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ABSTRACT

Vision-based reinforcement learning requires efficient and robust representations
of image-based observations, especially when the images contain distracting
(task-irrelevant) elements such as shadows, clouds, and light. It becomes even
more difficult if those distractions are not exposed during training. Although sev-
eral recent studies have shown that generalization can be improved, they still suf-
fer from relatively low performance even in simple and static backgrounds. To
enhance the quality of representation, we design an RL framework that combines
two-way (weak and strong) data augmentations and three self-supervised learning
methods; Adversarial Representation, Forward Dynamics, and Inverse Dynamics.
For a set of continuous control tasks on the DeepMind Control suite, our joint
self-supervised RL (JS2RL) efficiently learns the task control in both simple and
distracting backgrounds, and significantly improves generalization performance
for unseen backgrounds. In an autonomous driving task, CARLA, our JS2RL also
achieved the best performance on complex and realistic observations containing a
lot of task-irrelevant information.

1 INTRODUCTION

Vision-based reinforcement learning (RL) (Mnih et al., 2013; Nair et al., 2018; Hafner et al., 2019a)
has been studied to learn optimal control using high dimensional image inputs. The demand for
vision-based RL has continued to grow as more attempts are made to apply RL to real-world applica-
tions such as robotics and autonomous driving, which primarily use image data. However, to achieve
this, vision-based RL must address two fundamental problems; data efficiency and generalization.
Data efficiency refers to how quickly optimal control of a task can be learned using fewer experience
samples. Learning control from high dimensional images such as raw pixels inevitably increases the
learning difficulty. In particular, if the images contain task-irrelevant information (clouds, shadows,
and light etc.), this unnecessary information interferes with learning optimal control. The more
complex the observation, the worse this problem is. Therefore, representation learning has become
more important for extracting meaningful features from high dimensional observations. In terms
of generalization, task-irrelevant information may vary depending on the time and location of the
actual tests. If those distracting elements are not exposed during training, control performance could
be severely degraded. Some prior works present that using relatively weak data augmentations can
improve data efficiency rather than using strong augmentations (Srinivas et al., 2020)(Kostrikov
et al., 2020). However, we found that they could NOT work well if the backgrounds at testing time
differ from the backgrounds at training time as shown in Table 1. Instead, some studies suggest
bisimulation-metric based representation learning without augmentations, and show the method can
be helpful to capture task-relevant elements in complex observations. Clearly the improved repre-
sentations become robust and invariant against distracting elements. However, they still suffer with
relatively low performances, even on simple and static backgrounds.

Our key insight is that representation learning needs to be designed from multiple perspectives to
increase data efficiency and generalization performance together. In this paper, we first propose two-
way data augmentations. For the same observation, we provide weak and strong data augmented
versions because weak augmentations are helpful to increase data efficiency, and strong augmen-
tations are necessary to improve generalization power. Second, we design joint self-supervised
learning to effectively extract task-relevant features from the two-way augmentations. We incor-
porate three self-supervised learning methods; Adversarial Representation, Inverse Dynamics, and
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Figure 1: Our Framework Overview: we use a shared encoder for RL and joint self-supervised
learning. An observation is augmented in two ways; Augw uses Random-Shift only, and Augs uses
Random-Shift and other randomly chosen augmentation method. The encoded latent state zw is
used to train an RL algorithm, and both zw and zs are passed to joint self-supervised learning which
consists of Forward Dynamics, Inverse Dynamics, and Adversarial Representation.

Forward Dynamics. In Adversarial Representation, a discriminator learns to distinguish between
weak and strong augmented versions, while an encoder learns to fool the Discriminator. This allows
the encoder to capture invariant features in two-way augmented versions. Inverse Dynamics infers
actions between successive (latent) states for each weak and strong augmentation way. The inferred
actions are used to predict the identical future states from (two-way augmented) current states by
Forward Dynamics. In our ablation tests, the effectiveness of the individual self-supervised learning
method was insignificant, but the synergy greatly increased when they were integrated together over
two-way augmentations.

For a set of continuous control tasks (the DeepMind Control suite (Tassa et al., 2018)), we add
distracting elements into the backgrounds as proposed in (Zhang et al., 2020). Compared to prior
studies, our joint self-supervised RL (JS2RL) is substantially more efficient in both simple and
distracting backgrounds. We also showed that JS2RL significantly outperformed existing studies
when the testing backgrounds differed from the training backgrounds, which means our approach
achieved a higher generalization ability. In an autonomous driving task, CARLA (Dosovitskiy et al.,
2017), our method also achieved best performance on complex observations containing a lot of
task-irrelevant information in realistic driving scenes.

2 RELATED WORKS

Data efficiency of learning with fewer amount of data and generalization to unseen environments are
major challenges for reinforcement learning, especially in vision-based applications. Many studies
have been conducted on improving data efficiency and generalization, and they mainly use data
augmentation techniques and self-supervised learning methods.

