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ABSTRACT. Motivated by an entropy inequality, we propose for the first time a penalized profile
likelihood method for simultaneously selecting significant variables and estimating unknown
coefficients in multiple linear regression models in this article. The new method is robust to
outliers or errors with heavy tails and works well even for error with infinite variance. Our
proposed approach outperforms the adaptive lasso in both theory and practice. It is observed
from the simulation studies that (i) the new approach possesses higher probability of correctly
selecting the exact model than the least absolute deviation lasso and the adaptively penalized
composite quantile regression approach and (ii) exact model selection via our proposed approach is
robust regardless of the error distribution. An application to a real dataset is also provided.
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1. Introduction

In a linear regression setting, biased parameter estimates and prediction results may be
produced if a significant explanatory variable is omitted. On the other hand, the efficiency of
the resulting estimate may be degraded, and less accurate predictions will be produced when
unnecessary predictors are included (Tibshirani, 1996; Hastie et al., 2009). Hence, correct
selection of the true model is important (Fan & Li, 2006). Responses of a linear regression
model subject to outliers or error with a heavy tail are commonly encountered in practice
(Rousseeuw & Leroy, 1987; He et al., 2005). Even worse, the variance of the error may not be
finite (e.g. the Cauchy error; Zou & Yuan, 2008; Kai et al., 2011). Hence, it is of great interest to
consider the problem of robust model selection for linear regression models (Wang et al., 2007;
Lambert-Lacroix & Zwald, 2011).

To shrink unnecessary coefficients to 0 and estimate the significant coefficients in multiple
linear models, Tibshirani (1996) proposed the least absolute shrinkage and selection operator
(lasso). Zou (2006) proposed the adaptive lasso method for linear regression models to reduce
bias in the original lasso. However, the ordinary least squares (OLS) criterion used in lasso or
adaptive lasso is sensitive to outliers or heavy-tailed errors and may introduce bias. Besides, the
lasso and the adaptive lasso both break down when the variance of the error tends to infinity.
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Wang et al. (2007) proposed the least absolute deviation (LAD) lasso, which is robust to heavy-
tailed errors or outliers in the response. Unfortunately, the LAD lasso estimator is expected
to be less efficient than the OLS estimator with adaptive lasso penalty when the error has no
heavy tail (e.g. the normal error). Zou & Yuan (2008) proposed the adaptive-lasso-penalized
composite quantile regression (ACQR) procedure. They showed that their method works well
for the data contaminated with outliers or generated from infinite-variance errors.

Motivated by the entropy inequality (4), we propose a penalized profile likelihood method to
select variables and estimate coefficients simultaneously in linear regression models. The new
method has built-in robustness because it requires no specification of the error distribution. Our
proposed method is robust against outliers or errors with heavy tails and performs well even
for errors with infinite variances. We theoretically show by several examples that estimators
for the significant coefficients obtained by the new method are more efficient than the ACQR
estimators. Furthermore, our proposed method has higher probability of correctly selecting the
true model than the ACQR method.

We organize our paper as follows. In Section 2, on the basis of an entropy inequality,
we propose the maximum profile likelihood (MPL) estimator and the adaptively penalized
MPL (AMPL) estimator. The asymptotic properties of the estimators are given in Section
3. In Section 4, simulation studies are conducted to evaluate the performances of our pro-
posed methods. The AMPL approach is illustrated with a plasma retinol level dataset. A brief
discussion is presented in Section 5. The technical conditions and lemmas are relegated to the
Appendix. The detailed proofs of Lemmas 3, 4, and 5 and Theorems 1, 2, and 3 are put in the
Supporting Information.

2. The penalized profile likelihood

We consider the following linear regression model:

yi D

pX
jD1

xijˇj C �i ; i D 1; � � � ; n: (1)

Let ˇ D .ˇ1; : : : ; ˇp/
0

and ˇ� be the corresponding true parameter.
Define Xi D .xi1; : : : ; xip/

0
. Suppose .yi ; Xi /niD1 are n independent samples from (1) with

0 < Var.X1/ <1,Xi is independent of �i (i D 1; � � � ; n), and ˇ� 2 interior.‚/ with‚ being a
compact subset of Rp . Denote �i .ˇ/ D yi �

Pp

jD1
xijˇj . Let f�.ˇ/ and f0 be the probability

density function of �1.ˇ/ and the true density of �1, respectively. It is noted that f�.ˇ�/ D f0.
Denote A D ¹j W ˇ�

j
6D 0º. We assume that the number of elements in A (i.e. q) is less than p;

that is, the true model depends only on a subset of the predictors.
Fan & Li (2001) showed that we could use the penalized likelihood method to shrink unnec-

essary coefficients to 0 and estimate the significant coefficients in (1) if one ideally knows the
error distribution. The resultant penalized likelihood estimators of the significant coefficients
are efficient by the oracle properties. Unfortunately, the error density in a linear regression
model is practically unknown.

2.1. The penalized likelihood for the known error density

Ideally, if one knows the true density function of �, that is, f0.u/, ˇ could be estimated through
the maximum likelihood (ML) estimation procedure, that is,

ǑML D arg max
ˇ

1

n

nX
iD1

log f0¹�i .ˇ/º:
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For example, the ML estimator is essentially the OLS estimator when the error � follows the
standard normal distribution. ǑML is reputed to be an efficient estimator. It is well known that
the consistency of ǑML is based on the inequalityZ

f�.ˇ�/.u/ logf�.ˇ/.u/ du <
Z
f�.ˇ�/.u/ logf�.ˇ�/.u/ du; (2)

for any ˇ 6D ˇ�: Note that f�.ˇ�/ D f0.
Zou (2006) proposed the adaptively penalized ML (AML) estimator of ˇ�, which is given by

ǑAML D arg minˇ

2
4� nX

iD1

logf0¹�i .ˇ/º C �
pX
jD1

jˇj j

j ǑML
j
j2

3
5; (3)

where � is the tuning parameter. For example, if the error follows the standard normal distri-
bution, the AML estimator is indeed the adaptive lasso estimator. ǑAML is based on the true
error density and is therefore an efficient estimator.

