
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ComputerRL: Scaling End-to-End Online Reinforce-
ment Learning for Computer Use Agents

Anonymous authors
Paper under double-blind review

Abstract

We introduce ComputerRL, a framework for autonomous desktop intelligence
that enables agents to operate complex digital workspaces skillfully. ComputerRL
features the API-GUI paradigm, which unifies programmatic API calls and direct
GUI interaction to address the inherent mismatch between machine agents and
human-centric desktop environments. Scaling end-to-end RL training is crucial for
improvement and generalization across diverse desktop tasks; however, it remains
challenging due to environmental inefficiency and instability during extended
training. To support scalable and robust training, we develop a distributed RL
infrastructure capable of orchestrating thousands of parallel virtual desktop environ-
ments to accelerate large-scale online RL. Furthermore, we propose Entropulse, a
training strategy that alternates reinforcement learning with supervised fine-tuning,
effectively mitigating entropy collapse during extended training runs. We employ
ComputerRL on open models GLM-4-9B-0414 and GLM-4.1V-9B-Thinking, and
evaluate them on the OSWorld benchmark. The GLM-ComputerRL-9B achieves a
new state-of-the-art accuracy of 48.9%, demonstrating significant improvements
for general agents in desktop automation. Our code and demos are available at this
https URL.

GLM-ComputerRL

9B Claude 4.0
Agent S2

(Gemini-2.5-Pro)
UI-TARS-1.5

OpenAI CUA o3
20
25
30
35
40
45
50
55

Su
cc

es
s R

at
e

(%
)

SFT

RL

48.9%

30.7%

41.4% 42.5% 42.9%

(a) The success rates of agents on OSWorld.

0 30 60 90 120 150 180 210 240 270 300 330 360
Step

0.30

0.35

0.40

0.45

0.50

0.55

Re
wa

rd

Baseline
Entropulse (Ours)

(b) ComputerRL training reward curves (95% CIs).

Figure 1: ComputerRL enables efficient end-to-end online policy optimization for OS agents.
(a) On OSWorld (Xie et al., 2024), GLM-ComputerRL, trained with ComputerRL, outperforms
state-of-the-art agents. (b) Our Entropulse approach yields higher average training rewards and
improves both learning efficiency and final performance over conventional methods.

1 Introduction

Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023b; Zeng et al., 2022; GLM
et al., 2024; Team et al., 2023; Guo et al., 2025; Bai et al., 2023a; Yang et al., 2025) have dramatically
expanded the scope and depth of artificial intelligence capabilities, driving a profound re-examination
of our understanding of machine intelligence. Among all scenarios, the emergence of LLM-based
GUI (graphical user interface) agents, capable of independently perceiving, reasoning, and executing
complex tasks on user devices, has aroused particular interest from researchers (Xi et al., 2023;
Wang et al., 2023; Liu et al., 2023). Given that desktops remain central to intelligence-intensive

1

https://computer-rl.vercel.app/
https://computer-rl.vercel.app/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tasks, developing computer use agents is crucial for fundamentally transforming human-computer
interactions and elevating AI capabilities (Agashe et al., 2025; Wu et al., 2024a).

Despite previous attempts to develop computer use agents (Agashe et al., 2025; Lei et al., 2024; Xie
et al., 2025), enabling them to operate autonomously over extended periods in real-world scenarios
remains a significant challenge. The first primary obstacle arises from the fact that GUIs are inherently
designed for human interaction, making the simulation of human actions by GUI agents (Liu et al.,
2024b; OpenAI, 2025; Qin et al., 2025) a non-trivial and cumbersome endeavor. Second, current
mainstream approaches of behavior cloning (BC) (Bain & Sammut, 1995; Bratko et al., 1995),
including manual annotation (He et al., 2025) and model distillation (Sun et al., 2024; Xu et al.,
2024), are limited in scalability and effectiveness. Manual annotation, while precise, is prohibitively
labor-intensive for complex tasks. Model distillation, on the other hand, is constrained by the
performance of the teacher models, limiting overall capability. Both methods typically exhibit poor
generalization and limited error recovery abilities. Finally, although reinforcement learning (RL)
has shown potential for desktop automation tasks (Lu et al., 2025; Feng et al., 2025), its practical
application remains restricted due to computational complexity and methodological challenges.
Complex environments, slow convergence, and known inefficiencies in RL training (Xie et al., 2024;
Bonatti et al., 2024; Yu et al., 2025; Fu et al., 2025) severely limit its large-scale adoption in training
computer use agents.

In this work, we propose ComputerRL, an end-to-end algorithmic framework designed to advance
desktop-level planning, reasoning, and device operation. This framework includes a new API-GUI
interaction paradigm, a scalable RL training infrastructure for computer environments, and an RL
algorithm for extended effective training. First, we introduce API-GUI, a large-scale, automatically
constructed API ecosystem that enables the agent to transcend the inherent biases of human-oriented
operational paradigms. It instead leverages a more machine-oriented approach for device interaction,
which combines API calls and GUI actions, thereby significantly enhancing both the versatility
and overall performance of the agent. Second, we develop a distributed training infrastructure
utilizing virtual machine clusters based on Docker and gRPC protocols for scalability, which is
fully compatible with AgentBench (Liu et al., 2023). This infrastructure supports thousands of
parallel environments, ensuring high scalability and consistent interactions across all environments.
Additionally, we integrate the training infrastructure with the AgentRL framework (Zhang et al., 2025)
to facilitate efficient asynchronous training, thereby accelerating the training process. Finally, to
counteract stagnation and convergence issues in RL training—specifically, entropy collapse and rising
KL divergence—we propose Entropulse, which alternates between RL and SFT phases periodically.
This approach maintains exploratory capacity and ensures continuous performance gains (Figure 1b).

As a result, by harnessing end-to-end RL and optimization in the desktop environment, ComputerRL
has achieved remarkable improvement in understanding and operating GUIs. Evaluation on the
OSWorld benchmark (Xie et al., 2024) shows ComputerRL’s significant improvements (see Figure 1a)
in computer use challenges, achieving a success rate of 48.9% (with 66% performance gain from
RL), outperforming other state-of-the-art models including OpenAI CUA o3 (42.9%), UI-TARS-1.5
(42.5%), and Anthropic Claude Sonnet 4 (30.7%).

In summary, our contributions are as follows:

• We propose a new interaction paradigm, a shift from human-centric to machine-oriented interaction
by introducing a large-scale, automatically constructed API ecosystem integrated with conventional
GUI operations. This approach addresses the inherent mismatch between human-designed interfaces
and artificial agent capabilities, while achieving superior operational efficiency and generalization
performance on computer-based tasks.

• We establish a large-scale, distributed RL infrastructure for computer use agents by reconstructing
virtual machine clusters, achieving unprecedented scalability with thousands of parallel environments
and seamless AgentBench compatibility, thereby overcoming the critical bottleneck that has limited
RL-based computer use agent training to scale experiments and enabling breakthrough results in
large-scale agent training.

• We introduce Entropulse, a novel training methodology that systematically addresses the challenges
of entropy collapse and KL divergence accumulation in extended RL training through strategic
alternation between RL and SFT phases, enabling sustained performance improvements and
achieving state-of-the-art performance in computer automation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Rollout
Engine

Thought

Actions

Rollout

Click

Scroll
Type

GUI

…

APIs

Actor Update Sync Params. Actor Update Sync Params.
Online
Update

Controller

First, I should use
Chrome to surf the web…

Highlight
Compare

Play…

Data
Queue
Traj 1

Traj 3
Traj 4

Traj 2

…

1000+
Environment

Traj 5

Figure 2: Overview of ComputerRL framework. We introduce an API-GUI action paradigm that
seamlessly integrates automatically constructed APIs with GUI actions to improve agent efficiency
and effectiveness. A large-scale parallel desktop environment with 1,000+ real-world instances,
combined with an asynchronous RL framework, enables efficient sampling and robust agent training.

