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Abstract

In multi-objective optimization, a single decision vector must balance the trade-offs between
many objectives. Solutions achieving an optimal trade-off are said to be Pareto optimal—these
are decision vectors for which improving any one objective must come at a cost to another. But
as the set of Pareto optimal vectors can be very large, we further consider a more practically
significant Pareto-constrained optimization problem, where the goal is to optimize a preference
function constrained to the Pareto set.

We investigate local methods for solving this constrained optimization problem, which poses
significant challenges because the constraint set is (i) implicitly defined, and (ii) generally
non-convex and non-smooth, even when the objectives are. We define notions of optimality
and stationarity, and provide an algorithm with a last-iterate convergence rate of O(K−1/2) to
stationarity when the objectives are strongly convex and Lipschitz smooth.

1 Introduction

The theory of optimization has provided the foundations for analyzing large-scale machine learning,
giving us a language for understanding not only training accuracy, but also generalization (Hardt
and Recht, 2022) and adaptive decision making (Puterman, 1994). However, in practice, we often
need to further account for additional desiderata: resource constraints, fairness, fine-tunability, and
so on. As a result, multi-objective optimization (MOO) has increasingly drawn interest from the
machine learning community, since it naturally generalizes the single objective paradigm of classical
learning while also being able to attend to these additional requirements.

Examples of machine learning settings formulated as MOO problems include those with multiple
tasks (Sener and Koltun, 2018; Doersch and Zisserman, 2017), different data distributions (Dong
et al., 2015; Huang et al., 2015), fairness requirements (Martinez et al., 2020; La Cava, 2023; Kamani
et al., 2021), inverse reinforcement learning (Pirotta and Restelli, 2016), and the need to balance
compute and power consumption among multiple algorithmic modules (Ghosh et al., 2013).

The solutions to MOO problems are those that achieve optimal trade-offs, or Pareto optimality ;
together, they form the Pareto set. But because the Pareto set generally does not contain a single
solution, there is a need to make a further selection from the Pareto optimal solutions. Currently,
there are two main approaches to making this selection. The first is to find a representative subsample
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of the Pareto set: this reduces the number of solutions that need to be inspected before making a
final decision (Lin et al., 2019; Liu et al., 2021; Kobayashi et al., 2019; Guerreiro et al., 2021). The
other approach is to scalarize the multiple objectives into a single objective, say, by taking a linear
combinations of the objectives (Mahapatra and Rajan, 2020).

However, as the number of objectives and dimensions increase, the Pareto set can become
extremely large, forcing the size of a representative subsample to also become untenably large.
Furthermore, the geometry of the Pareto set can be quite complicated, with “needle-like extensions”
and “knees” (Kulkarni et al., 2022), which poses difficulties for sampling. Even with quadratic
objectives in two dimensions, we can observe singularities in the Pareto set, see Sheftel et al. (2013)
or Figure 1. The other scalarization approach is also not without difficulties. As the objective
functions can be incomparable, it can be challenging to find a meaningful weighting of the objectives.

For a more principled selection, we assume that we have an additional preference function f0,
which we aim to optimize constrained to the Pareto set. In supervised learning tasks, this preference
function is oftentimes the loss function of a generic dataset. In economic and decision making
problems, it is usually taken to be the social welfare of the entire community of users. This approach
has been considered in various contexts such as portfolio management (Thach et al., 1996) and
manufacturing planning (Yamamoto, 2002), in addition to machine learning and optimization (Ye
and Liu, 2022). While heuristics have been proposed, little is known about the convergence properties
of these algorithms. This prompts us to ask:

Given a set of objective functions (f1, . . . , fn) and a preference function f0, what is a suitable
approximate solution concept and what are efficient algorithms to achieve it?

1.1 Main results

In MOO, we are given a set of n objective functions F ≡ (f1, . . . , fn) : Rd → Rn that are jointly
optimized over a shared decision space Rd:

minimize
x∈Rd

F (x). (1)

The solution concept for (1) is typically defined as the set of Pareto optimal solutions, Pareto(F ),
which consists of decision vectors x ∈ Rd that make an optimal trade-off between objectives. And to
further decide which trade-off to make, we consider the Pareto-constrained optimization problem, in
which the aim is to optimize a preference function f0 : Rd → R constrained to the Pareto set of F :

minimize
x∈Pareto(F )

f0(x). (2)

This problem is challenging not only because the constraint set is defined implicitly as the solution
to the MOO problem from Equation (1), but because it is also non-convex and non-smooth. Even in
the case of linear preference functions, the problem is known to be NP-hard (Fülöp, 1993). In fact, it
is not obvious how to even define an appropriate relaxation of the problem such as stationarity that
can be attained through optimization, given the challenges of non-convex non-smooth optimization
(Zhang et al., 2020; Kornowski and Shamir, 2021; Li et al., 2020; Jordan et al., 2023). However,
we show in this work that the Pareto set has additional geometry when the objectives are strongly
convex that allows us to relax the Pareto-constrained optimization problem to a strong notion of
stationarity that is necessary for optimality and that can be efficiently attained:

1. We show that the Pareto-constrained optimization problem has an equivalent reformulation as
a smooth optimization problem over a linear constraint set (Proposition 1). This allows us to
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Figure 1: A Pareto set for three positive-definite quadratic objective functions in R2. The
grid lines show the coordinate maps for x∗ : ∆2 → Pareto(f1, f2, f3), where ∆2 is the
3-simplex. Even in this well-structured setting, the Pareto set is not convex or smooth.

introduce solution concepts such as (approximate) preference stationarity in the standard way.
Furthermore, we show that the solution concepts are geometrically meaningful (Proposition 4).

2. While the reformulation solves the issue of non-convexity and non-smoothness, the reformulated
objective function remains implicit, which can make it hard to design optimization methods
and provide simple analyses. If the objectives and preference are sufficiently smooth (Assump-
tions A–C), we construct a family of upper bounds for the reformulated objective function
(Proposition 5), providing a general framework to analyze iterative gradient-based methods.

3. We provide the Pareto majorization-minimization algorithm, which iteratively (i) computes
these upper bounds and (ii) minimizes them. In our setting, this amounts to solving a sequence
of (i) unconstrained strongly-convex optimization problems and (ii) quadratic programs. We
show that it suffices to solve the strongly convex programs up to O(ε20)-optimality and the
quadratic programs up to O(ε0)-stationarity. Then, no more than O(ε−2

0 ) rounds of optimization
are needed to attain an ε0-approximate preference stationary solution (Theorem 1).

1.2 Related work

Selecting a single decision out of all Pareto optimal decisions is a fundamental problem of MOO
that does not appear in the classical single-objective setting; in MOO, there is no canonical total
ordering of the solutions (Miettinen, 1999). Broadly, the approaches to making such a selection can
be categorized as a priori and a posteriori (Hwang and Masud, 2012).1

In the a priori setting, the preferences of the decision maker is known beforehand. While in the
a posteriori approach, the goal is to present a decision maker with a representative spread of Pareto
optimal options, from which the decision maker will make a final decision. But because the Pareto
set can become very high-dimensional, the a posteriori approach becomes less viable (or needs to
become more interactive) as the number of objectives and dimensions increase.

Instead, we work in the a priori setting and consider optimization constrained to the Pareto set,
also sometimes called semivectorial bilevel optimization or optimization on efficient sets, which can

1They also include two other categories: the no-preference and interactive approach. In the former, any Pareto
optimal decision will do, while in the latter, candidates are presented adaptively to an interactive decision maker.
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be considered an instantiation of bi-level optimization (Yamamoto, 2002; Bonnel and Morgan, 2006;
Dempe, 2018). This problem is known to be NP-hard (Fülöp, 1993) and algorithms for solving this
problem tend to focus on settings with: (i) linear preference functions (Philip, 1972; Benson, 1984;
Liu and Ehrgott, 2018), (ii) linear objectives (Dauer, 1991; Bolintineanu, 1993; Tao et al., 1996;
Yamamoto, 2002), or (iii) specific choices of preference functions such as the Tchebycheff weighting
function (Steuer, 1989). To our knowledge, the only other algorithmic work that considers the
general problem with nonlinear objectives is Ye and Liu (2022).

However, the stationary condition introduced by Ye and Liu (2022), defined as stationarity with
respect to the proposed optimization dynamics, does not have a clear connection to preference
optimality. In fact, as it is a non-trivial first-order stationary condition, the stationarity notion
defined therein is not a necessary condition (Proposition 3); there are settings where such dynamics
avoid optimal points (see Example 1).

We are able to introduce a simple and necessary condition for preference optimality by making
use of the manifold structure of the Pareto set. While its smooth structure has previously been
recognized (Hillermeier, 2001; Hamada et al., 2020), the prior focus has been on the extrinsic Pareto
manifold within an ambient space, from which it inherits its smoothness. We take a different
approach and work with the Pareto manifold intrinsically. Since it is diffeomorphic to the simplex,
conceptually, this greatly simplifies optimization constrained to the Pareto set. And in order to
overcome the implicit nature of the Pareto manifold, we use ideas from majorization-minimization
and trust-region approaches to optimization, where approximate gradient information can be used
to make provable improvements (Lange et al., 2000; Marumo et al., 2023).

2 Preliminaries

Let f1, . . . , fn : Rd → R be objective functions, f0 : Rd → R be a preference function. We assume:

(A) The objectives are strongly convex and twice-differentiable with Lipschitz-continuous gradients.

(B) The objectives have Lipschitz-continuous Hessians.

(C) The preference has Lipschitz-continuous gradients.

Let [n] := {1, . . . , n}. We denote the (n− 1)-simplex by ∆n−1, which is the set of convex weights:

∆n−1 :=

{
β ∈ Rn :

∑
i∈[n]

βi = 1 and ∀i ∈ [n], βi ≥ 0

}
.

And given a convex weight β ∈ ∆n−1, we let fβ denote the scalarization:

fβ(x) :=
∑
i∈[n]

βifi(x). (3)

For a detailed glossary, see Section 9.
Let us recall the definition of a Pareto optimal decision vector.

Definition 1 (Pareto optimality). Given objectives f1, . . . , fn, we say that a decision vector x ∈ Rd

is Pareto optimal if for all x′ ∈ Rd:

fi(x
′) < fi(x) =⇒ ∃j s.t. fj(x

′) > fj(x).

