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ABSTRACT

Street view imagery is a widely utilized representation of urban visual environ-
ments and supports various sustainable development tasks such as environmental
perception and socio-economic assessment. However, it is challenging for exist-
ing image representations to specifically encode the dynamic urban environment
(such as pedestrians, vehicles, and vegetation), the built environment (including
buildings, roads, and urban infrastructure), and the environmental ambiance (such
as the cultural and socioeconomic atmosphere) depicted in street view imagery
to address downstream tasks related to the city. This work innovatively lever-
ages temporal and spatial attributes of street view imagery to propose an unsuper-
vised learning framework suitable for diverse downstream tasks. By employing
street view images captured at the same location over time and spatially nearby
views at the same time, we construct contrastive learning tasks designed to learn
the temporal-invariant characteristics of the built environment and the spatial-
invariant neighborhood ambiance. Our approach significantly outperforms tra-
ditional supervised and unsupervised methods in tasks such as visual place recog-
nition, socioeconomic estimation, and human-environment perception. Moreover,
we demonstrate the varying behaviors of image representations learned through
different contrastive learning strategies across various downstream tasks. This
study systematically discusses representation learning strategies for urban studies
based on street view images, providing a benchmark that enhances the applicabil-
ity of visual data in urban science.

1 INTRODUCTION

In recent years, unsupervised learning has demonstrated outstanding performance. By leveraging
methods such as contrastive learning (He et al., 2020; Chen et al., 2020; 2021) and masked learn-
ing (He et al., 2022; Xie et al., 2022), it has achieved efficient image representation and exhibited
excellence in classical computer vision tasks like image classification (Radford et al., 2021), object
detection (He et al., 2022), and semantic segmentation (Wang et al., 2020a), surpassing the vast ma-
jority of supervised learning approaches. However, current unsupervised learning aims to encode as
much semantic and structural information of objects and environments in a scene as possible (Park
et al., 2023; Huang et al., 2024). This is not suitable for all downstream tasks in domains like street
view-based urban environment understanding. For instance, in place recognition tasks (Lowry et al.,
2015), the features are expected to focus only on place-invariant information, such as buildings and
roads, filtering out dynamic information like lighting conditions, pedestrians, vehicles, and vegeta-
tion. In contrast, in tasks related to human perception of places (Dubey et al., 2016; Zhang et al.,
2018), these dynamic elements are important. Moreover, tasks like socioeconomic prediction (Wang
et al., 2020b) emphasize the spatially consistent expression of neighboring scenes.

In image representation learning, selectively encoding dynamic and static information in urban envi-
ronments and the ambiance they create is highly important but inherently challenging (Cordts et al.,
2016). Achieving precise encoding of such information typically requires separately labeling dy-
namic and static elements and using specific training strategies (e.g., masking dynamic elements
when encoding static ones (Cheng et al., 2017; Wang et al., 2019)). However, both the labeling and
training processes are fraught with difficulties. Factors such as lighting conditions, vegetation ap-
pearance, and ground litter are challenging to label objectively and consistently. This makes it nearly
impossible to accurately represent these complex environmental factors using traditional datasets
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(e.g., ImageNet (Deng et al., 2009), Places (Zhou et al., 2017)) and classical methods (supervised or
unsupervised).
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Figure 1: Spatial and temporal contrastive learning with street view images. Using street view
images captured at the same location over time, contrastive learning tasks are designed to learn the
temporal-invariant characteristics of the built environment; Using spatially proximate street view
images from the same period, learning tasks are crafted to learn the spatial-invariant neighborhood
ambiance, such as socioeconomic atmosphere.

Unlike existing large-scale datasets, street view imagery, as high-resolution urban visual dataset,
possess unique spatiotemporal attributes that can capture both dynamic and static information in ur-
ban environments and the ambiance they form (Biljecki & Ito, 2021; Zhang et al., 2024). Therefore,
in this work, we leverage these spatiotemporal attributes of street view imagery to propose a self-
supervised urban visual representation framework based on street view imagery (see Figure 1). This
framework aims to selectively extract and encode dynamic and static elements and their ambiance in
urban environments according to the requirements of different downstream tasks, achieving precise
representation of urban environments. Specifically, the framework is based on the following three
hypotheses:

• Temporal Invariance Representation: At the same location, static elements such as build-
ings and streets do not change in images taken at different times, whereas dynamic elements
like lighting conditions, pedestrians, vehicles, and vegetation present randomness in im-
ages taken at different times. Learning temporal invariant representations can retain the
encoding of static elements while automatically filtering out information about dynamic
elements. To capture this temporal invariance, we utilize the temporal attributes of street
view imagery to construct positive sample pairs from historical street view images taken
at different times at the same location. We expect that, after pre-training, the temporal en-
coder can learn stable features of the built environment. This method is suitable for tasks
that rely on temporal stability, such as visual place recognition.