2 The ComputerRL Framework

The human-oriented design of GUIs hinders agent efficiency, while limited environment scalability
restricts large-scale training. This section presents the ComputerRL framework (see Figure 2),
which features an API-GUI paradigm that integrates human-like GUI interactions with efficient API
invocation. Additionally, we develop a scalable Ubuntu desktop environment for parallelism and
utilize a fully asynchronous RL framework for efficient training.

2.1 General API-GUI Paradigm

Existing GUI agents face challenges due to their reliance on human-like interactions, while API-based
control offers efficiency but introduces implementation complexity and security restrictions. To
address these issues, we propose an API-GUI paradigm that unifies both action spaces, enabling
agents to leverage API efficiency while retaining GUI versatility.

We develop an LLM-based automated workflow for application API development (Yang et al., 2024a;
Wang et al., 2024), significantly lowering the barrier for API creation. Users provide exemplar tasks,
and our system autonomously generates API code and test cases through three stages:

• Requirement Analysis: Users provide task examples for the target application. Our LLM analyzes
these instances, extracts essential functionalities, and compares against existing API interfaces to
identify gaps. New interfaces are automatically generated for uncovered functionalities, with a
focus on general-purpose functions to minimize complexity and enhance usability.

• API Implementation: The workflow iterates over each interface definition, implementing API
functionalities using designated Python libraries. Error-handling mechanisms and logging are
implemented for debugging and maintenance purposes.

• Test Case Generation: Similar to Li & Yuan (2024), we verify API correctness by checking: (1)
runtime error-free invocation and (2) correct results across parameter inputs; failed APIs receive
error feedback for autonomous correction.

This methodology enables the creation of application-specific APIs with minimal human intervention.
We have developed API sets for multiple Ubuntu applications and validated their effectiveness through
experiments. Detailed API development workflow is provided in Appendix A. The agent action space
and prompt formulation are detailed in Appendix B and C.

2.2 Stable Ubuntu Environment for Large-Scale Parallelism

A stable and scalable Ubuntu environment is essential for constructing behavior cloning data and
large-scale RL training. Building on OSWorld (Xie et al., 2024), we identify key limitations:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Resource Intensiveness and Stability: VMs are CPU-intensive and unstable under high
concurrency, causing performance degradation and system freezes.

• Network Bottlenecks: Heavy workloads cause network overhead, connection failures, and IP
address loss, hindering agent interaction and logging.

• Lack of Native Distributed Support: OSWorld lacks multi-node clustering support, preventing
efficient distributed deployment.

To address these limitations, we build a robust and parallelizable OSWorld infrastructure (see Figure 2)
with the following innovations:

• Standardized, Decoupled Interface: We refactor the environment via AgentBench API, providing
a unified interface that decouples environment execution from the computational back-end and
enables flexible resource management.

• Lightweight VM Deployment: Using qemu-in-dockere, we deploy containerized Ubuntu VMs
with streamlined images that reduce network issues and optimize resource usage, significantly
lowering per-instance CPU consumption.

• Distributed Multi-Node Clustering: We employ gRPC-based communication to link CPU nodes
into a distributed cluster with centralized resource allocation and orchestration.

• Web-based Visualization and Monitoring: A web interface provides real-time visualization of
environment statuses, agent states, and resource allocation, improving usability and debugging
capabilities.

Through these technical improvements, our system supports deployment of several thousands of
concurrent environments on a multi-node CPU cluster, as validated by extensive empirical evaluation.
Results confirm our platform’s superior stability, resource efficiency, and scalability, making it an
enabling infrastructure for large-scale RL and agent-based research.

2.3 Full-Asynchronous RL Framework for Efficient Training

Existing RL frameworks rely on synchronous training paradigms, where rollout collection and
parameter updates are alternated, resulting in training inefficiencies. To address the limitation, we use
the AgentRL framework (Zhang et al., 2025) for fully asynchronous RL training with the following
designs:

• Resource Partitioning: Data collection runs on dedicated resources while the trainer streams
data from the replay engine, preventing mutual blocking.

• Dynamic Batch Sizing: The trainer processes incoming data with flexible batch sizes, reducing
idle time and improving efficiency.

• Modular Component Isolation: Actor, reference, and critic modules run independently with
dedicated resources. We utilize PyTorch distributed groups and NCCL for efficient parameter
sharing.

• Off-policy Bias Mitigation: We limit the replay buffer size and sync trajectories after each update,
ensuring trajectories remain close to the latest policy.

Through a stable, high-concurrency desktop environment and the decoupling of training from rollout,
we markedly enhance the efficiency of sampling and RL training. Our system achieves a high average
power consumption per GPU, reflecting optimal resource utilization. This design supports scalable,
high-throughput RL training by enabling dynamic workload balancing, resulting in a significant
improvement in hardware efficiency and overall training throughput.

3 The ComputerRL Training

In Section 2, we establish a robust foundation for large-scale agent training. However, scaling
end-to-end training still faces challenges in initializing a capable base policy and entropy collapse
during RL. This section details our scalable ComputerRL training approach and its algorithmic
innovations for extended training in desktop environments.

4

https://github.com/qemus/qemu
https://github.com/grpc

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Step 1:
Behavior Cloning for Cold
Start

Model Pool

SFT

Step 2:
First RL Phase & Rollout data
Collection

Step 3:
Entropulse and Second RL
Phase

… Rollout Data
from All Policy

Model w/ High Exploration

Filtering

Data for
Entropulse

Final Agent Model

Tasks w/ eval func.
Initial Sampling

100% 1~99% 0%Init SFT M
odel

R
ej. Sam

pling

For Each Step

180k+
Correct Steps

Rollout Data
from All Policy

Entropulse:
Performance
Entropy
KL

RLVR:
Performance
Entropy
KL

↑
↓

↑

RLVR:
Performance
Entropy
KL

↑
↓

↑ ↑
↻

～

Figure 3: Overview of ComputerRL, which includes three stages: (1) BC cold start with trajectories
collected from general LLMs; (2) RL with step-level GRPO using verifiable, rule-based rewards; (3)
Entropulse, which alternates RL with SFT on correct rollouts to restore entropy and sustain learning.

3.1 Behavior Cloning Setup

To perform a cold start for our model, we employ BC as the initial stage of training. By imitating
user interactions, BC enables agents to acquire foundational competencies, thereby facilitating rapid
adaptation to computer operations and tasks.

Trajectory Collection with Multiple LLMs. We manually collect extensive tasks with corresponding
evaluation functions (see Appendix G) and augment to construct an 8k-task dataset. However, the large-
scale collection of high-quality trajectories remains challenging. Manual annotation is prohibitively
expensive, and relying on a single model for trajectory generation results in limited and homogeneous
data distribution constrained by that model’s capabilities. To address these limitations, we leverage
the complementary strengths of multiple advanced models to collect a diverse and high-quality set of
interaction trajectories. Concretely, our data pipeline consists of three key stages:

1. Initial Sampling: For each task, we utilize closed-source LLMs to sample several trajectories per
task independently. We record both the complete interaction trajectories and the outputs produced
by the respective evaluation functions. This procedure yields a rich set of diverse trajectories that
serve as the foundation for subsequent data augmentation and model adaptation.

2. Outcome Stratification: Following initial data collection, we perform a stratified analysis of task
outcomes by categorizing all tasks into three groups based on achieved accuracy: Fully Solved
(acc = 100%), Partially Solved (0 < acc < 100%), and Unsolved (acc = 0%).

