Spatiotemporal Contrast Are Natural Urban Scene Learners

Anonymous authors

Paper under double-blind review

ABSTRACT

Street view imagery is a widely utilized representation of urban visual environments and supports various sustainable development tasks such as environmental perception and socio-economic assessment. However, it is challenging for existing image representations to specifically encode the dynamic urban environment (such as pedestrians, vehicles, and vegetation), the built environment (including buildings, roads, and urban infrastructure), and the environmental ambiance (such as the cultural and socioeconomic atmosphere) depicted in street view imagery to address downstream tasks related to the city. This work innovatively leverages temporal and spatial attributes of street view imagery to propose an unsupervised learning framework suitable for diverse downstream tasks. By employing street view images captured at the same location over time and spatially nearby views at the same time, we construct contrastive learning tasks designed to learn the temporal-invariant characteristics of the built environment and the spatialinvariant neighborhood ambiance. Our approach significantly outperforms traditional supervised and unsupervised methods in tasks such as visual place recognition, socioeconomic estimation, and human-environment perception. Moreover, we demonstrate the varying behaviors of image representations learned through different contrastive learning strategies across various downstream tasks. This study systematically discusses representation learning strategies for urban studies based on street view images, providing a benchmark that enhances the applicability of visual data in urban science.

033

004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028

1 INTRODUCTION

In recent years, unsupervised learning has demonstrated outstanding performance. By leveraging methods such as contrastive learning (He et al., 2020; Chen et al., 2020; 2021) and masked learn-035 ing (He et al., 2022; Xie et al., 2022), it has achieved efficient image representation and exhibited excellence in classical computer vision tasks like image classification (Radford et al., 2021), object 037 detection (He et al., 2022), and semantic segmentation (Wang et al., 2020a), surpassing the vast majority of supervised learning approaches. However, current unsupervised learning aims to encode as much semantic and structural information of objects and environments in a scene as possible (Park 040 et al., 2023; Huang et al., 2024). This is not suitable for all downstream tasks in domains like street 041 view-based urban environment understanding. For instance, in place recognition tasks (Lowry et al., 042 2015), the features are expected to focus only on place-invariant information, such as buildings and 043 roads, filtering out dynamic information like lighting conditions, pedestrians, vehicles, and vegeta-044 tion. In contrast, in tasks related to human perception of places (Dubey et al., 2016; Zhang et al., 2018), these dynamic elements are important. Moreover, tasks like socioeconomic prediction (Wang et al., 2020b) emphasize the spatially consistent expression of neighboring scenes. 046

In image representation learning, selectively encoding dynamic and static information in urban environments and the ambiance they create is highly important but inherently challenging (Cordts et al., 2016). Achieving precise encoding of such information typically requires separately labeling dynamic and static elements and using specific training strategies (e.g., masking dynamic elements when encoding static ones (Cheng et al., 2017; Wang et al., 2019)). However, both the labeling and training processes are fraught with difficulties. Factors such as lighting conditions, vegetation appearance, and ground litter are challenging to label objectively and consistently. This makes it nearly impossible to accurately represent these complex environmental factors using traditional datasets

091

092

095

096

098

099

(e.g., ImageNet (Deng et al., 2009), Places (Zhou et al., 2017)) and classical methods (supervised or unsupervised).

Figure 1: Spatial and temporal contrastive learning with street view images. Using street view images captured at the same location over time, contrastive learning tasks are designed to learn the temporal-invariant characteristics of the built environment; Using spatially proximate street view images from the same period, learning tasks are crafted to learn the spatial-invariant neighborhood ambiance, such as socioeconomic atmosphere.

082 Unlike existing large-scale datasets, street view imagery, as high-resolution urban visual dataset, 083 possess unique spatiotemporal attributes that can capture both dynamic and static information in ur-084 ban environments and the ambiance they form (Biljecki & Ito, 2021; Zhang et al., 2024). Therefore, 085 in this work, we leverage these spatiotemporal attributes of street view imagery to propose a selfsupervised urban visual representation framework based on street view imagery (see Figure 1). This framework aims to selectively extract and encode dynamic and static elements and their ambiance in 087 urban environments according to the requirements of different downstream tasks, achieving precise 880 representation of urban environments. Specifically, the framework is based on the following three hypotheses: 090

- **Temporal Invariance Representation**: At the same location, static elements such as buildings and streets do not change in images taken at different times, whereas dynamic elements like lighting conditions, pedestrians, vehicles, and vegetation present randomness in images taken at different times. Learning temporal invariant representations can retain the encoding of static elements while automatically filtering out information about dynamic elements. To capture this temporal invariance, we utilize the temporal attributes of street view imagery to construct positive sample pairs from historical street view images taken at different times at the same location. We expect that, after pre-training, the temporal encoder can learn stable features of the built environment. This method is suitable for tasks that rely on temporal stability, such as visual place recognition.
- Spatial Invariance Representation: At the same time, urban spaces at nearby locations usually exhibit similarity; the architectural styles and urban functions in adjacent areas are relatively consistent, while specific visual elements in images of nearby locations present randomness. Learning spatial invariant representations can encode the overall neighborhood ambiance within a specific spatial range while avoiding focus on any specific elements. To capture this spatial invariance, we leverage the spatial attributes of street view imagery to construct positive sample pairs from street view images taken in adjacent areas at the same time. We expect that, after pre-training, the spatial encoder can learn spatially

invariant neighborhood ambiance. This method is suitable for tasks that require spatial consistency, such as socioeconomic prediction.

- **Global Information Representation**: Besides temporal and spatial invariance, there are elements in urban environments that require holistic perception; these global features are vital for tasks involving human perception. To capture these characteristics, we construct positive sample pairs by applying data augmentation to the same street view image. We expect that, after pre-training, the model can retain the key elements of the scene and comprehensively capture the global information of the image.
- 115 116

111

112

113

114

We validate the effectiveness of these hypotheses across multiple urban downstream tasks. Experimental results demonstrate that different contrastive learning strategies can learn different types of features that are more suitable for their respective downstream tasks. We also conduct an in-depth analysis of the reasons behind the performance of different contrastive methods, further underscoring the importance of targeted learning strategies. This study systematically explores representation learning strategies in urban studies based on street view images, provides a valuable benchmark, and enhances the applicability of visual data in urban science.