• Spatial Invariance Representation: At the same time, urban spaces at nearby locations
usually exhibit similarity; the architectural styles and urban functions in adjacent areas are
relatively consistent, while specific visual elements in images of nearby locations present
randomness. Learning spatial invariant representations can encode the overall neighbor-
hood ambiance within a specific spatial range while avoiding focus on any specific ele-
ments. To capture this spatial invariance, we leverage the spatial attributes of street view
imagery to construct positive sample pairs from street view images taken in adjacent areas
at the same time. We expect that, after pre-training, the spatial encoder can learn spatially
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invariant neighborhood ambiance. This method is suitable for tasks that require spatial
consistency, such as socioeconomic prediction.

• Global Information Representation: Besides temporal and spatial invariance, there are
elements in urban environments that require holistic perception; these global features are
vital for tasks involving human perception. To capture these characteristics, we construct
positive sample pairs by applying data augmentation to the same street view image. We
expect that, after pre-training, the model can retain the key elements of the scene and com-
prehensively capture the global information of the image.

We validate the effectiveness of these hypotheses across multiple urban downstream tasks. Experi-
mental results demonstrate that different contrastive learning strategies can learn different types of
features that are more suitable for their respective downstream tasks. We also conduct an in-depth
analysis of the reasons behind the performance of different contrastive methods, further underscor-
ing the importance of targeted learning strategies. This study systematically explores representation
learning strategies in urban studies based on street view images, provides a valuable benchmark, and
enhances the applicability of visual data in urban science.

2 RELATED WORK

2.1 SELF-SUPERVISED REPRESENTATION LEARNING

Self-supervised representation learning leverages the inherent structure within data to generate su-
pervisory signals, thereby mitigating the need for extensive labeled datasets. A prominent approach
in this field is contrastive learning, which has demonstrated significant success in learning robust rep-
resentations. Methods such as InstDis (Wu et al., 2018), SimCLR (Chen et al., 2020), and the MoCo
series (He et al., 2020; Chen et al., 2021) focus on contrasting positive pairs of similar instances
against negative pairs of dissimilar instances to learn effective feature embeddings. In contrast,
BYOL (Grill et al., 2020), SimSiam (Chen & He, 2021), and DINO (Caron et al., 2021) improve per-
formance by avoiding negative samples altogether and adopting a self-distillation approach. These
methods have achieved notable results in various visual tasks, such as image classification and ob-
ject detection, showcasing the ability of self-supervised learning to perform exceptionally well with
large-scale unlabeled data. However, despite these successes, existing self-supervised learning meth-
ods predominantly focus on static images without considering the spatiotemporal context inherent
in certain datasets, such as urban environments captured over time and space. The lack of inte-
gration of spatiotemporal information limits the models’ ability to capture dynamics over time and
across spatial regions, especially in tasks requiring an understanding of both spatial and temporal
dependencies. Therefore, there is a need for self-supervised learning approaches that effectively
incorporate spatiotemporal information to enhance performance in such tasks.

2.2 SPATIOTEMPORAL CONTRASTIVE LEARNING IN VISION TASKS

Spatiotemporal contrastive learning enhances traditional contrastive learning by integrating both
spatial and temporal information, enabling models to capture underlying relationships in unlabeled
data that vary over space and time. Temporal contrastive learning excels in sequential data by
differentiating between related and unrelated frames. For example, Contrastive Predictive Cod-
ing (CPC) (van den Oord et al., 2019) applies temporal contrastive learning by using consecutive
video frames as positive pairs and shuffled or temporally distant frames as negative pairs, help-
ing models learn temporal coherence. SeCo Manas et al. (2021) uses multi-season remote sensing
images for self-supervised pre-training, enhancing model performance in remote sensing tasks. Spa-
tial contrastive learning improves a model’s ability to represent spatial scenes from various angles,
perspectives, and locations. Multi-view contrastive learning approach is typically applied within a
single scene from multiple angles at one location (Tian et al., 2020). Building on these concepts,
geospatial contrastive learning contrasts data from different geographic locations or regions. By en-
suring that data from similar spatial locations are closer in the feature space while data from different
regions are more distant, models can more effectively capture spatial patterns and geographic fea-
tures (Deuser et al., 2023; Ayush et al., 2021; Klemmer et al., 2024; Mai et al., 2023). This approach
enhances the understanding of spatial relationships across wider geographic contexts.
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2.3 STREET VIEW REPRESENTATION LEARNING FOR DOWNSTREAM TASKS

Street view imagery has been widely used in various urban downstream tasks, such as road defect
detection (Chacra & Zelek, 2018), urban function recognition (Huang et al., 2023), and socioe-
conomic prediction (Fan et al., 2023). However, existing research on street view representation
often relies on supervised models trained on datasets like Places365 (Zhou et al., 2017) or directly
uses the pixel proportions of semantic segmentation results. These approaches fail to fully cap-
ture the rich semantic information embedded in street view imagery. Unlike natural images, street
view imagery not only contains complex visual semantics but also encodes valuable spatiotempo-
ral information in its metadata. Effectively representing this dual semantic nature—both visual and
spatiotemporal—remains a significant challenge for improving its use in urban downstream tasks.
Although a few studies have explored spatiotemporal self-supervised learning approaches to repre-
sent street view imagery (Stalder et al., 2024), these methods still have limitations. For instance,
Urban2Vec (Wang et al., 2020b) incorporates spatial information into self-supervised training by
constructing positive sample pairs based on nearest neighbors, while KnowCL (Liu et al., 2023) in-
tegrates knowledge graphs with contrastive learning to align locale and visual semantics, improving
the accuracy of socioeconomic prediction using street view imagery. However, these approaches fail
to explore the natural meanings of the spatiotemporal attributes of street view imagery and how to
leverage these attributes to construct self-supervised methods suitable for various downstream tasks.