2.1 IMPROVING DATA EFFICIENCY

Model-based RL, one of the branches of RL, learns a world model such as Forward Dynamics
which uses to future rollouts and plan to increase data efficiency (Ha & Schmidhuber, 2018; Hafner
et al., 2019b;a). Model-free RL algorithms have been also studied to improve data efficiency. Re-
constructing the current observation (Jaderberg et al., 2016; Yarats et al., 2019; Lee et al., 2019a)
helps to extract compact representations. Predicting the future observation (Jaderberg et al., 2016)
or latent state (Oord et al., 2018) are more effective in obtaining a good representation. Several RL
studies proposed to use data augmentations which provide multi-views of the data (Laskin et al.,
2020; Kostrikov et al., 2020; Srinivas et al., 2020). RAD (Laskin et al., 2020) showed that using
data augmentations improves data efficiency without modifying RL algorithms. DrQ (Kostrikov
et al., 2020) improved data efficiency using both augmentation methods and modified Q-functions.
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CURL (Srinivas et al., 2020) combined data augmentations and contrastive learning (Chen et al.,
2020; Henaff, 2020; He et al., 2020) to learn representation more efficiently. Most prior studies se-
lect one augmentation technique that provides the best data efficiency for each environment, and they
are NOT working well in unseen backgrounds. Our work suggests two-way (weak and strong) data
augmentations, and can improve generalization performance while achieving high data efficiency.

2.2 IMPROVING GENERALIZATION

In vision-based applications, image observations may contain lots of task-irrelevant information
such as clouds, shadows and light. It becomes more challenging when these distracting elements
are constantly changing during the time of testing. Therefore, learning invariant features that are
directly relevant to the task control is a high priority for generalization. Recent studies attempt to
increase generalization with supervised learning, including regularization (Cobbe et al., 2019; Fare-
brother et al., 2018), stochasticity (Zhang et al., 2018b), noise injection (Igl et al., 2019; Zhang
et al., 2018a), more diverse training conditions (Rajeswaran et al., 2017; Witty et al., 2018) and
self-attention architectures (Tang et al., 2020). DeepMDP (Gelada et al., 2019) and DBC (Zhang
et al., 2020) used bisimulation metrics to provide effective downstream control by learning invariant
features from the images including task-irrelevant details. Although these studies improved gen-
eralization power, there was a decrease in data efficiency. SODA (Hansen & Wang, 2021) learns
representation by maximizing the mutual information between augmented data and non-augmented
data. SECANT (Fan et al., 2021) first learns an expert policy with weak augmentations, and imitates
the expert policy with strong augmentations. Inverse Dynamics was introduced in (Pathak et al.,
2017; Burda et al., 2018) to provide intrinsic rewards for exploration. PAD (Hansen et al., 2020)
proposed Inverse Dynamics to fine-tune representation during deployment. Our work does NOT
require any pre-training or fine-tuning at testing, and achieves the best generalization performance
and data efficiency.

2.3 ADVERSARIAL LEARNING

Adversarial learning (Goodfellow et al., 2014; Miyato et al., 2016; Kurakin et al., 2016) has been
leveraged in several RL studies. GAIL (Ho & Ermon, 2016) proposed an imitation learning method
that lets a discriminator distinguish between expert trajectories and those of a generator; here, the
generator tries to match expert behavior to fool the discriminator, like the concept of GAN (Goodfel-
low et al., 2014). In inverse RL, AIRL (Fu et al., 2017) uses adversarial reward learning to be robust
to changes in dynamics. AGAC (Flet-Berliac et al., 2021) is based on typical Actor-Critic algorithm,
but introduces an adversary component. While the adversary tries to imitate the actor, the actor tries
to solve the task and behaves differently from the adversary. It showed excellent performance in var-
ious hard-exploration environments. In our study, we proposes an adversarial representation method
to improve data efficiency and generalization without modifying the RL algorithm.

3 JOINT SELF-SUPERVISED RL (JS2RL)

In this section, we introduce our reinforcement learning framework using the joint self-supervised
learning method. Our framework doesn’t require any changes to the underlying RL algorithm, and
any RL algorithm can be used.

3.1 MODEL OVERVIEW

We design the model architecture to share represented features that feed into reinforcement learning
and joint self-supervised learning. We define encoder ϕ, Inverse Dynamics I , Forward Dynamics
F , Discriminator D. Our goal is to train the encoder ϕ to extract task-control relevant information
efficiently so that the RL agent can learn the generalized optimal policy. Our encoder ϕ is updated
by gradients from Inverse Dynamics I , Forward Dynamics F , Adversarial Representation and RL
algorithm. (Our framework is illustrated by Figure 1 and Algorithm 1)

3.2 TWO-WAY DATA AUGMENTATIONS
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(a) Adversarial Representation. (b) Inverse Dynamics and Forward Dynamics.

Figure 3: (a) Adversarial Representation learns invariant features between weak and strong aug-
mented views of the same observation. (b) Inverse Dynamics predicts an action ât given the current
latent state zt and the next latent state zt+1. With two-way augmentations, we can predict âwt and
âst respectively. Forward Dynamics predicts the next latent state ẑt+1 given the current latent state
zt and the action ât predicted by Inverse Dynamics. We cross-enter the predicted actions âwt and âst
into Forward Dynamics.