2.2. The penalized profile likelihood for the unknown error distribution

Unfortunately, one seldom knows the density of �. By Lemma 1, we haveZ
f�.ˇ/.u/ logf�.ˇ/.u/ du <

Z
f�.ˇ�/.u/ logf�.ˇ�/.u/ du; (4)

for any ˇ 6D ˇ�: We call (4) the entropy inequality based on model (1). Hence, we can write

ˇ� D arg max
ˇ2‚

Z
f�.ˇ/.u/ logf�.ˇ/.u/ du; (5)

and ˇ� is the unique value that satisfies (5). Let �i .ˇ/ D yi �
Pp

jD1
xijˇj . The density

function of �.ˇ/ can be estimated by

Of�.ˇ/.u/ D
1

nh

nX
lD1

K.
�l .ˇ/ � u

h
/; (6)

where K is a scalar kernel and h is any appropriate bandwidth. Thus, ˇ� can be estimated by
the sample analogue of (5), that is,

Ǒ D arg max
ˇ

1

n

nX
iD1

log Of�.ˇ/.�i/.�i .ˇ//; (7)

where Of�.ˇ/.�i/.�/ is the estimator of the density function of �.ˇ/ obtained by leaving out the
i -th observation by (6).

The estimation procedure proposed here is analogous to the profile likelihood approach for
estimating regression parameters in semiparametric models (see also, Severini & Wong, 1992;
Fan et al., 2007; Lombardia & Sperlich, 2008). The basic idea of profile likelihood is to replace
the unknown function by its non-parametric (kernel) estimate for given parametric compo-
nents. For this reason, we also call our proposed estimator Ǒ the MPL estimator and denote
it as ǑMPL. A similar estimation procedure also appeared in Linton et al. (2008) for estimating
the parameters in their semiparametric transformation models.

If the true density of � is unknown, we can obtain the kernel estimator of the density of �1.ˇ/
as (6). Thus, we construct (7) to obtain the estimator of ˇ�. As the sample size (i.e. n) goes
to infinity, we have that Of�.ˇ/.�i/.u/ is equivalent to f�.ˇ/.u/ for any ˇ 2 interior.‚/. By (5),
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we can find that our proposed estimator is a consistent estimator of ˇ�. Theorem 1 shows the
consistency of the MPL estimator theoretically. Therefore, our proposed method works well
without the specification of the error density. In other words, our proposed estimator is robust
regardless of the error density. In particular, the proposed estimate is robust to outliers or errors
with heavy tails or infinite variances. We will further demonstrate this point through some real
examples in Section 3.3 and some simulation studies.

According to equation (4), our proposed estimator is a consistent estimator of ˇ� intuitively.
It is noteworthy that equation (4) is different from equation (2), on which the consistency of
the ML estimator is based.

It is noted that ǑMPL is a consistent estimator of ˇ� by Theorem 1. Following the adaptive
lasso idea of Zou (2006) and on the basis of the entropy inequality (4), we adopt ǑMPL to
construct an adaptively weighted lasso penalty and define the penalized profile likelihood as
follows:

nX
iD1

log Of�.ˇ/.�i/¹�i .ˇ/º � �
pX
jD1

jˇj j

j ǑMPL
j
j2
; (8)

where � is the tuning parameter. Maximizing the penalized profile likelihood function (8) is
equivalent to minimizing

Q.ˇ/ WD �

nX
iD1

log Of�.ˇ/.�i/¹�i .ˇ/º C �
pX
jD1

jˇj j

j ǑMPL
j
j2
: (9)

By minimizing (9) with respect to ˇ, we obtain the AMPL estimator of ˇ� (denoted as ǑAMPL).
It can be seen that the penalized profile likelihood combines the profile likelihood and the
adaptive lasso penalty. Hence, the resulting estimator is expected to be robust regardless of the
error density. In particular, the AMPL is robust against outliers or errors with heavy tails and
works well even for errors with infinite variance.

Remarks For any given likelihood, penalized likelihood estimators have been extensively
discussed (e.g. Fan & Li, 2001; Zou, 2006; Meier et al., 2008; Zou & Li, 2008). In practice, the
error distribution of the linear regression model is seldom known. Even worse, if one wrongly
specifies the distribution of the error, the existing methods may work badly. For example, if
the true error distribution is Cauchy and we wrongly specify the error density as normal, the
penalized normal likelihood with adaptive lasso penalty (i.e. the adaptive lasso) would lead
to biased estimator and large model error and may not be able to select the exact model as
indicated in the simulation studies. Our proposed adaptive MPL lasso estimation method works
well without error distribution specification. Thus, our proposed methodology is practically
more flexible and could be widely applied.

2.3. Computations and tuning

We propose the so-called iterative marginal optimization (IMO) algorithm (Wang, 2007) to
obtain the AMPL estimator of ˇ�. We summarize the procedure as follows:

Step 0. A convenient and good initial value for ˇ.0/ is ǑMPL.
Step mC 1. Through the following p grid steps, we obtain ˇ.mC1/.
Grid step k (k D 1; : : : ; p). ˇk is updated as

ˇ
.mC1/

k
D arg min

ˇk

Q
�
ˇ
.mC1/
1

; : : : ; ˇ
.mC1/

k�1
; ˇk ; ˇ

.m/

kC1
: : : ; ˇ.m/p

�
:
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Until convergence, we obtain the estimator ǑAMPL.
The original p-dimensional joint optimization problem (9) is rewritten as the marginal uni-

variate optimization problems by the IMO algorithm so that the marginal optimizer could be
found in an efficient way. The IMO algorithm is computationally stable because the value of
Q.ˇ.m// decreases in both step .m/ and grid step .k/. According to our experiences, the IMO
algorithm converges quickly and is computationally efficient. Note that the IMO algorithm is
identical to the idea of the coordinate descent method proposed by Friedman et al. (2010).