124 125

126 127

128

2 RELATED WORK

2.1 Self-Supervised Representation Learning

129 Self-supervised representation learning leverages the inherent structure within data to generate su-130 pervisory signals, thereby mitigating the need for extensive labeled datasets. A prominent approach 131 in this field is contrastive learning, which has demonstrated significant success in learning robust representations. Methods such as InstDis (Wu et al., 2018), SimCLR (Chen et al., 2020), and the MoCo 132 series (He et al., 2020; Chen et al., 2021) focus on contrasting positive pairs of similar instances 133 against negative pairs of dissimilar instances to learn effective feature embeddings. In contrast, 134 BYOL (Grill et al., 2020), SimSiam (Chen & He, 2021), and DINO (Caron et al., 2021) improve per-135 formance by avoiding negative samples altogether and adopting a self-distillation approach. These 136 methods have achieved notable results in various visual tasks, such as image classification and ob-137 ject detection, showcasing the ability of self-supervised learning to perform exceptionally well with 138 large-scale unlabeled data. However, despite these successes, existing self-supervised learning meth-139 ods predominantly focus on static images without considering the spatiotemporal context inherent 140 in certain datasets, such as urban environments captured over time and space. The lack of inte-141 gration of spatiotemporal information limits the models' ability to capture dynamics over time and 142 across spatial regions, especially in tasks requiring an understanding of both spatial and temporal 143 dependencies. Therefore, there is a need for self-supervised learning approaches that effectively incorporate spatiotemporal information to enhance performance in such tasks. 144

145 146

147

2.2 Spatiotemporal Contrastive Learning in Vision Tasks

Spatiotemporal contrastive learning enhances traditional contrastive learning by integrating both 148 spatial and temporal information, enabling models to capture underlying relationships in unlabeled 149 data that vary over space and time. Temporal contrastive learning excels in sequential data by 150 differentiating between related and unrelated frames. For example, Contrastive Predictive Cod-151 ing (CPC) (van den Oord et al., 2019) applies temporal contrastive learning by using consecutive 152 video frames as positive pairs and shuffled or temporally distant frames as negative pairs, help-153 ing models learn temporal coherence. SeCo Manas et al. (2021) uses multi-season remote sensing 154 images for self-supervised pre-training, enhancing model performance in remote sensing tasks. Spa-155 tial contrastive learning improves a model's ability to represent spatial scenes from various angles, 156 perspectives, and locations. Multi-view contrastive learning approach is typically applied within a 157 single scene from multiple angles at one location (Tian et al., 2020). Building on these concepts, 158 geospatial contrastive learning contrasts data from different geographic locations or regions. By en-159 suring that data from similar spatial locations are closer in the feature space while data from different regions are more distant, models can more effectively capture spatial patterns and geographic fea-160 tures (Deuser et al., 2023; Ayush et al., 2021; Klemmer et al., 2024; Mai et al., 2023). This approach 161 enhances the understanding of spatial relationships across wider geographic contexts.

162 2.3 STREET VIEW REPRESENTATION LEARNING FOR DOWNSTREAM TASKS

164 Street view imagery has been widely used in various urban downstream tasks, such as road defect 165 detection (Chacra & Zelek, 2018), urban function recognition (Huang et al., 2023), and socioeconomic prediction (Fan et al., 2023). However, existing research on street view representation 166 often relies on supervised models trained on datasets like Places365 (Zhou et al., 2017) or directly 167 uses the pixel proportions of semantic segmentation results. These approaches fail to fully cap-168 ture the rich semantic information embedded in street view imagery. Unlike natural images, street view imagery not only contains complex visual semantics but also encodes valuable spatiotempo-170 ral information in its metadata. Effectively representing this dual semantic nature-both visual and 171 spatiotemporal-remains a significant challenge for improving its use in urban downstream tasks. 172 Although a few studies have explored spatiotemporal self-supervised learning approaches to repre-173 sent street view imagery (Stalder et al., 2024), these methods still have limitations. For instance, 174 Urban2Vec (Wang et al., 2020b) incorporates spatial information into self-supervised training by 175 constructing positive sample pairs based on nearest neighbors, while KnowCL (Liu et al., 2023) in-176 tegrates knowledge graphs with contrastive learning to align locale and visual semantics, improving the accuracy of socioeconomic prediction using street view imagery. However, these approaches fail 177 to explore the natural meanings of the spatiotemporal attributes of street view imagery and how to 178 leverage these attributes to construct self-supervised methods suitable for various downstream tasks. 179

181 3 METHOD

182

180

The real world undergoes continuous changes across both temporal and spatial dimensions, yet these changes exhibit a certain level of continuity. In the temporal dimension, it is important to capture the invariant characteristics of a location as they evolve over time. Meanwhile, in the spatial dimension, the focus is on maintaining the consistency of the overall atmosphere within a specific spatial range.
These temporal and spatial invariances are crucial for enhancing performance in various downstream tasks. In this section, we introduce the proposed spatiotemporal contrastive learning framework in detail (Figure 1).

190 Contrastive learning aims to learn feature representations from unlabeled data by contrasting positive and negative samples. The primary goal is to minimize the distance between positive samples 191 and maximize the distance between negative samples within the feature space. Positive pairs are 192 constructed by applying data augmentations to street view images. By optimizing the InfoNCE loss 193 function, the model learns to reduce the distance between positive pairs in the feature space and in-194 crease the distance from negative samples, thus improving the feature representation learning. Given 195 a query representation q and a set of positive and negative keys (k^+, k^-) , the InfoNCE (van den Oord 196 et al., 2019) loss is defined as: 197

- 100
- 199
- 200

$$\mathcal{L}_q = -\log \frac{\exp\left(q \cdot k^+/\tau\right)}{\exp\left(q \cdot k^+/\tau\right) + \sum_{k^-} \exp\left(q \cdot k^-/\tau\right)} \tag{1}$$

Here, q is the feature representation of the query, k^+ is the feature representation of the positive sample, and k^- is the feature representation of negative samples. The temperature parameter τ controls the scaling of similarities. The goal is to maximize the similarity between the query and the positive key $q \cdot k^+$ while minimizing the similarity between the query and the negative keys $q \cdot k^-$. Building on this contrastive learning framework, we introduce temporal and spatial contrasts for constructing positive pairs from street view images.

207 Temporal Contrast. Street view images captured at the same location but at different times differ 208 from video frames because the intervals between shots are not fixed. Unlike remote sensing images, 209 street view images taken at different times are not perfectly aligned in terms of position. Due to the 210 typical spatial and angular shifts between images captured at different times, we impose restrictions 211 on the conditions for positive temporal pairs: they must be taken within 5 meters of each other 212 and have the same shooting angle. The historical street view image set for each location can be 213 represented as $T = [t_1, t_2, \dots, t_n]$, where t_i denotes the images captured at different times. Since the number of images varies for each location, the value of n differs accordingly. The aim of 214 temporal contrast is to capture the invariant features of the same location over time. This means 215 that even though the images are taken at different times, the model should learn to recognize the

consistent characteristics of the scene. To achieve this, we define positive pairs (t_i, t_j) , which are images that satisfy the aforementioned temporal conditions.

Spatial Contrast. Capturing the spatial consistency of an urban area is essential for accurately 219 representing urban physical environment. Spatial consistency refers to the ability to recognize that 220 different locations within the same urban area still represent the same underlying physical charac-221 teristics. To achieve this, we treat all street view images captured within a specific urban area as 222 representing the same environment, even if these images are taken from different angles or slightly 223 different positions. This approach allows the model to account for variations in location while pre-224 serving the overall atmosphere of the area. The set of street view images for a given urban area can 225 be denoted as $S = \{s_1, s_2, \ldots, s_n\}$, where each s_i represents an image captured within the defined 226 area. These images collectively provide a comprehensive spatial representation of the urban environment. We randomly select two samples (s_i, s_j) from the set S and treat them as positive pairs. 227 This encourages the model to learn that despite slight variations in shooting angle or position, the 228 images are part of the same spatial context. By doing so, we enable the model to learn consistent 229 and representative spatial features across the entire urban area. 230

230 231 232

233

4 EXPERIMENTS AND RESULTS

To validate our hypothesis, we first pre-train the models using datasets specifically designed for self-supervised contrastive learning, spatial contrastive learning, and temporal contrastive learning, respectively. We then evaluate the models on three distinct downstream tasks that reflect the characteristics of these contrastive learning models: visual place recognition (VPR), socioeconomic indicator prediction, and safety perception. Additionally, we conduct interpretability analyses on the features learned by the different contrastive models to gain a deeper understanding of the information the models focus on and how this impacts performance on urban downstream tasks.