We call the set of Pareto optimal decision vectors the Pareto set of f1, . . . , fn, denoted Pareto(F ).
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In words, the above condition states that there is no way to improve fi without also worsening
some other fj . When the objectives are smooth, a related local condition is Pareto stationarity:

Definition 2 (Pareto stationarity). Given objectives f1, . . . , fn, we say that a decision vector x ∈ Rd

is Pareto stationary if zero is a convex combination of the gradients:

∇fβ(x) = 0, for some β ∈ ∆n−1,

where fβ is defined by Equation (3).

In particular, Pareto stationarity is a necessary condition for Pareto optimality (Maruşciac, 1982).
Furthermore, it is sufficient when the objectives are twice-differentiable and are strictly convex
(Fliege et al., 2009). As we have assumed this, we have:

x ∈ Pareto(F ) ⇐⇒ x is Pareto stationary.

3 The Pareto manifold

It is not immediately evident from the definition of Pareto stationarity that Pareto(F ) is amenable
to the Pareto-constrained optimization problem defined in Equation (2). In general, the Pareto set is
non-smooth and non-convex. Even when the objectives are positive-definite quadratics, the Pareto
set can have singularities (Sheftel et al., 2013). For example, see the Pareto set in Figure 1.

This issue of non-smoothness arises because the set of Pareto stationary points naturally lives in
a higher-dimensional space Rd×∆n−1, in which it is a smooth (n− 1)-dimensional submanifold. But
when it is projected back down into Rd, it can cross itself to create singularities. Formally, we define:

Definition 3 (Pareto manifold). The Pareto manifold P(F ) ⊂ Rd ×∆n−1 is the zero set:

P(F ) =
{
(x, β) : ∇fβ(x) = 0

}
.

The Pareto manifold consists of all (x, β) such that x is Pareto stationary and β bears witness
to the stationarity condition ∇fβ(x) = 0. And of course, we can recover the Pareto set from the
Pareto manifold simply by projecting down to its first component in Rd:

x ∈ Pareto(F ) ⇐⇒ (x, β) ∈ P(F ) for some β ∈ ∆n−1.

But this projection can also collapse any smoothness structure that P(F ) has. And indeed, it is a
smooth submanifold of Rd ×∆n−1. To see this, notice that P(F ) is the zero set of the map:

(x, β) 7→ ∇fβ(x),

whose partial derivative with respect to x is invertible—the partial derivative is ∇2fβ, which is
positive-definite by strong convexity. The implicit function theorem then yields its manifold structure:

Proposition 1 (Characterization of the Pareto manifold). Define the map x∗ : ∆n−1 → Pareto(F ):

x∗(β) ≡ xβ := argmin
x∈Rd

fβ(x). (4)

Let ∇F (x) ∈ Rn×d be the Jacobian. Then, the map x∗ has derivative:

∇x∗(β) = −∇2fβ(xβ)
−1∇F (xβ)

⊤, (5)

so that the map β 7→ (xβ, β) is a diffeomorphism of ∆n−1 with the Pareto manifold P(F ).

Thus, one natural set of coordinates for the Pareto manifold is its parametrization by the simplex.
This allows us to define an equivalent but smooth formulation of the Pareto-constrained optimization
problem obtained by pulling f0 back onto ∆n−1, which we shall now do.
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4 The Pareto-constrained optimization problem

The Pareto-constrained optimization problem defined in Equation (2) has another formulation:

minimize
(x,β)∈P(F )

f0(x), (6)

where the constraint has been replaced with the Pareto manifold. The two are equivalent because
Pareto(F ) is precisely the projection of P(F ) onto Rd. But the reformulation allows us to apply
Proposition 1 to pullback the optimization problem onto ∆n−1:

minimize
β∈∆n−1

(f0 ◦ x∗)(β), (7)

which is now a smooth optimization problem over the simplex. We say that x is preference optimal
if it is a solution to (6); if β solves (7), then correspondingly, x∗(β) is preference optimal.

As f0 and x∗ are smooth, so too is their composition (f0 ◦ x∗); we can define a stationarity
condition in the standard way for smooth objectives on convex sets (Nesterov, 2003). We say that x
is weakly preference stationary if there is some β such that (x, β) ∈ P(F ) and β is stationary in the
usual sense for (7). For any given x, many β’s could satisfy the condition (x, β) ∈ P(F ),

∆n−1(x) :=
{
β ∈ ∆n−1 : ∇fβ(x) = 0

}
. (8)

We say that x is preference stationary if the stationary condition holds for all such (x, β)’s.

Definition 4 (Preference stationarity). We say that a point x ∈ Pareto(F ) is weakly preference
stationary if there exists some β ∈ ∆n−1(x) such that:2

−∇(f0 ◦ x∗)(β)⊤(β′ − β) ≤ 0, ∀β′ ∈ ∆n−1, (9)

where Equation (5) gives ∇x∗. If (9) holds for all β ∈ ∆n−1(x), then x is preference stationary.

From optimization on convex sets (Nesterov, 2003, Lemma 3.1.19), we immediately have:

Proposition 2 (Necessary condition). Preference optimality implies (weak) preference stationarity.

While this definition of preference stationarity is appealing because it is necessary for preference
optimality and because it is well-founded in standard optimization theory, it is not necessarily the
only reasonable relaxation of preference optimality. For example, our notion of preference stationarity
requires second-order information in F for the term ∇2fβ(x)

−1. It is natural to ask whether we
could define stationarity with reference to only first-order information. It turns out that this is
impossible, if we require the stationarity condition to be (i) non-trivial, (ii) necessary for preference
optimality and (iii) decidable from local information at a single point x.

The reason is that the local behavior of the Pareto set about a point x cannot be determined from
∇F (x) alone. Figure 2 shows two different Pareto sets that share the same first-order information at
a point x. But the preference stationarity of x with respect to f0 also depends on its neighboring
Pareto points. So to attain a non-trivial and necessary condition, we would either need to look at
higher-order information or more than a one point. To formalize this, first define:

Definition 5 (Preference genericity). Let {v0, v1, . . . , vn} ⊂ Rd where 1 < n ≤ d. We say that this
set is preference generic if there is a unique β ∈ ∆n−1 such that β1v1 + · · ·βnvn = 0, and:

v0 /∈ span(v1, . . . , vn).
2As ∇F (xβ)

⊤β = ∇fβ(xβ) = 0, Equation (9) can be simplified to −∇(f0 ◦ x∗)(β)⊤β′ ≤ 0, for all β′ ∈ ∆n−1.
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Figure 2: Two instances of Pareto(f1, f2) are shown (thick gray lines), where f1 and f2 are
positive-definite quadratic objectives in R2 (visualized by contour lines). At x (the black
dot), the two instances share the same local information −∇f1(x) and −∇f2(x) (orange
arrows); they cross the contour lines at right angles. When n = 2, the Pareto set contains
all z such that ∇f1(z) = −λ∇f2(z) for λ ≥ 0. Notice that if f0 is strictly convex and x
does not minimize f0 over R2, then x cannot be stationary for both instances.

We also formalize stationarity conditions as decision functions, which are functions mapping
continuous inputs to Boolean variables taking values of true or false.

Definition 6 (Stationarity function). A first-order stationary condition is a decision function:

Stationary : Rd
n+1 times
× · · · × Rd → {true, false}.

Let f0 be a smooth preference function and f1, . . . , fn be smooth, strongly convex objectives. We say
that a first-order condition is necessary if the following holds:

x is preference optimal =⇒ Stationary
(
∇f0(x), . . . ,∇fn(x)

)
= true.

Proposition 3 (Necessary first-order conditions are trivial). Suppose that Stationary is necessary.
Then, it is trivial in the following sense: for any preference generic set of v0, . . . , vn ∈ Rd,

Stationary(v0, . . . , vn) = true.

5 Pareto majorization-minimization

Let us now consider how to solve the Pareto-constrained optimization problem:

minimize
β∈∆n−1

(f0 ◦ x∗)(β). (7)

As the problem has been reformulated as a smooth optimization problem on the simplex, this seems
to open up local methods like gradient descent. But for this, there is a remaining issue that x∗ is
defined implicitly as the solution of another optimization problem:

x∗(β) ≡ xβ := argmin
x∈Rd

fβ(x). (4)

Because xβ does not generally have a closed form, we also cannot explicitly compute ∇x∗(β), which
is required if we wish to compute ∇(f0 ◦ x∗)(β) by the chain rule.

7



5.1 Approximating the gradient

We can, however, approximate the gradient. Define the following estimator, which uses local
information ∇2fβ(x) and ∇F (x) at x as a proxy for the corresponding local information at xβ :

∇̂x∗(x, β) := −∇2fβ(x)
−1∇F (x)⊤. (10)

If F has continuous second derivative, then ∇̂x∗(x, β) approaches ∇x∗(β) as x goes to xβ; strong
convexity implies that ∇2fβ has a continuous inverse. And so, there are many reasonable approaches
to this problem: it is a smooth optimization problem on a convex set with approximate gradients. For
example, we could use the gradient estimate to perform projected gradient descent on the simplex.

Then, the questions at hand: (a) how valid is the approximation ∇̂x∗(x, β), and (b) how can
an optimization procedure make use of that information? It is certainly not the case that the
approximation computed at (x, β) for some distant x should be as equally valid as one computed
near (xβ, β). One way we can capture the validity of the estimator ∇̂x∗(x, β) is by using it to
construct a majorizing surrogate function, which is a function that upper bounds f0 ◦ x∗:

Definition 7 (Majorizing surrogate). A function g : ∆n−1 → R majorizes f0 ◦ x∗ if:

f0(xβ′) ≤ g(β′), (11)

for all β′ ∈ ∆n−1. We say that g is a surrogate of f .

Intuitively, the better the approximation is, the tighter an upper bound we could provably attain.
And as an example, suppose that we have ∇̂x∗(xβ, β), which in this case is exactly ∇x∗(β). And
suppose that we knew that f0 ◦ x∗ were 1-Lipschitz smooth. Then, the standard quadratic upper
bound for Lipschitz smooth functions (Nesterov, 2003) yields a family of majorizing surrogates:

g(β′;xβ, β) = f0(xβ) +∇f0(xβ)⊤∇̂x∗(xβ, β)(β′ − β) +
1

2
∥β′ − β∥2.