3. Task-Oriented Augmentation with Stratified Sampling: For partially solved tasks, we conduct
SFT on our backbone model using the initial trajectories as input. The fine-tuned model is then
used to sample additional trajectories for each task, thereby substantially expanding the coverage
and quality of trajectories for tasks where model proficiency was previously limited.
For tasks classified as unsolved, we build a model pool of high-performing models and randomly
select one to determine each action. This approach leverages inter-model variance at the task level,
as different models exhibit distinct areas of expertise despite comparable aggregate performance,
enabling trajectory generation that is unattainable by any single model.

We systematically aggregate and filter the collected interaction data, retaining only successful
trajectories (180k+ correct steps), and employ them for supervised fine-tuning of the model. This
strategy equips the model with robust desktop manipulation capabilities and foundational reasoning
abilities, significantly enhancing the performance of the base model.

3.2 Reinforcement Learning with Verifiable Rewards

Step-Level Group Relative Policy Optimization. We extend the GRPO algorithm (Shao et al.,
2024) to the step-level, making it more suitable for agent RL training. For each task τ , the policy πθ
interacts with the desktop environment and samples G trajectories T1, T2, . . . , TG. The i-th trajectory

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

consists of Li step-level actions oi,1, . . . , oi,Li
. All steps from the same task are grouped, and the

advantage Ai,j is computed for each step. The overall loss aggregates all step advantages as follows:

JStepGRPO(θ) = E
T ∼P (T),

{
{oi,j}

Li
j=1

}G

i=1
∼πθold

[
1∑G

i=1 Li

G∑
i=1

Li∑
j=1

(
min

(
πθ(oi,j |qi,j)

πθold(oi,j |qi,j)
Ai,j ,

clip
(πθ(oi,j |qi,j)
πθold(oi,j |qi,j)

, 1− ϵ, 1 + ϵ
)
Ai,j

)
− βDKL(πθ∥πref)

)]
,

Ai,j =
ri,j − mean(R)

std(R)
, R = {ru,v | u = 1, . . . , G, v = 1, . . . , Lu}

Reward Design. We select a subset of the constructed human-annotated data (in Section 3.1) for
RL and employ a rule-based verification function to provide verifiable training signals for each
trajectory. Successfully solved trajectories receive a reward of 1 for every correctly formatted action
that contributes to the solution; failed trajectories or improperly formatted actions receive a reward of
0. Unlike conventional approaches that propagate step-wise returns via the Bellman equation, our
methodology treats each prompt-response pair as an independent training instance with rewards based
on the final trajectory outcome. This direct reward assignment provides explicit feedback by coupling
agent behaviors with task success, facilitating effective policy optimization.

3.3 Entropulse for Scaling RL Training

In the RL training in Section 3.2, we observe that model performance plateaus after hundreds
of training steps, with stagnating task completion rates and decreasing entropy. This premature
convergence motivates us to investigate strategies for extending effective training and enhancing
policy exploration. Inspired by DAPO (Yu et al., 2025), we experiment with increasing the clipping
threshold, which attenuates the decline in entropy but significantly slows down policy improvement.

To address the issue, we propose Entropulse, motivated by the observation that SFT and RL
objectives differ markedly during training. As entropy decreases during RL optimization, integrating
SFT at critical junctures enhances exploration and trajectory diversity, facilitating further policy
optimization. During initial RL training, we aggregate and retain all successful rollout trajectories.
While conventionally discarded after single use, these trajectories from various policies at different
training steps represent valuable and diverse behavioral data.

We process this dataset by randomly selecting successful trajectories per unique task to construct a
new SFT training set, which exhibits the following attributes:

1. High quality: All data comprises completed, high-fidelity trajectories.
2. Diversity: Rollouts originate from heterogeneous policies in different training steps, offering a

variety of problem-solving strategies.
3. Computational efficiency: The dataset leverages existing interaction data, eliminating the need

for additional environment rollouts.

SFT on this dataset produces notable shifts in policy behavior. While evaluation task performance
remains stable, the resulting policy shows increased entropy relative to the original one, indicating
enhanced exploration. Building upon this enhanced exploration capability, we conduct a second
round of RL training, which yields significant performance improvements and enables us to achieve
state-of-the-art results in computer automation. The training and hardware details are in Appendix D.

4 Experiments

We employ ComputerRL on GLM-4-9B-0414 (GLM et al., 2024) and GLM-4.1V-9B-Thinking (Hong
et al., 2025), to produce GLM-ComputerRL-9b. We conduct extensive experiments across various
scenarios to evaluate GLM-ComputerRL’s performance within the computer environment.

4.1 Main Results

To closely reflect the real user experience, we evaluate GLM-ComputerRL on the OSWorld (Xie
et al., 2024) and OSWorld-Verified benchmark, comparing its performance against state-of-the-art

6

https://xlang.ai/blog/osworld-verified

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: GLM-ComputerRL performance on OSWorld and OSWorld-Verified (updated in 2025.08).
We compare GLM-ComputerRL with state-of-the-art agents, including both proprietary and open
models.
Agent Model #Params OSWorld OSWorld-Verified
Proprietary Models
Aria-UI w/ GPT-4o (Yang et al., 2024b) - 15.2 -
Aguvis-72B w/ GPT-4o (Xu et al., 2024) - 17.0 -
Claude 3.7 Sonnet (Anthropic, 2023) - 28.0 35.8
Claude 4.0 Sonnet (Anthropic, 2023) - 30.7 43.9
Agent S2 w/ Claude-3.7-Sonnet (Agashe et al., 2025) - 34.5 -
InfantAgent (Lei et al., 2024) - 35.3 -
OpenAI CUA 4o (OpenAI, 2025) - 38.1 31.3
Agent S2 w/ Gemini-2.5-Pro (Agashe et al., 2025) - 41.4 45.8
UI-TARS-1.5 (Qin et al., 2025) - 42.5 -
OpenAI CUA o3 (OpenAI, 2025) - 42.9 -
Open Models
Qwen2.5-vl-72B (Bai et al., 2023b) 72B 8.8 5.0
PC Agent-E (He et al., 2025) 72B 14.9 -
UI-TARS-72B-SFT (Qin et al., 2025) 72B 18.8 -
UI-TARS-72B-DPO (Qin et al., 2025) 72B 24.6 27.1
UI-TARS-1.5-7B (Qin et al., 2025) 7B 26.9 27.4
Jedi-7B w/ GPT-4o (Xie et al., 2025) 7B+ 27.0 29.3
UI-TARS-7B-1.5 + ARPO (Lu et al., 2025) 7B 29.9 -
ComputerRL (ours)

w/ GLM-4-9B-0414 9B 48.1±1.0 47.3
w/ GLM-4.1V-9B-Thinking 9B 48.9±0.5 48.0

models, including CUA (OpenAI, 2025), Claude-4 (Anthropic, 2023), and UI-TARS (Qin et al., 2025),
among others. The comparative results are in Table 1. The results indicate that GLM-ComputerRL
achieves superior performance across a range of domains, with its advantages most pronounced in the
challenging multi-apps setting. Moreover, by employing the API-GUI strategy, GLM-ComputerRL
can accomplish tasks using at most 1/3 of the steps required by the strongest baseline approaches,
demonstrating remarkable gains in execution efficiency. These results underscore the potential of
ComputerRL to advance the state of the art in computer automation across various applications.

4.2 Office Application Performance

As a critical interface for delivering and presenting, office application constitutes an important testbed
for evaluating computer use agents. To assess agent performance in this domain, we curate a set of 180
challenging tasks from three sources: SpreadsheetBench (Ma et al., 2024), PPTC (Guo et al., 2023),
and in-house developed Writer domain tasks. These tasks are adapted as necessary to integrate them
into the OSWorld framework. The resulting benchmark, termed OfficeWorld, enables systematic
measurement of agent capabilities in office-oriented scenarios. The results are in Table 2.