Regarding the selection of the tuning parameter �, we choose � such that it minimizes
the following Bayesian information criterion (BIC)-like criterion (Wang et al., 2009;
Kai et al., 2011):

BIC.�/ D log

"
�

nX
iD1

log Of�.ˇ/.�i/¹�i .ˇ/ºjˇD ǑAMPL
�

#
C

log.n/
n

df�;

where ǑAMPL
�

is the penalized profile likelihood estimator of ˇ� with tuning parameter � and

df� is the number of non-zero coefficient in ǑAMPL
�

.

3. Asymptotic properties of the estimators

In this section, we study the large-sample properties of the estimators given in Section 2.

3.1. The maximum profile likelihood estimator

For any function ', we define P' WD @'=@ˇ and PO' WD @ O'=@ˇ. Similarly, we define for any
function ': '

0
.u/ WD @'.u/=@u and O'

0
.u/ WD @ O'.u/=@u. We now show that ǑMPL is consistent

and possesses asymptotic normality. The proofs of the following two theorems are provided in
the Supporting Information.

Theorem 1. Suppose conditions (a)–(e) in the Appendix hold, then ǑMPL !p ˇ
�.

Theorem 2. Under conditions (a)–(e) in the Appendix, we have

p
n. ǑMPL � ˇ�/ D ���1

1
p
n

nX
iD1

Pf�.ˇ�/.�i .ˇ
�//C f

0

�.ˇ�/
.�i .ˇ

�//.�Xi /

f�.ˇ�/.�i .ˇ�//
C op.1/

D ��1
1
p
n

nX
iD1

f
0

0
.�i .ˇ

�//

f0.�i .ˇ�//
.Xi �EXi /C op.1/;

equivalently,

p
n. ǑMPL � ˇ�/!L N.0; a.VarX1/�1/;

where � D Œ2E¹f
00

0
.�1.ˇ

�//=f0.�1.ˇ
�//º �E¹f

0

0
.�1.ˇ

�//=f0.�1.ˇ
�//º2�VarX1 and a D ŒVar

¹f
0

0
.�1.ˇ

�//=f0.�1.ˇ
�//º�=Œ2E¹f

00

0
.�1.ˇ

�//=f0.�1.ˇ
�//º �E¹f

0

0
.�1.ˇ

�//=f0.�1.ˇ
�//º2�2.

Assume that C DW limn!1 XX
0

=n is a p � p positive definite matrix, where X D

.X1; : : : ; Xn/ is the predictor matrix.
Let ǑOLS be the OLS estimate of ˇ�. We have

p
n. ǑOLS � ˇ�/!L N.0; �

2C�1/;

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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where �2 is the variance of �: Therefore, ǑOLS is no longer a
p
n-consistent estimator if the

variance of � is infinite. On the other hand, according to Theorem 2, the asymptotic variance of
ǑMPL depends on the density of �, but not directly on the variance of �. This intuitively suggests

that ǑMPL enjoys a
p
n-consistency property even when �2 is infinite.

Remarks 2. If we know that the true density of � .ˇ /1
� is f .u/0 with support being R (e.g. the

normal distribution), we have

p
n. ǑML � ˇ�/ D �

"
1

n

nX
iD1

¹
f
0

0
.�i .ˇ

�//

f0.�i .ˇ�//
º2XiX

0

i

#�1
1
p
n

nX
iD1

f
0

0
.�i .ˇ

�//

f0.�i .ˇ�//
Xi C op.1/:

Because E¹f
00

0
.�1.ˇ

�//=f0.�1.ˇ
�//º D 0, we have

p
n. ǑMPL � ˇ�/!L N.0; ��1/;

where � D Var¹f
0

0.�1.ˇ
�//=f0.�1.ˇ

�//ºVarX1: This indicates that ǑMPL is asymptotically
distributed the same with the ML estimator ǑML assuming EX1 D 0 without loss of generality.
In this case, ǑMPL is also an efficient estimator of ˇ�.

Remarks 3. When the true (unknown) distribution of � .ˇ /1
� is the truncated normal dis-

tribution with density function f0.u/ D exp.�u2=2/=
R 3
�3

exp.�t2=2/ dt ; for �3 � u � 3

and zero elsewhere, we have 2E¹f
00

0
.�1.ˇ

�//=f0.�1.ˇ
�//º � E¹f

0

0
.�1.ˇ

�//=f0.�1.ˇ
�//º2 D

2E.�1C �1.ˇ
�/2/ �E�1.ˇ

�/2 < �1: Hence,

p
n. ǑMPL � ˇ�/!L N.0; a.VarX1/�1/;

where a < Var.�1.ˇ�// < 1. Note that � is negative definite. In this case, we have
p
n. ǑOLS �

ˇ�/!L N.0;Var.�1.ˇ�//.VarX1/�1/ assuming EX1 D 0 without loss of generality. In other
words, ǑMPL is more efficient than the OLS estimator.

3.2. The adaptively penalized maximum profile likelihood estimator

Without loss of generality, suppose that the first q coefficients of ˇ are non-zero, that is, ˇj 6D 0;
for j D 1; 2; : : : ; q, and ˇj D 0; for j D q C 1; : : : ; p. Denote A WD ¹1; 2; : : : ; qº, X�

i
WD

.xi1; � � � ; xiq/
0
, ˇA WD .ˇ1; � � � ; ˇq/

0
, and ˇAc WD .ˇqC1; � � � ; ˇp/

0
. The oracle who knows the

true subset A would use the model

yi D X
�0

i ˇ
�
A C �i ; i D 1; : : : ; n:

We define the MPL oracle estimator as

ǑMPL
.oracle/A D arg maxˇA

nX
iD1

log Of�.ˇA/.�i/¹�i .ˇA/º; (10)

and ǑMPL
.oracle/Ac D 0; where Of�.ˇA/.�i/.u/ D

P
j 6Di K¹.�j .ˇA/ � u/=hº=.nh/ and �j .ˇA/ D

yj �
Pq

lD1
xjlˇl . According to Theorem 2, we have

p
n. ǑMPL

.oracle/A � ˇ
�
A/!L N.0; a.VarX�1 /

�1/: (11)