3 METHOD

The real world undergoes continuous changes across both temporal and spatial dimensions, yet these
changes exhibit a certain level of continuity. In the temporal dimension, it is important to capture the
invariant characteristics of a location as they evolve over time. Meanwhile, in the spatial dimension,
the focus is on maintaining the consistency of the overall atmosphere within a specific spatial range.
These temporal and spatial invariances are crucial for enhancing performance in various downstream
tasks. In this section, we introduce the proposed spatiotemporal contrastive learning framework in
detail (Figure 1).

Contrastive learning aims to learn feature representations from unlabeled data by contrasting posi-
tive and negative samples. The primary goal is to minimize the distance between positive samples
and maximize the distance between negative samples within the feature space. Positive pairs are
constructed by applying data augmentations to street view images. By optimizing the InfoNCE loss
function, the model learns to reduce the distance between positive pairs in the feature space and in-
crease the distance from negative samples, thus improving the feature representation learning. Given
a query representation q and a set of positive and negative keys (k+, k−), the InfoNCE (van den Oord
et al., 2019) loss is defined as:

Lq = − log
exp (q · k+/τ)

exp (q · k+/τ) +
∑

k− exp (q · k−/τ)
(1)

Here, q is the feature representation of the query, k+ is the feature representation of the positive
sample, and k− is the feature representation of negative samples. The temperature parameter τ
controls the scaling of similarities. The goal is to maximize the similarity between the query and
the positive key q · k+ while minimizing the similarity between the query and the negative keys
q · k−. Building on this contrastive learning framework, we introduce temporal and spatial contrasts
for constructing positive pairs from street view images.

Temporal Contrast. Street view images captured at the same location but at different times differ
from video frames because the intervals between shots are not fixed. Unlike remote sensing images,
street view images taken at different times are not perfectly aligned in terms of position. Due to the
typical spatial and angular shifts between images captured at different times, we impose restrictions
on the conditions for positive temporal pairs: they must be taken within 5 meters of each other
and have the same shooting angle. The historical street view image set for each location can be
represented as T = [t1, t2, . . . , tn], where ti denotes the images captured at different times. Since
the number of images varies for each location, the value of n differs accordingly. The aim of
temporal contrast is to capture the invariant features of the same location over time. This means
that even though the images are taken at different times, the model should learn to recognize the
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consistent characteristics of the scene. To achieve this, we define positive pairs (ti, tj), which are
images that satisfy the aforementioned temporal conditions.

Spatial Contrast. Capturing the spatial consistency of an urban area is essential for accurately
representing urban physical environment. Spatial consistency refers to the ability to recognize that
different locations within the same urban area still represent the same underlying physical charac-
teristics. To achieve this, we treat all street view images captured within a specific urban area as
representing the same environment, even if these images are taken from different angles or slightly
different positions. This approach allows the model to account for variations in location while pre-
serving the overall atmosphere of the area. The set of street view images for a given urban area can
be denoted as S = {s1, s2, . . . , sn}, where each si represents an image captured within the defined
area. These images collectively provide a comprehensive spatial representation of the urban envi-
ronment. We randomly select two samples (si, sj) from the set S and treat them as positive pairs.
This encourages the model to learn that despite slight variations in shooting angle or position, the
images are part of the same spatial context. By doing so, we enable the model to learn consistent
and representative spatial features across the entire urban area.

4 EXPERIMENTS AND RESULTS

To validate our hypothesis, we first pre-train the models using datasets specifically designed for
self-supervised contrastive learning, spatial contrastive learning, and temporal contrastive learning,
respectively. We then evaluate the models on three distinct downstream tasks that reflect the char-
acteristics of these contrastive learning models: visual place recognition (VPR), socioeconomic
indicator prediction, and safety perception. Additionally, we conduct interpretability analyses on
the features learned by the different contrastive models to gain a deeper understanding of the infor-
mation the models focus on and how this impacts performance on urban downstream tasks.

4.1 SPATIOTEMPORAL PRE-TRAINING

Since the VPR and safety perception datasets include a wide range of street view samples from dif-
ferent cities, while the socioeconomic prediction task focuses more on local city characteristics, we
constructed two separate datasets — a global version and a local version — for testing on different
downstream tasks.

