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Abstract

In this work, we study the task of multi-singer separation in a cappella music,
where the number of active singers varies across mixtures. To address this, we
use a power set-based data augmentation strategy that expands limited multi-
singer datasets into exponentially more training samples. To separate the singers
we introduce SepACap, an adaptation of SepReformer, a state-of-the-art speaker
separation model architecture. We adapt the model with periodic activations and
a composite loss function that remains effective when stems are silent, enabling
robust detection and separation. Experiments on the JaCappella dataset demonstrate
that our approach achieves state-of-the-art performance in both full-ensemble and
subset singer separation scenarios, outperforming spectrogram-based baselines
while generalizing to realistic mixtures with varying numbers of singers.

1 Introduction

The field of music source separation has recently seen rapid progress [5, 17, 12, 22], primarily
focusing on separating different instruments from each other by learning spectral masks that isolate
the desired source from the mixture. In contrast, separating multiple singers in purely vocal (a
cappella) recordings remains underexplored. A cappella ensembles range from small groups (duets
and quartets) to chamber choirs, often organized by part (soprano, alto, tenor, and bass), as well as
subset variants [15, 2, 8]. These recordings exhibit dense harmonic overlap, frequent unison/octave
doubling within a part, voice crossing, vibrato and portamento, tightly aligned consonant onsets,
and breath and sibilant noise. These properties reduce timbral diversity and make source separation
more challenging than instrument-wise separation [4]. Contemporary a cappella may also include
vocal percussion or beatboxing, further increasing spectral overlap despite all sources being human
voices [6, 23].

Historically, research on music source separation has been broadly split into two categories: frequency-
based masking and direct waveform modeling. In the time-frequency domain, mask-based approaches
predict source-specific masks applied to the mixture, where early CNN and RNN models have
been surpassed by Transformer architectures that better capture spectral structure. Band-Split
RoFormer [22] interleaves time and frequency Transformers with a subband projection, winning
the Sound Demixing Challenge 2023 [7], while Mel-Band RoFormer [22] replaces heuristic bands
with mel-scale projections to yield overlapping subbands aligned with perception, improving vocal
separation and melody transcription. TF-Locoformer [18] further shows that local convolution plus
global Transformer modeling in the time-frequency domain outperforms dual-path RNNs. In contrast,
waveform-domain methods avoid masks and reconstruct sources directly: Conv-TasNet [11] learns
a latent time-domain encoder and decoder, Demucs [5] and hybrid-Demucs [17] adopt a U-net
waveform autoencoder to separate instrument stems. Compared to instrument separation, the field
of singer separation has received comparably less attention despite applications in transcription,
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remixing, and choir analysis. Furthermore, multi-singer datasets are limited: JaCappella [14] contains
six vocal stems, containing a total of 34 minutes gathered from 35 songs across diverse genres, while
choral and ensemble resources are typically even more limited, such as the Dagstuhl ChoirSet [16]
containing choral singing with 7 minutes from 3 songs, and ESMUC Choir [3] containing 31 minutes
of music from 3 songs.

In this work, we present SepACap, an adaptation of the recently proposed SepReformer [20], a
state-of-the-art speaker separation model, for the a cappella setting where the number of active singers
may vary across mixtures. We adapt the model by (i) introducing periodic activations [25] as we find
them to perform better compared to the default ReLU activations; (ii) replacing the default training
loss with a silence-aware composite objective that remains well-defined when stems are absent,
combining waveform, multi-scale mel, and multi-resolution spectral losses; and (iii) coupling the
model with a power set-based data augmentation scheme that creates mixtures for all subsets of stems,
enabling joint separation and detection of active singers. We evaluate SepACap on JaCappella [14]
in two scenarios: all-stems and subset-stems, and report both separation quality and silent-stem
suppression quality, along with detection metrics. Across these settings, SepACap outperforms strong
spectrogram-masking and waveform baselines, achieving state-of-the-art results in full-ensemble
separation while markedly reducing bleed-through and correctly outputting silence for inactive stems.

Our contributions can be summarized as follows:

• We propose SepACap, an a cappella source separation model achieving state-of-the-art
performance on multi-singer separation while operating in the waveform domain.

• To increase available training data, and to enable model generalizability to subset singer
separation, we use a power set-based data augmentation method that transforms a standard
multi-singer dataset into exponentially more training samples, including cases with absent
singers, enabling more robust separation performance.