Table 2: GLM-ComputerRL performance on OfficeWorld compared to common baselines. We
employ the same framework (with tools) and test settings to ensure a fair comparison.
Agent Model Word Excel PPT Average
DeepSeek-V3.1 (Liu et al., 2024a) 6.7 35.0 21.7 21.1
DeepSeek-R1 Guo et al. (2025) 13.3 36.7 18.3 22.8
Claude 3.7 Sonnet (Anthropic, 2023) 15.0 25.0 25.0 21.7
Claude 4.0 Sonnet (Anthropic, 2023) 18.3 35.0 20.0 24.4
Gemini-2.5-Pro (Team et al., 2023) 5.0 11.7 20.0 12.2
GPT-4o (Hurst et al., 2024) 18.3 21.7 8.3 16.1
GPT-4.1 (Achiam et al., 2023) 21.7 25.0 28.3 25.0
OpenAI o3 (Jaech et al., 2024) 23.3 36.7 41.7 33.9
ComputerRL (ours)

w/ GLM-4-9B-0414 21.7 58.3 43.3 41.1
w/ GLM-4.1V-9B-Thinking 30.0 58.3 41.7 43.3

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on framework designs and training methods. We categorize OSWorld into
five distinct domains to facilitate a granular comparison of different strategies across various domains.
Method OS Office Daily Professional Workflow Avg.

Framework Ablation (w/ GPT-4o)
GUI Only 41.7 6.2 12.3 14.3 7.5 11.2
API-GUI 52.6 27.9 25.7 41.6 10.8 26.2

Training Ablation (w/ Qwen2.5-14B)
Untrained 20.8 17.2 19.7 22.9 3.3 15.2
+) Behavior Cloning 54.2 35.0 37.2 45.8 10.8 31.9
+) RL Phase 1 83.3 46.1 45.1 56.3 16.1 42.0
+) Entropulse 75.0 42.3 50.6 52.1 18.9 41.5
+) RL Phase 2 83.3 46.2 46.7 60.4 27.2 45.8

0 30 60 90 120 150 180 180 210 240 270 300 330 360
Step

0.30

0.35

0.40

0.45

0.50

0.55

Re
wa

rd

0 30 60 90 120 150 180 180 210 240 270 300 330 360
Step

0.10

0.15

0.20

0.25

0.30

En
tro

py

RL Phase 1 RL Phase 2 Entropulse + RL Phase 2 Entropulse

Figure 4: ComputerRL training curves of reward (left) and entropy (right) with 95% confidence
intervals. The red line denotes the training with entropy recovery via Entropulse after the first RL
stage, while the grey line denotes continued training with only reference resetting.

4.3 Ablation Study

To evaluate the influence of various algorithms and training datasets on agent performance, we present
an ablation study on the OSWorld benchmark in Table 3.

Framework Ablation. We compare the performance of the GUI-only approach with our proposed
API-GUI paradigm using GPT-4o. The results demonstrate that the API-GUI paradigm substantially
outperforms the GUI-only baseline across all domains. Specifically, the API-GUI strategy achieves
an average success rate of 26.2%, representing a 134% improvement over the GUI-only approach
(11.2%). The most significant gains are observed in the Office (27.9% vs. 6.2%) and Professional
(41.6% vs. 14.3%) domains, where API-GUI provides 350% and 191% improvements, respectively.
These results validate our core hypothesis that combining API calls with GUI interactions enables
more efficient and reliable task execution, particularly for complex professional workflows that benefit
from programmatic control.

Training Ablation. We study the progressive impact of different training stages using Qwen2.5-14B.
Starting from the backbone, Behavior Cloning (BC) establishes a solid foundation with 31.9%.
The first RL phase (RL1) yields substantial gains, increasing the performance to 42.0% (+10.1%).
Interestingly, Entropulse phase maintains similar performance (41.5%) while significantly increasing
action entropy, which enhances exploration diversity and enables the final RL2 phase to achieve
further improvements. The RL2 phase achieves the best performance at 45.8% (+3.8% from RL1),
benefiting from the increased exploration capacity introduced by Entropulse. Notably, the Workflow
domain shows the most dramatic improvement throughout training (10.8% → 27.2%), while the other
domains maintain consistently high performance, highlighting the importance of multi-stage training.

RL Scalability. We present the RL training reward and entropy curves in Figure 4 to study the impact
of Entropulse on the extended RL training dynamics. After the first RL phase converges, we compare
the second RL phase with and without Entropulse. To ensure a fair comparison, we reset the reference
model in both scenarios.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The results demonstrate that incorporating Entropulse increases the model’s entropy, thereby restoring
its exploratory capacity. This enhanced exploration substantially scales the effective training steps,
ultimately leading to improved overall performance.

4.4 Case Study and Error Analysis

14.2%

25.6%
25.8%

34.4%

Error Type
Illusion
Others

Vision
Multiple App

Figure 5: Error distribution.

We conduct a case study in the desktop environment to identify potential
avenues for system optimization. Although our model exhibits robust
performance across most scenarios, several limitations have been
identified. In particular, errors encountered during task execution
can be categorized into four primary types: visual perception errors,
multi-application coordination failures, operational illusions, and other
errors. The distribution of these error types is presented in Figure 5.

Appendix E and F present more experimental results. Additional
examples (including both good and bad) are provided in Appendix I
to further illustrate the model’s capabilities and limitations.

5 Related Work

Large Language Models. LLMs, such as GPT (Achiam et al., 2023), Gemini (Team et al., 2023),
Claude (Anthropic, 2023), Llama (Touvron et al., 2023a), GLM (Zeng et al., 2022; Du et al., 2022),
Qwen (Team, 2024), and Deepseek (Liu et al., 2024a), have demonstrated remarkable capabilities in
knowledge representation and language understanding, leading to diverse downstream applications.
Vision-Language Models (VLMs) (Hong et al., 2023; 2025; Bai et al., 2023b; Hurst et al., 2024)
further extend LLMs to multimodal inputs, enabling joint reasoning over text and images.

Computer Use Agents. CogAgent (Hong et al., 2023) introduces multimodal GUI understanding.
AutoGLM (Liu et al., 2024b) decouples planning and grounding with online RL improvement.
OS-Atlas (Wu et al., 2024b) proposes a foundational GUI action model. Aguvis (Xu et al., 2024)
enables cross-platform interaction through visual training. PC-Agent-E (He et al., 2025) utilizes
trajectory boosting for enhanced proficiency. UI-TARS (Qin et al., 2025) performs human-like GUI
interactions from screenshots. Agent S2 (Agashe et al., 2025) integrates grounding with hierarchical
reasoning. CUA (OpenAI, 2025) offers programmable desktop automation.

Computer Use Benchmarks. WebArena (Zhou et al., 2023) provides simulated websites for online
interactions, but has limitations: discrepancies from real-world environments and a web-only focus.
Similar issues exist in other web-focused benchmarks (Yao et al., 2022; Koh et al., 2024; Chezelles
et al., 2024; Miyai et al., 2025). Software engineering benchmarks (Jimenez et al., 2023; Yang
et al., 2024a; Li et al., 2024; Zan et al., 2025; Padigela et al., 2025) lack comprehensive desktop
evaluation. OSWorld (Xie et al., 2024) addresses these gaps with 369 tasks with 134 evaluation
functions. Windows Agent Arena (Bonatti et al., 2024) expands this with 150+ Windows-based tasks.

RL and Entropy Management for LLMs. PPO (Schulman et al., 2017) addresses instability in
policy gradients for RL training. GRPO (Guo et al., 2025) extends PPO with group sampling and
removes value updates. Maximum entropy RL (Haarnoja et al., 2018) and ensemble methods (Lee
et al., 2021; De Paola et al., 2025) maintain diversity through regularization or multiple models. Recent
work identifies entropy collapse as a critical challenge in LLM RL (Cui et al., 2025), with proposed
solutions including DAPO (Yu et al., 2025) with adaptive clipping and token-level interventions (Hao
et al., 2025). Entropulse takes a different approach by actively restoring collapsed entropy through
targeted SFT training on diverse rollout data, achieving extended training.