For the global version, to capture a broad spectrum of urban environments, we trained our self-
supervised models on data collected from ten diverse and representative global cities. These cities
were carefully selected to encompass a variety of geographical locations, cultural backgrounds, and
urban forms, ensuring the diversity and richness of our training dataset. We historical images of ten
global cities from the Google Street View (GSV) API which resulted in a total of over 42 million
street view images used for pre-training. Detailed information about the data collection process and
the composition of the dataset can be found in Sections A.1 and Section A.2.

For the local version, we selected street view data from Los Angeles to construct different con-
trastive datasets tailored to the specific needs of the socioeconomic prediction task in that city. The
construction methods of datasets are similar to the global version.

Based on the street view pre-training datasets, we constructed three distinct contrastive datasets
corresponding to different contrastive learning models for both global and local version: self-
contrastive, temporal contrastive, and spatial contrastive datasets. To benchmark against the MoCo
v3 baseline trained on ImageNet, each dataset was standardized to consist of 1 million image pairs.
This uniform dataset size facilitates a fair comparison among the models by ensuring that each re-
ceives an equal amount of training data.

Self-contrastive Dataset. For the self-contrastive dataset, we randomly selected 100,000 images
from each of the 10 cities, resulting in a total of 1 million images. Positive pairs were generated
during training by applying data augmentation techniques to these images, following the settings
used in MoCo v3 (Chen et al., 2021). Additionally, for the local version, we constructed a self-
contrastive dataset based solely on Los Angeles using the same method.

Temporal Contrastive Dataset. In constructing the temporal contrastive dataset, we randomly
selected 100,000 street view sampling points from each of the 10 cities, totaling 1 million sampling
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points. At each sampling point, we retrieved images taken at different times but from the same
shooting angle. Two images were randomly selected from the temporal sequence to form a positive
pair, resulting in 1 million temporal positive pairs. Similarly to the self-contrastive dataset, we
constructed an additional temporal contrastive dataset based solely on Los Angeles using the same
method.

Spatial Contrastive Dataset. For the global spatial contrastive dataset, we defined a 100-meter
buffer zone as a unified urban area. From each buffer zone, we randomly selected two images to
form positive pairs. Out of all the spatial positive pairs generated, we then randomly selected 1
million pairs to create the spatial contrastive dataset. It is important to note that we did not impose
any restrictions on the shooting angle for positive pairs, allowing the model to focus more on the
overall ambiance of the urban environment rather than specific street layouts. Similarly, for the local
version, since the socioeconomic dataset is based on block groups, we defined each block group as
an urban area and constructed positive pairs based on the block group boundaries.

Training. We use AdamW (Loshchilov & Hutter, 2019) as the optimizer, a common choice for
training ViT base (Dosovitskiy et al., 2021) models, with a weight decay of 1e-6. For each dataset,
we use a mini-batch size of 1024 and an initial learning rate of 6e-6. The model is trained for 300
epochs, starting with a 40 epoch warmup(Goyal et al., 2018), followed by a cosine decay schedule
for learning rate decay (Loshchilov & Hutter, 2017). Training the ViT Base model for 300 epochs
on 4 Nvidia A800 GPUs takes approximately 71 hours.

4.2 VISUAL PLACE RECOGNITION

VPR is a crucial urban task that aims to identify specific locations based on visual input. This task
requires the removal of temporal disturbances to focus on stable information that does not change
over time, demanding feature extraction that effectively distinguishes constant characteristics in the
environment to improve recognition accuracy.

To evaluate the model’s performance in VPR tasks, we used several benchmark datasets: CrossSea-
son (Mans Larsson et al., 2019), Essex (Zaffar et al., 2021), Pitts250k, Pitts30k (Arandjelović et al.,
2018), SPED (Chen et al., 2018), and MapillarySLS (Warburg et al., 2020) datasets. The model
was tested by freezing the backbone of the pre-trained ViT and extracting the [CLS] token for VPR
tasks. We assessed performance using the Recall@K metric, measuring the model’s ability to cor-
rectly identify query image locations among the top-k most similar database images.

The GSV-Temporal model demonstrates exceptional performance on the CrossSeason dataset,
achieving a recall value of 100% across all K values. This indicates its robust capability in cross-
season VPR tasks. In contrast, GSV-Self and ImageNet-Self exhibit significantly lower perfor-
mance, suggesting their inability to effectively capture temporal features. On the Essex dataset,
GSV-Temporal maintains a recall value exceeding 75%, with values of 99.05% for both K=20 and
K=25. This highlights its sensitivity to dynamic changes in the environment, outperforming other
models in this context. In the Pitts250k dataset, GSV-Temporal consistently outperforms GSV-Self
and ImageNet-Self in recall values, underscoring its suitability for complex urban environments in
VPR tasks. The GSV-Temporal model also excels on the Pitts30k dataset, achieving a recall value
of 90.23% at K=15. This further emphasizes its capability in recognizing rapidly changing scenes.
For the SPED dataset, GSV-Temporal displays superior recall values compared to other models, par-
ticularly with a notable performance at K=5, demonstrating its adaptability in diverse environments.
Finally, in the MapillarySLS dataset, GSV-Temporal showcases its outstanding performance again,
with a recall value of 77.57% at K=15, reinforcing its advantages in handling real-world scenarios.

