled during training. (a) Compares OTR with
different β values against SFT on Qwen3-4B. (b) Compares OTR and SFT on larger models.

and Table 4, respectively. To provide insight into the training process for our subsequent analysis,
we also track a key diagnostic metric: the number of ground-truth (GT) tokens sampled during the
token-level rollout. For a direct comparison, we also record this metric for SFT. It is important to
note that this measurement is for analysis only and does not alter the standard SFT algorithm.

Effect of β on Training Stability. Our first key observation relates to training stability, as depicted
in Figure 2(a). While most OTR variants show a stable increase in GT token counts, the setting with
β = 0.1 exhibits clear training instability. Its GT count initially rises but then collapses in the later
stages. We hypothesize that assigning a positive reward to incorrectly sampled tokens, especially
a relatively high one, can mislead the optimization process. This may cause the model to increase
the probabilities of all rolled-out tokens indiscriminately, ultimately leading to a degradation of the
learned distribution. This observed instability motivates us to limit our search space, leading to our
selection of β values {-1.0, -0.1, 0, 0.01}, which primarily explores the non-positive range.

Impact on Performance and Optimal β Selection. From the performance results in Table 3 and Ta-
ble 4, it is evident that OTR is robustly superior to SFT. Regardless of the specific β value, OTR
variants consistently outperform the SFT baseline in terms of average scores across nearly all do-
mains and models. Among these variants, the setting of β = −0.1 demonstrates the most consistent
and high-level performance across both in-domain and OOD tasks. Therefore, we select β = −0.1
as the default value for our main experiments.

The Importance of Negative Samples. This study also provides insight into the importance of
utilizing negative samples. As analyzed in Section 3.4, OTR with β = 0 can be viewed as a Monte
Carlo approximation of the DFT method. A direct comparison between the β = −0.1 and β = 0
rows in our tables reveals that the former almost universally outperforms the latter. This result
provides empirical evidence that incorporating an explicit penalty for negatively sampled tokens is
a crucial component of OTR’s success, contributing to a more effective learning signal than what is
offered by SFT-like formulations.
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Analysis of Learning Dynamics. Finally, we analyze the source of OTR’s general superiority over
SFT by examining the GT token counts at convergence in Figure 2. Across different models, scales,
and architectures (as shown in both Figure 2(a) and Figure 2(b)), OTR-trained models consistently
converge to a higher number of sampled GT tokens than SFT-trained models. A higher GT count
indicates that the model’s learned policy assigns a higher probability to the ground-truth sequences,
which suggests a lower perplexity on the training data. We infer from this that OTR enables the
model to learn from and utilize the training data more profoundly and efficiently than SFT, poten-
tially unlocking a higher performance ceiling.

5 RELATED WORK

Reinforcement Learning for Language Models. Recently, reinforcement learning has gained
significant traction as a powerful paradigm for enhancing the capabilities of large language mod-
els (Hu, 2025; DeepSeek-AI et al., 2025; Wu et al., 2025a). The success of state-of-the-art models,
which have leveraged RL-based algorithms like GRPO (Shao et al., 2024) to achieve substantial im-
provements in reasoning and cross-domain generalization, has catalyzed a surge of interest in these
methods. The traditional approach to RL fine-tuning, reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022), often relies on complex and computationally intensive algorithms
like PPO (Schulman et al., 2017). The inherent instability and implementation complexity of PPO
have motivated a recent wave of research focused on simplifying the RLHF pipeline. A prominent
line of work, including methods like DPO (Rafailov et al., 2023) and GEPO (Wu et al., 2025b), ele-
gantly reframes the preference learning objective to create a simple loss, eliminating the need for an
explicit reward model. In a similar spirit, GPG (Chu et al., 2025b) simplifies the RL objective into
a weighted maximum likelihood form, demonstrating that such a simplified approach can match the
performance of more complex algorithms.

Improving Supervised Fine-tuning. While SFT is the most widely used paradigm for fine-tuning,
its limitations, such as catastrophic forgetting and deviation from the pre-trained model’s distribu-
tion, are well-documented (Kumar et al., 2022; Huan et al., 2025). A major line of research aims
to improve SFT by modifying its objective function. A prominent example is proximal SFT (Zhu
et al., 2025), which introduces a proximal regularization term to the SFT loss to penalize divergence
from the initial model’s policy. This approach is analogous to the KL-divergence constraint in PPO
and helps stabilize training and preserve pre-trained knowledge. Another significant line of work
seeks to enhance SFT by reformulating it through the lens of reinforcement learning, often by es-
tablishing a mathematical connection between their objectives. For instance, some studies reframe
RLHF as a reward-weighted form of SFT (Du et al., 2025b), while others view SFT as an RL method
with an implicit reward function (Wang et al., 2025; Qin & Springenberg, 2025). Concurrent to our
work, DFT (Wu et al., 2025c) identifies an implicit inverse-probability weighting in the SFT gradi-
ent and addresses the resulting instability by re-weighting the loss for the ground-truth token with
its own model probability. Although these works build a theoretical bridge between SFT and RL,
they primarily focus on re-weighting the loss for the static, ground-truth expert data. In contrast,
our work offers a distinct, data-centric solution. OTR moves beyond loss modification and instead
transforms the training data itself into a dynamic, on-policy signal by actively sampling from the
model’s current policy.