6 Conclusion

In this work, we present ComputerRL, a novel computer use agent that integrates API-based and
GUI-based actions with scalable RL training. Our experiments on OSWorld and OfficeWorld
demonstrate superior performance compared to prior approaches, laying the groundwork for more
capable autonomous computer use agents.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Anthropic. Model card and evaluations for claude models. 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966, 2023b.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine intelligence 15,
pp. 103–129, 1995.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Ivan Bratko, Tanja Urbančič, and Claude Sammut. Behavioural cloning: phenomena, results and
problems. IFAC Proceedings Volumes, 28(21):143–149, 1995.

De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lù, Ori
Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart, et al. The browsergym ecosystem
for web agent research. arXiv preprint arXiv:2412.05467, 2024.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Vincenzo De Paola, Riccardo Zamboni, Mirco Mutti, and Marcello Restelli. Enhancing diversity in
parallel agents: A maximum state entropy exploration story. arXiv preprint arXiv:2505.01336,
2025.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
320–335, 2022.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun Mei,
Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for language
reasoning. arXiv preprint arXiv:2505.24298, 2025.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng,
Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b to
glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao, and Nan Duan. Pptc benchmark: Evaluating
large language models for powerpoint task completion. arXiv preprint arXiv:2311.01767, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Zhezheng Hao, Hong Wang, Haoyang Liu, Jian Luo, Jiarui Yu, Hande Dong, Qiang Lin, Can Wang,
and Jiawei Chen. Rethinking entropy interventions in rlvr: An entropy change perspective. arXiv
preprint arXiv:2510.10150, 2025.

Yanheng He, Jiahe Jin, and Pengfei Liu. Efficient agent training for computer use. arXiv preprint
arXiv:2505.13909, 2025.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. arXiv
preprint arXiv:2312.08914, 2023.

Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
with scalable reinforcement learning. arXiv e-prints, pp. arXiv–2507, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International conference on
machine learning, pp. 6131–6141. PMLR, 2021.

Bin Lei, Yuchen Li, Yiming Zeng, Tao Ren, Yi Luo, Tianyu Shi, Zitian Gao, Zeyu Hu, Weitai Kang,
and Qiuwu Chen. Infant agent: A tool-integrated, logic-driven agent with cost-effective api usage.
arXiv preprint arXiv:2411.01114, 2024.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian, Binyuan
Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software development.
CoRR, 2024.

Kefan Li and Yuan Yuan. Large language models as test case generators: Performance evaluation and
enhancement, 2024. URL https://arxiv.org/abs/2404.13340.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Iong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. arXiv
preprint arXiv:2411.00820, 2024b.

Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy
optimization for gui agents with experience replay. arXiv preprint arXiv:2505.16282, 2025.

11

https://arxiv.org/abs/2404.13340

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xiaokang Zhang, Xiaohan Zhang, Sijia Luo, Xi Wang,
and Jie Tang. Spreadsheetbench: Towards challenging real world spreadsheet manipulation.
Advances in Neural Information Processing Systems, 37:94871–94908, 2024.

Atsuyuki Miyai, Zaiying Zhao, Kazuki Egashira, Atsuki Sato, Tatsumi Sunada, Shota Onohara,
Hiromasa Yamanishi, Mashiro Toyooka, Kunato Nishina, Ryoma Maeda, et al. Webchorearena:
Evaluating web browsing agents on realistic tedious web tasks. arXiv preprint arXiv:2506.01952,
2025.

OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world. 2025. URL https://openai.com/index/computer-using-agent.

Harshith Padigela, Chintan Shah, and Dinkar Juyal. Ml-dev-bench: Comparative analysis of ai agents
on ml development workflows. arXiv preprint arXiv:2502.00964, 2025.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A survey on large
language model based autonomous agents. arXiv preprint arXiv:2308.11432, 2023.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024b.

12

https://openai.com/index/computer-using-agent

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,
Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
Huang, and Tao Gui. The rise and potential of large language model based agents: A survey. arXiv
preprint arXiv:2309.07864, 2023.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
decomposition and synthesis. arXiv preprint arXiv:2505.13227, 2025.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press, Niklas
Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal: Do ai
systems generalize to visual software domains? arXiv preprint arXiv:2410.03859, 2024a.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. In The Eleventh
International Conference on Learning Representations, 2022.

Hanchen Zhang, Xiao Liu, Bowen Lv, Xueqiao Sun, Bohao Jing, Iat Long Iong, Zehan Qi, Hanyu Lai,
Yifan Xu, Rui Lu, Zhenyu Hou, Hongning Wang, Jie Tang, and Yuxiao Dong. Agentrl: Reinforce
all-round agents from zero. arXiv preprint, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In Second Agent Learning in Open-Endedness Workshop, 2023.

13

https://arxiv.org/abs/2505.09388

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A API Development Workflow

In this section, we detail the methodology for leveraging LLMs to automate API construction. We
propose a semi-automated workflow wherein users need only supply exemplar tasks performed within
the target application; the LLM then autonomously generates both the necessary API code and
corresponding test cases. The workflow comprises three primary stages: requirement analysis, API
implementation, and test case generation.

Requirement Analysis During the requirements analysis phase, users provide a set of task examples
related to the target application as input. The workflow leverages the LLM to analyze these task
instances, extracting the essential functionalities required for task completion. It then compares these
requirements against the existing API interface definitions to identify potential gaps. If uncovered
functionalities are detected, the system automatically generates new API interfaces along with their
corresponding parameter specifications.

Notably, we limit the generated interfaces to encapsulate only general-purpose functionalities,
thereby avoiding excessive complexity and the proliferation of APIs. This design choice mitigates
implementation difficulty and reduces the adaptation burden on the agent.

API Implementation Upon obtaining the interface definitions, the workflow systematically iterates
over each interface and its associated parameters. For each specification, it leverages the designated
Python libraries of the target application to implement the corresponding API functionalities.
Additionally, the workflow incorporates error-handling mechanisms and logging to facilitate human
debugging and maintenance. This automated approach not only streamlines API development but
also enhances consistency and reusability across different application contexts.

Test Case Generation Following the implementation of API functionalities, the workflow conducts
fundamental unit testing to ensure the correctness and robustness of each API. Specifically, the testing
process verifies: (1) whether the API can be invoked without runtime errors, and (2) whether the API
returns correct results across a range of parameter inputs. For API implementations that fail these
tests, the workflow provides detailed error feedback to the API implementation module, which then
autonomously attempts corrections until the APIs pass all tests.

This automated methodology substantially lowers the manual effort required, enabling the creation
of application-specific API sets with minimal human intervention. As a result, the barrier for users
to develop APIs for diverse applications is significantly reduced. We have developed API sets for
multiple commonly used default applications in Ubuntu and integrated them into our Ubuntu virtual
machine environment.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B Action Space

Our action space for GLM-ComputerRL is shown in Table 4, and our API number for each application
is in Table 5.

Table 4: Action space of GLM-ComputerRL

Function Description

open_app(app_name) Open specified application (e.g., Chrome, Terminal).
click(coordinates,
num_clicks,button_type)

Click at coordinates [x, y] with the specified mouse button and
number of clicks.

type(coordinates, text,
overwrite, enter)

Type text at coordinates; optionally overwrite existing content and/or
press Enter.

drag_and_drop(drag_from,
drop_on)

Drag from [x1, y1] and drop onto [x2, y2].

scroll(coordinates,
direction)

Scroll at coordinates in direction (up / down).

switch_window(window_id) Switch focus to the window with given ID.
hotkey(keys) Press a key combination (e.g., [ctrl, c]).
quote(content) Record content for memory.
wait() Pause execution temporarily.
exit(success) Terminate task with success (True) or failure (False).