In summary, the GSV-Temporal model consistently outperforms other models across multiple
datasets, particularly in VPR tasks. Its sensitivity to temporal and environmental changes positions
it as a superior choice for this application, revealing significant potential for practical use.

4.3 SOCIOECONOMIC INDICATOR PREDICTION

The socioeconomic indicator prediction task aims to use street view images to infer the socioeco-
nomic status of urban areas. It emphasizes learning the macro atmosphere of a region rather than
specific geometric features, highlighting the need for feature extraction to focus on similarities be-
tween regions to better understand economic conditions and developmental dynamics.
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Table 1: Performance comparison on different datasets (Recall@K in %)

Model Dataset k=1 k=5 k=10 k=15 k=20 k=25
ImageNet-Self CrossSeason 68.06 85.86 91.62 92.67 94.24 98.43
GSV-Self CrossSeason 68.06 76.44 81.15 83.25 87.96 91.62
GSV-Spatial CrossSeason 85.34 94.76 99.48 100.00 100.00 100.00
GSV-Temporal CrossSeason 96.86 100.00 100.00 100.00 100.00 100.00
ImageNet-Self Essex 62.38 84.29 90.00 95.24 96.67 98.57
GSV-Self Essex 68.10 92.38 96.67 98.10 98.10 99.05
GSV-Spatial Essex 76.19 92.38 97.14 98.10 98.57 98.57
GSV-Temporal Essex 79.05 96.67 98.10 99.05 99.05 99.05
ImageNet-Self Pitts250k 56.15 75.63 82.04 85.11 87.33 88.77
GSV-Self Pitts250k 24.30 38.96 45.94 50.39 53.43 55.85
GSV-Spatial Pitts250k 30.87 47.07 54.58 59.28 62.49 65.10
GSV-Temporal Pitts250k 58.72 79.23 85.06 87.72 89.48 90.68
ImageNet-Self Pitts30k 58.82 79.33 85.67 88.86 90.89 92.28
GSV-Self Pitts30k 27.67 44.89 52.82 58.14 62.34 65.58
GSV-Spatial Pitts30k 34.52 52.71 61.90 68.08 72.95 76.75
GSV-Temporal pitts30k 64.11 82.26 87.51 90.23 91.58 92.65
ImageNet-Self SPED 44.65 60.96 68.04 71.83 74.79 76.94
GSV-Self SPED 36.24 51.73 57.50 60.30 63.92 67.22
GSV-Spatial SPED 39.87 55.02 63.43 68.20 71.66 74.30
GSV-Temporal SPED 50.08 66.06 72.82 75.78 77.27 79.90
ImageNet-Self MapillarySLS 26.08 35.81 43.11 45.68 48.11 49.73
GSV-Self MapillarySLS 20.27 29.86 34.59 37.16 38.92 41.22
GSV-Spatial MapillarySLS 26.89 37.97 43.11 47.16 48.92 51.22
GSV-Temporal MapillarySLS 54.19 69.32 75.27 77.57 79.86 81.62

In the downstream task of predicting socioeconomic indicators, we utilized the socioeconomic
dataset published by Fan et al. (2023), which contains 18 socioeconomic indicators across seven
major cities in the United States (Table A2). We take the socioeconomic indicator prediction of
Los Angeles as an example. Detailed descriptions are provided in Section A.3. We first extracted
street view embeddings from the images using the pre-trained models of local version. These em-
beddings were then aggregated at the block group level. The aggregated embeddings were used as
input features to predict socioeconomic indicators for each block group.

For prediction model training and evaluation, we split each city’s dataset into a training set (70%)
and a testing set (30%). We used LASSO as the regressor to evaluate the predictive performance
of the image embeddings extracted by the different pre-trained models. Additionally, we applied 5-
fold cross-validation to ensure robust evaluation. This approach allows for a fair comparison of the
different contrastive learning models in capturing visual features that are meaningfully correlated
with socioeconomic indicators.

The results of socioeconomic indicator predictions are shown in Table 2. Overall, models pre-trained
on street view images significantly outperform that pre-trained on the ImageNet dataset. Specifi-
cally, across all 18 indicators, the ImageNet-pretrained model achieved an average R2 of 0.5209. In
contrast, models on street view images achieved average R2 scores of 0.5609 for self-contrastive,
0.5714 for temporal contrastive, and 0.5888 for spatial contrastive models, respectively. Further-
more, both temporal and spatial contrastive pre-training models capture more socioeconomic-related
information compared to the self-contrastive approach, with spatial contrastive demonstrating the
highest performance. This trend is consistent across most of socioeconomic indicators, showing
the strongest predictive performance for Health-related indicators and the least for Crime-related
indicators.