• We extend the loss function to allow for stable training with empty stems, ensuring that
models operating on the waveform learn to handle silent signals in the data.

2 Methodology

Model. To separate arbitrary singers in an a cappella setting, we introduce SepACap, an adaptation
of SepReformer [20], a recently proposed state-of-the-art speaker separation model. We found that
updating the existing ReLU activation functions to the SNAKE activation [25] markedly increased
model performance. Additionally, we changed the training objective from SNR-based training
to a composite time and time-frequency loss. Many separation models from the speech domain
use a variant of signal-to-noise ratio (SNR) or signal-to-distortion ratio (SDR) as their loss during
training [20, 21, 24], such as the scale invariant SDR (SI-SDR) [10] defined as

SI-SDR := 10 log10
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∥s∥ s− ŝ
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where s is the target signal and ŝ is the predicted signal. The problem when using SI-SDR as a
loss function is that, for stems without a signal, SI-SDR provides no informative gradient, making
it ineffective as a training objective in such cases. Therefore, we utilize a different class of losses
that provide a similar information level as the SI-SDR loss, but do not rely on a signal always being
present. Therefore, we propose to use a combination of three different losses. We use an L1 loss on
the waveform as well as a multi-scale Mel loss, which measures the L1 distance between log-mel
spectrograms. We additionally use a spectral loss, which combines L1 losses on magnitude and log-
magnitude STFT features to capture spectral consistency across resolutions. This loss combination
has been effectively applied in the audio compression-reconstruction domain [9]. We find that this loss
combination works well and demonstrate its successful transfer to the task of a cappella separation.

Data Augmentation. Since our model is designed to handle arbitrary subsets of sources, we construct
training data by generating mixtures corresponding to the power set of available stems. This yields
an exponential increase in the number of possible separation targets, covering both full mixtures
and cases where some stems are absent. To make this method computationally feasible, we further
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segment the audio into short fixed-length snippets, which both increases the number of training
samples and reduces memory requirements during training.

3 Experiments

Setup. We use the JaCappella dataset [14] to train and evaluate SepACap and baseline approaches.
The dataset provides Japanese a cappella music and their 6 corresponding stems (Alto, Bass, Lead
Vocal, Soprano, Tenor, and Vocal Percussion). Using the data augmentation strategy discussed in
Section 2, we increase the dataset size to 105k samples up from the original 35 music clips. In terms
of duration, the augmentation strategy increases the dataset duration from 0.57 hours to 145h hours.

We train SepACap on 4-second snippets of the augmented JaCappella dataset. The model is designed
to separate up to six stems directly in the waveform domain. For training, we adopt the composite
loss setup described in Section 2, which combines time-domain and spectral reconstruction objectives.
The spectral loss operates at three STFT window lengths (512, 1024, and 2048), and the mel loss
spans seven bins (5, 10, 20, 40, 80, 160, and 320) with window lengths of 32, 64, 128, 256, 512,
1024, and 2048. We empirically found that 0.3, 0.7, and 1.0 as the weights for the spectral loss, the
mel loss, and the waveform loss, respectively, work well. Additionally, as a baseline comparison we
train a Mel-Band RoFormer model [22] on the same dataset.2

We evaluate our model in two settings. First, we assess model performance when all stems are
present. In this setting we can directly compare against prior work DPTNet [1], X-UMX [19], and
MRDLA [13], by reporting the SI-SDR-improvement (SDRi), defined as

SI-SDR-improvement = SI-SDRPred − SI-SDRMixture (2)

and average the results across stems. Second, we evaluate the subset condition, where only a subset
of stems is present in the mixture. In this setting, the model must both separate active sources and
correctly output silence for absent sources. To capture this dual objective, we use two complementary
metrics. When a reference signal is present, we report SDRi, which quantifies separation quality
relative to the input mixture. When the reference stem is silent, SI-SDR is not meaningful; instead,
we evaluate the model’s ability to suppress spurious output by measuring the root-mean-square energy
relative to full scale (RMS-DBFS), defined as

RMS-DBFS = 20 · log10

√
1

T

∑
t

x2
t + ε, (3)

where x is the signal, T is the length of the signal, and ε is a small constant. This silence metric
directly reflects the residual energy of the predicted signal and therefore serves as an indicator of how
well the model avoids false positives in stems that should be silent.