We show that the AMPL estimator enjoys the oracle properties of the MPL oracle. The proof
of the following theorem is presented in the Supporting Information.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Theorem 3. (Oracle properties) Assume that conditions (a)–(e) in the Appendix hold. If
�=
p
n! 0 and

p
n�!1, then ǑAMPL satisfies the following:

(a) Consistent selection: Pr.¹j W ǑAMPL
j

6D 0º D A/! 1:

(b) Efficient estimation:
p
n. ǑAMPL

A � ˇ�A/ !d N.0; a.VarX�
1
/�1/; where a.VarX�

1
/�1

is the asymptotical covariance matrix knowing the true subset model as in (11) (i.e.
p
n. ǑAMPL

A � ˇ�A/ is asymptotically distributed, the same as
p
n. ǑMPL

.oracle/A � ˇ
�
A/).

3.3. The asymptotic relative efficiency

We study the asymptotic relative efficiency (ARE) of our MPL estimator with respect to the
composite quantile regression (CQR), OLS, and LAD estimators. Because the AMPL, ACQR,
adaptive lasso, and LAD lasso estimators all possess oracle properties, the ARE of the AMPL
estimators of the significant coefficients with respect to the ACQR (adaptive lasso and LAD
lasso) estimators of the non-zero coefficients could be discussed similarly.

Suppose the CQR method uses quantiles �i , i D 1; : : : ; K, and the parameter associated
with �k is bk , which is given in equation (2.3) of Zou & Yuan (2008). From Theorem 2.1 of
Zou & Yuan (2008) and Theorem 2, we obtain the ARE of the MPL with respect to the CQR
as follows:

ARE.�1; : : : ; �K ; a; f0/ D
¹
PK
i;jD1min.�i ; �j /.1 �max.�i ; �j //º

a¹
PK
iD1 f0.b

�
�i
/º2

:

Let ARE.K; a; f0/ WD ARE.�1; : : : ; �K ; a; f0/ when �i D i=.K C 1/, for i D 1; : : : ; K.
Following Zou & Yuan (2008), we consider the case when K ! 1. Let ı.a; f0/ D
limK!1ARE.K; a; f0/: From Theorem 3.1 of Zou & Yuan (2008), we have

ı.a; f0/ D
1

12a¹Ef0.�1.ˇ�//º2
:

We calculate the AREs under the normal error, the heavy-tailed errors (e.g. T -distribution
and logistic distribution), and the error of infinity variance (e.g. Cauchy distribution).

Normal distribution. Let the true density of the error � follow N.0; �2/. We have
Ef0.�1.ˇ

�// D 1=.2
p
	�/, a D �2, and ı.a; f0/ D 1:047. Hence, our MPL estimator is

slightly more efficient than the CQR estimator. In addition, the ARE of our MPL estimator
with respect to the LAD estimator is 1:576, which means that our MPL is obviously more effi-
cient than the LAD. It is noted that our MPL estimator is as efficient as the OLS estimator
under a normality assumption and is thus the most efficient estimator. We have that the OLS
estimator is more efficient than the LAD estimator under the normality assumption.

T-distribution. Suppose the true density of � is the T -distribution with degrees of freedom

 > 2. We have that a D .
 C 3/=.
 C 1/ and

ı.a; f0/ D
	
.
 C 1/

12.
 C 3/
.

�.
=2/

�..
 C 1/=2/
/4.

�.
 C 1/

�.
 C 1=2/
/2:

We plot the ARE between CQR estimator and our proposed MPL estimator in Fig. 1(A),
and we can conclude that our MPL estimator is slightly more efficient than the CQR estimator.
We also calculate the ARE of our MPL estimator with respect to the OLS estimator, which is
¹
.
C1/º=¹.
�2/.
C3/º. According to Fig. 1(B), we observe that our MPL estimator is more
efficient than the OLS estimator for small degrees of freedom and the ARE approaches 1 for

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 1. The relative efficiency as a function of the degrees of freedom for the T -distribution.

large degrees of freedom. The ARE of our MPL estimator with respect to the LAD estimator
is plotted in Fig. 1(C), which indicates that our MPL estimator is more efficient than the LAD.
We observe from Fig. 1(D) that the LAD is more efficient than the OLS for heavy-tailed errors
(i.e. T -distributions with small degrees of freedom). On the other hand, the LAD is less efficient
than the OLS for large degrees of freedom (i.e. error has no heavy tail).

Logistic distribution. Suppose the true density of � is the logistic distribution (i.e. f0.�/ D
e�=.1C e�/2). We have Ef0.�1.ˇ�// D 1=6, a D 3, and ı.a; f0/ D 1. In other words, our
MPL estimator is as efficient as the CQR estimator. It is noted that both the MPL and CQR
estimators can asymptotically achieve the information bound for the logistic distribution error.
In addition, the ARE of the MPL estimator with respect to the OLS estimator is 1:097, which
suggests that the MPL estimator is slightly more efficient than the OLS estimator. Moreover,
the ARE of the MPL estimator with respect to the LAD estimator is 1:333, which indicates
that our MPL is more efficient than the LAD.

Standard Cauchy distribution. Suppose the density of � follows the standard Cauchy
distribution, whose variance is infinite. We have ı.a; f0/ D 1:645, so our MPL estimator is sig-
nificantly more efficient than the CQR estimator. In addition, the ARE of the MPL estimator
with respect to the LAD estimator is 1:234, which tells that our MPL is more efficient than the
LAD. Besides, our proposed MPL estimator can asymptotically attain the information bound
when the error follows the Cauchy distribution. Unlike the asymptotic variance of the OLS
estimator, the asymptotic variance of our MPL estimator is finite.