Figure 2: Data augmentations used in our
framework.

In our framework, as shown in Figure 2, we use
multiple data augmentation techniques together dur-
ing training; Random-shift (Kostrikov et al., 2020),
Grayscale, Random Convolution (Lee et al., 2019b),
Color-jitter and Cutout-color (Cobbe et al., 2019).
Random-shift pads each side and then selects a ran-
dom crop back to the original image size. Grayscale
converts RGB images to grayscale images based on
certain probabilities. Random convolution trans-
forms an image through a randomly initialized convolutional layer. Color-jitter converts RGB image
to HSV image which adds noise to each channel of HSV. Cutout-color randomly inserts a small ran-
dom color occlusion into the input image.

We design two-way data augmentations of Augw and Augs shown in Figure 1. Augw means weak
augmentation by using only Random-shift, and Augs represents strong augmentation which consists
of Random-shift plus a randomly chosen technique other than the Random-shift. While our weak
augmentation focuses on position transformation, the strong augmentation includes position, color,
and texture transformation. Augw, Augs are applied randomly across the batch and the parameters
of these augmentations applied to current and next observations are also different.

3.3 ADVERSARIAL REPRESENTATION

The goal of Adversarial Representation is to allow the encoder to extract robust representations that
are invariant between weak and strong augmented views. The augmented observations by Augw and
Augs pass through the encoder ϕ to obtain a latent state zw = ϕ(Augw(obs)), zs = ϕ(Augs(obs)),
where obs represents an image observation. Instead of using a traditional GAN, we use a relativistic
GAN (Jolicoeur-Martineau, 2018), which is known to be more stable and faster. For zw and zs, we
define encoder (as a generator) and Discriminator objective functions as follows, where σ represents
a sigmoid function.

J(ϕ) = − log(σ(D(zs)−D(zw))), (1)

J(D) = − log(σ(D(zw)−D(zs))). (2)

J(ϕ) optimizes zs to have a higher value than zw in Equation 1. Conversely, J(D) optimizes zw
to have a higher value than zs in Equation 2. By alternately optimizing Equation 1 and Equation 2,
the encoder ϕ is updated so that the representations of zw and zs become similar as illustrated by
Figure 3a. Eventually, Adversarial Representation can learn invariant features regardless of the
position shifts and the changes in color and texture of the observations.
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3.4 INVERSE DYNAMICS AND FORWARD DYNAMICS

We introduce Inverse Dynamics and Forward Dynamics based on two-way data augmentations. For
given sequential latent states zwt and zwt+1, and another pair of zst and zst+1, Inverse Dynamics I
infers the actions âwt = I(zwt , z

w
t+1) and âst = I(zst , z

s
t+1). Even if the input image is augmented in

different ways, the two inferred actions must be identical to each other, and must be identical to the
action at that was actually performed.

The inferred actions âwt and âst are fed into Forward Dynamics F along with the current latent states
zwt and zst . F predicts the next latent states ẑwt+1 and ẑst+1 as shown in Figure 3b. It is important to
note that the inferred actions are cross-entered such as ẑwt+1 = F (zwt , â

s
t ) and ẑst+1 = F (zst , â

w
t ).

Literally, zwt+1 is predicted by using ast , inferred from the pair of zst and zst+1, to which different
augmentations were applied. This cross-entered prediction allows our encoder to learn more robust
representation by using the inferred knowledge from different perspectives on the same observation.

The Inverse Dynamics objective function Equation 3 is defined as the mean squared error between
actual action and inferred action.

J(I) =
(I(zwt , z

w
t+1)− at)

2 + (I(zst , z
s
t+1)− at)

2)

2
(3)

The Forward Dynamics objective function Equation 4 is defined as negative cosine similarity ∆ be-
tween the predicted next latent state and the actual next latent state that encodes the next observation.

J(F ) =
∆(ẑwt+1, z

w
t+1) + ∆(ẑst+1, z

s
t+1)

2
(4)

The final joint self-supervised objective function is defined as a combination of Inverse Dynamics,
Forward Dynamics and Adversarial Representation as shown in Equation 5, and it can send a training
signal to the encoder ϕ to efficiently represent task-relevant features.

J(I, F, ϕ,D) = λIJ(I) + λFJ(F ) + λAJ(ϕ,D) (5)

where λI , λF and λA are hyper parameters.

Algorithm 1 Joint Self Supervised Reinforcement Learning
Initialize: Encoder ϕ, Policy π, Critic Q,

Discriminator D, Inverse Dynamics I , Forward Dynamics F , Buffer B.
1: for each iteration do
2: for each environment step do
3: Encode state zt = ϕ(st) ▷ st ← env.step(at−1)
4: Execute action at = π(zt)
5: Store transition: B ← B ∪ {st, at, st+1, rt+1}
6: end for
7: for each update step do
8: Sample mini-batch: (S,A, S′, R) ∼ B
9: Apply augmentation: Zw, Z

′
w = Augw(S), Augw(S

′)
10: Apply augmentation: Zs, Z

′
s = Augs(S), Augs(S

′)
11: Train joint self-supervision: EZw,Z′

w,Zs,Z′
s,A

[J(I, F, ϕ,D)]
12: Train RL policy: EZw,Z′

w
[J(π)]