6 CONCLUSION

In this work, we investigated the generalization weakness of SFT compared to RL, positing that
the disparity stems from the fundamental difference between SFT’s static, off-policy data and RL’s
dynamic, on-policy data. To bridge this gap from a data-centric perspective, we introduced One-
Token Rollout, a novel fine-tuning algorithm. By reframing each token generation as a single-
step reinforcement learning trajectory, OTR transforms the static supervised dataset into a dynamic,
on-policy learning signal, successfully incorporating the advantage of on-policy data into the SFT
framework while maintaining its computational efficiency. Our extensive experiments empirically
validate this approach, demonstrating that OTR consistently outperforms SFT on a wide array of
in-domain and out-of-domain benchmarks. Ultimately, we present OTR as a powerful and practical
alternative for fine-tuning LLMs, providing compelling evidence that simulating on-policy interac-
tion is a key direction for developing more generalizable fine-tuned language models.
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A ADDITIONAL EXPERIMENT

To assess the robustness of our method and validate its generalization benefits across different
training data and training configurations, we conduct an additional experiment. For this analysis,
we adopt the training data and hyperparameter settings from the concurrent work, dynamic fine-
tuning (Wu et al., 2025c), which provides a distinct training environment to test the efficacy of OTR.
This comparative analysis focuses on the Qwen2.5-3B (Qwen Team, 2024) and Qwen3-4B (Qwen
Team, 2025) models, with the detailed setup provided below.

Dataset. We train with the NuminaMath CoT dataset (LI et al., 2024), which comprises around
860,000 mathematical problems paired with corresponding solutions. To efficiently manage com-
putational resources, we randomly sample 50,000 instances from this dataset for training.

Training Details. Our implementation is built upon the Verl framework. For a fair comparison, both
our proposed OTR algorithm and the SFT baseline are trained using identical settings. Specifically,
we employ the AdamW optimizer with a peak learning rate of 5× 10−5. The learning rate follows
a cosine decay schedule with a warm-up ratio of 0.1. We use a batch size of 256, a maximum input
length of 4096 tokens, and train all models for 1 epoch.

As shown in Table 5, even under the training settings adapted from DFT, our OTR method con-
sistently outperforms the standard SFT baseline across the majority of benchmarks. This finding
demonstrates the robustness of the OTR algorithm and suggests that its generalization benefits are
not confined to a specific set of data and hyperparameters but hold true across different settings.

Table 5: Results of SFT and OTR on in-domain math benchmarks when trained under the DFT
experimental settings. For each model, the best result is in bold.

Model Method GSM8K MATH Olympiad Minerva AIME24 AIME25 AMC23 Average

Qwen2.5-3B SFT 78.50 53.25 19.43 16.55 2.28 0.83 24.53 27.91
OTR 78.70 57.10 21.53 21.50 2.70 1.86 28.75 30.31

Qwen3-4B SFT 88.75 64.80 30.60 27.30 6.25 4.38 35.78 36.84
OTR 88.05 68.65 33.88 25.90 9.38 6.46 42.66 39.28

LIMITATIONS

While our experiments demonstrate OTR’s consistent advantages across a range of models and
benchmarks, this work has several limitations. First, due to computational constraints, our study
is conducted on models up to 8 billion parameters and trained on a subset of a mathematics-focused
dataset. Consequently, the scalability of OTR to larger-scale models (e.g., 70B+) remains to be
validated. Second, our investigation is confined to the text-only modality. The reward mechanism,
while effective, is also relatively simple. Future work will aim to address these limitations by scaling
OTR to larger models, training on larger datasets, and extending it to broader training domains. We
also plan to explore more sophisticated reward functions, investigate the potential of multi-token
rollouts, and extend the OTR framework to other modalities, such as vision-language tasks.

DECLARATION OF LLM USAGE

The usage of LLMs is strictly limited to aid and polish the paper writing.
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