This means that we could use g to bound how much improvement in f0 is made by any iterative
optimization scheme that takes a step from β to β′: we can think of g(β′;x, β) as extracting
information from ∇̂x∗(x, β) to certify when an update f0(xβ′) will improve upon f0(xβ).

5.2 Algorithms from upper bounds

Assuming we can obtain such bounds, we can use them not only to analyze optimization procedures,
but we can also define a broad class of iterative methods that directly optimize the upper bounds.
Suppose that we can compute a family of majorizing surrogates indexed over Rd ×∆n−1. Then, the
idealized Pareto majorization-minimization (PMM) algorithm proceeds in rounds:

1. majorization: query ∇̂x∗(xk, βk) to construct a majorizing surrogate gk(β) ≡ g(β;xk, βk),

2. minimization: make updates βk+1 ← argmin
∆n−1

gk(β) and xk+1 ← argmin
x∈Rd

fβk+1
.

The majorizing property of gk ensures that the iterates f0(xβk+1
) improve as βk+1 optimizes gk. We

also operationalize the intuition that g( · ;x, β) becomes more informative as x approaches xβ by
optimizing fβk+1

. Algorithm 1 is obtained by relaxing step 2, for we do not need to fully optimize gk
and fβk+1

, and we allow for any black-box optimizer. In theory, any iterative optimization method
could be interpreted as an approximate PMM; this yields one framework for convergence analysis.
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Algorithm 1 Pareto majorization-minimization (PMM)

Input: objectives F ≡ (f1, . . . , fn), preference function f0, and black-box optimizer ̂argmin
Initialize: (β0, x0) ∈ ∆n−1 × Rd

1: for k = 1, . . . ,K do
2: Compute a majorizing surrogate gk(β) ≡ g(β;xk, βk) satisfying Equation (11)
3: Compute approximate minimizers

βk+1 ← ̂argmin
β∈∆n−1

gk(β) and xk+1 ← ̂argmin
x∈Rd

fβk+1
(x).

4: end for
5: return (βK+1, xK+1)

6 Approximability from smoothness

In this section, we quantify the smoothness assumptions presented in Section 2. From them, we can
derive the following implications:

• Assumption A allows us to bound the size of the Pareto set (Lemma 1).

• Assumption B additionally bounds the curvature of the Pareto manifold: we show that ∇x∗ is
well-behaved (Lemma 2) and is well-approximated by ∇̂x∗ (Lemma 3).

• Assumption C further leads to error bounds when approximating gradient of f0 ◦x∗ (Lemma 4).
It also allows us to define a notion of approximate preference stationarity that is geometrically
meaningful (Proposition 4) and can be verified using approximate information (Lemma 5).

Formally, we have:

Assumption A. Let the objectives f1, . . . , fn : Rd → R be twice differentiable, µ-strongly convex,
and have L-Lipschitz continuous gradient. That is, for all i = 1, . . . , n,

µI ⪯ ∇2fi(x) ⪯ LI.

Thus, the condition number of ∇2fi is upper bounded by κ := L/µ. We also let r be a scale parameter,
defined by the maximum distance between any of the minimizers of the objectives:

r := max
i,j∈[n]

∥∥ argmin fi(x)− argmin fj(x)
∥∥
2
.

Lemma 1 (Size of Pareto set). Suppose F satisfies Assumption A. Then R ≤
√
κr, where:

R := diam
(
Pareto(F )

)
≡ sup

{
∥x− x′∥2 : x, x′ ∈ Pareto(F )

}
.

Assumption B. Let the objectives f1, . . . , fn : Rd → R have LH-Lipschitz continuous Hessian. That
is, for all x, y ∈ Rd and i = 1, . . . , n, we have ∥∇2fi(x)−∇2fi(y)∥2 ≤ LH∥x− y∥2.

Lemma 2 (Smoothness of x∗). Suppose F satisfies Assumptions A,B. Then, x∗ : ∆n−1 → Rd is
M0-Lipschitz continuous and has M1-Lipschitz continuous gradients, where:

M0 := κR and M1 := 2κ2R

(
1 +

LHR

µ

)
.
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Lemma 3 (Approximability of ∇x∗). If F satisfies Assumptions A,B. Then:

∥∇x∗(β)− ∇̂x∗(x, β)∥1,2 ≤
1

µ

M1

2M0
∥∇fβ(x)∥2.

Assumption C. Let the preference function f0 : Rd → R have L0-Lipschitz continuous gradient.
That is, for all x, y ∈ Rd, we have ∥∇f0(x)−∇f0(y)∥2 ≤ L0∥x− y∥2.

Lemma 4 (Approximability of ∇(f0 ◦ x∗)). If F and f0 satisfy Assumptions A,B,C. Then:

∥∥∇(f0 ◦ x∗)(β)⊤ −∇f0(x)⊤∇̂x∗(x, β)∥∥1,2 ≤ 1

µ

(
M1

2M0
∥∇f0(x)∥2 + L0M0

)
∥∇fβ(x)∥2.

We denote the right-hand side by err∇f0(x, β).

6.1 An approximate solution concept

In practice, we generally can never exactly recover stationary points, so we further relax our target
solution concept to an approximate version of preference stationarity in the standard way (Nesterov,
2013). To define our notion of approximation, we consider ∆n−1 as a metric space. While somewhat
arbitrary, it is also fairly natural to endow ∆n−1 with the ℓ1-metric, so that it has unit diameter.

Definition 8 (Approximate preference stationarity). Let ε0, ε ≥ 0. A point (x, β) ∈ Rd ×∆n−1 is
(ε0, ε)-preference stationary if:

−∇f0(xβ)⊤∇x∗(β)(β′ − β) ≤ ε0∥β′ − β∥1, ∀β′ ∈ ∆n−1. (12a)
∥∇fβ(x)∥2 ≤ ε (12b)

When the objectives and preference are sufficiently nice, then an approximate preference stationary
solution (x̂, β̂) has an intuitive meaning: (a) there is a ball around β̂ within which f0 ◦ x∗ decreases
at most at an O(ε0)-rate when moving away from β̂, and (b) the point x̂ is O(ε)-close to xβ̂ .

Proposition 4 (Geometric meaning of approximate stationarity). Let F and f0 satisfy Assump-
tions A,B,C and let (x̂, β̂) be (ε0, ε)-preference stationary. The following hold:

a. if ∥β − β̂∥1 ≤ s, then f0(xβ)− f0(xβ̂) ≥ −2ε0∥β − β̂∥1, and

b. ∥x̂− xβ̂∥2 ≤ ε/µ,

where we let R is defined in Lemma 1 and s := 2µ2ε0
L0L2R2 .

Lemma 5 (Verifiability of approximate stationarity). Let F and f0 satisfy Assumptions A,B,C.
Then (x̂, β̂) is (ε0, ε)-preference stationary if ∥∇fβ̂(x̂)∥2 ≤ ε, and for some x ∈ Rd and α ∈ (0, 1),

1. an α · ε0-approximate stationary condition holds:

−∇f0(x)⊤∇̂x∗(x, β̂)(β′ − β̂) ≤ α · ε0∥β′ − β̂∥1, (13)

2. an error bound holds:
err∇f0(β̂, x) ≤ (1− α) · ε0.
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7 Analysis of Pareto majorization-minimization

In this section, we give an explicit majorizing family of positive-definite quadratics surrogates, and
we provide a condition for when Algorithm 1 converges.

7.1 A family of majorizing surrogates

Because f0 and x∗ are respectively L0- and M1-Lipschitz smooth (Assumption C and Lemma 3),
their composition is also Lipschitz smooth and admits the quadratic upper bound:

f0(xβ′) ≤ f0(xβ) +∇(f0 ◦ x∗)(β)⊤(β′ − β) +
1

2
nL0M1∥β′ − β∥22,

where the dimension n in the second term comes from ∥β′− β∥21 ≤ n∥β′− β|22. And even though the
gradient ∇(f0 ◦ x∗)(β)⊤ is implicit, we can approximate it using ∇f0(x)⊤∇̂x∗(x, β) where the error
is bounded by Lemma 4. This implies the following family of majorizing surrogates:

Proposition 5 (A family of majorizing surrogates). Suppose F and f0 satisfy Assumptions A,B,C.
Let err∇f0(x, β) be as defined in Lemma 4. Define:

g(β′;x, β) := f0(xβ) +∇f0(x)⊤∇̂x∗(x, β)(β′ − β) +
1

2
µg∥β′ − β∥22 + err∇f0(x, β), (14)

where µg := nL0M1. Then g(β′;β, x) majorizes f0 ◦ x∗, satisfying Equation (11).

Note that technically we cannot explicitly compute the value g(β′;x, β) because it contains the
term f0(xβ). However, we can compute the difference g(β′;x, β) − g(β;x, β), which is enough to
optimize g and to prove descent for the iterates of any given optimization scheme.

7.2 Convergence analysis

We now give the convergence result for the Pareto majorization-minimization algorithm. We make
use of the sufficient condition provided by Lemma 5, which can be determined using approximate
information. And as Algorithm 1 can make use of any black-box optimizer, we state the result in
terms of the convergence guarantees of the black-box optimizers.

In particular, the PMM algorithm uses two optimizers: one for the surrogate g( · ;x, β) and
another for the scalarized objective fβ(·). As we aim to achieve ε0-preference stationarity, we also
ask the optimizer for the surrogate g to achieve O(ε0)-approximate stationarity.

But approximate stationarity with respect to g only transfers to f0 when the surrogate is
sufficiently tight, which depends on the performance of the optimizer for fβ(·). It turns out that
we shall require that it achieves O(ε20)-optimality. This is because when we optimize a positive-
definite quadratic over a convex set, finding an ε0-approximate stationary point β̂ means finding an
O(ε20)-approximately optimal point (Lemmas 13 and 14):

g(β̂;x, β) < g(β∗;x, β) +O(ε20),

where β∗ minimizes the surrogate. But, the surrogate contains an approximation error err∇f0(β, x).
If this error term is larger than Ω(ε20), then it is possible for the surrogate to fail to either (i)
decide that the current iterate β is ε0-preference stationary or (ii) make progress by finding some
β̂ that certifiably improves on f0. We preclude this by requiring the optimizer for fβ to achieve
O(ε20)-optimality.
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Theorem 1 (Convergence of PMM). Let F and f0 satisfy Assumptions A,B,C. Fix 0 < ε1/2 ≤ ε0 ≤ 1.
Let x̂β and β̂ be the approximate solutions that are returned by the black-box optimizer for g( · ;x, β)
and fβ(·), defined in Equation (14) and Equation (3), respectively:

β̂ ← ̂argmin
β′∈∆n−1

g(β′;x, β) and x̂β ← ̂argmin
x∈Rd

fβ(x).