13: end for
14: end for
15: return Optimal Policy π

Algorithm 1 describes how the joint self-supervised RL works. In the algorithm, st, st+1 are the
image observations obtained by interacting with the environment. We divide the training phase of
JS2RL into two steps. First, train the three self-supervised learning methods (Inverse Dynamics,
Forward Dynamics and Adversarial Representation), and then train the RL policy. We repeat this
learning process and JS2RL objective functions refer to Equation 5. This algorithm version is based
on an off-policy RL algorithmm, such as Soft Actor-Critic (SAC) (Haarnoja et al., 2018), but our
JS2RL can work with any RL algorithms, as shown in Appendix E (such as on-policy algorithms
like PPO (Schulman et al., 2017) and other off-policy algorithms like TD3 (Fujimoto et al., 2018)).
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4 EXPERIMENTS

This section demonstrates how efficiently JS2RL can learn tasks with distracting elements (task-
irrelevant information) and can generalize well against unseen test environments. On a set of con-
tinuous control tasks in the DeepMind Control suite, JS2RL shows excellent performance in most
settings. For CARLA (Dosovitskiy et al., 2017), a more realistic and autonomous driving envi-
ronment with various distractors (e.g. shadows, changing weather, and light), we also show better
performance than prior studies. We benchmark JS2RL against the following algorithms; SAC is
plain Soft Actor-Critic with no augmentation. DrQ (Kostrikov et al., 2020) applies data augmenta-
tions in SAC. CURL (Srinivas et al., 2020) introduces a contrastive representation learning method.
DeepMDP (Gelada et al., 2019) and DBC (Zhang et al., 2020) learns a latent state representation
by predicting rewards and next latent states using the bisimulation metric. SODA (Hansen & Wang,
2021) learns representation by maximizing the mutual information between augmented and non-
augmented data. PAD (Hansen et al., 2020) fine-tunes representation at testing environments through
self-supervision.

4.1 NETWORK ARCHITECTURE

We implement our joint self-supervised method on top of Soft Actor Critic (SAC) for the visual
input version (Yarats et al., 2019) architecture, which updates the encoder only with Q-function
back-propagation. The RL parts Actor, Critic and the self-supervised part Inverse Dynamics, For-
ward Dynamics and Discriminator networks share the Encoder ϕ which consists of 4 convolutional
layers and 1 fully connected layer. Both Actor and Critic consists of 3 fully connected layers. In-
verse Dynamics I , Forward Dynamics F and Discriminator D consists of 2 fully connected layers.
For CARLA environment, we modify the Encoder ϕ slightly. Implementation details and hyper
parameters are in Appendix F.

4.2 DEEPMIND CONTROL SUITE

Figure 4: We use three different background
types. There are examples on a Cheetah
task in the Deepmind Control suite; Default
(left), Simple Distractor (center), and Natu-
ral Video (right)

The DeepMind Control suite is a vision-based simu-
lator that provides a set of continuous control tasks.
We experiment with nine tasks; Walker Walk, Chee-
tah Run, Hopper Hop and additional tasks in the ap-
pendix. And we evaluate the performances on two
metrics; one is Data efficiency and the other is Gen-
eralization. Each RL method is trained for 500K en-
vironment steps, and every 5,000 steps, we tested the
currently trained model by calculating the average return for 10 episodes. We trained each RL
method over three different seeds. 1 As shown in Table 1, JS2RL shows performance similar to the
best performance of the prior works in data efficiency experiments, and significantly outperforms
the prior works in generalization experiments. More experiment details are in Appendix F.

4.2.1 DATA EFFICIENCY

For the data efficiency evaluation, we used three background configurations; Default, Simple Dis-
tractor and Natural Video, as shown in Figure 4. Default is a clean and static background provided
by the DeepMind Control suite. Simple Distractor is a non-stationary background with randomly
plotted circles with different colors. Natural Video is also a non-stationary background which con-
sists of real car-driving scenes in Kinetics dataset (Kay et al., 2017). In this evaluation, the test is
carried out in the same environment (the same background setup) used for training. As shown in
Figure 5, JS2RL almost shows the top performance compared with other baselines. On Hopper Hop,
JS2RL achieves 10% higher than the best performance of the other baselines. The results for the
additional task environments and backgrounds are in Appendix A, C.