241 242 4.1 Spatiotemporal Pre-training

Since the VPR and safety perception datasets include a wide range of street view samples from different cities, while the socioeconomic prediction task focuses more on local city characteristics, we constructed two separate datasets — a global version and a local version — for testing on different downstream tasks.

For the global version, to capture a broad spectrum of urban environments, we trained our selfsupervised models on data collected from ten diverse and representative global cities. These cities were carefully selected to encompass a variety of geographical locations, cultural backgrounds, and urban forms, ensuring the diversity and richness of our training dataset. We historical images of ten global cities from the Google Street View (GSV) API which resulted in a total of over 42 million street view images used for pre-training. Detailed information about the data collection process and the composition of the dataset can be found in Sections A.1 and Section A.2.

For the local version, we selected street view data from Los Angeles to construct different contrastive datasets tailored to the specific needs of the socioeconomic prediction task in that city. The construction methods of datasets are similar to the global version.

Based on the street view pre-training datasets, we constructed three distinct contrastive datasets corresponding to different contrastive learning models for both global and local version: selfcontrastive, temporal contrastive, and spatial contrastive datasets. To benchmark against the MoCo v3 baseline trained on ImageNet, each dataset was standardized to consist of 1 million image pairs. This uniform dataset size facilitates a fair comparison among the models by ensuring that each receives an equal amount of training data.

- Self-contrastive Dataset. For the self-contrastive dataset, we randomly selected 100,000 images from each of the 10 cities, resulting in a total of 1 million images. Positive pairs were generated during training by applying data augmentation techniques to these images, following the settings used in MoCo v3 (Chen et al., 2021). Additionally, for the local version, we constructed a self-contrastive dataset based solely on Los Angeles using the same method.
- **Temporal Contrastive Dataset.** In constructing the temporal contrastive dataset, we randomly selected 100,000 street view sampling points from each of the 10 cities, totaling 1 million sampling

points. At each sampling point, we retrieved images taken at different times but from the same shooting angle. Two images were randomly selected from the temporal sequence to form a positive pair, resulting in 1 million temporal positive pairs. Similarly to the self-contrastive dataset, we constructed an additional temporal contrastive dataset based solely on Los Angeles using the same method.

275 Spatial Contrastive Dataset. For the global spatial contrastive dataset, we defined a 100-meter 276 buffer zone as a unified urban area. From each buffer zone, we randomly selected two images to 277 form positive pairs. Out of all the spatial positive pairs generated, we then randomly selected 1 278 million pairs to create the spatial contrastive dataset. It is important to note that we did not impose 279 any restrictions on the shooting angle for positive pairs, allowing the model to focus more on the 280 overall ambiance of the urban environment rather than specific street layouts. Similarly, for the local version, since the socioeconomic dataset is based on block groups, we defined each block group as 281 an urban area and constructed positive pairs based on the block group boundaries. 282

- Training. We use AdamW (Loshchilov & Hutter, 2019) as the optimizer, a common choice for training ViT base (Dosovitskiy et al., 2021) models, with a weight decay of 1e-6. For each dataset, we use a mini-batch size of 1024 and an initial learning rate of 6e-6. The model is trained for 300 epochs, starting with a 40 epoch warmup(Goyal et al., 2018), followed by a cosine decay schedule for learning rate decay (Loshchilov & Hutter, 2017). Training the ViT Base model for 300 epochs on 4 Nvidia A800 GPUs takes approximately 71 hours.
- 289

291

290 4.2 VISUAL PLACE RECOGNITION

VPR is a crucial urban task that aims to identify specific locations based on visual input. This task requires the removal of temporal disturbances to focus on stable information that does not change over time, demanding feature extraction that effectively distinguishes constant characteristics in the environment to improve recognition accuracy.

To evaluate the model's performance in VPR tasks, we used several benchmark datasets: CrossSeason (Mans Larsson et al., 2019), Essex (Zaffar et al., 2021), Pitts250k, Pitts30k (Arandjelović et al., 2018), SPED (Chen et al., 2018), and MapillarySLS (Warburg et al., 2020) datasets. The model was tested by freezing the backbone of the pre-trained ViT and extracting the [CLS] token for VPR tasks. We assessed performance using the Recall@K metric, measuring the model's ability to correctly identify query image locations among the top-k most similar database images.

The GSV-Temporal model demonstrates exceptional performance on the CrossSeason dataset, 302 achieving a recall value of 100% across all K values. This indicates its robust capability in cross-303 season VPR tasks. In contrast, GSV-Self and ImageNet-Self exhibit significantly lower perfor-304 mance, suggesting their inability to effectively capture temporal features. On the Essex dataset, 305 GSV-Temporal maintains a recall value exceeding 75%, with values of 99.05% for both K=20 and 306 K=25. This highlights its sensitivity to dynamic changes in the environment, outperforming other 307 models in this context. In the Pitts250k dataset, GSV-Temporal consistently outperforms GSV-Self 308 and ImageNet-Self in recall values, underscoring its suitability for complex urban environments in 309 VPR tasks. The GSV-Temporal model also excels on the Pitts30k dataset, achieving a recall value 310 of 90.23% at K=15. This further emphasizes its capability in recognizing rapidly changing scenes. 311 For the SPED dataset, GSV-Temporal displays superior recall values compared to other models, particularly with a notable performance at K=5, demonstrating its adaptability in diverse environments. 312 Finally, in the MapillarySLS dataset, GSV-Temporal showcases its outstanding performance again, 313 with a recall value of 77.57% at K=15, reinforcing its advantages in handling real-world scenarios. 314

In summary, the GSV-Temporal model consistently outperforms other models across multiple
 datasets, particularly in VPR tasks. Its sensitivity to temporal and environmental changes positions
 it as a superior choice for this application, revealing significant potential for practical use.

318

319 4.3 SOCIOECONOMIC INDICATOR PREDICTION320

The socioeconomic indicator prediction task aims to use street view images to infer the socioeconomic status of urban areas. It emphasizes learning the macro atmosphere of a region rather than
 specific geometric features, highlighting the need for feature extraction to focus on similarities between regions to better understand economic conditions and developmental dynamics.