We have several conclusions after calculating the ARE. First, our MPL is based on the esti-
mated density of the error. On the other hand, the CQR is obtained via the information of

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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K quantiles of the error only. That is, the MPL borrows more information of the error to
estimate the unknown parameters. Intuitively, our MPL estimator generally possesses smaller
asymptotic variance than the CQR estimator theoretically. Second, we observe that our MPL
estimators are more efficient than the OLS estimators for heavy-tailed errors. Third, the MPL
works well, whereas the OLS breaks down for the standard Cauchy error. Finally, the efficiency
of our MPL estimators is superior to that of the LAD estimators theoretically.

4. Numerical studies

In this section, we conduct several simulation studies to evaluate the finite-sample performance
of our proposed estimators (i.e. ǑMPL and ǑAMPL) in Section 2 and illustrate the proposed
AMPL approach on a real dataset in a health study.

4.1. Study 1: the maximum profile likelihood estimator

In this subsection, we investigate the finite-sample performance of the proposed MPL (i.e.
ǑMPL) estimator in Section 2. We generate 300 datasets, each consisting of n D 100 obser-

vations from model (1). Here, ˇ� D .3; 1:5; 2/ and .x1; x2; x3/ follows a multivariate normal
distribution N.0;†X /, where .†X /i;j D 0:5ji�j j for 1 � i; j � 3: In our simulation, we con-
sider the following error distributions: N.0; 3/, mixture of normals 0:9N.0; 1/C 0:1N.0; 102/;
T -distribution with 3 degrees of freedom, chi-square distribution with 3 degrees of freedom and
standard Cauchy. We compare our proposed method with the OLS method, the LAD method,
and the CQR approach. Zou & Yuan (2008) used 19 quantiles, and Kai et al. (2011) adopted
nine quantiles in their respective simulation studies. Following their set-ups, we consider the
number of quantiles K = 9 and 19 in our simulations. We use Silverman’s rule-of-thumb
bandwidth for our MPL approach.

Table 1 summarizes the results for the estimates of Ǒ based on 300 simulated datasets. Here,
‘Bias’ represents the sample average over 300 estimates subtracting ˇ�, and ‘SD’ represents the
sample standard deviation over 300 estimates. SD can be viewed as the true standard deviation
of the resulting estimates and can thus be used to measure the efficiency of the four methods. We
observe that our MPL approach is robust against outliers (e.g. the mixed normal error) or the
heavy-tailed errors (e.g. the T -distribution error). Our proposed MPL method yields unbiased
estimates with smaller SDs when the variance of the error is infinite (e.g. Cauchy distribution).
On the contrary, the OLS method produces severely biased estimators with inflated standard
deviations. It is obvious that our MPL approach is more efficient than the OLS method for
non-normal distributions. It is noted that our MPL estimators tend to have less biases than the
OLS estimates.

Our MPL method is more efficient than the LAD for the normal or chi-squared error. It is
also important to see that the LAD performs worse (with larger SDs) than the OLS as well as
the CQR when the error follows the normal distribution. For the standard Cauchy error, the
MPL estimators are slightly more efficient than the LAD estimators in theory. However, we
see from our simulation results that the LAD produces slightly more efficient estimators than
the MPL. The non-parametric technique used in MPL, which results in loss of efficiency in
practice, may cause this phenomenon.

Our MPL approach produces more efficient estimators than the CQR when the error fol-
lows the chi-squared or Cauchy distribution. Theoretically, our MPL estimator is slightly more
efficient than the CQR estimator for normal and T -distribution errors. In the present simula-
tion studies, the CQR estimate appears to be slightly more efficient than the MPL estimator.
This phenomenon is also due to the fact that our MPL approach adopts the non-parametric
technique, which may lead to some loss in efficiency of the MPL estimator in practice. We can
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Table 1. Summary of bias and standard deviation over 300 simulations for model (1) with different error
distributions

Ǒ
1

Ǒ
2

Ǒ
3

Methods Bias SD Bias SD Bias SD

N.0; 3/

OLS 0.0134 0.2015 �0.0106 0.2365 0.0034 0.2300
LAD 0.0202 0.2318 �0.0175 0.2626 �0.0060 0.2611
CQR9 0.0108 0.2058 �0.0060 0.2215 �0.0010 0.2261
CQR19 0.0133 0.2045 �0.0052 0.2247 �0.0038 0.2246
MPL 0.0089 0.2262 �0.0013 0.2329 �0.0027 0.2272

0:9N.0; 1/C 0:1N.0; 102/

OLS 0.0143 0.3897 0.0141 0.4248 �0.0017 0.4087
LAD 0.0042 0.1640 �0.0033 0.1628 0.0044 0.1474
CQR9 0.0067 0.1497 0.0052 0.1574 �0.0008 0.1398
CQR19 0.0071 0.1500 0.0040 0.1583 �0.0008 0.1416
MPL 0.0058 0.1468 �0.0011 0.1658 0.0003 0.1485

T -distribution with df D 3
OLS 0.0138 0.1956 �0.0232 0.2323 0.0141 0.2081
LAD 0.0056 0.1617 �0.0112 0.1628 0.0118 0.1556
CQR9 0.0089 0.1441 �0.0120 0.1495 0.0066 0.1539
CQR19 0.0081 0.1457 �0.0114 0.1528 0.0064 0.1541
MPL 0.0043 0.1600 �0.0068 0.1860 0.0099 0.1799

Chi-squared with df D 3
OLS �0.0324 0.4243 �0.0374 0.4925 0.0429 0.4456
LAD �0.0610 0.5568 0.0247 0.5187 0.0272 0.4993
CQR9 0.0002 0.2353 �0.0485 0.2451 0.0187 0.2328
CQR19 �0.0002 0.2312 �0.0468 0.2434 0.0175 0.2306
MPL 0.0159 0.1805 �0.0014 0.1918 0.0166 0.1815

Standard Cauchy
OLS �1.0815 13.316 �0.5390 10.002 0.9160 12.195
LAD �0.0087 0.1940 0.0040 0.1864 �0.0014 0.1881
CQR9 �0.0027 0.2239 �0.0040 0.2271 0.0008 0.2256
CQR19 �0.0054 0.2249 �0.0004 0.2323 �0.0002 0.2268
MPL 0.0004 0.2121 0.0028 0.2260 �0.0008 0.2045

SD, standard deviation; OLS, ordinary least squares; LAD, least absolute deviation; CQR, composite
quantile regression; MPL, maximum profile likelihood.

see that the estimator of CQR with K D 9 is more efficient than that with K D 19 in some
cases, whereas CQR with K D 19 is more efficient than that with K D 9 in other cases. This
suggests that the optimal number of quantiles K should be selected carefully in order that the
CQR achieves the expected efficiency.