Given constants c1, c2 > 0, suppose that the black-box optimizer achieves the following guarantees:

1. the approximate minimizer β̂ is O(ε0)-approximately stationary:

−∇g(β̂;x, β)v ≤ c1 · ε0∥v∥2, ∀v ∈ T∆n−1(β).

2. the approximate minimizer x̂β is an O(ε20)-approximate solution:

∥∇fβ(x̂β)∥ ≤ c2 · ε.

Let (xk, βk)k be the iterates of Algorithm 1. Then, there exist c1(f0, F ) and c2(f0, F ) bounded away
from zero and some K such that (f0 ◦ x∗)(βk) is monotonically decreasing for k ∈ [K] and (xK , βK)
is an (ε0, ε)-preference stationary point. Furthermore, K is no more than O(ε−2

0 ):

K ≤
2µg ·

(
f∗ − f∗

)
c21 · ε20

,

where f∗ := max f0(x) and f∗ = min f0(x) are optimized over the compact set Pareto(F ).

Remark 1. Algorithm 1 makes calls to sub-routines at each iteration to solve two sub-problems.
As the problems are strongly-convex and Lipschitz-smooth, they can be solved using (projected)
gradient descent with iteration complexity O(log(1/ε0)). And so, taking the computational cost of the
sub-problems into account only increases the rate obtained in Theorem 1 by logarithmic factors.

8 Conclusion

In this work, we provide a principled and efficient way to select a decision vector from the Pareto set
of a set of objectives f1, . . . , fn given an additional preference function f0. A main contribution of
this work is to provide a geometrically-meaningful notion of (approximate) preference stationarity.
This is non-trivial due to the non-smoothness and non-convexity of the Pareto set. We also provide
a simple algorithm that achieves ε0-approximate stationarity with iteration complexity of O(ε−2

0 ).
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9 Proofs and derivations

Symbol Usage

∆n−1 the (n− 1)-simplex equipped with the ℓ1-metric, see Definition 2

∆n−1(x) the set of β satisfying ∇fβ(x) = 0, see Equation (8)

∇x∗, ∇̂x∗ derivative of the map x∗ and its approximation, see Equations (5) and (10)

err∇f0(x, β) bound on the approximation error of ∇(f0 ◦ x∗), see Lemma 4

F , (f1, . . . , fn) the set of objective functions

f0 the preference function

fβ(x) the scalarized objective
∑

i βifi(x), see Equation (3)

g(β′;x, β) majorizing surrogate for f(xβ′), see Equation (11)

κ condition number κ := L/µ for ∇2fi, see Assumption A

L, LH , L0 Lipschitz parameters for ∇fi, ∇2fi, and ∇f0, see Assumptions A, B, C

M0, M1 Lipschitz parameters for x∗ and ∇x∗, see Lemma 2

µ strong convexity parameter for fi, see Assumption A

µg strong convexity parameter nL0M1 for the surrogate g, see Equation (11)

Pareto(F ) the set of Pareto optimal solutions of F , see Definition 1

r distance between the minimizers of f1, . . . , fn, see Assumption A

P(F ) the Pareto manifold, see Definition 3

R diam
(
Pareto(F )

)
:= sup

{
∥x− x′∥2 : x, x′ ∈ Pareto(F )

}
, see Lemma 1

x∗(β), xβ stationary point for fβ , see Equation (4)

9.1 The Pareto manifold

Proposition 1 (Characterization of the Pareto manifold). Define the map x∗ : ∆n−1 → Pareto(F ):

x∗(β) ≡ xβ := argmin
x∈Rd

fβ(x). (4)

Let ∇F (x) ∈ Rn×d be the Jacobian. Then, the map x∗ has derivative:

∇x∗(β) = −∇2fβ(xβ)
−1∇F (xβ)

⊤, (5)

so that the map β 7→ (xβ, β) is a diffeomorphism of ∆n−1 with the Pareto manifold P(F ).

Proof of Proposition 1 The map x∗ is well-defined because fβ is strictly convex—it is the convex
combination of strictly convex objectives, so it has a unique minimizer. Furthermore, because the
objectives are smooth, the stationarity condition ∇fβ(x) = 0 uniquely holds at x∗(β):

∇fβ(xβ) = 0.
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Define the map ζ(x, β) = ∇fβ(x). Then, the Pareto manifold is precisely the zero set P(F ) = ζ−1(0),
and which can be parametrized by simplex ∆n−1 via the map β 7→ (xβ, β).

In fact, it is a smooth parametrization. To see this, we apply the implicit function theorem
(Theorem 2), which states that the map x∗ is smooth at β when ∇xζ(xβ, β) is invertible. Indeed, we
have that ζ is continuously differentiable, with:

∇xζ(x, β) =
∑
i∈[n]

βi∇2fi(x) = ∇2fβ(x),

∇βζ(x, β) = ∇β

∑
i∈[n]

βi∇fi(x)

 = ∇F (x)⊤.

Because fβ is strictly convex, it has positive definite Hessian, implying invertibility det∇xζ(xβ, β) ̸= 0.
Furthermore, Theorem 2 also implies that the derivative of ∇x∗ is given by Equation (5). It follows
that the map β 7→ (xβ, β) is smooth. It also has a smooth inverse. Namely, the projection onto the
second component (xβ, β) 7→ β. Thus, P(F ) is diffeomorphic with ∆n−1. ■

Theorem 2 (Implicit function theorem, Spivak (2018)). Let f : Rd × Rn → Rd be continuously
differentiable on an open set containing (a, b) and let f(a, b) = 0. Let ∇uf(u, v) be the d× d matrix:[

∇uf(u, v)
]
ij
= ∇ujfi(u, v).

If det∇uf(a, b) ̸= 0, there are open sets U ⊂ Rd and V ⊂ Rn containing a and b respectively with the
following property: for each v ∈ V there is a unique g(v) ∈ U such that f(g(v), v) = 0. Furthermore,
the map g is differentiable with derivative given by:

∇g(v) = −
[
∇uf(g(v), v)

]−1∇vf(g(v), v).

9.2 Solution concepts to Pareto-constrained optimization

In this section, we elaborate on how the different solution concepts (optimality, stationarity, approxi-
mate stationarity) relate to each other for the Pareto-constrained optimization problem:

minimize
β∈∆n−1

(f0 ◦ x∗)(β). (7)

We can call any optimal solution preference optimal :

Definition 9 (Preference optimality). A decision vector x ∈ Pareto(F ) is preference optimal if:

f0(x) ≤ f0(x
′), for all x′ ∈ Pareto(F ).

Because preference optimality is a global condition, it is generally computationally infeasible to
verify. By considering Equation (7) as a smooth optimization problem over the simplex, we relax
the solution concept in the standard way to the first-order stationarity condition in terms of β:

−∇(f0 ◦ x∗)(β)(β′ − β) ≤ 0, ∀β′ ∈ ∆n−1. (9)

Given a stationary point β, we can push forward this stationary condition to x∗(β), which we say is
weakly preference stationary. We reproduce the definition from before:
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Definition 4 (Preference stationarity). We say that a point x ∈ Pareto(F ) is weakly preference
stationary if there exists some β ∈ ∆n−1(x) such that:3

−∇(f0 ◦ x∗)(β)⊤(β′ − β) ≤ 0, ∀β′ ∈ ∆n−1, (9)

where Equation (5) gives ∇x∗. If (9) holds for all β ∈ ∆n−1(x), then x is preference stationary.

Finally, to relax the exact stationarity condition to an approximate one, we appeal to the standard
notion of an approximate stationary point (Nesterov, 2013). In our setting, we can make use of:

Definition 10 (Approximate stationary point, Marumo et al. (2023)). Let C be a closed and convex
set, and let f : C → R be a smooth objective function. A point β ∈ C is an ε-approximate stationary
point of f if for all β′ ∈ C, the following holds:

−∇f(β)⊤(β′ − β) ≤ ε∥β′ − β∥.

Specializing Definition 10 to the optimization of f0 ◦ x∗ over ∆n−1 yields an approximate
stationary condition for β. And because we are ultimately interested in x∗(β), which is the solution
of to optimizing fβ over Rd, we can also make use of Definition 10 to also define the appropriate
approximate stationary condition on x. This leads us to Definition 8, which we reproduce here:

Definition 8 (Approximate preference stationarity). Let ε0, ε ≥ 0. A point (x, β) ∈ Rd ×∆n−1 is
(ε0, ε)-preference stationary if:

−∇f0(xβ)⊤∇x∗(β)(β′ − β) ≤ ε0∥β′ − β∥1, ∀β′ ∈ ∆n−1. (12a)
∥∇fβ(x)∥2 ≤ ε (12b)

Proposition 4 (Geometric meaning of approximate stationarity). Let F and f0 satisfy Assump-
tions A,B,C and let (x̂, β̂) be (ε0, ε)-preference stationary. The following hold:

a. if ∥β − β̂∥1 ≤ s, then f0(xβ)− f0(xβ̂) ≥ −2ε0∥β − β̂∥1, and

b. ∥x̂− xβ̂∥2 ≤ ε/µ,

where we let R is defined in Lemma 1 and s := 2µ2ε0
L0L2R2 .

Proof of Proposition 4

(a) Recall that xβ is the minimizer of fβ, by definition. Because fβ is µ-strongly convex, we can
bound the distance between x and xβ by:

∥x− xβ∥ ≤
1

µ
∥∇fβ(x)∥ ≤

ε

µ
,

where the second inequality follows from condition (12a).

(b) Let βs := (1− s)β + sβ′ parametrize the line connecting β and β′. Let γ : [0, 1]→ Pareto(F )
be the path γ(s) := x∗(βs), so that:

dγ(s) = ∇x∗(βs)(β′ − β) ds.