Model	Dataset	k=1	k=5	k=10	k=15	k=20	k=25
ImageNet-Self	CrossSeason	68.06	85.86	91.62	92.67	94.24	98.43
GSV-Self	CrossSeason	68.06	76.44	81.15	83.25	87.96	91.62
GSV-Spatial	CrossSeason	85.34	94.76	99.48	100.00	100.00	100.00
GSV-Temporal	CrossSeason	96.86	100.00	100.00	100.00	100.00	100.00
ImageNet-Self	Essex	62.38	84.29	90.00	95.24	96.67	98.57
GSV-Self	Essex	68.10	92.38	96.67	98.10	98.10	99.05
GSV-Spatial	Essex	76.19	92.38	97.14	98.10	98.57	98.57
GSV-Temporal	Essex	79.05	96.67	98.10	99.05	99.05	99.05
ImageNet-Self	Pitts250k	56.15	75.63	82.04	85.11	87.33	88.77
GSV-Self	Pitts250k	24.30	38.96	45.94	50.39	53.43	55.85
GSV-Spatial	Pitts250k	30.87	47.07	54.58	59.28	62.49	65.10
GSV-Temporal	Pitts250k	58.72	79.23	85.06	87.72	89.48	90.68
ImageNet-Self	Pitts30k	58.82	79.33	85.67	88.86	90.89	92.28
GSV-Self	Pitts30k	27.67	44.89	52.82	58.14	62.34	65.58
GSV-Spatial	Pitts30k	34.52	52.71	61.90	68.08	72.95	76.75
GSV-Temporal	pitts30k	64.11	82.26	87.51	90.23	91.58	92.65
ImageNet-Self	SPED	44.65	60.96	68.04	71.83	74.79	76.94
GSV-Self	SPED	36.24	51.73	57.50	60.30	63.92	67.22
GSV-Spatial	SPED	39.87	55.02	63.43	68.20	71.66	74.30
GSV-Temporal	SPED	50.08	66.06	72.82	75.78	77.27	79.90
ImageNet-Self	MapillarySLS	26.08	35.81	43.11	45.68	48.11	49.73
GSV-Self	MapillarySLS	20.27	29.86	34.59	37.16	38.92	41.22
GSV-Spatial	MapillarySLS	26.89	37.97	43.11	47.16	48.92	51.22
GSV-Temporal	MapillarySLS	54.19	69.32	75.27	77.57	79.86	81.62
	Model ImageNet-Self GSV-Self GSV-Spatial GSV-Temporal ImageNet-Self GSV-Spatial GSV-Self GSV-Self GSV-Self GSV-Spatial GSV-Temporal ImageNet-Self GSV-Spatial GSV-Spatial GSV-Self GSV-Spatial GSV-Self GSV-Spatial GSV-Spatial GSV-Spatial GSV-Spatial	ModelDatasetImageNet-SelfCrossSeasonGSV-SelfCrossSeasonGSV-SpatialCrossSeasonGSV-TemporalCrossSeasonImageNet-SelfEssexGSV-SelfEssexGSV-SelfEssexGSV-SpatialEssexGSV-SelfPitts250kGSV-SelfPitts250kGSV-SelfPitts250kGSV-SelfPitts250kGSV-SelfPitts250kGSV-SelfPitts250kGSV-SelfPitts30kGSV-SelfPitts30kGSV-SelfPitts30kGSV-SelfPitts30kGSV-SelfSPEDGSV-SelfSPEDGSV-SelfSPEDGSV-SelfSPEDGSV-SelfSPEDGSV-SelfSPEDGSV-SelfSPEDGSV-SelfMapillarySLSGSV-SelfMapillarySLSGSV-SelfMapillarySLSGSV-SpatialMapillarySLS	ModelDatasetk=1ImageNet-SelfCrossSeason68.06GSV-SelfCrossSeason68.06GSV-SpatialCrossSeason85.34GSV-TemporalCrossSeason96.86ImageNet-SelfEssex62.38GSV-SelfEssex62.38GSV-SelfEssex68.10GSV-SpatialEssex76.19GSV-SpatialEssex79.05ImageNet-SelfPitts250k56.15GSV-SelfPitts250k24.30GSV-SelfPitts250k30.87GSV-SelfPitts250k58.72ImageNet-SelfPitts30k58.82GSV-SelfPitts30k58.82GSV-SelfPitts30k34.52GSV-SelfPitts30k34.52GSV-SelfSPED44.65GSV-SelfSPED36.24GSV-SelfSPED39.87GSV-TemporalSPED39.87GSV-TemporalSPED50.08ImageNet-SelfMapillarySLS26.08GSV-SelfMapillarySLS26.89GSV-SelfMapillarySLS26.89GSV-SelfMapillarySLS26.89GSV-TemporalMapillarySLS26.89	ModelDatasetk=1k=5ImageNet-SelfCrossSeason68.0685.86GSV-SelfCrossSeason68.0676.44GSV-SpatialCrossSeason85.3494.76GSV-TemporalCrossSeason96.86100.00ImageNet-SelfEssex62.3884.29GSV-SelfEssex68.1092.38GSV-SpatialEssex76.1992.38GSV-SpatialEssex76.1992.38GSV-SpatialEssex79.0596.67ImageNet-SelfPitts250k56.1575.63GSV-SelfPitts250k30.8747.07GSV-SelfPitts250k30.8747.07GSV-SelfPitts250k58.7279.23ImageNet-SelfPitts30k58.8279.33GSV-SelfPitts30k58.8252.71GSV-SelfPitts30k34.5252.71GSV-SelfSPED44.6560.96GSV-SelfSPED36.2451.73GSV-SelfSPED39.8755.02GSV-SelfSPED39.8755.02GSV-SelfMapillarySLS20.2729.86GSV-SelfMapillarySLS26.8937.97GSV-SelfMapillarySLS26.8937.97GSV-TemporalMapillarySLS54.1969.32	ModelDatasetk=1k=5k=10ImageNet-SelfCrossSeason68.0685.8691.62GSV-SelfCrossSeason68.0676.4481.15GSV-SpatialCrossSeason85.3494.7699.48GSV-TemporalCrossSeason96.86100.00100.00ImageNet-SelfEssex62.3884.2990.00GSV-SelfEssex68.1092.3896.67GSV-SelfEssex76.1992.3897.14GSV-TemporalEssex76.1992.3897.14GSV-TemporalEssex79.0596.6798.10ImageNet-SelfPitts250k56.1575.6382.04GSV-SelfPitts250k30.8747.0754.58GSV-SpatialPitts250k58.7279.2385.06ImageNet-SelfPitts30k58.8279.3385.67GSV-SelfPitts30k27.6744.8952.82GSV-SpatialPitts30k34.5252.7161.90GSV-SelfSPED36.2451.7357.50GSV-SelfSPED36.2451.7357.50GSV-SelfSPED36.2451.7357.50GSV-SelfSPED36.2451.7357.50GSV-SpatialSPED39.8755.0263.43GSV-SelfSPED39.8755.0263.43GSV-SelfMapillarySLS26.0835.8143.11GSV-SelfMapillarySLS26.8937.97<	ModelDatasetk=1k=5k=10k=15ImageNet-SelfCrossSeason68.0685.8691.6292.67GSV-SelfCrossSeason68.0676.4481.1583.25GSV-SpatialCrossSeason85.3494.7699.48100.00GSV-TemporalCrossSeason96.86100.00100.00100.00ImageNet-SelfEssex62.3884.2990.0095.24GSV-SelfEssex68.1092.3896.6798.10GSV-SpatialEssex76.1992.3897.1498.10GSV-TemporalEssex79.0596.6798.1099.05ImageNet-SelfPitts250k56.1575.6382.0485.11GSV-SelfPitts250k24.3038.9645.9450.39GSV-SelfPitts250k30.8747.0754.5859.28GSV-TemporalPitts250k58.7279.2385.0687.72ImageNet-SelfPitts30k58.8279.3385.6788.86GSV-SelfPitts30k34.5252.7161.9068.08GSV-SelfSPED36.2451.7357.5060.30GSV-SelfSPED36.2451.7357.5060.30GSV-SelfSPED36.2451.7357.5060.30GSV-SelfSPED36.2451.7357.5060.30GSV-SelfSPED36.2451.7357.5060.30GSV-SelfSPED36.2	ModelDatasetk=1k=5k=10k=15k=20ImageNet-SelfCrossSeason68.0685.8691.6292.6794.24GSV-SelfCrossSeason68.0676.4481.1583.2587.96GSV-SpatialCrossSeason95.3494.7699.48100.00100.00GSV-TemporalCrossSeason96.86100.00100.00100.00100.00ImageNet-SelfEssex62.3884.2990.0095.2496.67GSV-SpatialEssex68.1092.3897.1498.1098.57GSV-SpatialEssex76.1992.3897.1498.1098.57GSV-TemporalEssex79.0596.6798.1099.0599.05ImageNet-SelfPitts250k56.1575.6382.0485.1187.33GSV-SelfPitts250k30.8747.0754.5859.2862.49GSV-TemporalPitts250k58.7279.2385.0687.7289.48ImageNet-SelfPitts30k58.8279.3385.6788.8690.89GSV-SpatialPitts30k34.5252.7161.9068.0872.95GSV-TemporalPitts30k34.5252.7161.9068.0872.95GSV-SpatialPitts30k64.1182.2687.5190.2391.58ImageNet-SelfSPED36.2451.7357.5060.3063.92GSV-SpatialSPED36.2451.73 <t< td=""></t<>