Evaluation. In Table 1 we observe the performance of the different methods. We find that SepACap
outperforms previous approaches in 5 out of 6 stems (Bass, Lead Vocal, Soprano, Tenor, and Vocal
Percussion) in SDRi even though only a fraction of the samples seen during training contain all stems
simultaneously. Furthermore, the Mel-Band RoFormer seems to significantly underperform at this
task, which suggests that the time-frequency domain masking struggles to separate multiple sources
contained in similar frequency bands. The reported values for X-UMX, DPTNet, and MRDLA are
taken from JaCappella [14].

For the subset objective, the results in Table 2 highlight a clear trade-off between the two models.
SepACap generalizes especially well to this setting, as it produces fewer instances of bleed-through
when stems are absent and can more effectively suppress inactive sources. However, this comes at
the cost of introducing more audible artifacts in the reconstructed signals. In contrast, the Mel-Band
RoFormer yields cleaner outputs with fewer artifacts, but it frequently fails to fully suppress silent
stems, leading to noticeable bleed-through between sources. This difference is consistent with
the underlying model designs: the Mel-Band RoFormer operates by masking unwanted frequency
components, which prevents artifact creation but makes complete suppression of inactive signals
difficult, whereas SepACap generates waveforms directly and is therefore more prone to artifact
introduction.

2We train with https://github.com/KimberleyJensen/Mel-Band-Roformer-Vocal-Model
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Table 1: Performance of models when all stems are present, measured on the test split of the
JaCappella dataset. The metric is per-stem SDRi (higher is better) for each model. Best performance
in bold, and second best performance is underlined.

Method Alto Bass Lead Vocal Soprano Tenor Vocal Perc.

X-UMX [19] 13.5 9.1 7.5 10.7 10.2 21.0
DPTNet [1] 11.9 19.7 8.9 8.5 14.9 21.9
MRDLA [13] 14.7 10.2 8.7 11.8 11.3 22.1
Mel-Band RoFormer [22] 6.3 17.8 0.7 4.5 10.3 19.3
SepACap (Ours) 14.6 23.2 13.0 13.1 17.0 22.5

Table 2: Subset condition performance of DPTNet (publicly-available checkpoint), our trained
Mel-Band RoFormer (MBR), and our proposed model SepACap, on the test split of the augmented
JaCappella dataset. The per-stem SDRi is only reported when a reference signal is present, and RMS
silence scores evaluate suppression quality for silent stems. Unsurprisingly, we find that DPTNet
underperforms on the subset-stem task as it was only trained on full mixes. SepACap also significantly
outperforms the Mel-Band RoFormer as it does not rely on frequency-based masking.

SI-SDRi (dB)↑ RMS (dBFS)↓
Stem DPTNet MBR SepACap (ours) DPTNet MBR SepACap (ours)

Alto -17.2 3.9 11.6 -19.6 -59.1 -92.7
Bass -30.8 15.5 20.4 -33.7 -70.8 -95.1
Lead Vocal -44.0 1.6 9.1 -41.5 -63.6 -91.9
Soprano -46.9 1.6 11.1 -44.7 -55.5 -85.6
Tenor -25.9 7.6 13.0 -27.2 -75.3 -95.7
Vocal Perc. -32.4 18.3 18.4 -33.6 -73.1 -95.3
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Figure 1: We test the ability of models to predict whether a stem is present in a mix. We report F1
scores for stem detection on the test split of the augmented JaCappella dataset. The results show
per-stem detection performance for DPTNet, Mel-Band RoFormer, and SepACap, where higher is
better in the interval. Our proposed model SepACap achieves the best overall performance in stem
detection.

Despite SepACap’s stronger overall performance in the subset setting, it does not always maintain
consistent performance across all stems. In particular, both SepACap and Mel-Band RoFormer
struggle on the Alto stem compared to the all-stems setting. The lower quantitative results observed
in this evaluation can often be attributed to failures in detecting a present stem and instead predicting
silence, as illustrated in Table 2. Because the SI-SDR metric assigns large negative values in such
cases, these errors disproportionately reduce the average scores.

Conclusion. We introduced SepACap, a source separation model trained for a cappella mixtures.
Evaluated on JaCappella, SepACap achieves state-of-the-art performance when all stems are present
and substantially improves subset separation by suppressing inactive stems and reducing bleed-
through compared to baseline approaches.
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