1There is a reproducing issue on DBC as already reported in the author’s GitHub, so we received the result
logs shown in the DBC paper from the author.
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SAC DrQ CURL SODA PAD DeepMDP DBC JS2RL (Ours)
Data Efficiency (evaluate on seen backgrounds)
Walker Walk 37.1±4.5 493.5±105.2 917.4±12.0 869.1±12.0 861.7±1.8 537.6±74.2 503.2±56.6 894.0±7.7
Cheetah Run 230.2±20.4 272.8±31.4 335.5±0.3 263.3±8.7 293.0±0.4 353.2±69.2 174.4±35.7 298.3±7.8
Hopper Hop 92.4±5.6 91.5±31.8 73.6±27.5 86.4±43.5 129.0±39.2 8.7±12.9 4.1±5.2 142.0±2.8
Generalization (evaluate on unseen backgrounds)
Walker Walk 57.8±16.9 270.5±81.6 407.6±35.0 754.2±25.4 835.3±1.4 329.2±116.9 547.1±9.4 849.1±45.5
Cheetah Run 49.0±16.8 218.6±25.2 189.5±31.1 228.7±17.8 256.7±0.5 64.8±8.0 142.7±10.0 314.3±17.9
Hopper Hop 14.8±5.2 81.4±30.0 42.7±23.6 59.2±32.0 54.0±10.6 0.6±0.2 27.2±18.6 121.8±7.8

Table 1: Performance of JS2RL and baselines on three tasks in the DeepMind Control suite. We train
for 500K environment steps on Simple Distractor. We evaluate the trained model on the same Simple
Distractor for data efficiency experiments, and evaluate the model on unseen Natural Video for
generalization experiments. The results show the mean and standard deviation over three different
seeds.

Figure 5: Data efficiency comparisons on three tasks in the DeepMind Control suite; Walker (left
columns), Cheetah (center columns), and Hopper (right column). All RL methods are trained and
evaluated on the same Simple Distractor backgrounds. We show the learning curves for each RL
method on three different seeds with 1.0 standard error shaded.

Figure 6: Generalization comparisons on three tasks in the DeepMind Control suite; Walker (left),
Cheetah (center), and Hopper (right). Each task is trained on Simple Distractor backgrounds, and
then is evaluated on Natural Video backgrounds. We show a comparison of our algorithm and
baselines on three different seeds with 1.0 standard error shaded.

4.2.2 GENERALIZATION

In this experiment, we first trained each RL method in the Simple Distractor background and then
evaluated it in the Natural Video background, which was not seen during the training phase. Figure 6
presents that JS2RL not only learns each task very quickly and achieves the highest performance,
but also generalizes well to the unseen environment. At 500K training steps, we achieve 2%, 22%
and 50% higher performances compared to the highest performance among other RL methods for
each task. The results for the additional task environments are in Appendix A. In Figure 7, we also
visualize the state embedding of Walker Walk using t-SNE. Even if unseen backgrounds are dra-
matically different, a well-generalized encoder should capture invariant features when observations
are behaviorally equivalent. JS2RL can encode semantically similar observations to be most closely
located.
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Figure 7: t-SNE of representations learned by JS2RL, DBC, SODA and PAD. Even if the back-
ground is dramatically different, JS2RL can encode behaviorally-equivalent observations (blue,
brown, pink, olive, sky blue) to be most closely located.

Figure 8: (left) Ablation studies for JS2RL where 2W stands for our proposed 2-way data aug-
mentations, and 1W stands for 1-way data augmentation using a single encoder and Random-shift
only. (center) Using multiple strong augmentation techniques together shows better performance
than using a single strong augmentation. (right) Our framework can replace Adversarial Represen-
tation with other self-supervised learning method such as Reconstruction or Contrastive methods.
We show each ablation studies on three different seeds with 1.0 standard error shaded.

4.2.3 ABLATION STUDIES

We present the ablation studies to examine the synergy of our two-way data augmentations and joint
self-supervised learning method. Our ablation experiment is conducted in the same environment
setup as the Generalization experiment in Section 4.2.2.

In Figure 8 (left), Inv stands for SAC with Inverse Dynamics but no augmentation, and it hardly
learns. 1W-Inv stands for one-way augmentation (Randon-shift only) with Inverse Dynamics, and
shows a little improved performance. 2W-Inv is our proposed two-way data augmentations with
Inverse Dynamics, and highly improves performance over 1W-Inv. It demonstrates the importance
of our two-way data augmentations. 2W-Inv-Adv shows that adding Adversarial Representation can
improve early learning efficiency. The whole integration achieves the best performance. Additional
ablation of self-supervised learning methods is in Appendix B.

For our strong augmentations, JS2RL uses Random-shift and randomly adds one of Grayscale,
Random-Convolution, Cutout-color and Color-jitter every mini-batch. Figure 8 (center) compares
the performance when using only one type of strong augmentation each. Random-Convolution
seems to have the greatest impact on performance, but when all the data augmentations are used
together shows the best performance.

Lastly, in our framework, Adversarial Representation can be replaced with with other self-supervised
learning methods such as Reconstruction (Kingma & Welling, 2013) or Contrastive (Srinivas et al.,
2020) methods. Figure 8 (right) shows clear differences in achieved task performance according to
the different representation learning methods. Using Adversarial Representation greatly outperforms
both Reconstruction and Contrastive methods.
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(a) Scenes in the CARLA simulator. (b) Comparison of performance in CARLA.

Figure 9: (a) Scenes in CARLA simulations classified as Highway (left column), Town (center
column) and Bridge (right column). Each column is captured in the same spot but contains different
task-irrelevant information such as the Sun, rain, shadows, clouds, etc. (b) Performance comparison
in the autonomous driving environment CARLA. JS2RL outperforms all other RL methods.