Table 1: Performance comparison on different datasets (Recall@K in %)

324

325

351

In the downstream task of predicting socioeconomic indicators, we utilized the socioeconomic dataset published by Fan et al. (2023), which contains 18 socioeconomic indicators across seven major cities in the United States (Table A2). We take the socioeconomic indicator prediction of Los Angeles as an example. Detailed descriptions are provided in Section A.3. We first extracted street view embeddings from the images using the pre-trained models of local version. These embeddings were then aggregated at the block group level. The aggregated embeddings were used as input features to predict socioeconomic indicators for each block group.

For prediction model training and evaluation, we split each city's dataset into a training set (70%) and a testing set (30%). We used LASSO as the regressor to evaluate the predictive performance of the image embeddings extracted by the different pre-trained models. Additionally, we applied 5fold cross-validation to ensure robust evaluation. This approach allows for a fair comparison of the different contrastive learning models in capturing visual features that are meaningfully correlated with socioeconomic indicators.

365 The results of socioeconomic indicator predictions are shown in Table 2. Overall, models pre-trained 366 on street view images significantly outperform that pre-trained on the ImageNet dataset. Specifi-367 cally, across all 18 indicators, the ImageNet-pretrained model achieved an average R^2 of 0.5209. In contrast, models on street view images achieved average R^2 scores of 0.5609 for self-contrastive, 368 369 0.5714 for temporal contrastive, and 0.5888 for spatial contrastive models, respectively. Furthermore, both temporal and spatial contrastive pre-training models capture more socioeconomic-related 370 information compared to the self-contrastive approach, with spatial contrastive demonstrating the 371 highest performance. This trend is consistent across most of socioeconomic indicators, showing 372 the strongest predictive performance for Health-related indicators and the least for Crime-related 373 indicators. 374

These findings suggest that spatial contrastive pre-training effectively captures the overall ambiance
 of urban areas, enabling more precise predictions of regional socioeconomic information. Addi tionally, temporal contrastive pre-training filters out random factors and dynamic elements in the
 images, enhancing the reliability of socioeconomic predictions.

Topic	Label	GSV-Self	GSV-Spatial	GSV-Temporal	ImageNet-Self
Crime	logcrime	0.4203	0.4287	0.4194	0.4146
	logpetty	0.1810	0.1877	0.1892	0.1667
	Total	0.3007	0.3082	0.3043	0.2906
Health	cancercrud	0.6644	0.6969	0.6618	0.6053
	diabetescr	0.6589	0.6942	0.6796	0.6172
	lpacrudepr	0.8001	0.8337	0.8221	0.7671
	mhlthcrude	0.7088	0.7510	0.7291	0.6753
	obesitycru	0.7628	0.7886	0.7797	0.7175
	phlthcrude	0.7120	0.7399	0.7314	0.6752
	Total	0.7178	0.7507	0.7340	0.6763
Poverty	mhincome_cbg	0.6561	0.6816	0.6735	0.6096
	povertyline_below100	0.1948	0.2227	0.1833	0.1718
	povertyline_below200	0.6154	0.6377	0.6401	0.5893
	Total	0.4888	0.5140	0.4990	0.4569
Transport	drove_alone_per_cbg	0.3841	0.3991	0.3835	0.3582
	estpmiles	0.6196	0.6447	0.6289	0.5379
	estptrp	0.6024	0.6385	0.6087	0.5302
	estvmiles	0.6647	0.6921	0.6874	0.6163
	estvtrp	0.6900	0.6994	0.6991	0.6436
	publictrans_per_cbg	0.5226	0.5700	0.5339	0.4726
	walkbike_per_cbg	0.2383	0.2925	0.2340	0.2080
	Total	0.5317	0.5623	0.5394	0.4810
Overall Total		0.5609	0.5888	0.5714	0.5209

Table 2: Performances of socioeconomic indicator prediction based on LASSO across models.

401

403

404

405

406

407 408

378

4.4 SAFETY PERCEPTION

The safety perception task involves using street view imagery to estimate how safe people perceive a given scene to be. To make accurate estimates, this task requires analyzing all relevant elements within the scene, as each can contribute to the overall perception of safety, particularly elements such as trees and vehicles (Zhang et al., 2018).

Table 3: Evaluation Metrics of Different Models for Safety Perception Classification.

Model	Accuracy (%)	Recall (%)	F1 Score (%)	AUC Score (%)
ImageNet-Self	83.25	70.32	75.43	80.51
GSV-Temporal	84.91	65.16	75.94	80.72
GSV-Spatial	86.08	68.39	78.23	82.33
GSV-Self	88.68	77.42	83.33	86.29

413 414 415

We selected the PlacePlus 2.0 (Dubey et al., 2016) dataset for the downstream task of human environmental perception, filtering out over 1,144 images with safety perception scores below 3.5 and above 6.5, with 80% of the data used for training and 20% for testing. The model was trained using a linear binary classification approach for 20 epochs to effectively distinguish between low and high safety perception environments.