3As ∇F (xβ)
⊤β = ∇fβ(xβ) = 0, Equation (9) can be simplified to −∇(f0 ◦ x∗)(β)⊤β′ ≤ 0, for all β′ ∈ ∆n−1.
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We can now upper bound the difference:

f0(xβ)− f0(xβ′) = −
∫
γ
∇f0(xβs)

⊤dγ(s)

= −
∫
γ

[
∇f0(xβs)−∇f0(xβ) +∇f0(xβ)

]⊤
dγ(s)

≤
∫
γ
L0∥xβs − xβ∥ |dγ(s)|+

∫
γ

(
−∇f0(xβ)⊤dγ(s)

)
.

Let’s bound the integrals separately. Since xβs =

∫ s

0
dγ(s)(β′ − β), we have by Lemma 8:

∥xβs − xβ∥ ≤
LR

µ
∥β − β′∥1 · s.

We also have |dγ(s)| ≤ µ−1LR∥β − β′∥1, by Lemma 8. The first integral is bounded by:∫
γ
L0∥xβs − xβ∥ |dγ(s)| ≤

∫ 1

0

L0L
2R2

µ2
∥β − β′∥21 · s ds =

1

2

L0L
2R2

µ2
∥β − β′∥21.

For the second integral, first note that condition (12b) implies:

−∇f0(xβ)⊤dγ(s) = −∇f0(xβ)⊤∇x∗(xβ)(β′ − β) ≤ ε0
∥∥β − β′∥∥

1
,

yielding the other bound:∫
γ

(
−∇f0(xβ)⊤dγ(s)

)
≤

∫ 1

0
ε0∥β − β′∥1 ds = ε0∥β − β′∥1.

Putting these two together, we obtain:

f0(xβ)− f0(xβ′) ≤ 1

2

L0L
2R2

µ2
∥β − β′∥21 + ε0∥β − β′∥1.

It follows that if we restrict ∥β − β′∥1 ≤ 2µ2ε0
L0L2R2 , one of the factors of ∥β − β′∥1 in the first

term can be absorbed into the constant, proving the result:

f0(xβ) ≤ f0(xβ′) + 2ε0∥β − β′∥1.

■

9.2.1 Weak preference stationarity and degeneracy

The solution concepts are related by:

preference
optimality ⊂ preference

stationarity ⊂ weak preference
stationarity ⊂ approximate preference

stationarity

It is fairly clear that the first and last inequalities are strict. Here, we discuss the inner inequality.
It turns out that a point x can be weakly preference stationary without being preference stationary.

However, this can only happen if x is also a point of singularity in Pareto(F ). Geometrically, if
we consider Pareto(F ) as the projection of P(F ) onto its first component in Rd, the this means
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that multiple points are collapsed onto x. Algebraically, this means that the set of gradients
∇f1(x), . . . ,∇fn(x) fails to have full (Pareto) rank (Smale, 1973; Hamada et al., 2020).

To elaborate, recall the set:

∆n−1(x) :=
{
β ∈ ∆n−1 : ∇fβ(x) = 0

}
. (8)

Then, x is Pareto stationary if there is some β in ∆n−1(x), so that:∑
i∈[n]

βi∇fi(x) = 0,

and the rank of this set of gradients is at most n− 1. Since ∆n−1 does not contain any collinear
vectors, if ∆n−1(x) contains more than a single point, then the rank of the set of gradients must be
strictly less than n− 1. This leads us to the definition:

Definition 11 (Pareto genericity). Let {v1, . . . , vn} ⊂ Rd. This set is Pareto generic if:

β1v1 + · · ·+ βnvn = 0, for some β ∈ ∆n−1,

and the non-degeneracy condition holds: rank(v1, . . . , vn) = n− 1.

If ∇F (x) is Pareto generic, then ∆n−1(x) contains a unique β, so we immediately have:

Proposition 6 (Generic and weak implies strong preference stationarity). If ∇F (x) is Pareto
generic and x is weakly preference stationary, then x is preference stationary.

However, when the gradients ∇F (x) are not Pareto generic, then weak preference stationarity
can be strictly weaker. Let (x, β) where β ∈ ∆n−1(x) be weakly preference stationary, so that:

−∇f0(x)⊤
(
−∇2fβ(x)

−1∇F (x)⊤(β′ − β)
)︸ ︷︷ ︸

∇x∗(β)(β′−β)

≤ 0, ∀β′ ∈ ∆n−1.

We can simplify this by using the fact that ∇fβ(x) = ∇F (x)⊤β = 0. Then, one way for the
stationary condition to be fulfilled is for the underlined term to be normal to ∇f0(x):

−∇2fβ(x)
−1∇F (x)⊤β′ ∈ span

(
∇f0(x)

)⊥
, ∀β′ ∈ ∆n−1.

This statement has the following geometric interpretation. These vectors are contained in the Clarke
tangent cone of Pareto(F ) at x. If these are the only vectors in the tangent cone, then this above
condition states that −∇f0(x) is contained in the normal cone of Pareto(F ) at x.

But, in general, the tangent cone contains the union of subspaces:⋃
β∈∆n−1(x)

{
−∇2fβ(x)

−1∇F (x)⊤β′ : β′ ∈ ∆n−1
}
.

And so, when ∆n−1(x) does not contain a unique vector, the tangent cone can contain more vectors.
By selecting different β’s, we recover different slices of the tangent cone. This also means that even
if the above normality condition holds for one β, it may fail to hold for a different β̃ ∈ ∆n−1(x). In
this case, (x, β) is weakly preference stationary while (x, β̃) may not be.
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9.2.2 Insufficiency of first-order information

Proposition 3 (Necessary first-order conditions are trivial). Suppose that Stationary is necessary.
Then, it is trivial in the following sense: for any preference generic set of v0, . . . , vn ∈ Rd,

Stationary(v0, . . . , vn) = true.

Proof of Proposition 3 It suffices to show that there exist f0, F , and x⋆ such that x⋆ is preference
optimal and for i = 0, . . . , n:

vi = ∇fi(x⋆). (15)

And since x⋆ is preference optimal, any necessary stationary condition must accept:

Stationary(v0, . . . , vn) = true.

Without loss of generality, let x⋆ = 0 by an affine transformation. To construct f0 and F , we
can simply consider a family of positive-definite quadratics:

• Let the preference function f0 be:

f0(x) =
1

2
∥x+ v0∥2.

Notice that ∇f0(x∗) = v0.

• Let the objectives f1, . . . , fn share the same Hessian:

fi(x) =
1

2
∥A(x− zi)∥2,

where A ∈ Rd×d is full rank and zi ∈ Rd. Let H = A⊤A for short.

We show that we can set A and the zi’s so that x⋆ is preference optimal while Equation (15) holds.
By Lemma 6, the Pareto set is the convex hull C := conv(z1, . . . , zn). Notice that the choice of

H and vi’s determines the zi’s, since we require ∇fi(x∗) = vi, which expands to:

zi = −H−1vi, ∀i ∈ [n].

From convex optimization, x⋆ = 0 is preference optimal if (i) x⋆ ∈ C and (ii) C is normal to ∇f0.
Indeed, these two conditions can be fulfilled:

(i) Because v1, . . . , vn is assumed to be Pareto generic, zero is a convex combination of the vi’s.
As the zi’s are related to the vi’s by a linear transformation, this also implies that zero is a
convex combination of the zi’s (with the same set of convex weights).

(ii) We need to show that the subspace span(v1, . . . , vn) can be mapped into span(v0)
⊥ by the

map v 7→ −H−1v where H is positive definite. Lemma 7 shows that such a map H exists as
long as v0 /∈ span(v1, . . . , vn), which is assumed from preference genericity.

Thus, there exists f0 and F that is preference optimal at x⋆ with matching first-order information.
A necessary stationary condition must therefore be accepted. ■

Remark 2. Suppose that Stationary is not necessary, but that we can design some optimization
method that provably converges to a stationary point in {x : Stationary(x) = true}. Then, this also
means that there are settings in which the method provably avoids preference optimal points.
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In the remainder of this section, we prove Lemma 6 and Lemma 7 used above.

Lemma 6. Let f1, . . . , fn : Rd → R be positive-definite quadratics with a shared Hessian:

fi(x) =
1

2
∥A(x− zi)∥2,

where A ∈ Rd×d is full rank and zi ∈ Rd. Then, the Pareto set is the convex hull:

Pareto(f1, . . . , fn) = conv(z1, . . . , zn).

Proof. As the objectives f1, . . . , fn are strongly convex, optimality is equivalent to stationarity. Thus,
x ∈ Pareto(f1, . . . , fn) if and only if there exists some β ∈ ∆n−1 such that:

0 =
∑
i∈[n]

βi∇fi(x),

which, when expanded, states that:

(A⊤A)x = (A⊤A)
∑
i∈[n]

βizi.

But as A is invertible, this is equivalent to:

x =
∑
i∈[n]

βizi,

which is to say that x ∈ conv(z1, . . . , zn).

Lemma 7. Let U and V be linear subspaces of Rd such that U ∩ V ⊥ = {0}. Then, there exists some
positive definite map H : Rd → Rd such that H(U) ⊂ V .

Proof. If S ⊂ Rd is a subspace, let ΠS : Rd → Rd be the projection onto S. Define the map:

H := ΠV +ΠV ⊥ΠU⊥ .

Then H satisfies the following:

• H is positive definite. To see this, let 0 ̸= x ∈ Rd have decomposition x = x1 + x2, where
x1 ∈ U and x2 ∈ U⊥. Then:

x⊤Hx = x⊤1 ΠV x1 + 2x1ΠV x2 + x2ΠV x2︸ ︷︷ ︸
x⊤ΠV x

+x⊤1 ΠV ⊥x2 + x⊤2 ΠV ⊥x2︸ ︷︷ ︸
x⊤Π

V ⊥Π
U⊥x

= ∥ΠV x1∥2 + x⊤1 x2︸ ︷︷ ︸
0

+x1ΠV x2 + ∥x2∥2 ≥
1

2
∥ΠV x1 + x2∥2 > 0,

where the last inequality is strict because x ̸= 0 and U ∩ V ⊥ = {0}.