4.3 CARLA ENVIRONMENT

CARLA is a first-person view simulator for studying autonomous driving systems. In the CARLA
simulations, we can evaluate the performance of RL methods on more realistic visual observa-
tions. As shown in Figure 9a, there are diverse types of distractors (e.g., the Sun, rain, shad-
ows, clouds, etc.) around the agent, and it changes dynamically with every episode, and even
within the same episode. Therefore, it becomes more important to extract control-related fea-
tures (e.g., road, collision, speed, brake, steer, etc.). The basic experimental setup is configured
the same as DBC. Visual observation is a 300 degree view from the vehicle roof and the im-
age size is 3×84×420. The reward is defined by the function of driving distance, speed, and
the penalty of collision, steering and breaking. Each method is trained for 100K environment
steps, and the average return for 20 test episodes is calculated. We run each RL method across
three seeds. Figure 9b shows the performance comparison with three seeds in CARLA. DBC us-
ing bisimulation metric performs better than SAC and DeepMDP, and JS2RL learns much faster
and achieves the highest performance. For another aspect of the representation quality compari-
son, we suggest the representation distance between two observations. We can intuitively assume
that the representation distance should be close if their task-relevant context is similar regardless
of other distracting elements. We first took 50 random observations at three locations; Highway,
Town, and Bridge in CARLA. We repeatedly collected observations from almost the same spots,

SAC DeepMDP DBC JS2RL
Highway 3.86 3.04 2.66 1.00

Town 6.23 4.14 3.76 1.00
Bridge 3.82 1.71 1.67 1.00

Table 2: Average representation distance in
latent spaces according to task-irrelevant in-
formation changes on CARLA simulations.
(The numbers are normalized to JS2RL)

but these observation look different because of vary-
ing task-irrelevant information (e.g. the Sun, shad-
ows, clouds, rain, car types & colors, etc.), as shown
in Figure 9a. We measured the L2 distance in the la-
tent space between varying observations taken from
almost the same situation. Table 2 presents the av-
erage representation distance normalized to our re-
sult. JS2RL has minimal average distance compared
to other methods, and we believe this is why our
method performs best.

5 CONCLUSION

In this work, we propose a joint self-supervised learning method to enhance a vision-based RL.
Based on two-way data augmentations, combining Adversarial Representation, Inverse Dynamics,
and Forward Dynamics, can significantly improve the data efficiency and generalization of learning
optimal control when operating on complex or unseen background images. In the future, we plan
to design sequence-based approaches such as representing video inputs and allowing Inverse &
Forward Dynamics to predict multi-steps in latent space.
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6 REPRODUCIBILITY STATEMENT

Our code is open-sourced and available at https://drive.google.com/file/d/
1OOd3539XnEvG0YwMkyXH8BlJOqYQ4Y9E/view?usp=sharing.
We also provide overview of network architecture, implementation details and hyper-parameter set-
ting in Section 4.1, Appendix F.
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Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment. arXiv preprint
arXiv:2007.04309, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Olivier Henaff. Data-efficient image recognition with contrastive predictive coding. In International
Conference on Machine Learning, pp. 4182–4192. PMLR, 2020.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29:4565–4573, 2016.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. arXiv preprint arXiv:1910.12911, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard
gan. arXiv preprint arXiv:1807.00734, 2018.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples in the physical world,
2016.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953,
2019a.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple technique
for generalization in deep reinforcement learning. arXiv preprint arXiv:1910.05396, 2019b.

Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods for semi-
supervised text classification. arXiv preprint arXiv:1605.07725, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. arXiv preprint arXiv:1807.04742, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

11



Under review as a conference paper at ICLR 2022

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards generalization
and simplicity in continuous control. arXiv preprint arXiv:1703.02660, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of self-interpretable agents. In Proceed-
ings of the 2020 Genetic and Evolutionary Computation Conference, pp. 414–424, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Sam Witty, Jun Ki Lee, Emma Tosch, Akanksha Atrey, Michael Littman, and David Jensen.
Measuring and characterizing generalization in deep reinforcement learning. arXiv preprint
arXiv:1812.02868, 2018.

Denis Yarats and Ilya Kostrikov. Soft actor-critic (sac) implementation in pytorch. https://
github.com/denisyarats/pytorch_sac, 2020.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018a.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018b.

12

https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac


Under review as a conference paper at ICLR 2022

A ADDITIONAL DEEPMIND CONTROL SUITE RESULTS

Figure 10, 11, 12 show performance of Data efficiency on Default, Simple Distractor and Natural
Video background setting for nine environments. Figure 13 show performance of Generalization
for nine environments. We evaluate performance of Generalization through average return differ-
ences when evaluating on Simple Distractor and Natural Video background after training on Simple
Distractor background.

Figure 10: Results of data efficiency evaluation for JS2RL and baselines on Default background.
We show the learning curves of each tasks on three different seeds with 1.0 standard error shaded.
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Figure 11: Results of data efficiency evaluation for JS2RL and baselines on Simple Distractor back-
ground. We show the learning curves of each tasks on three different seeds with 1.0 standard error
shaded.