The evaluation metrics in Table 3 illustrate the performance of various models in classifying safety perception in urban environments. Notably, the GSV-Self model achieved the highest accuracy (88.68%) and recall (77.42%), demonstrating its effectiveness in identifying both safe and unsafe environments while minimizing false negatives. Its F1 score of 83.33% indicates a strong balance between precision and recall, and the AUC score of 86.29% further confirms its ability to distinguish between safety levels across thresholds. Overall, the GSV-Self model outperforms the others in all metrics, underscoring its potential for applications in urban safety perception tasks.

- 427
- 428 4.5 WHAT GSV-TEMPORAL AND GSV-SPATIAL CONTRASTS LEARN IN GSV? 429

Our experimental results reveal that different contrastive learning methods excel in different tasks:
 Temporal contrastive performs exceptionally well in VPR tasks, Spatial contrastive shows better results in macroeconomic prediction tasks, and Self contrastive achieves the best performance in

safety perception tasks, confirming our hypothesis. To further investigate the differences in model
 performance across these contrastive methods, we first visualized the attention mechanism in ViT
 and evaluated the attention range using attention distance.

GSV-Temporal learns invariant characteristics, and GSV-spatial learns invariant neighborhood ambiance.

This attention map visualization (Figure 2) shows how different contrastive learning strategies encode spatial and temporal invariants within urban street view images. The attention maps (Chefer et al., 2021) highlight how the models focus on distinct regions across various depths. We selected two street view images of the same location taken at different times. The attention maps for two query tokens, marked in red on the images, were visualized across layers from the first to the last depth, and the detailed results are available in Section A.5.

In the first depth, GSV-Self and GSV-Temporal exhibit a broader distribution of attention, while 444 GSV-Spatial focuses more on localized regions. This suggests that GSV-Self and GSV-Temporal 445 prioritize capturing global information in the early stages, whereas GSV-Spatial tends to emphasize 446 detailed information initially. However, in the last depth, GSV-Self (Figure 2a, d) attends to global 447 information across the image but tends to focus more on regions near the query token. In contrast, the 448 GSV-Temporal model (Figure 2b, e) shows that query 1 (placed in the sky) primarily attends to the 449 sky, filtering out dynamic elements. Query 2, placed on a car (a dynamic object), shows no attention 450 to the car, reinforcing the model's ability to learn temporal-invariant characteristics by ignoring 451 dynamic elements. In the GSV-Spatial model (Figure 2c, f), both query 1 and query 2 show similar 452 attention patterns across the images. The model focuses on the overall structure without emphasizing 453 dynamic objects like cars, indicating that spatial contrastive learning effectively captures spatial-454 invariant environmental characteristics. This supports the hypothesis that spatial contrast learning 455 emphasizes the broader environment rather than individual objects.

Figure 2: Attention maps for two queries visualized across models and depths. Red boxes indicate
regions of focus. ImageNet-Self (a, d) emphasizes objects like cars. GSV-Temporal (b, e) filters
out dynamic objects, highlighting static elements. GSV-Spatial (c, f) shows consistent focus across
queries, capturing overall spatial structures.

482

We assess the spatial extent of self-attention by calculating attention distance (Dosovitskiy et al., 2021), to evaluate how different contrastive strategies focus on various aspects of the scene. Attention distance represents the mean distance between query tokens and key tokens, weighted by their respective self-attention scores. The figures illustrate the attention distances computed from sam-

pled street view images and ImageNet data. Specifically, GSV-Spatial exhibits the largest attention distance, indicating a tendency to focus on a broader spatial context rather than concentrating on individual objects. In contrast, the attention distances of GSV-Temporal and GSV-Self decrease sequentially, suggesting a gradual narrowing of focus to capture more specific details within the scenes. Notably, ImageNet-Self demonstrates the smallest attention distance, reflecting its pre-training on a dataset primarily consisting of object-centric images, which leads to a greater emphasis on individual objects over the overall spatial arrangement.

493 GSV-Temporal exploits low-frequencies, and GSV-spatial exploits high-frequencies. 494

we hypothesize that GSV-Temporal focuses on low-frequency information in scenes, while GSV-495 Spatial emphasizes high-frequency information. Specifically, in street view images, temporal-496 invariant characteristics of the built environment (such as static features like buildings and roads) 497 typically exhibit lower frequencies, as these features remain stable over time with minimal vari-498 ation. In contrast, spatial-invariant neighborhood ambiance (such as environmental features like 499 lighting and weather) displays higher frequencies due to significant temporal and spatial variations. 500 To validate this hypothesis, we report the relative log amplitude of Fourier-transformed representa-501 tions by calculating the amplitude difference between the highest and lowest frequencies. Figure 3c 502 and 3d illustrate the relative amplitude results for different contrastive learning strategies on street 503 view images and ImageNet data.

The results show that the relative amplitude of GSV-Spatial is significantly greater than that of GSV-Temporal, indicating a stronger emphasis on high-frequency information in GSV-Spatial. Additionally, the model trained on ImageNet exhibits a greater focus on low-frequency features compared to street view images. These findings align with our hypothesis, further validating that GSV-Spatial effectively captures high-frequency details, while GSV-Temporal concentrates more on the lowfrequency, stable aspects of the scene.

Figure 3: Attention distance (a, b) and relative log amplitude (c, d) for different contrastive learning strategies on street view images and ImageNet data.

5 CONCLUSION

510 511

512

513

514

515

516

517

518 519

520

521

527

528

529 In conclusion, we propose a self-supervised urban visual representation framework based on street 530 view images, capable of selectively extracting and encoding dynamic and static information and their 531 ambiance in urban environments according to the requirements of different downstream tasks. By 532 leveraging the unique spatiotemporal attributes of street view imagery, we have developed three con-533 trastive learning strategies: temporal invariance representation, spatial invariance representation, and 534 global information representation. Experimental results demonstrate that these strategies can effec-535 tively learn task-specific features suitable for their respective downstream applications, significantly 536 enhancing performance in urban environment understanding tasks. Furthermore, we conducted an 537 in-depth analysis of the reasons behind the performance of different contrastive methods, further emphasizing the importance of targeted learning strategies. This study systematically explores rep-538 resentation learning strategies based on street view images, provides a valuable benchmark for the application of visual data in urban science, and enhances their practical applicability.