• H(U) ⊂ V . If x ∈ U , then by definition ΠU⊥x = 0 so that Hx = ΠV x ∈ V .
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9.2.3 An example of a first-order stationarity condition avoiding optimality

In this section, we discuss the first-order stationarity condition of Ye and Liu (2022), defined to as
stationarity with respect to their optimization dynamics, Pareto navigating gradient descent (PNG).
We show that it fails to be a necessary condition for preference optimality.

Despite that, their condition and dynamics have appealing properties since (i) they do not require
second-order information, which is computationally more expensive, and (ii) their dynamics largely
satisfies what they call the Pareto improvement property, which ensures that each objective enjoys
monotonic improvement during optimization:

d

dt
fi(xt) ≤ 0, for all i ∈ [n].

As the goal of Pareto improvement can be at odds with preference optimality, this leads to an open
question: when and how should we balance Pareto improvement with preference optimality?

Definition 12 (PNG stationarity, Ye and Liu (2022)). Let c > 0. Define the PNG vector vc(x):

vc(x) := argmin
v∈Rd

1

2
∥∇f0(x)− v∥2

s.t. ∇fi(x)⊤v ≥ c, for all i ∈ [n].

Let ε > 0. A vector x ∈ Rd is (c, ε)-PNG stationary if vc(x) = λ∇f0(x) for some λ ≤ 0 and:

min
β∈∆n−1

∥∇fβ(x)∥ = ε.

In the following example, we consider a two-dimensional example with two objectives. Let the
standard basis be denoted e1, e2 ∈ R2, and let the objective functions f1, f2 : R2 → R be defined:

f1(x) =
1

2
∥A(x+ e1)∥2 and f2(x) =

1

2
∥A(x− e1)∥2, (16)

where A ∈ R2×2 is full-rank. Lemma 6 shows that the Pareto set of the objectives Pareto(f1, f2) is
the line segment from −e1 to e2. That is, the Pareto set is invariant under changes of A. However,
the PNG stationarity condition is not, since the constraint set changes with A:{

v : (x+ e1)
⊤Hv ≥ c

}
∩
{
v : (x− e1)

⊤Hv ≥ c
}
,

where H = A⊤A. Due to this discrepancy, PNG stationary points can fail to be preference optimal.

Example 1. Let the preference function be: f0(x) =
1
2∥x − e2∥2, and let the objectives f1, f2 be

defined as in the above Equation (16) with:

H = A⊤A =

 1 1

1 2

 . (17)

Then, the unique preference optimal point is the origin 0. However, the (c, ε)-PNG stationary point
is bounded away from 0. It even converges to e1 as the error tolerance ε goes to zero.
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Proof. Consider the PNG vector vc(x) when x is in the region:

C =
{
x ∈ R2 : ∇f0(x)⊤∇fi(x) < 0, for i = 1, 2

}
∩
{
e⊤2 x > 0

}
.

Here, both constraints ∇fi(x)⊤v ≥ c are active in the constrained optimization problem that defines
the PNG vector; and so, vc(x) is the vertex point of the constraint set, satisfying:

∇f1(x)⊤vc(x) = ∇f2(x)⊤vc(x) = c.

Expanding out the gradients, we obtain:

(x+ e1)
⊤Hvc(x) = c and (x− e1)

⊤Hvc(x) = c.

This implies that e⊤1 Hvc(x) = 0. Now suppose that xPNG ∈ C is PNG stationary. Then, by definition,
it must satisfy ∇f0(xPNG) ∈ span

(
vc(xPNG)

)
, so it has the form:

xPNG = e2 + λu, where e⊤1 Hu = 0.

Whenever the standard basis vectors are not eigenvectors of H, the line e2+λu intersects Pareto(f1, f2)
away from 0. In this example, we let A satisfy H = A⊤A where H is given by Equation (17).

Then, the line e2 + λu runs through e1 and e2. We can verify that C contains all points on this
line between its two endpoints. When x = e2 + λ(e1 − e2) and λ ∈ (0, 1), we have:

∇f0(x)⊤∇f1(x) = (x− e2)
⊤H(x+ e1)

= λ(e1 − e2)
⊤H

(
(1 + λ)e1 + (1− λ)e2

)
= −λ(1− λ),

and similarly, we have:

∇f0(x)⊤∇f2(x) = (x− e2)
⊤H(x− e1)

= λ(e1 − e2)
⊤H

(
(λ− 1)(e1 − e2)

)
= −λ(1− λ).

This implies that for all c > 0 and ε > 0, the (c, ε)-PNG stationary point is bounded away from 0,
converging to e1 as ε goes to zero.

9.3 Implications of smoothness assumptions

Lemma 1 (Size of Pareto set). Suppose F satisfies Assumption A. Then R ≤
√
κr, where:

R := diam
(
Pareto(F )

)
≡ sup

{
∥x− x′∥2 : x, x′ ∈ Pareto(F )

}
.

Proof of Lemma 1 Because each fi is µ-strongly convex and L-Lipschitz smooth, so too is the
convex combination fβ . This implies the upper and lower bounds:

1

2
µ
∑
i∈[n]

βi∥x− xi∥22 ≤ fβ(x) ≤
1

2
L
∑
i∈[n]

βi∥x− xi∥22.

It follows that the minimizer of fβ is bounded:

fβ(xβ) ≤
1

2
Lr2.
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On the other hand, if a point ∥x − xi∥ > 2s for some i ∈ [n], then by reverse triangle inequality,
∥x− xj∥ > s for all j ∈ [n]. This implies that:

∥x− xi∥ > 2s =⇒ fβ(x) >
1

2
µs2.

It follows that if ∥x− xi∥ > 2
√

L/µ for some i, then x is not a Pareto optimal point. ■

Lemma 2 (Smoothness of x∗). Suppose F satisfies Assumptions A,B. Then, x∗ : ∆n−1 → Rd is
M0-Lipschitz continuous and has M1-Lipschitz continuous gradients, where:

M0 := κR and M1 := 2κ2R

(
1 +

LHR

µ

)
.

Proof of Lemma 2 That x∗ is Lipschitz continuous with Lipschitz continuous gradients follows
from the following two lemmas:

Lemma 8. Let F ≡ (f1, . . . , fn) be a set of twice-differentiable objective functions and let f0 be a
smooth preference function. Suppose the objectives are L-Lipschitz smooth and µ-strongly convex:

µI ⪯ ∇2fi ⪯ LI.

Let R := diam
(
Pareto(F )

)
. Then, the map x∗ : (∆n−1, ℓ1)→ (Rd, ℓ2) is LR/µ-Lipschitz.

Proof. Recall from Equation (5) that ∇x∗(β) = −∇2fβ(xβ)
−1∇F (xβ)

⊤. The following holds:

∥∇x∗(β)∥1,2
(i)

≤
∥∥∇2fβ(xβ)

−1
∥∥
2
·
∥∥∇F (xβ)

⊤∥∥
1,2

(ii)

≤ 1

µ
· LR,

where (i) is a property of the ∥ · ∥1,2-norm, (ii) uses µI ⪯ ∇2fβ(xβ) and Lemma 10.

Lemma 9. Let β, β′ ∈ ∆n−1. Then,

∥∥∇x∗(β)−∇x∗(β′)
∥∥
1,2
≤ 2L2R

µ2

(
1 +

LHR

µ

)
· ∥β − β′∥1.

Proof. By definition, we have:∥∥∇x∗(β)−∇x∗(β′)
∥∥
1,2

=
∥∥−∇2fβ(xβ)

−1∇F (xβ)
⊤ +∇2fβ′(xβ′)−1∇F (xβ′)⊤

∥∥
1,2

.

We can add and subtract ∇2fβ(xβ)
−1∇F (xβ′)⊤ inside the norm on the right-hand side (RHS):

(RHS) =
∥∥−∇2fβ(xβ)

−1 ·
[
∇F (xβ)−∇F (xβ′)

]⊤
+
[
∇2fβ(xβ)

−1 −∇2fβ′(xβ′)−1
]
· ∇F (xβ′)⊤

∥∥
1,2

.

We can bound the two terms in the norm separately. For the first:

∥∥−∇2fβ(xβ)
−1 ·

[
∇F (xβ)−∇F (xβ′)

]⊤∥∥
1,2

(i)

≤ L

µ
· ∥xβ − xβ′∥

(ii)

≤ L2R

µ2
∥β − β′∥1,
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where (i) follows the same argument as Lemma 3, and (ii) applies Lemma 8. For the second term,
we can add and subtract ∇2fβ′(xβ)

−1∇F (xβ′)⊤ to obtain:∥∥[∇2fβ(xβ)
−1 −∇2fβ′(xβ′)−1

]
· ∇F (xβ′)⊤

∥∥
1,2

=
∥∥[∇2fβ(xβ)

−1 −∇2fβ′(xβ)
−1 +∇2fβ′(xβ)

−1 −∇2fβ′(xβ′)−1
]
· ∇F (xβ′)⊤

∥∥
1,2

≤
(

L

µ2
∥β − β′∥1 +

LH

µ2

LR

µ
∥β − β′∥1

)
· LR.

where ∇2fβ(x)
−1 −∇2fβ′(x)−1 is bounded by Lemma 12; ∇2fβ(x)

−1 −∇2fβ(x
′)−1 is bounded by

Lemma 11 and Lemma 8; and ∥∇F (xβ′)⊤∥1,2 is bounded by Lemma 10.

The result follows by substituting in the definitions of M0 and M1. ■

Lemma 3 (Approximability of ∇x∗). If F satisfies Assumptions A,B. Then:

∥∇x∗(β)− ∇̂x∗(x, β)∥1,2 ≤
1

µ

M1

2M0
∥∇fβ(x)∥2.

Proof. Recall that xβ := x∗(β). Then, by definition, we have:∥∥∇̂x∗(x, β)−∇x∗(β)∥∥
1,2

=
∥∥−∇2fβ(x)

−1∇F (x)⊤ +∇2fβ(xβ)
−1∇F (xβ)

⊤∥∥
1,2

.