Figure 12: Results of data efficiency evaluation for JS2RL and baselines on Natural Video back-
ground. We show the learning curves of each tasks on three different seeds with 1.0 standard error
shaded.

14



Under review as a conference paper at ICLR 2022

Figure 13: Results of generalization evaluation for JS2RL and baselines. We show the learning
curves of each tasks on three different seeds with 1.0 standard error shaded.

B ADDITIONAL SELF-SUPERVISION ABLATION

In Figure 14, this ablation study is for our framework in Walker-Walk and Hopper-stand environ-
ments. Inv stands for SAC with Inverse Dynamics but no augmentation, and it hardly learns. 1W-Inv
stands for one-way augmentation (Randon-shift only) with Inverse Dynamics, and shows a little im-
proved performance. 2W-Inv is our proposed two-way data augmentations with Inverse Dynamics,
and highly improves performance over 1W-Inv. It demonstrates the importance of our two-way data
augmentations. 2W-Inv-Adv shows that adding Adversarial Representation can improve early learn-
ing efficiency in Walker-Walk, and more performance gains in Hopper-Stand. The whole integration
achieves the best performance.

Figure 14: Ablation studies for JS2RL, where 2W stands for our two-way data augmentations and
1W stands for one-way augmentation (Random-shift only). We show generalization performance
comparison of each ablation case on three different seeds with 1.0 standard error shaded.
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C COMPARISON TO RL ALGORITHMS IMPROVING DATA EFFICIENCY

CURL and DrQ are well knwon RL algorithms that have highly improved Data Efficiency in the
image based environment. As shown in Figure 15, these algorithms show very high performance
in the Default background, but when distractors are added to the background, their performance
gradually degrade, and in the Generalization experiment (trained on Simple Distractor and tested on
Natural Video), both algorithms noticeably decrease. We note that the original CURL uses Random
Crop which randomly crops an 84 x 84 image from a 100 x 100 simulation-rendered image during
training. However, CURL uses a center crop of an 84 x 84 image from a 100 x 100 image for
evaluation. In the Deepmind Control suit environments, robots are always located in the center of
the simulation images. Therefore, the center crop easily removes background areas. To evaluate the
performance on distracting backgrounds and unseen backgrounds, such a center crop is NOT fair.
In our experiments, we replace Rrandom Crop (for training) & Center Crop (for evaluation) with
Random-shift (for training) & No augmentation (for evaluation).

Figure 15: Data efficiency comparisons for each background on Walker Walk in the DeepMind
Control suite; Default (top left), Simple Distractor (top right) and Natural Video (bottom left). Gen-
eralization performance (bottom right) on Walker Walk. We show the learning curves of each ex-
periments on three different seeds with 1.0 standard error shaded.
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D CROSS-ENTERED STRUCTURE FROM INVERSE DYNAMICS TO FORWARD
DYNAMICS

In this section, we empirically explain the justification of the cross-entered structure in JS2RL. The
cross-entered version used the predicted action âit and âjt from Inverse Dynamics are crossly fed into
Forward Dynamics. We compare the generalization performance in three environments between the
cross-entered version and the uncross-entered version. As shown in Figure 16, the cross-entered
version has higher performance than the uncross-entered version for all three environments slightly.

Figure 16: Comparison of cross-entered version (blue) and uncross-entered version (brown) on
Walker Walk (left), Cheetah Run (center) and Hopper Hop (right). Cross-entering the predicted
actions into Forward Dynamics has a positive effect on performance. We show results on three
different seeds with 1.0 standard error shaded.

E APPLY JOINT SELF-SUPERVISED LEARNING METHOD TO OTHER RL
ALGORITHMS

In this section, we show whether our joint self-supervised learning method improves the data effi-
ciency and generalization performance using other RL algorithms. We have replaced SAC with a
different off-policy algorithms, TD3 (Fujimoto et al., 2018), and one of the on-policy algorithms,
PPO (Schulman et al., 2017). As shown in Figure 17, our framework is helpful to improve Data
Efficiency and Generalization performance no matter what RL algorithms we apply.

Figure 17: (left) Data Efficiency evaluation, (right) Generalization evaluation on the DeepMind
Control suite (Walker Walk). TD3 with JS2RL (blue), standard TD3 (brown), PPO with JS2RL
(red), standard PPO (orange). We show the learning curves of each experiments on three different
seeds with 1.0 standard error shaded.

F IMPLEMENTATION DETAILS

In this section, we explain the implementation details for JS2RL in the DeepMind Control suite and
the CARLA. We use Soft Actor Critic (SAC) (Haarnoja et al., 2018) which is modified by (Yarats
et al., 2019) and same encoder architecture as in (Kostrikov et al., 2020) for DeepMind Control
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suite and CARLA. For details on the SAC, the reader is referred to (Haarnoja et al., 2018). We
use Pytorch implementation of SAC (Yarats & Kostrikov, 2020; Kostrikov et al., 2020) and build
JS2RL on top of it. We augment with a shared encoder between the actor, critic, encoder ϕ, Inverse
Dynamics I , Forward Dynamics F , Discriminator D.