These findings suggest that spatial contrastive pre-training effectively captures the overall ambiance
of urban areas, enabling more precise predictions of regional socioeconomic information. Addi-
tionally, temporal contrastive pre-training filters out random factors and dynamic elements in the
images, enhancing the reliability of socioeconomic predictions.

7
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Table 2: Performances of socioeconomic indicator prediction based on LASSO across models.

Topic Label GSV-Self GSV-Spatial GSV-Temporal ImageNet-Self
Crime logcrime 0.4203 0.4287 0.4194 0.4146

logpetty 0.1810 0.1877 0.1892 0.1667
Total 0.3007 0.3082 0.3043 0.2906

Health cancercrud 0.6644 0.6969 0.6618 0.6053
diabetescr 0.6589 0.6942 0.6796 0.6172
lpacrudepr 0.8001 0.8337 0.8221 0.7671
mhlthcrude 0.7088 0.7510 0.7291 0.6753
obesitycru 0.7628 0.7886 0.7797 0.7175
phlthcrude 0.7120 0.7399 0.7314 0.6752
Total 0.7178 0.7507 0.7340 0.6763

Poverty mhincome cbg 0.6561 0.6816 0.6735 0.6096
povertyline below100 0.1948 0.2227 0.1833 0.1718
povertyline below200 0.6154 0.6377 0.6401 0.5893
Total 0.4888 0.5140 0.4990 0.4569

Transport drove alone per cbg 0.3841 0.3991 0.3835 0.3582
estpmiles 0.6196 0.6447 0.6289 0.5379
estptrp 0.6024 0.6385 0.6087 0.5302
estvmiles 0.6647 0.6921 0.6874 0.6163
estvtrp 0.6900 0.6994 0.6991 0.6436
publictrans per cbg 0.5226 0.5700 0.5339 0.4726
walkbike per cbg 0.2383 0.2925 0.2340 0.2080
Total 0.5317 0.5623 0.5394 0.4810

Overall Total 0.5609 0.5888 0.5714 0.5209

4.4 SAFETY PERCEPTION

The safety perception task involves using street view imagery to estimate how safe people perceive
a given scene to be. To make accurate estimates, this task requires analyzing all relevant elements
within the scene, as each can contribute to the overall perception of safety, particularly elements
such as trees and vehicles (Zhang et al., 2018).

Table 3: Evaluation Metrics of Different Models for Safety Perception Classification.

Model Accuracy (%) Recall (%) F1 Score (%) AUC Score (%)
ImageNet-Self 83.25 70.32 75.43 80.51
GSV-Temporal 84.91 65.16 75.94 80.72
GSV-Spatial 86.08 68.39 78.23 82.33
GSV-Self 88.68 77.42 83.33 86.29

We selected the PlacePlus 2.0 (Dubey et al., 2016) dataset for the downstream task of human envi-
ronmental perception, filtering out over 1,144 images with safety perception scores below 3.5 and
above 6.5, with 80% of the data used for training and 20% for testing. The model was trained using
a linear binary classification approach for 20 epochs to effectively distinguish between low and high
safety perception environments.

The evaluation metrics in Table 3 illustrate the performance of various models in classifying safety
perception in urban environments. Notably, the GSV-Self model achieved the highest accuracy
(88.68%) and recall (77.42%), demonstrating its effectiveness in identifying both safe and unsafe
environments while minimizing false negatives. Its F1 score of 83.33% indicates a strong balance
between precision and recall, and the AUC score of 86.29% further confirms its ability to distinguish
between safety levels across thresholds. Overall, the GSV-Self model outperforms the others in all
metrics, underscoring its potential for applications in urban safety perception tasks.

4.5 WHAT GSV-TEMPORAL AND GSV-SPATIAL CONTRASTS LEARN IN GSV?

Our experimental results reveal that different contrastive learning methods excel in different tasks:
Temporal contrastive performs exceptionally well in VPR tasks, Spatial contrastive shows better
results in macroeconomic prediction tasks, and Self contrastive achieves the best performance in
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safety perception tasks, confirming our hypothesis. To further investigate the differences in model
performance across these contrastive methods, we first visualized the attention mechanism in ViT
and evaluated the attention range using attention distance.

GSV-Temporal learns invariant characteristics, and GSV-spatial learns invariant neighbor-
hood ambiance.

This attention map visualization (Figure 2) shows how different contrastive learning strategies en-
code spatial and temporal invariants within urban street view images. The attention maps (Chefer
et al., 2021) highlight how the models focus on distinct regions across various depths. We selected
two street view images of the same location taken at different times. The attention maps for two
query tokens, marked in red on the images, were visualized across layers from the first to the last
depth, and the detailed results are available in Section A.5.