Table 5: Statistics of the number of available APIs per application

Application Number of APIs
Code 12
Chrome 11
LibreOffice Calc 27
LibreOffice Impress 22
LibreOffice Writer 19
VLC 12
Total 103

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C Prompt Formulation for GLM-ComputerRL

The design of the observation space is pivotal, as it directly constrains the upper bound of the agent’s
performance. In this section, we detail the integration of the API set with GUI operations, alongside
the incorporation of contextual information from the desktop environment, to systematically construct
both the agent’s observation space and action space. This unified framework ensures that the designed
observation and action spaces capture the complexity of real-world tasks, providing a solid foundation
for robust agent learning and generalization.

Action space formulation The integration of a large number of APIs with GUI operations, while
ensuring effective agent interaction, remains a significant challenge. In practice, we mitigate this
complexity by dynamically detecting the currently active application to infer potentially relevant
APIs, thereby reducing the number of available APIs and lowering the agent’s adaptation overhead.
Furthermore, we use Python classes and descriptive docstrings to delineate each operation type,
ensuring they are clearly interpretable by most LLMs. This object-oriented strategy enhances the
model’s understanding and precision in performing operations. These classes are provided to the agent
via the system prompt, enabling interaction through Python function calls. This design facilitates rapid
agent adaptation and efficient generalization of operations across diverse applications. Additionally,
the agent’s output format is standardized in the system prompt, which encourages the agent to interleave
reasoning and action execution. This approach promotes enhanced planning and reflective capabilities
within the agent, thus improving its overall performance in complex task execution scenarios.

Observation formulation To facilitate the effective perception and manipulation of GUIs by the
model, we leverage the Python Accessibility Toolkit Service Provider Interface (pyatspi) to extract
comprehensive attributes of desktop elements systematically. Each GUI element encompasses the
element’s semantic type, visible text content, precise screen coordinates, and spatial dimensions.
This structured representation enables the LLM agent to parse, ground, and reason over the GUI in a
manner analogous to human users.

We present the element format of the environment a11y tree in our observation space as follows:

tag text position (center x & y) size (w & h)

The tag is the XML tag of the element, such as div or button. The text is the text content of the
element, which can be empty for elements that do not have text. The position is represented by the
center coordinates (x, y) of the element, and the size is represented by its width (w) and height (h).

For the multimodal model, the a11y tree is removed from the input. Instead, we capture the GUI
screenshot at a resolution of 1920 × 1080 pixels (1080p) and subsequently resize it to 1280 × 720
pixels (720p), which serves as the input representation of the desktop environment.

Beyond the extraction of individual GUI components, we augment the input space with rich contextual
metadata to provide a holistic depiction of the agent’s operational environment. Specifically, we provide
a comprehensive enumeration of open desktop windows, including their hierarchical relationships,
as well as the name and additional information of the currently focused application. To promote
consistent and adaptive behavior, we also deliver feedback from the most recent GUI action or tool
call, which may include environmental status updates, confirmations, or error signals.

The app format of the observation space is as follows:

Window ID App Name Title

The Window ID is the unique identifier of the application window, App Name is the name of the
application, and Title is the title of the application window.

History formulation Given the extensive length of GUI observations and the inherent constraints
imposed by the model’s context window, it is necessary to efficiently manage the input history across
multiple interaction rounds. For each interaction, we omit redundant and detailed interface information
while preserving the complete sequence of the agent’s reasoning process, actions taken, and the
corresponding operation feedback. This approach ensures the retention of the essential operational
trajectory, thereby maximizing the informativeness of the historical context while maintaining
compatibility with the model’s capacity limitations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Collectively, the components above constitute the observation space and action space of our agent.
This representation not only enhances the agent’s environmental cognition but also enables better
strategies for long-horizon planning and reasoning. As a result, the agent is better equipped to execute
complex, multi-step tasks across diverse applications in the desktop environment.

Below is our detailed prompt organization for GLM-ComputerRL:
You are an agent which follow my instruction and perform desktop computer

tasks as instructed.
You have good knowledge of computer and good internet connection and

assume your code will run on a computer for controlling the mouse and
keyboard.

For each step , you will get an observation of the desktop by 1)
screenshot; 2) current application name; 3) accessibility tree , which
is based on AT-SPI library; 4) application info; 5) last action

result.
You should first generate a plan for completing the task , confirm the

previous results , reflect on the current status , then generate
operations to complete the task in python -style pseudo code using the
predefined functions.

Your output should STRICTLY follow the format:
<think >
{**YOUR -PLAN -AND -THINKING **}
</think >
‘‘‘python
{**ONE -LINE -OF-CODE **}
‘‘‘

You will be provided access to the following methods to interact with the
UI:
1. class Agent , a grounding agent which provides basic action space

to interact with desktop.
2. class {tool_class_name}, which provides tools to interact with the

current application {app_name }.

Here are the defination of the classes:
‘‘‘python
{class_content}
‘‘‘

* Note:
- Your code should be wrapped in ‘‘‘python ‘‘‘, and your plan and thinking

should be wrapped in <think ></think >.
- Only **ONE -LINE -OF-CODE** at a time.
- Each code block is context independent , and variables from the previous

round cannot be used in the next round.
- Do not put anything other than python code in ‘‘‘python ‘‘‘.
- You **can only use the above methods to interact with the UI**, do not

invent new methods.
- Return with ‘Agent.exit(success=True)‘ immediately after the task is

completed.
- If you think cannot complete the task , **DO NOT keep repeating actions ,

just return with ‘Agent.exit(success=False) ‘.**
- The computer ’s environment is Linux , e.g., Desktop path is ’/home/user/

Desktop ’
- My computer ’s password is ’password ’, feel free to use it when you need

sudo rights

** IMPORTANT ** You are asked to complete the following task: {instruction}

Below is our history and input prompt for GLM-ComputerRL:
<|user|>
** Environment State (Omitted)**

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

<|assistant|>
<think >
{round0_thinking}
</think >
‘‘‘python
{round0_operation}
‘‘‘

<|user|>
** Environment State (Omitted)**
Previous Action Result: {round0_operation_feedback}

<|assistant|>
<think >
{round1_thinking}
</think >
‘‘‘python
{round1_operation}
‘‘‘

<|user|>
** Environment State (Omitted)**
Previous Action Result: {round1_operation_feedback}

<|assistant|>
<think >
{round2_thinking}
</think >
‘‘‘python
{round2_operation}
‘‘‘
...

<|user|>
{screenshot_for_multimodal}
* Apps: {all_apps}

* Current App: {cur_window_id}

* A11y Tree: {a11y_tree_for_text}

* App Info: {app_info}

* Previous Action Result: {operation_feedback}

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D Training & Hardware Details

D.1 Training process & hyperparameter settings

During the behavior cloning stage, we construct approximately 8,000 tasks through manual annotation
and data augmentation. We employ multiple advanced models to generate diverse samples for each
task, and subsequently apply the eval function to filter out successful trajectories. This process yields
a high-quality BC dataset comprising roughly 180,000 steps, which is then used for SFT training. We
employ a 16-node computing cluster for fine-tuning, with a maximum learning rate set to 1× 10−5, a
sequence length of 32,768 tokens, and a global batch size of 256, over a total of three training epochs.

In the RL stage, the key training hyperparameters are summarized in Table 6. We initially train
the BC policy (using the 1-epoch checkpoint for diversity) for 180 steps, after which performance
improvements began to plateau. At this point, we collect rollouts during RL, perform task-level
random selection, and curate approximately 130,000 additional steps of data for Entropulse training.
The hyperparameters in this phase are identical to those used in the BC stage, except for a reduced
learning rate of 5× 10−6. RL training is then resumed until a total of 360 steps have been reached.