We can add and subtract ∇2fβ(x)
−1∇F (xβ)

⊤ inside the norm on the right-hand side (RHS) to get:

(RHS) =
∥∥−∇2fβ(x)

−1 ·
[
∇F (x)−∇F (xβ)

]⊤
+
[
∇2fβ(x)

−1 −∇2fβ(xβ)
−1

]
· ∇F (xβ)

⊤∥∥
1,2

(i)

≤ L

µ
· ∥x− xβ∥+

LH

µ2
∥x− xβ∥ · LR

(ii)

≤ L

µ2

(
1 +

LHR

µ

)
· ∥∇fβ(x)∥,

where (i) the first blue term uses µI ⪯ ∇2fβ and the L-Lipschitz smoothness of the objectives, while
the bracket orange term follows from Lemma 11 and the final purple term follows from Lemma 10,
and (ii) uses the µ-strong convexity of fβ .

Lemma 4 (Approximability of ∇(f0 ◦ x∗)). If F and f0 satisfy Assumptions A,B,C. Then:

∥∥∇(f0 ◦ x∗)(β)⊤ −∇f0(x)⊤∇̂x∗(x, β)∥∥1,2 ≤ 1

µ

(
M1

2M0
∥∇f0(x)∥2 + L0M0

)
∥∇fβ(x)∥2.

We denote the right-hand side by err∇f0(x, β).

Proof of Lemma 4 Add and subtract ∇f0(x)⊤∇x∗(β) within the norm on the right-hand side:

(RHS) =
∥∥∥(∇f0(xβ)⊤ −∇f0(x))⊤∇x∗(β) +∇f0(x)⊤(∇x∗(β)− ∇̂x∗(x, β))∥∥∥

1,2

≤ L0M0∥xβ − x∥+ ∥∇f0(x)∥ ·
1

µ

M1

2M0
∥∇fβ(x)∥2,
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where we use the fact that f0 is L0-Lipschitz smooth by Assumption C, that x∗ is M0-Lipschitz
continuous by Lemma 2, and that ∥∇x∗(β)− ∇̂x∗(β)∥1,2 is bounded by Lemma 3. The result follows
from upper bounding ∥xβ − x∥ by µ-strong convexity of fβ :

∥xβ − x∥ ≤ 1

µ
∥∇fβ(x)∥.

■

Lemma 5 (Verifiability of approximate stationarity). Let F and f0 satisfy Assumptions A,B,C.
Then (x̂, β̂) is (ε0, ε)-preference stationary if ∥∇fβ̂(x̂)∥2 ≤ ε, and for some x ∈ Rd and α ∈ (0, 1),

1. an α · ε0-approximate stationary condition holds:

−∇f0(x)⊤∇̂x∗(x, β̂)(β′ − β̂) ≤ α · ε0∥β′ − β̂∥1, (13)

2. an error bound holds:
err∇f0(β̂, x) ≤ (1− α) · ε0.

Proof of Lemma 5 For (ε, ε0)-preference stationarity, we require that ∥∇fβ̂(x̂)∥2 ≤ ε and:

∇f0(xβ̂)
⊤∇x∗(β̂)(β′ − β̂) + ε0 · ∥β′ − β̂∥1 ≥ 0.

Then by Lemma 4, the left-hand side is lower bounded:

∇f0(x)⊤∇̂x∗(x, β̂)(β′ − β̂)− err∇f0(β̂, x) · ∥β′ − β̂∥1 + ε0∥β′ − β̂∥1,

= ∇f0(x)⊤∇̂x∗(x, β̂)(β′ − β̂) + α · ε0∥β′ − β̂∥1︸ ︷︷ ︸
≥0

+(1− α) · ε0∥β′ − β̂∥1 − err∇f0(β̂, x) · ∥β′ − β̂∥1︸ ︷︷ ︸
≥0

,

for α ∈ (0, 1). The two terms are lower bounded by zero by conditions (1) and (2), respectively. ■

9.4 Convergence for Pareto majorization-minimization

Theorem 1 (Convergence of PMM). Let F and f0 satisfy Assumptions A,B,C. Fix 0 < ε1/2 ≤ ε0 ≤ 1.
Let x̂β and β̂ be the approximate solutions that are returned by the black-box optimizer for g( · ;x, β)
and fβ(·), defined in Equation (14) and Equation (3), respectively:

β̂ ← ̂argmin
β′∈∆n−1

g(β′;x, β) and x̂β ← ̂argmin
x∈Rd

fβ(x).

Given constants c1, c2 > 0, suppose that the black-box optimizer achieves the following guarantees:

1. the approximate minimizer β̂ is O(ε0)-approximately stationary:

−∇g(β̂;x, β)v ≤ c1 · ε0∥v∥2, ∀v ∈ T∆n−1(β).

2. the approximate minimizer x̂β is an O(ε20)-approximate solution:

∥∇fβ(x̂β)∥ ≤ c2 · ε.

Let (xk, βk)k be the iterates of Algorithm 1. Then, there exist c1(f0, F ) and c2(f0, F ) bounded away
from zero and some K such that (f0 ◦ x∗)(βk) is monotonically decreasing for k ∈ [K] and (xK , βK)
is an (ε0, ε)-preference stationary point. Furthermore, K is no more than O(ε−2

0 ):

K ≤
2µg ·

(
f∗ − f∗

)
c21 · ε20

,

where f∗ := max f0(x) and f∗ = min f0(x) are optimized over the compact set Pareto(F ).
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Proof of Theorem 1 Fix k > 1. For short, we let:

(x, β) ≡ (xk−1, βk−1) and (x̂, β̂) ≡ (xk, βk).

Claim. At each iteration, either (i) the preference improves by at least a constant:

f0(xβ̂)− f0(xβ) ≤ −
1

2

c1
µg
· ε20,

or (ii) the point (x̂, β̂) is (ε0, ε)-preference stationary.

Assuming the claim holds, the theorem immediately follows: if the algorithm in K steps has not
found an (ε0, ε)-preference stationary point, then the value f0(xβk

) must decrease every iteration by
a constant. But because f0 ◦ x∗ is lower bounded over ∆n−1 by f∗, this can happen at most:

2µg ·
(
f∗ − f∗

)
c21 · ε20

times.

Proof of the claim. Let β∗ := argminβ′∈∆n−1 g(β′;x, β). Lemma 13 shows that an approximate
stationary point β̂ of a strongly convex function is close to the exact stationary point β∗:

∥β̂ − β∗∥2 ≤
c1ε0
µg

=: δ, (18)

where we let δ denote this constant for short.
We can analyze β̂ through β∗. There are two cases, leading to either (1) O(ε0)-preference

stationarity or (2) O(ε20)-constant descent. The two cases depend on the suboptimality of β.

Case 1: ∥β∗ − β∥2 < 2δ. Here, β is fairly close to the optimum β∗ of the surrogate. We show that
the approximate stationarity of β̂ with respect to the surrogate implies approximate preference
stationarity. We do so via Lemma 5, which states that (x̂, β̂) is (ε0, ε)-preference stationary provided:

∥∇fβ̂(x̂)∥2 ≤ ε (19)

−∇f0(x)⊤∇̂x∗(x, β̂)(β′ − β̂) ≤ 1

2
ε0∥β′ − β̂∥1, ∀β′ ∈ ∆n−1 (20)

err∇f0(x, β̂) ≤
1

2
ε0 (21)

While Equation (19) is immediate from our choice of c2, defined in the last section of the proof,
the others do not follow automatically from approximate stationarity with respect to the surrogate:
the surrogate is derived from local information at (x, β), while we would like guarantees at (x, β̂).
But because β∗ is close to both β and β̂, we can control all of these. By triangle inequality:

∥β − β̂∥2 ≤ ∥β − β∗∥2 + ∥β∗ − β̂∥2 < 3δ, (22)

combining Equation (18) and the assumption that ∥β∗ − β∥2 < 2δ.
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We now show Equation (20). We have for all β′ ∈ ∆n−1,

−∇f0(x)⊤∇̂x∗(x, β̂)(β′ − β̂)

(i)

≤ −∇f0(x)⊤∇̂x∗(x, β)(β′ − β̂) + ∥∇f0(x)⊤(∇̂x∗(x, β̂)− ∇̂x∗(x, β))∥∞ · ∥β′ − β̂∥1
(ii)

≤ c1ε0 · ∥β′ − β̂∥1 + ∥∇f0(x)∥2 ·
L

µ2
∥β − β̂∥2 · ∥β′ − β̂∥1

(iii)

≤ 1

2
· 2

(
c1ε0 +

L∥∇f0(x)∥2
µ2

· 3δ
)
· ∥β′ − β̂∥1 (23)

(iv)

≤ 1

2
ε0 · ∥β′ − β̂∥1,

where (i) adds and subtracts∇f0(x)⊤∇̂x∗(x, β)(β′−β̂) and applies Hölder’s inequality, (ii) substitutes
in Condition 1 for the first term and bounds the second via Lemma 12, and (iii) bounds ∥β − β̂∥2
using Equation (22), and (iv) applies the definition of c1, set in the last section of the proof.

To show Equation (21), we have:

err∇f0(x, β̂)
(i)
= err∇f0(x, β) +

1

µ

(
M1

2M0
∥∇f0(x)∥2 + L0M0

)(
∥∇fβ̂(x)∥2 − ∥∇fβ(x)∥2

)
(ii)

≤ err∇f0(x, β) +
1

µ

(
M1

2M0
∥∇f0(x)∥2 + L0M0

)
∥∇F (x)⊤∥2 · ∥β̂ − β∥2

(iii)

≤ 1

2
· 2
µ

(
M1

2M0
∥∇f0(x)∥2 + L0M0

){
c2ε+ ∥∇F (x)⊤∥2 · 3δ

}
(24)

(iv)

≤ 1

2
ε0.

where (i) expands out err∇f0 , (ii) uses the fact that β 7→ ∥∇F (x)⊤β∥2 is ∥∇F (x)⊤∥2-Lipschitz in β
with respect to the ℓ2-norm, (iii) applies the definition of err∇f0 and the inequality Equation (22),
and (iv) follows by definition of c1 and c2, set in the last section of the proof.

As Equations (19) to (21) hold, Lemma 5 shows that (x̂, β̂) is (ε0, ε)-preference stationary.