In the first depth, GSV-Self and GSV-Temporal exhibit a broader distribution of attention, while
GSV-Spatial focuses more on localized regions. This suggests that GSV-Self and GSV-Temporal
prioritize capturing global information in the early stages, whereas GSV-Spatial tends to emphasize
detailed information initially. However, in the last depth, GSV-Self (Figure 2a, d) attends to global
information across the image but tends to focus more on regions near the query token. In contrast, the
GSV-Temporal model (Figure 2b, e) shows that query 1 (placed in the sky) primarily attends to the
sky, filtering out dynamic elements. Query 2, placed on a car (a dynamic object), shows no attention
to the car, reinforcing the model’s ability to learn temporal-invariant characteristics by ignoring
dynamic elements. In the GSV-Spatial model (Figure 2c, f), both query 1 and query 2 show similar
attention patterns across the images. The model focuses on the overall structure without emphasizing
dynamic objects like cars, indicating that spatial contrastive learning effectively captures spatial-
invariant environmental characteristics. This supports the hypothesis that spatial contrast learning
emphasizes the broader environment rather than individual objects.

Q
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2

201603
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1

Q
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ry
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(a) GSV-Self (b) GSV-Temporal (c) GSV-Spatial
Depth = 1 Depth = 11 Depth = 1 Depth = 11 Depth = 1 Depth = 11

(d) GSV-Self (e) GSV-Temporal (f) GSV-Spatial

Depth = 1 Depth = 11 Depth = 1 Depth = 11 Depth = 1 Depth = 11

201806

(42.3951,71.1217)

(42.3951,71.1217)

Figure 2: Attention maps for two queries visualized across models and depths. Red boxes indicate
regions of focus. ImageNet-Self (a, d) emphasizes objects like cars. GSV-Temporal (b, e) filters
out dynamic objects, highlighting static elements. GSV-Spatial (c, f) shows consistent focus across
queries, capturing overall spatial structures.

We assess the spatial extent of self-attention by calculating attention distance (Dosovitskiy et al.,
2021), to evaluate how different contrastive strategies focus on various aspects of the scene. Atten-
tion distance represents the mean distance between query tokens and key tokens, weighted by their
respective self-attention scores. The figures illustrate the attention distances computed from sam-
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pled street view images and ImageNet data. Specifically, GSV-Spatial exhibits the largest attention
distance, indicating a tendency to focus on a broader spatial context rather than concentrating on
individual objects. In contrast, the attention distances of GSV-Temporal and GSV-Self decrease se-
quentially, suggesting a gradual narrowing of focus to capture more specific details within the scenes.
Notably, ImageNet-Self demonstrates the smallest attention distance, reflecting its pre-training on a
dataset primarily consisting of object-centric images, which leads to a greater emphasis on individ-
ual objects over the overall spatial arrangement.

GSV-Temporal exploits low-frequencies, and GSV-spatial exploits high-frequencies.

we hypothesize that GSV-Temporal focuses on low-frequency information in scenes, while GSV-
Spatial emphasizes high-frequency information. Specifically, in street view images, temporal-
invariant characteristics of the built environment (such as static features like buildings and roads)
typically exhibit lower frequencies, as these features remain stable over time with minimal vari-
ation. In contrast, spatial-invariant neighborhood ambiance (such as environmental features like
lighting and weather) displays higher frequencies due to significant temporal and spatial variations.
To validate this hypothesis, we report the relative log amplitude of Fourier-transformed representa-
tions by calculating the amplitude difference between the highest and lowest frequencies. Figure 3c
and 3d illustrate the relative amplitude results for different contrastive learning strategies on street
view images and ImageNet data.

The results show that the relative amplitude of GSV-Spatial is significantly greater than that of GSV-
Temporal, indicating a stronger emphasis on high-frequency information in GSV-Spatial. Addition-
ally, the model trained on ImageNet exhibits a greater focus on low-frequency features compared
to street view images. These findings align with our hypothesis, further validating that GSV-Spatial
effectively captures high-frequency details, while GSV-Temporal concentrates more on the low-
frequency, stable aspects of the scene.

(a) Street view images (b) ImageNet data (c) Street view images (d) ImageNet data

Figure 3: Attention distance (a, b) and relative log amplitude (c, d) for different contrastive learning
strategies on street view images and ImageNet data.

5 CONCLUSION

In conclusion, we propose a self-supervised urban visual representation framework based on street
view images, capable of selectively extracting and encoding dynamic and static information and their
ambiance in urban environments according to the requirements of different downstream tasks. By
leveraging the unique spatiotemporal attributes of street view imagery, we have developed three con-
trastive learning strategies: temporal invariance representation, spatial invariance representation, and
global information representation. Experimental results demonstrate that these strategies can effec-
tively learn task-specific features suitable for their respective downstream applications, significantly
enhancing performance in urban environment understanding tasks. Furthermore, we conducted an
in-depth analysis of the reasons behind the performance of different contrastive methods, further
emphasizing the importance of targeted learning strategies. This study systematically explores rep-
resentation learning strategies based on street view images, provides a valuable benchmark for the
application of visual data in urban science, and enhances their practical applicability.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the International Conference on Computer Vision (ICCV), 2021.