540	REFERENCES
541	

550

551

555

558

573

580

581

- Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn architecture for weakly supervised place recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(6):1437–1451, 2018. doi: 10.1109/TPAMI.2017.2711011.
- Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, Marshall Burke, David Lobell, and Stefano Ermon. Geography-aware self-supervised learning. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10161–10170, Montreal, QC, Canada, October 2021. IEEE. ISBN 978-1-66542-812-5. doi: 10.1109/ICCV48922.2021.01002.
 - Filip Biljecki and Koichi Ito. Street view imagery in urban analytics and gis: A review. *Landscape* and Urban Planning, 215:104217, 2021. ISSN 0169-2046.
- Geoff Boeing. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. *Computers, Environment and Urban Systems*, 65:126–139, 2017. ISSN 01989715.
- Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the International Conference on Computer Vision (ICCV)*, 2021.
- David Abou Chacra and John Zelek. Municipal infrastructure anomaly and defect detection. In 2018
 26th European Signal Processing Conference (EUSIPCO), pp. 2125–2129, Rome, 2018. IEEE.
 ISBN 978-90-827970-1-5.
- Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization. In
 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
 pp. 782–791, June 2021.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 contrastive learning of visual representations. In Hal Daumé III and Aarti Singh (eds.), *Proceed- ings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 1597–1607. PMLR, July 2020.
- 570 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In 2021 IEEE/CVF
 571 Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15745–15753, Nashville,
 572 TN, USA, June 2021. IEEE. ISBN 978-1-66544-509-2. doi: 10.1109/CVPR46437.2021.01549.
- Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers. In *2021 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9620–9629, 2021. doi: 10.1109/ICCV48922.2021.00950.
- Zetao Chen, Lingqiao Liu, Inkyu Sa, Zongyuan Ge, and Margarita Chli. Learning context flexible
 attention model for long-term visual place recognition. *IEEE Robotics and Automation Letters*, 3
 (4):4015–4022, 2018. doi: 10.1109/LRA.2018.2859916.
 - J. Cheng, Y.-H. Tsai, S. Wang, and M.-H. Yang. Segflow: Joint learning for video object segmentation and optical flow. In *IEEE International Conference on Computer Vision (ICCV)*, 2017.
- Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
 urban scene understanding. In *Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 248–255, Miami, FL, 2009. IEEE. ISBN 978-1-4244-3992-8.
- Fabian Deuser, Konrad Habel, and Norbert Oswald. Sample4geo: Hard negative sampling for cross-view geo-localisation. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 16801–16810, Paris, France, October 2023. IEEE. ISBN 9798350307184. doi: 10.1109/ICCV51070.2023.01545.

594 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas 595 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-596 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at 597 scale. In International Conference on Learning Representations, 2021. 598 Abhimanyu Dubey, Nikhil Naik, Devi Parikh, Ramesh Raskar, and César A. Hidalgo. Deep learning the city: Quantifying urban perception at a global scale. In Bastian Leibe, Jiri Matas, Nicu Sebe, 600 and Max Welling (eds.), Computer Vision - ECCV 2016, pp. 196-212, Cham, 2016. Springer 601 International Publishing. ISBN 978-3-319-46448-0. doi: 10.1007/978-3-319-46448-0_12. 602 603 Zhuangyuan Fan, Fan Zhang, Becky P. Y. Loo, and Carlo Ratti. Urban visual intelligence: Un-604 covering hidden city profiles with street view images. Proceedings of the National Academy of 605 Sciences, 120(27):e2220417120, 2023. 606 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-607 drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet 608 in 1 hour, April 2018. 609 610 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H, Richemond, Elena 611 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own 612 latent a new approach to self-supervised learning. In Proceedings of the 34th International Con-613 ference on Neural Information Processing Systems, Nips '20, Red Hook, NY, USA, 2020. Curran 614 Associates Inc. ISBN 978-1-71382-954-6. 615 616 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for 617 unsupervised visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision 618 and Pattern Recognition (CVPR), pp. 9726–9735, Seattle, WA, USA, June 2020. IEEE. ISBN 619 978-1-72817-168-5. doi: 10.1109/CVPR42600.2020.00975. 620 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked 621 autoencoders are scalable vision learners. In 2022 IEEE/CVF Conference on Computer Vision 622 and Pattern Recognition (CVPR), pp. 15979–15988, New Orleans, LA, USA, June 2022. IEEE. 623 ISBN 978-1-66546-946-3. doi: 10.1109/CVPR52688.2022.01553. 624 625 Yingjing Huang, Fan Zhang, Yong Gao, Wei Tu, Fabio Duarte, Carlo Ratti, Diansheng Guo, and 626 Yu Liu. Comprehensive urban space representation with varying numbers of street-level images. 627 Computers, Environment and Urban Systems, 106:102043, 2023. ISSN 01989715. 628 Yu Huang, Zixin Wen, Yuejie Chi, and Yingbin Liang. How transformers learn diverse attention 629 correlations in masked vision pretraining. In ICML 2024 Workshop on Theoretical Foundations 630 of Foundation Models, 2024. 631 632 Konstantin Klemmer, Esther Rolf, Caleb Robinson, Lester Mackey, and Marc Rußwurm. Satclip: 633 Global, general-purpose location embeddings with satellite imagery, April 2024. 634 Yu Liu, Xin Zhang, Jingtao Ding, Yanxin Xi, and Yong Li. Knowledge-infused contrastive learning 635 for urban imagery-based socioeconomic prediction, February 2023. 636 637 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-638 tional Conference on Learning Representations, 2017. 639 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-640 ence on Learning Representations, 2019. 641 642 Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J Leonard, David Cox, Peter Corke, and 643 Michael J Milford. Visual place recognition: A survey. *ieee transactions on robotics*, 32(1):1–19, 644 2015.645 Gengchen Mai, Ni Lao, Yutong He, Jiaming Song, and Stefano Ermon. Csp: Self-supervised con-646 trastive spatial pre-training for geospatial-visual representations. In Proceedings of the 40th Inter-647 national Conference on Machine Learning, ICML'23, Honolulu, Hawaii, USA, 2023. JMLR.org.

687

689

690

691

692

693

694

- 648 Oscar Manas, Alexandre Lacoste, Xavier Giro-i-Nieto, David Vazquez, and Pau Rodriguez. Sea-649 sonal contrast: Unsupervised pre-training from uncurated remote sensing data. In 2021 IEEE/CVF 650 International Conference on Computer Vision (ICCV), pp. 9394–9403, Montreal, QC, Canada, 651 October 2021. IEEE. ISBN 978-1-66542-812-5. doi: 10.1109/ICCV48922.2021.00928.
- 652 Mans Mans Larsson, Erik Stenborg, Lars Hammarstrand, Marc Pollefeys, Torsten Sattler, and 653 Fredrik Kahl. A cross-season correspondence dataset for robust semantic segmentation. In 2019 654 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9524–9534, 655 Long Beach, CA, USA, June 2019. IEEE. ISBN 978-1-72813-293-8. doi: 10.1109/CVPR.2019. 656 00976. 657
- 658 Namuk Park, Wonjae Kim, Byeongho Heo, Taekyung Kim, and Sangdoo Yun. What do selfsupervised vision transformers learn? In The Eleventh International Conference on Learning 659 Representations, 2023. 660
- 661 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, 662 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual 663 models from natural language supervision. In International conference on machine learning, pp. 664 8748-8763. PMLR, 2021. 665
- Steven Stalder, Michele Volpi, Nicolas Büttner, Stephen Law, Kenneth Harttgen, and Esra Suel. 666 Self-supervised learning unveils urban change from street-level images. Computers, Environment and Urban Systems, 112:102156, 2024. ISSN 01989715. 668
- 669 Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer 670 Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, 671 Part XI 16, pp. 776-794. Springer, 2020. 672
- Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-673 tive coding, January 2019. 674
- 675 Xiaolong Wang, Allan Jabri, and Alexei A. Efros. Learning correspondence from the cycle-676 consistency of time. In CVPR, 2019. 677
- 678 Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and Xilin Chen. Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In Proceedings of the 679 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 12275–12284, 2020a. 680
- 681 Zhecheng Wang, Haoyuan Li, and Ram Rajagopal. Urban2vec: Incorporating street view imagery 682 and pois for multi-modal urban neighborhood embedding. In Proceedings of the AAAI Conference 683 on Artificial Intelligence, volume 34, pp. 1013–1020, 2020b. 684
- 685 Frederik Warburg, Søren Hauberg, Manuel López-Antequera, Pau Gargallo, Yubin Kuang, and Javier Civera. Mapillary street-level sequences: A dataset for lifelong place recognition. In 2020 686 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2623–2632, 2020. doi: 10.1109/CVPR42600.2020.00270. 688
 - Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning via nonparametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
 - Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple framework for masked image modeling. In International Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
- 696 Mubariz Zaffar, Shoaib Ehsan, Michael Milford, and Klaus D. McDonald-Maier. Memorable maps: 697 A framework for re-defining places in visual place recognition. IEEE Transactions on Intelligent 698 Transportation Systems, 22(12):7355–7369, 2021. doi: 10.1109/TITS.2020.3001228. 699
- Fan Zhang, Bolei Zhou, Liu Liu, Yu Liu, Helene H. Fung, Hui Lin, and Carlo Ratti. Measuring 700 human perceptions of a large-scale urban region using machine learning. Landscape and Urban 701 Planning, 180:148-160, 2018. ISSN 01692046.