Case 2: ∥β∗ − β∥2 ≥ 2δ. Here β is suboptimal and β∗ achieves a large descent:

f0(xβ∗)− f0(xβ)
(i)

≤ g(β∗;x, β)− f0(xβ)

(ii)

≤ err∇f0(x, β)−
1

2
µg∥β∗ − β∥22

(iii)

≤ 1

µ

(
M1

2M0
∥∇f0(x)∥2 + L0M0

)
c2ε

2
0 − 2µgδ

2 (25)

(iv)

≤ −3

2
µgδ

2, (26)

where (i) uses the majorizing property of g, (ii) follows from Lemma 14, (iii) applies the definition of
err∇f0(x, β) along with the assumption that ε ≤ ε20, and (iv) applies the definition of c2.
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The large descent also carries over to β̂ because it is approximately stationary:

f0(xβ̂)− f0(xβ)
(i)

≤ g(β̂;x, β)− f0(xβ)

(ii)
= g(β∗;x, β)− f0(xβ) +

(
g(β̂;x, β)− g(β∗;x, β)

)
(iii)

≤ −3

2
µgδ

2 + c1ε0 · δ = −1

2

c1
µg
· ε20,

where (i) uses the majorizing property of g, (ii) adds and subtracts g(β∗;x, β) and (iii) applies
Equation (26) and Lemma 13.

Thus, the preference improves by at least a constant. To finish proving the claim, we need to
verify that it is indeed possible to set c1 and c2 appropriately.

Setting c1 and c2: we tabled a few inequalities above. Recall:
For Equation (19), we need:

c2 ≤ 1.

For Equation (23), we need:

2

(
c1ε0 +

3L∥∇f0(x)∥2
µ2

· c1ε0
µg

)
≤ ε0.

For Equation (24), we need:

2

µ

(
M1

2M0
∥∇f0(x)∥2 + L0M0

){
c2ε+ 3∥∇F (x)⊤∥2 ·

c1ε0
µg

}
≤ ε0.

For Equation (25), we need:

1

µ

(
M1

2M0
∥∇f0(x)∥2 + L0M0

)
c2ε

2
0 ≤

1

2
µg

(
c1ε0
µg

)2

.

It is unenlightening but straightforward to verify that it suffices to set:

c1 ·max

{
2 +

6L∥∇f0(x)∥2
µ2 · µg

,
12

µ · µg

(
M1

2M0
∥∇f0(x)∥2 + L0M0

)
· ∥∇F (x)⊤∥2

}
≤ 1

c2 ·max

{
1,

2

µ

(
M1

2M0
∥∇f0(x)∥2 + L0M0

)
·
(
2 ∨ µg

c21

)}
≤ 1,

where a ∨ b := max{a, b}.
A concerned reader may wonder whether c1 and c2 may be bounded away from zero, as claimed in

the theorem statement: we need to ensure that ∥∇f0(x)∥2 and ∥∇F (x)⊤∥2 do not blow up. Indeed,
this holds because the iterates xk remain within a constant distance of the Pareto set. In particular,
since c2 ≤ 1, by Condition 2, we have that the kth iterate satisfies:

∥xk − xβk
∥ ≤ ε

µ
,

which follows from µ-strong convexity of fβk
. Thus, all iterates of the algorithm are within ε/µ of

the Pareto set and also satisfy for all k, k′ ∈ N:

∥xk − xk′∥ ≤ R+ 2ε/µ.
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Then, by L0-Lipschitz smoothness, we can bound:

∥∇f0(xk)∥ ≤ ∥∇f0(x1)∥+ ∥∇f0(xk)−∇f0(x1)∥
≤ ∥∇f0(x1)∥+ L0 · (R+ 2ε/µ).

Similarly, by L-Lipschitz smoothness, we also have:

∥∇F (xk)
⊤∥2 ≤ ∥∇F (x1)

⊤∥2 + ∥∇F (xk)
⊤ −∇F (x1)

⊤∥2
≤ ∥∇F (x1)

⊤∥2 + nL · (R+ 2ε/µ).

■

9.4.1 Analytic lemma: gradient bound

Lemma 10. Let R := diam
(
Pareto(F )

)
. Then for any xβ = x∗(β),∥∥∇F (xβ)

⊤∥∥
1,2
≤ LR.

Proof. By definition, we have:∥∥∇F (xβ)
⊤∥∥

1,2
= sup

∥z∥1=1

∥∥∥∥ ∑
i∈[n]

zi∇fi(xβ)
∥∥∥∥
2

(i)

≤ sup
∥z∥1=1

∑
i∈[n]

|zi| · ∥sign(zi) · ∇fi(xβ)∥2

(ii)

≤ max
i∈[n]

∥∇fi(xβ)∥2

(iii)

≤ max
i∈[n]

L∥x− xi∥2,

where (i) follows from Jensen’s inequality, (ii) holds because the max is no smaller than the average,
(iii) applies L-Lipschitz smoothness. In particular, let xi = argmin fi(x), so that ∇fi(xi) = 0. Then:

∥∇fi(xβ)−∇fi(xi)∥2 ≤ L∥xβ − xi∥2.

The result holds because xβ and all xi’s are contained in Pareto(F ).

9.5 Analytic lemmas: matrix inverses

Lemma 11. Let M : Rd → Rd×d be L-Lipschitz satisfying M(x) ⪰ µI where Rd has the ℓ2-norm
and Rd×d the operator norm. Then, the map x 7→M(x)−1 is L/µ2-Lipschitz.

Proof. For short, let us denote M(x) by Mx. Note that I = (M ′
x +Mx −M ′

x)M
−1
x , so that:

M−1
x −M−1

x′ = M−1
x −M−1

x′
(
Mx′ +Mx −Mx′

)
M−1

x

= M−1
x −M−1

x −M−1
x′

(
Mx −Mx′

)
M−1

x = −M−1
x′

(
Mx −Mx′

)
M−1

x ,

which is series of unenlightening algebraic manipulations. But now, we may apply L-Lipschitz
continuity to obtain ∥Mx−Mx′∥ ≤ L∥x−x′∥ and the µ-lower bound to obtain ∥M−1

x ∥, ∥M−1
x′ ∥ ≤ µ−1.

Together, we obtain L/µ2-Lipschitz continuity:∥∥M(x)−1 −M(x′)−1
∥∥ ≤ L

µ2
∥x− x′∥.

28



Lemma 12. Let M1, . . . ,Mn be positive-definite matrices in Rd×d equipped with the operator norm,
and let ∆n−1 be equipped with the ℓ1 norm. Suppose the following holds:

µI ⪯M1, . . . ,Mn ⪯ LI.

Then, the map β 7→M−1
β where Mβ :=

∑
i∈[n] βiMi has bounded derivative ∥∇βM

−1
β ∥1,2 ≤ L/µ2.

Proof. We can compute the derivative of the above map:

∇βM
−1
β = −M−1

β

(
∇βMβ

)
M−1

β ,

where ∇βMβdβ = Mdβ. The upper bound on the Mi’s implies that ∥∇βMβ∥1,2 ≤ L. And on the
other hand, the lower bound implies that ∥M−1

β ∥2 ≤ µ−1.

9.5.1 Analytic lemmas: constrained optimization of strongly convex functions

Lemma 13. Let f : Rn → R be smooth and convex and let C ⊂ Rn be a convex constraint set.
Suppose that β∗, β̂ ∈ C are stationary and ε-approximately stationary, respectively:

−∇f(β∗)⊤(β − β∗) ≤ 0 and −∇f(β̂)⊤(β − β̂) ≤ ε∥β − β̂∥, ∀β ∈ C.

Then, f(β̂)− f(β∗) ≤ ε∥β̂ − β∗∥. Furthermore, if f is µ-strongly convex, then ∥β̂ − β∗∥ ≤ ε/µ.

Proof. For the first part, we apply the mean value theorem, which states that there exists some β
that is a convex combination of β̂ and β∗ such that:

f(β̂)− f(β∗)
(i)
= ∇f(β)⊤(β̂ − β∗)

(ii)

≤ ∇f(β̂)⊤(β̂ − β∗)

(iii)

≤ ε∥β̂ − β∗∥,

where (i) applies the mean value theorem, (ii) uses the monotonicity of gradients of convex functions:(
∇f(β̂)−∇f(β)

)⊤
(β̂ − β) ≥ 0

and that β̂ − β = λ(β̂ − β∗) for some λ ∈ [0, 1], and (iii) applies the ε-stationarity condition.
For the second part, by strong convexity, we have on the one hand:(

∇f(β̂)−∇f(β∗)
)⊤

(β̂ − β∗) ≥ µ∥β̂ − β∗∥2.

And on the other, by stationarity and ε-stationarity, we have that:(
∇f(β̂)−∇f(β∗)

)⊤
(β̂ − β∗) ≥ ε∥β̂ − β∗∥.

Dividing through by ∥β̂ − β∗∥ yields the result.

Lemma 14. Let C ⊂ Rn be a convex constraint set with β ∈ C, and let Q : C → R be a quadratic:

Q(β′) = c+ v⊤(β′ − β) +
1

2
C∥β′ − β∥2, (27)

where c ∈ R, v ∈ Rn, and C > 0. Let β∗ ∈ C minimize Q. If ∥β∗ − β∥ ≥ ε > 0, then:

Q(β∗)−Q(β) ≤ −1

2
Cε2.
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Proof. Define the quadratic function q : R→ R by:

q(λ) = c+ λv⊤(β∗ − β) +
1

2
Cλ2∥β∗ − β∥2

= c+
1

2
C∥β∗ − β∥2λ

(
λ− 2λ∗) (28)

where λ∗ = − v⊤(β∗−β)
C∥β∗−β∥2 minimizes q. Restricting Q to the line between β and β∗, we get:

Q
(
β + λ(β∗ − β)

)
= q(λ),

for λ ∈ [0, 1]. This follows by expanding the definition of Q.
Notice that q monotonically decreases on the interval 0 ≤ λ ≤ λ∗, and also that q monotonically

increases for λ > λ∗. Because Q(β∗) = q(1) minimizes Q on the convex set C, q must be descending
on λ ∈ [0, 1]. Thus, 1 ≤ λ∗. It follows that 1− 2λ∗ ≤ −1. Plugging in into Equation (28), we have:

Q(β∗) = q(1) ≤ c− 1

2
C∥β∗ − β∥2.

Applying Q(β0) = c and ∥β∗ − β∥ ≥ ε yields the result.
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