David Abou Chacra and John Zelek. Municipal infrastructure anomaly and defect detection. In 2018
26th European Signal Processing Conference (EUSIPCO), pp. 2125–2129, Rome, 2018. IEEE.
ISBN 978-90-827970-1-5.

Hila Chefer, Shir Gur, and Lior Wolf. Transformer interpretability beyond attention visualization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 782–791, June 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Hal Daumé III and Aarti Singh (eds.), Proceed-
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A APPENDIX

A.1 STREET VIEW DATASET COLLECTION

To obtain street view imagery for both self-supervised model training and socioeconomic indicator
prediction, we first sourced road network data for each city using the OSMnx library (Boeing, 2017)
from OpenStreetMap. We then generated query points along these road networks at regular inter-
vals of 15 meters. The Google Street View (GSV) Application Programming Interface (API) was
subsequently utilized to retrieve and download street view images.

A.2 PRE-TRAINING DATASET

As shown in Figure A1, the ten global cities include Amsterdam, Barcelona,
Boston–Cambridge–Medford–Newton (Boston), Buenos Aires, Dubai–Sharjah (Dubai), Jo-
hannesburg, Los Angeles, Melbourne, Seoul, and Singapore. The details of street view datasets are
presented in Table A1.

Figure A1: Spatial distribution of selected global cities.

A.3 SOCIOECONOMIC INDICATOR PREDICTION DATASET

In our downstream task, we used socioeconomic indicators provided by Fan et al. (2023), which
include data from seven major metropolitan areas in the United States. We take Los Angeles as
an example. The socioeconomic indicators cover various topics relevant to urban studies and are
detailed in Table A2.
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Table A1: street view datasets for pre-training

City Country # of images
Amsterdam Netherlands 488,956
Barcelona Spain 3,534,692
Boston United States 9,295,736
Buenos Aires Argentina 2,665,976
Dubai United Arab Emirates 1,401,064
Johannesburg South Africa 2,188,628
Los Angeles United States 4,598,580
Melbourne Australia 12,861,948
Seoul South Korea 1,416,544
Singapore Singapore 3,815,968

Table A2: Socioeconomic Indicators

Topic Indicator
Poverty Median Household Income

% Individuals with poverty status determined:
below 100% poverty line
% Individuals with poverty status determined:
below 200% poverty line

Health Model-based estimate for crude prevalence of
diagnosed diabetes among adults aged ≥ 18 years
Model-based estimate for crude prevalence of
no leisure-time physical activity among adults aged ≥ 18 years
Model-based estimate for crude prevalence of
obesity among adults aged ≥ 18 years
Model-based estimate for crude prevalence of
cancer (excluding skin cancer) among adults aged ≥ 18 years
Model-based estimate for crude prevalence of
physical health not good for ≥ 14 days among adults aged ≥ 18 years
Model-based estimate for crude prevalence of
mental health not good for ≥ 14 days among adults aged ≥ 18 years

Crime Violent crime occurrence per spatial unit
Violent theft-related crime occurrence per spatial unit

Transportation % Population (>16) commute by walking and biking
% Population (>16) commute by public transit
% Population (>16) commute by driving alone
Estimated vehicle miles traveled on a working weekday
Estimated personal miles traveled on a working weekday
Estimated vehicle trips traveled on a working weekday
Estimated personal trips traveled on a working weekday

A.4 VISUAL PLACE RECOGNITION DATASET

ESSEX. The ESSEX dataset provides a diverse set of urban and suburban scenes with varying
viewpoints and lighting conditions. It challenges the model’s robustness in recognizing places de-
spite changes in perspective and environmental factors (Zaffar et al., 2021).

CrossSeason: This dataset contains images captured across different seasons, aiming to study the
impact of seasonal variations on image features. It is primarily used to train and evaluate models for
visual recognition under varying seasonal conditions (Mans Larsson et al., 2019).

Pittsburgh: This is a large-scale dataset featuring street view images from Essex in the UK and
Pittsburgh in the USA. It is designed to support visual localization and geographic scene recognition
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tasks, providing rich environmental diversity suitable for various urban analysis studies (Arand-
jelović et al., 2018).

SPED: This dataset focuses on the temporal changes in street view imagery, containing images of
the same location captured at different time points. It aims to study the dynamic features of urban
environments, suitable for temporal analysis and scene change detection (Chen et al., 2018).

MapillarySLS: This dataset includes street view images from around the globe, designed to sup-
port tasks in autonomous driving and visual understanding. Generated by users, it covers a variety
of environments and conditions, providing rich geographical and scene information (Warburg et al.,
2020).

A.5 ATTENTION

We visualized the attention maps across all depths for each contrastive learning strategy. The
rows correspond to different strategies—ImageNet-Self, GSV-Self, GSV-Temporal, and GSV-
Spatial—while the columns represent different depths (0 to 11). The original street view inputs
are displayed on the left. Each attention map highlights the regions of the image that the model
focuses on, demonstrating how attention shifts across depths for self, temporal and spatial features.
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Figure A2: Attention maps for two queries visualized across models and depths.
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