- Fan Zhang, Arianna Salazar-Miranda, Fábio Duarte, Lawrence Vale, Gary Hack, Min Chen, Yu Liu, Michael Batty, and Carlo Ratti. Urban visual intelligence: Studying cities with artificial intelligence and street-level imagery. *Annals of the American Association of Geographers*, 114(5): 876–897, 2024. ISSN 2469-4452, 2469-4460.
 - Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million image database for scene recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2017.

A APPENDIX

A.1 STREET VIEW DATASET COLLECTION

To obtain street view imagery for both self-supervised model training and socioeconomic indicator
prediction, we first sourced road network data for each city using the OSMnx library (Boeing, 2017)
from OpenStreetMap. We then generated query points along these road networks at regular intervals of 15 meters. The Google Street View (GSV) Application Programming Interface (API) was
subsequently utilized to retrieve and download street view images.

A.2 PRE-TRAINING DATASET

As shown in Figure A1, the ten global cities include Amsterdam, Barcelona, Boston–Cambridge–Medford–Newton (Boston), Buenos Aires, Dubai–Sharjah (Dubai), Johannesburg, Los Angeles, Melbourne, Seoul, and Singapore. The details of street view datasets are presented in Table A1.

Figure A1: Spatial distribution of selected global cities.

751 A.3 SOCIOECONOMIC INDICATOR PREDICTION DATASET

^{In our downstream task, we used socioeconomic indicators provided by Fan et al. (2023), which include data from seven major metropolitan areas in the United States. We take Los Angeles as an example. The socioeconomic indicators cover various topics relevant to urban studies and are detailed in Table A2.}

757			1	e	
758		City	Country	# of images	
759		Amsterdam	Netherlands	488 956	
60		Barcelona	Spain	3.534.692	
61		Boston	United States	9.295.736	
'62		Buenos Aires	Argentina	2.665.976	
63		Dubai	United Arab Emirates	1,401,064	
'64		Johannesburg	South Africa	2,188,628	
65		Los Angeles	United States	4,598,580	
66		Melbourne	Australia	12,861,948	
67		Seoul	South Korea	1,416,544	
60		Singapore	Singapore	3,815,968	
00					
69		T 11			
70		Table	A2: Socioeconomic Indic	cators	
71					
72	Торіс		Indicato	r	
73	Poverty	Median House	hold Income		
74		% Individuals	with poverty status deter	mined:	
75		below 100% p	overty line		
76		% Individuals	with poverty status deter	mined:	
77		below 200% p	overty line		
78	Health	Model-based e	estimate for crude prevale	ence of	
79		diagnosed dial	betes among adults aged	≥ 18 years	
'80		Model-based e	estimate for crude prevale	ence of	
781		no leisure-time	e physical activity among	s adults aged ≥ 1	8 years
/82		Model-based e	estimate for crude prevale	ence of	
22		obesity among	adults aged ≥ 18 years		
о <u>л</u>		Model-based e	estimate for crude prevale	ence of	
04		cancer (exclud	ing skin cancer) among a	adults aged ≥ 18	years
CO		Model-based e	estimate for crude prevale 14 data	ence of	
86		Model based a	1 not good for ≥ 14 days	among adults ag	$ed \ge 18$ years
/87		Model-based e	estimate for crude prevale 14 device		1 \ 10
'88	Crime	Vielent erinee	not good for ≥ 14 days a	mong adults age	$d \ge 18$ years
789	Crime	Violent crime	occurrence per spatial un	ll :	
/90	Turnersett	Violent theit-r	elated crime occurrence $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	per spatial unit	
/91	Transportation	% Population	(>16) commute by walk	ing and biking	
/92		% Population	(>16) commute by publi	c transit	
793		% Population	(>10) commute by driving interval of $z = z$	ig alone	
794		Estimated veh	icie miles traveled on a w	vorking weekday	
795		Estimated pers	iolo tring traveled on a	working weekda	у
796		Estimated ven	icle ups traveled on a wo	orking weekday	
707		Esumated pers	sonal trips traveled on a v	working weekday	
31					
98					

Table A1: street view datasets for pre-training

A.4 VISUAL PLACE RECOGNITION DATASET

ESSEX. The ESSEX dataset provides a diverse set of urban and suburban scenes with varying viewpoints and lighting conditions. It challenges the model's robustness in recognizing places despite changes in perspective and environmental factors (Zaffar et al., 2021).

805 CrossSeason: This dataset contains images captured across different seasons, aiming to study the
 806 impact of seasonal variations on image features. It is primarily used to train and evaluate models for
 807 visual recognition under varying seasonal conditions (Mans Larsson et al., 2019).

808

799

800 801

802

803 804

756

Pittsburgh: This is a large-scale dataset featuring street view images from Essex in the UK and Pittsburgh in the USA. It is designed to support visual localization and geographic scene recognition

tasks, providing rich environmental diversity suitable for various urban analysis studies (Arand-jelović et al., 2018).

813 SPED: This dataset focuses on the temporal changes in street view imagery, containing images of the same location captured at different time points. It aims to study the dynamic features of urban environments, suitable for temporal analysis and scene change detection (Chen et al., 2018).
816

MapillarySLS: This dataset includes street view images from around the globe, designed to support tasks in autonomous driving and visual understanding. Generated by users, it covers a variety of environments and conditions, providing rich geographical and scene information (Warburg et al., 2020).

A.5 ATTENTION

We visualized the attention maps across all depths for each contrastive learning strategy. The rows correspond to different strategies—ImageNet-Self, GSV-Self, GSV-Temporal, and GSV-Spatial—while the columns represent different depths (0 to 11). The original street view inputs are displayed on the left. Each attention map highlights the regions of the image that the model focuses on, demonstrating how attention shifts across depths for self, temporal and spatial features.

Figure A2: Attention maps for two queries visualized across models and depths.