4.2. Study 2: the adaptively penalized maximum profile likelihood estimator

In this subsection, we conduct a simulation study to compare the AMPL method with the
adaptive lasso proposed by Zou (2006), the LAD lasso (using the adaptive lasso penalty;
Wang et al., 2007), and the adaptive-lasso-penalized CQR (ACQR) approach. Here, 100
datasets, each consisting of n D 100 observations, are generated from model (1), where
ˇ� D .3; 1:5; 0; 0; 2; 0; 0; 0/ and the predictors .x1; x2; : : : ; x8/ is distributed as N.0;†X / with
.†X /i;j D 0:5ji�j j for 1 � i; j � 8: This regression model has been considered by Tibshi-
rani (1996), Fan & Li (2001), Zou (2006), and Zou & Yuan (2008). The error distributions
considered here are identical to those in study 1.
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The simulation results are summarized in Table 2. Here, the model error is computed
by E¹. Ǒ � ˇ�/

0
†X . Ǒ � ˇ

�/º (Zou & Yuan, 2008). Column ‘C’ gives the average number
of zero coefficients corrected selected to be zero, and the column ‘IC’ shows the average
number of non-zero coefficients incorrectly estimated to be zero. ‘U-fit’ gives the probability
of datasets excluding any non-zero coefficients in 100 replicates, ‘C-fit’ presents the propor-
tion of trials selecting the true subset model, and the ‘O-fit’ tells the probability of trials
including the three non-zero coefficients and some zero components (Kai et al., 2011). Table 2
shows that our proposed AMPL approach performs well in variable selection. In partic-
ular, the AMPL is robust to outliers (e.g. the mixed normal error) or errors with heavy
tails (e.g. the T -distribution error) and works well even for error with infinite variance
(e.g. the standard Cauchy error). More precisely, our proposed method yields smaller
model errors than the adaptive lasso, which suggests the superiority of our proposed method
over the adaptive lasso in variable selection. It is noted that the adaptive lasso breaks down
for random error with infinite variance (e.g. Cauchy distribution). Most importantly, for each

Table 2. Comparisons of variable selection methods for model (1) with different error distributions.

No. of zeros Proportion of fits

Methods Model error C IC U-fit C-fit O-fit

N.0; 3/

Adaptive lasso 0.1367 4.68 0.00 0.00 0.75 0.25
LAD lasso 0.1563 4.92 0.00 0.00 0.93 0.07
ACQR9 0.1374 4.71 0.00 0.00 0.72 0.28
ACQR19 0.1679 4.28 0.00 0.00 0.42 0.58
AMPL 0.1241 4.99 0.00 0.00 0.99 0.01

0:9N.0; 1/C 0:1N.0; 102/

Adaptive lasso 0.7877 3.92 0.01 0.01 0.36 0.63
LAD lasso 0.0589 4.99 0.00 0.00 0.99 0.01
ACQR9 0.0639 4.89 0.00 0.00 0.89 0.11
ACQR19 0.0746 4.70 0.00 0.00 0.71 0.29
AMPL 0.0454 5.00 0.00 0.00 1.00 0.00

T -distribution with df D 3
Adaptive lasso 0.1238 4.79 0.00 0.00 0.82 0.18
LAD lasso 0.0705 4.96 0.00 0.00 0.96 0.04
ACQR9 0.0662 4.91 0.00 0.00 0.92 0.08
ACQR19 0.0736 4.77 0.00 0.00 0.81 0.19
AMPL 0.0731 4.99 0.00 0.00 0.99 0.01

Chi-squared with df D 3
Adaptive lasso 0.6211 4.54 0.00 0.00 0.67 0.33
LAD lasso 0.9716 4.48 0.05 0.05 0.55 0.40
ACQR9 0.1464 4.72 0.00 0.00 0.78 0.22
ACQR19 0.1759 4.41 0.00 0.00 0.59 0.41
AMPL 0.0718 5.00 0.00 0.00 1.00 0.00

Standard Cauchy
Adaptive lasso 15.330 3.88 1.04 0.53 0.12 0.35
LAD lasso 0.1105 4.98 0.00 0.00 0.98 0.02
ACQR9 0.2263 4.59 0.00 0.00 0.68 0.32
ACQR19 0.2772 4.17 0.00 0.00 0.43 0.57
AMPL 0.1125 5.00 0.00 0.00 1.00 0.00

LAD, least absolute deviation; ACQR, adaptive-lasso-penalized composite quantile regression; AMPL,
adaptively penalized maximum profile likelihood.
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error distribution, the AMPL approach outperforms the adaptive lasso, the LAD lasso, and
the ACQR in terms of number of zeros and proportion of fits, which indicates that our AMPL
has higher probability of correctly selecting the exact model than the other three methods.
That is, the adaptive lasso, the LAD lasso, and the ACQR tend to overselect and estimate a
larger model compared with our proposed AMPL approach. Moreover, our proposed AMPL
does not overlook significant variables. On the contrary, the ‘U-fit’ of the adaptive lasso for
the mixed normal or Cauchy error is not 0, and the LAD lasso excludes non-zero coefficients
for the chi-squared error. Another important contribution of our proposed method is that it
demonstrates robustly good performance in selecting the exact model, for example, the ‘C-fit’
remains no less than 99% regardless of the error distribution. It is interesting to note that our
proposed AMPL approach performs no worse than the adaptive lasso method (or even better)
in the normal error case.