D.2 Training Cluster Configuration

Our training infrastructure consists of a high-performance GPU cluster. The complete specifications,
including GPU, CPU, cache, memory, and network configuration, are detailed in Table 7. Our training
pipeline requires at least 4 GPU nodes to run distributed RL training.

D.3 Environment Cluster Configuration

For running distributed RL environments, we employ a dedicated compute cluster with 7 nodes. The
complete specifications are shown in Table 8. In our empirically validated deployment:

• Each GPU achieves optimal utilization when paired with approximately 80 rollouts.
• Each environment server can reliably host 200 concurrently running virtual environments.

This ratio maintains equilibrium between GPU computation and environment sampling, minimizing
idle computational resources.

D.4 Virtual Environment Instance Configuration

Each RL task is executed within a dedicated virtual machine instance. The specifications are detailed
in Table 9.

Note: Each virtual environment instance runs an independent Ubuntu 20.04 desktop environment
for executing GUI-based tasks. The lightweight resource configuration (2 cores/4GB) ensures high
concurrency under limited hardware resources, supporting the environment parallelism required for
large-scale distributed RL training.

D.5 Training Duration and FLOPs Statistics

Table 10 presents the complete training time and FLOPs statistics for the multimodal training.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Training configuration for RL training of GLM-ComputerRL.

Category Parameter (Value)
Data
Task type Multi-turn chat
Max prompt length 63,488 tokens
Max response length 2,048 tokens
Train batch size 32
Responses per prompt 16
Concurrency 1024
Shuffle True
Seed 42
Actor
Exchange size 1× 1010

Gradient checkpointing Enabled
Strategy FSDP
FSDP offloading Param + Optimizer
Sequence parallel size 2
Max tokens / GPU 32,768
Precision dtype bfloat16
Algorithm
Advantage estimator GRPO
Discount factor γ 1.0
GAE parameter λ 1.0
Use remove padding True
Use dynamic bsz True
Mini-batch size 32,768
Micro-batch size / GPU 1
Logprob micro-batch size / GPU 1
KL loss Enabled (low_var_kl), coef = 0.0003
Entropy coefficient 0.0
Clip ratio 0.2
Optimizer
Actor learning rate 1× 10−6

LR warmup steps ratio 0.0
Warmup style constant
Gradient clipping 1.0
Save frequency 25
Rollout
Enable chunked prefill True
Max new tokens (generation) 2,048
Do sample True
Sampling temperature 0.8
Max turns 30
GPU memory utilization 0.7
Pools rollout 2
Pools other 6

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Training Cluster Specifications

Configuration Specification
Cluster Overview
Cluster Size 16 nodes
GPU Configuration
GPU Type NVIDIA H800
GPUs per Node 8
Total GPUs 128 (16 nodes × 8 GPUs)
CPU Configuration
CPU Model Intel Xeon Gold 6430
Architecture x86_64
Physical Sockets 2
Cores per Socket 32
Total Cores 64
Threads 64 (1 thread/core)
Base Frequency 2.1 GHz
Minimum Frequency 800 MHz
Instruction Set Extensions AVX-512, AVX512_FP16, AMX (INT8/BF16/Tile)
Cache Configuration
L1 Data Cache 3 MiB (64 instances)
L1 Instruction Cache 2 MiB (64 instances)
L2 Cache 128 MiB (64 instances)
L3 Cache 120 MiB (2 instances)
Memory Configuration
Total Memory Capacity 2.0 TiB
Available Memory 1.9 TiB
NUMA Nodes 2
NUMA Node 0 CPUs 0-31
NUMA Node 1 CPUs 32-63
Swap Disabled (0 B)
Network Configuration
Interconnect InfiniBand/High-speed Ethernet
Address Width Physical 46-bit, Virtual 57-bit

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Environment Cluster Specifications

Configuration Specification
Cluster Overview
Cluster Size 7 nodes
Total Cluster Memory ∼7.7 TiB
CPU Configuration
CPU Model Intel Xeon 6986P-C (Granite Rapids)
Architecture x86_64
Physical Sockets 1
Cores per Socket 120
Total Cores 120
Threads 240 (2 threads/core, hyper-threading enabled)
Base Frequency 3.3 GHz
Max Turbo Frequency 3.9 GHz
Minimum Frequency 800 MHz
Instruction Set Extensions AVX-512, AVX512_BF16, AMX, SHA-NI
Cache Configuration
L1 Data Cache 5.6 MiB
L1 Instruction Cache 7.5 MiB
L2 Cache 240 MiB
L3 Cache 504 MiB
Memory Configuration
Memory per Node 1.1 TiB
Available Memory 949 GiB
NUMA Nodes 3
NUMA Node 0 CPUs 0-39, 120-159
NUMA Node 1 CPUs 40-79, 160-199
NUMA Node 2 CPUs 80-119, 200-239
Swap Disabled (0 B)
Virtualization and Features
Virtualization Technology Intel VT-x, EPT, VPID
Security Features Enhanced IBRS, IBPB, Spectre/Meltdown mitigations
Cryptographic Acceleration AES-NI, SHA-NI, AVX512_VAES
AI Acceleration AMX, AVX512_BF16, AVX512_VNNI
Address Width Physical 52-bit, Virtual 57-bit

Table 9: Virtual Environment Instance Specifications

Configuration Specification
Operating System Ubuntu 20.04 LTS
vCPU Cores 2
Memory Allocation 4 GB
Runtime Average Bandwidth 0.4 Mbps
Virtualization Platform KVM/QEMU

Table 10: Training Time and FLOPs Statistics (Multimodal)

Training Stage Duration (hours) Total FLOPs
SFT (Behavior Cloning) 16 1.67× 1016

SFT (Entropulse) 11 1.22× 1016

RL (Two-stage) 58 3.21× 1017 (estimated)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.6 Key Performance Trade-offs and Bottlenecks

Our observations identify two principal hyperparameters that significantly influence the balance
between training efficiency and convergence stability.

1. Responses per Prompt (RpP) – Exploration Upper Bound vs. Sampling Efficiency

Role. RpP defines the breadth of the search space in Best-of-N (BoN) sampling.

Trade-off:

• A higher RpP broadens exploration, increasing the likelihood of discovering high-quality trajecto-
ries, but sampling latency grows roughly linearly.

• A lower RpP yields faster sampling but may omit promising solutions, constraining exploration
scope.

Bottleneck. Excessively large RpP values incur substantial sampling overhead with diminishing
marginal gains.

2. Batch Size (B) – Training Stability vs. Iteration Throughput

Role. B specifies the number of samples processed in each gradient update.

Trade-off:

• A larger B improves gradient estimation accuracy and stabilizes training, but extends iteration time.
• A smaller B accelerates iterations but introduces higher gradient variance, potentially destabilizing

convergence.

Bottleneck. Too small B values cause pronounced oscillations in the training curve, while too large
values extend iteration time.

Optimal Configuration: RpP = 16, B = 32. Systematic experimentation confirms that RpP = 16
and B = 32 represent an optimal balance across competing objectives:

• Exploration Adequacy – RpP = 16 affords sufficient BoN sampling scope to cover the majority of
feasible solution trajectories.

• Training Stability – B = 32 maintains variance in gradient estimates within acceptable bounds,
promoting smooth convergence.

• Resource Efficiency – This configuration ensures balanced utilization of both GPU and environment
clusters, avoiding throughput bottlenecks.

• Performance Outcome – Using this configuration, we achieved the reported final performance,
outperforming other settings in the efficiency–accuracy trade-off.

D.7 Additional Observed Bottlenecks

1. Environment Heterogeneity

Issue. Significant variance in task execution time results in some GPUs waiting for slower environments
to complete.

Mitigation. An asynchronous rollout collection mechanism allows fast environments to submit
results without delay.

2. Inter-cluster Network Bandwidth

Issue. High concurrency in environment simulation can saturate network bandwidth due to frequent
transmission of screenshots and state data, occasionally causing Docker network stalls.