F.1 NETWORK ARCHITECTURE DETAILS

Our encoder consists of four CNN layers with 3×3 kernels, 32 channels and set the stride to 1 for
each layer, except set the first layer’s stride to 2. And then we apply ReLU activation function
to all CNN layers. Finally, output of CNN layers is fed into a fully-connected layer normalized
by LayerNorm (Ba et al., 2016) and apply tanh activation to output of fully-connected layer. This
output is 50 dimensional latent vector. The actor, critic, Inverse Dynamics, Forward Dynamics
and Discriminator networks share encoder ϕ. The critic (Q-function) consists of three-layer MLP
with applied ReLU to all layers except the last layer, and size of hidden layers is 256. The actor
also consists of MLP architecture similar to critic and the final output is mean and covariance for
the diagonal Gaussian, which represent the policy. Inverse Dynamics I , Forward Dynamics F and
Discriminator D networks consist of two-layer MLP with applied ReLU to first layers and size of
hidden layers is 256. Output of these networks apply tanh activation. When training in a CARLA
environment, we modify encoder slightly. This is the same as used on DeepMind Control suite,
except that stride is set to 2 all CNN layers.

F.2 EXPERIMENTAL SETUP

First, our agent collects 1000 observations of size 3×84×84 in DeepMind Control suite and size
3×420×420 using a random policy. After 1000 seed steps, agent is updated for each true environ-
ment step (when an episode length is 1000 steps, if action repeat is 2, true environment step is 500).
All methods are trained for 500,000 steps (DeepMind Control suite) or 100,000 steps (CARLA).
During training, the average return for 10 episodes is calculated to evaluate every 5000 true environ-
ment steps (DeepMind Control suite) or the average return for 20 episodes is calculated to evaluate
every 10 episodes (CARLA).

F.3 IMAGE AUGMENTATIONS

In common, we use an image observation as an 3-stack of consecutive frames. And then we normal-
ize it by dividing by 255. Image augmentations described in Section 3.2 is applied to the normalized
image. We apply augmentation to images sampled from the buffer or a recent trajectory only during
training procedure, not environment interaction procedure. In the DeepMind Control suite, when
Random shift is applied, all sides are padded by 4 pixels, but in the CARLA environment, the top
and bottom sides are padded by 4 pixels, and the left and right sides are padded by 20 pixels accord-
ing to the image ratio.

F.4 HYPER-PARAMETERS

When applying JS2RL, we adopt hyper parameters used in (Yarats et al., 2019). We detail all hyper
parameters used for DeepMind Control suite and CARLA environments in Table 3a and Table 3b.
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hyper parameter Value
Frame 3×84×84
Seed steps 1000
Stacked frames 3
Action repeat 2(walker, finger)

4(otherwise)
8(cartpole)

Batch size 128
Replay buffer size 100,000
Number of training steps 500,000
Discount factor 0.99
Optimizer Adam
Episode length 1000
Actor, Critic Learning rate 10−3

Inverse Dynamics learning rate 10−3

Forward Dynamics learning rate 10−3

Generator(Encoder) learning rate 10−3

Discriminator learning rate 10−3

Critic target update frequency 2
Critic Q-function soft-update rate 0.01
Actor update frequency 2
Actor log stddev bounds [-10, 2]
Init temperature 0.1
λI , λF 0.1
λA 0.001

(a) DeepMind Control suite.

hyper parameter Value
Frame 3×84×420
Seed steps 1000
Stacked frames 3
Action repeat 4
Batch size 128
Replay buffer size 100,000
Number of training steps 100,000
Discount factor 0.99
Optimizer Adam
Episode length 1000
Actor, Critic Learning rate 10−3

Inverse Dynamics learning rate 3× 10−4

Forward Dynamics learning rate 3× 10−4

Generator(Encoder) learning rate 3× 10−4

Discriminator learning rate 3× 10−4

Critic target update frequency 2
Critic Q-function soft-update rate 0.01
Actor update frequency 2
Actor log stddev bounds [-10, 2]
Init temperature 0.1
λI , λF 0.1
λA 0.001

(b) CARLA.

Table 3: Overview of hyper parameters used for the experiments.

G HYPER-PARAMETER SENSITIVITY

For our hyper-parameter sensitivity testing, we select λI and λF from {10−3, 10−2, 10−1, 100} and
λA from {10−4, 10−3, 10−2, 10−1, 100}. We showed that a sensitivity evaluation on Walker Walk
in the DeepMind Control suite in Figure 18. We observe that JS2RL has good performance in a
wide range of hyper parameter choices.

Figure 18: Hyper-parameter sensitivity of JS2RL’s objective weights. The value corresponding to
each point is the average return over three seeds.
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H ASYMPTOTIC PERFORMANCE

In this section, we show learning curve on three tasks with Data efficiency and Generalization exper-
iments when the number of the environment steps increases from 500K to 1M. For longer learning
steps, the performance of JS2RL gradually increases slightly or converges well.

Figure 19: Learning curves with 1M environment steps (brown - Data Efficiency, blue - Generaliza-
tion). We show the learning curves of each experiments on three different seeds with 1.0 standard
error shaded.
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