4.3. Study 3: real data analysis

In this subsection, we illustrate our proposed AMPL method through application to the plasma
retinol level dataset collected by a cross-sectional study (Nierenberg et al., 1989). This dataset
contains 315 observations. We are interested in the relationships between the plasma retinol
level and the following covariates: age, sex (0 D female; 1 D male), smoking status (0 D never;
1 D former; 2 D current smoker), Quetelet index (body mass index), vitamin use (0 D no; 1
D yes, not often; 2 D yes, fairly often), number of calories, grammes of fat, grammes of fibre,
number of alcoholic drinks, cholesterol, dietary retinol, dietary beta-carotene, and plasma beta-
carotene. We use the linear regression model here. For comparison purposes, we also include
the adaptive lasso, the LAD lasso, and the ACQR with the number of quantiles K being 9 and
19, respectively.

A total of 200 observations are randomly chosen as training data to fit the model and to
select significant variables, and the remaining 115 observations are used as testing data. Various
methods are used to select the best model on the basis of the training dataset. The prediction
accuracies of these methods are measured by the root-mean-square prediction error (RMSPE)

based on 115 observations of the testing data, which is
qP115

iD1.yi � Oyi /
2=115. This procedure

is repeated 100 times.
The RMSPEs of different methods based on 100 replications are summarized in Fig. 2.

From the box plots in Fig. 2, we could see that these methods have similar medians
of RMSPEs, and the lower quartiles (25% percentiles) of RMSPEs for various methods
are not significantly different. However, the upper quartile (75% percentile) of RMSPEs
for our AMPL is lower than that of other approaches, and the range of variation (from
the upper extreme to the lower extreme of the box plot; McGill et al., 1978) and the
interquartile range of RMSPEs based on our AMPL are both smallest. That is, our AMPL
approach tends to produce fewer extreme RMSPEs and smaller variance of RMSPEs than
other methods, by which the robustness of the AMPL is verified again. These indicate
that the AMPL has better prediction performance than the adaptive lasso, the LAD lasso,
and the ACQR under the RMSPE criterion. The empirical selected probabilities for 13 covari-
ates of the model by various methods and the average number of selected variables over 100
replications are given in Table 3. From Table 3, we observe that the model selected by AMPL
is sparser than the models selected by the adaptive lasso, the LAD lasso, and the ACQR. It is
noteworthy that the adaptive lasso selects 12:02 covariates averagely and the empirical selected
probabilities for 13 covariates are all non-zero over 100 replications. This observation may
coincide with the simulation results that the adaptive lasso tends to select a larger model than
the exact model.
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Fig. 2. Box plots of 100 root-mean-square prediction errors (RMSPEs) over 100 replications for the adap-
tive lasso (AL), the least absolute deviation lasso (LADL), the adaptive-lasso-penalized composite quantile
regression (ACQR) with the number of quantilesK being 9 (ACQR9) and 19 (ACQ19), and the adaptively
penalized maximum profile likelihood (AMPL) in the real data analysis.

Table 3. The empirical selected probabilities for 13 covariates and the ANSV over 100 replications for the
plasma retinol level data

Adaptive lasso LAD lasso ACQR9 ACQR19 AMPL

Age 1.00 0.99 1.00 1.00 0.48
Sex 1.00 0.96 0.99 0.99 0.56
Smoking 0.99 0.89 0.90 0.95 0.17
Quetelet 0.97 0.81 0.79 0.80 0.00
Vitamin 0.99 0.91 0.91 0.94 0.34
Calories 0.99 0.79 0.79 0.79 0.00
Fat 0.98 0.85 0.92 0.94 0.17
Fibre 0.99 0.84 0.96 0.97 0.15
Alcoholic 1.00 0.94 1.00 1.00 0.51
Cholesterol 0.89 0.41 0.38 0.44 0.00
Dietary retinol 0.68 0.03 0.05 0.05 0.00
Dietary beta 0.59 0.00 0.00 0.00 0.00
Plasma beta 0.95 0.56 0.89 0.89 0.00
ANSV 12.02 8.98 9.58 9.76 2.38

ANSV, average number of selected variables; LAD, least absolute deviation; ACQR, adaptive-lasso-
penalized composite quantile regression; AMPL, adaptively penalized maximum profile likelihood.

5. Concluding remarks

For the linear regression model in (1), motivated by the entropy inequality (4), we propose the
MPL estimation approach in Section 2. We observe that our proposed MPL is robust against
outliers or heavy-tailed errors and behaves nicely even when the error variance is infinite. More-
over, we show by several real examples that the proposed MPL enjoys greater advantages
theoretically and practically in terms of ARE when compared with the OLS estimator. The-
oretically, our MPL estimator generally possesses smaller asymptotic variance than the LAD
and CQR estimators.
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We propose the AMPL in Section 2 for robust regression shrinkage and selection in multiple
linear regression models. Our proposed AMPL method performs better than the adaptive lasso
proposed by Zou (2006) in terms of model error and number of zeros and proportion of fits
for all the error distributions considered in Table 2. Also, the AMPL works better than the
LAD lasso by Wang et al. (2007) and the ACQR by Zou & Yuan (2008) in terms of number of
zeros and proportion of fits. For a given likelihood, penalized ML has received much attention.
However, one seldom knows the error distribution of the linear regression model in practice.
Even worse, if the distribution of the error is incorrectly specified, the existing penalized ML
method may perform badly. Our proposed AMPL method works robustly well without any
distributional assumption on the error. Hence, our proposed methodology is more flexible and
could be widely applied.

It is of great interest to investigate our variable selection theory for the case in which
the number of parameters is large and grows with the sample size in model (1). Because of
space limitations, we will present the results in another follow-up paper. Our proof using the
U-statistics projection theory will play an important part in developing the oracle properties of
the AMPL with a diverging number of parameters, and the conditions will be slightly stronger
than those in Fan & Peng (2004). We focus on the situation in which the heavy-tailed errors
or outliers exist in the responses in this article. We are interested in extending our proposed
penalized profile likelihood to the case in which heavy-tailed errors or outliers appear in both
responses and predictors (Chi & Scott, to appear).
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Appendix

In order to investigate the large-sample properties of the estimators given in this paper, we give
the following regular conditions that are mild and can be found in Silverman (1978), Mack &
Silverman (1982), Newey & McFadden (1994), Pagan & Ullah (1999), Fan et al. (2007), and
Linton et al. (2008). These conditions may not be the necessary conditions for the theorems
presented in this paper but are sufficient conditions to facilitate the proofs.
Conditions:

(a) .yi ; Xi /niD1 are n independent samples from (1) with 0 < Var.X1/ < 1, Xi is
independent of �i (i D 1; : : : ; n), and ˇ� 2 interior.‚/ with ‚ being a compact subset
of Rp .
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(b)

(1) K.�/ is uniformly continuous with a modulus of continuity WK , twice continuously
differentiable, of bounded variation V.K/, and absolutely integrable.

(2)
R
julogjujj1=2j dK.u/j < 1, sup jK.u/j < 1, sup jK

0
.u/j < 1, and

R
K2.u/ du <

1.
(3) K.�/ is symmetric,

R
K.u/ du D 1,

R
uK.u/ du D 0, and

R
u3K.u/ du D 0:

(c)

(1) f�.ˇ/.u/ has a continuous second-order derivative with respect to each u and each
ˇ 2 N , where N is a neighbourhood of ˇ�.

(2) f�.ˇ�/.�/ has support R, or f�.ˇ�/.�/ is symmetric about the origin.
(3) f�.ˇ�/.�/ is uniformly continuous.
(4) E¹supˇ2‚ j logf�.ˇ/.�1.ˇ//jº <1, E¹supˇ2N k@ log f�.ˇ/.�1.ˇ//=@ˇkº <1 and

E¹supˇ2N k@
2 logf�.ˇ/.�1.ˇ//=.@ˇ@ˇ

0
/kº <1.

(5) � WD Œ@2E¹logf�.ˇ/.�1.ˇ//º=.@ˇ@ˇ
0
/� jˇDˇ� is finite and negative definite.

(d) The density of X , that is, fX .�/, is bounded away from 0 and 1 and is Lipschitz
continuous on its compact support.

(e) nh5=.logn/2 !1, nh8 ! 0, and n1�bh!1 for some b > 0.

Remarks 4. By Conditions (c, 1) and (c, 4), we have that E¹logf�.ˇ/.�1.ˇ/º is two times con-
tinuously differentiable at ˇ� and � D E¹@2 log f�.ˇ�/.�1.ˇ�//=.@ˇ@ˇ

0
/º, and then by Lemma

3, we have � D Œ2E¹f
00

0
.�1.ˇ

�//=f0.�1.ˇ
�//º �E¹f

0

0
.�1.ˇ

�//=f0.�1.ˇ
�//º2�VarX1.

Remarks 5. Because of Equation (4), Condition (c, 5) is not strong.

Lemma 1. Let V and W be independent random variables with Var.W / 6D 0. Denote G WD
V CW . Then,

Z
fG.u/ log fG.u/ du <

Z
fV .u/ logfV .u/ du;

where fG.u/ and fV .u/ are density functions of the random variables G and V , respectively.

Proof. Because fG.u/ D
R
fW .x/fV .u � x/ dx; by Jensen’s inequality, we have

Z
fG.u/ log fG.u/ du D

Z Z
fW .x/fV .u � x/ dx log fG.u/ du

D

Z
fW .x/

Z
fV .u � x/ log fG.u/ du dx

D

Z
fW .x/

Z
fV .u/ logfG.uC x/ du dx

<

Z
fW .x/

Z
fV .u/ logfV .u/ du dx

D

Z
fV .u/ logfV .u/ du:
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Lemma 2. (Silverman, 1978). Suppose K.�/ satisfies condition (b) and f�.ˇ�/.�/ is uniformly
continuous. If h! 0 and n1�bh!1 for some b > 0, then

sup
u

ˇ̌̌
Of�.ˇ�/.u/ �E Of�.ˇ�/.u/

ˇ̌̌
D Op

´�
log.1=h/
nh

�1=2μ
:

Detailed proofs of Lemmas 3, 4, and 5 can be found in the Supporting Information.

Lemma 3. Under conditions (a) and (c, 1), then we have

Pf�.ˇ�/.u/ D f
0

�.ˇ�/.u/EX:

Lemma 4. If the conditions in Theorem 2 hold, then we have

1
p
n

nX
iD1

´
�
Pf�.ˇ�/.�i .ˇ

�//

f 2
�.ˇ�/

.�i .ˇ�//
Of�.ˇ�/.�i/.�i .ˇ

�//C
f
0

�.ˇ�/
.�i .ˇ

�//Xi

f 2
�.ˇ�/

.�i .ˇ�//
Of�.ˇ�/.�i/.�i .ˇ

�//

μ

D
1
p
n

nX
iD1

´
�
Pf�.ˇ�/.�i .ˇ

�//

f�.ˇ�/.�i .ˇ�//
C
f
0

�.ˇ�/
.�i .ˇ

�//Xi

f�.ˇ�/.�i .ˇ�//

μ
C op.1/:

Lemma 5. If the conditions in Theorem 2 hold, then we have

1
p
n

nX
iD1

POf�.ˇ�/.�i/.�i .ˇ
�//

f�.ˇ�/.�i .ˇ�//
�

1
p
n

nX
iD1

Of
0

�.ˇ�/.�i/
.�i .ˇ

�//Xi

f�.ˇ�/.�i .ˇ�//

D
1
p
n

nX
iD1

Pf�.ˇ�/.�i .ˇ
�//

f�.ˇ�/.�i .ˇ�//
�

1
p
n

nX
iD1

f
0

�.ˇ�/
.�i .ˇ

�//Xi

f�.ˇ�/.�i .ˇ�//
C op.1/:

Supporting information

Additional supporting information may be found in the online version of this article at the
publisher’s web site.
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