Mitigation. Employing image compression reduces network load; optimizing Docker networking
decreases virtual NIC overhead.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

3. Internet Bandwidth Constraints

Issue. Large-scale simultaneous environment instances can generate excessive external network
traffic.

Mitigation. Packet-level traffic analysis enables elimination of unnecessary transmissions; construct-
ing an IP proxy pool mitigates service blocking risks.

E Additional Experimental Indicators

To more comprehensively validate the effectiveness of our method, we report detailed experimental
indicators to support our conclusions, as shown in Figure 6. These indicators include Average Reward,
Entropy Loss, KL Loss, PPO KL, Average Margin, BoN Reward, Average Turns, and Response
Length. Based on these metrics, we make the following observations:

• Entropulse effectively increases the stochasticity of the policy, leading to a substantial
improvement in BoN after activation. This, in turn, drives the growth of the margin and
enables the policy to continue learning and improving.

• After applying Entropulse, the response patterns of the policy (including response length
and number of dialogue turns) become closer to those before the first-stage RL training (i.e.,
shorter), while maintaining comparable scores. This indicates that Entropulse helps the
policy discover better solutions along shorter trajectories, thereby suppressing excessive
reasoning and redundant steps.

• After resetting the reference model, the KL Loss is also reset, allowing the policy to explore
a larger space relative to the new reference. This prevents the policy from being overly
constrained by its previous strategy.

F Repetitive Experiments with Different Base Models

To further verify the effectiveness of our method, we conduct repetitive experiments with different
base models (both text and multimodal), demonstrating the stability and superiority of our approach.
The results are reported in Figure 7.

G Human Annotation Protocol

Our annotation process involves ten trained annotators with master’s degrees, who are recruited and
compensated in compliance with local labor laws and regulations. Annotators are provided with clear
written guidelines to ensure consistency and accuracy, as outlined in our annotation protocol (see
Figures 8 and 9). All tasks are designed to avoid sensitive personal data, and all annotated content
is in English with no identifying information. The process includes task expansion—transforming
generalized instructions into explicit, executable tasks—and strict result verification to minimize
errors. Quality control measures include verification passes and clear formatting rules to improve
annotation reliability. No annotator is exposed to harmful, discriminatory, or unsafe content during the
process, and all work adheres to the Code of Ethics regarding fairness, privacy, and legal compliance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 60 120 180 180 240 300 360
0.30

0.35

0.40

0.45

0.50

Av
er

ag
e

Re
wa

rd

0 60 120 180 180 240 300 360

0.10

0.15

0.20

0.25

0.30

En
tro

py
 L

os
s

0 60 120 180 180 240 300 360
0.00

0.01

0.02

0.03

0.04

0.05

KL
 L

os
s

0 60 120 180 180 240 300 360
0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

PP
O

KL

0 60 120 180 180 240 300 360

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e

M
ar

gi
n

0 60 120 180 180 240 300 360
0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

Bo
N

Re
wa

rd

0 60 120 180 180 240 300 360
Step

8.0

8.5

9.0

9.5

10.0

Av
er

ag
e

Tu
rn

s

0 60 120 180 180 240 300 360
Step

96

98

100

102

104

Re
sp

on
se

 L
en

gt
h

RL Phase 1 Entropulse + RL Phase 2 Entropulse

Figure 6: Detailed experimental indicators for ComputerRL (95% CIs).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Step

0.30

0.35

0.40

0.45

0.50

0.55

Av
er

ag
e

Re
wa

rd

ComputerRL w/ Qwen2.5-14B
ComputerRL w/ GLM-4-9B-0414
ComputerRL w/ GLM-4.1V-9B-Thinking
Average
Entropulse

Figure 7: Repetitive experiments with different base models (95% CIs).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Annotation Guidelines

I. Project Background
Currently, when agents perform different application tasks, various execution issues may arise. To
address this problem, the core of this annotation task is:

1. First, expand the user’s seed instruction into more executable instructions.
2. Then, conduct strict result verification after each task execution to ensure the accuracy of the

execution chain.

II. Data Description

Phase 1: Task Expansion

Fields to be completed (No need to execute in a virtual machine, only need to fill in):

1. Expanded Task
Modify the generalized task description into an independent, executable task.
No pronominal references allowed.
All operations must explicitly specify that they are performed on a file located under
 /home/user/work/ (the prefix /home/user/work/ is fixed).
Instructions must be as clear and executable as possible.

Prohibited example: “Help me find some good movies” (too vague).
You may appropriately reduce the difficulty of the task, for example:

If the original task is “Collect data from 2013–2020,” you may adjust it to “Collect data
from 2013–2015” (simplify content preparation for Phase 2).

2. Notes – Provide guidance for Phase 2 (described in Chinese for convenience).
Example:

“Prepare a test.docx file containing multiple sentences, where the first letter of each
sentence is lowercase. Verify using
 compare_with_golden(result_path, golden_path) . The result passes if the first
English letter of each sentence is capitalized, other characters remain unchanged, and
the content is exactly the same as the golden file.”

You must specify:
a. What type of file to prepare
b. The file content format

Figure 8: Document for Human Annotation (1 / 2)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

c. Which function to use for verification
d. Which fields to check during verification

Phase 2: Virtual Machine Function Verification & Field Completion

Fields to be completed:

1. Target File
All files in the task that require model operations (unprocessed files).
For compare_with_golden (only supports xlsx , docx , csv , txt):

If the task involves other file types or functions, these can be omitted.
2. Detection Target

The name(s) of the file(s) that need to be compared.
3. Golden File (only filled when the verification function is compare_with_golden)

Name of the standard answer file used for comparison.
4. check_list (required if the Notes or task description explicitly specifies formatting):

Optional if content comparison is default.
Single/multiple choice:

 font : Compare font name, color, size, bold, italic, etc.
 fill : Compare cell fill color.
 alignment : Compare alignment (e.g., center).
 para_format : Compare paragraph formatting (alignment, line spacing).
 table : Compare text in inserted tables (format comparison not currently supported).

5. Files
All files required for the task.
You must create your own file names (arbitrary), but the file names must be consistent
across all fields (important).

III. Annotation Notes
1. Focus on evaluation — ensure the model’s required operations are properly executed; avoid

cases where detection passes without actual modifications.
2. All data must be in English, ensure logical correctness after translation.
3. For manually typed scenarios, verify multiple times to minimize error rate:

Especially check IDs and file paths.
OCR (from screenshots) is recommended for accuracy.

4. Report issues promptly in the annotation group to avoid unnecessary rework.
5. For color-related tasks, use red, yellow, blue, green; avoid visually similar colors.
6. For downloading plugins or apps — assume they are already installed.

Figure 9: Document for Human Annotation (2 / 2)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

H Future Direction

While our advancements with ComputerRL mark a significant leap forward in intelligent desktop
automation, we see this work as a foundation for a radical transformation in human-computer
interaction. Unleashing the full potential of autonomous agents on the desktop frontier demands
reimagining long-standing paradigms across several axes.

H.1 Towards Robust Performance

GLM-ComputerRL has demonstrated remarkable proficiency across a spectrum of desktop tasks.
However, genuine universality requires transcending current boundaries in coverage and generalization.
Real-world digital environments are characterized by continual flux and heterogeneity, encompassing
unfamiliar applications, emergent workflows, and rare edge cases that lie beyond the scope of existing
datasets. A next-generation agent must dynamically adapt to shifting GUIs, unpredictable pop-ups,
and entirely novel interfaces. To this end, we are re-architecting data pipelines to facilitate exponential
expansion in training diversity and pioneering infrastructure to distill knowledge from real-world user
interactions at scale continuously.

H.2 Breakthroughs in Long-Horizon Autonomy

Envisioning the autonomous desktop assistant as an always-available cognitive collaborator necessitates
mastering sustained, long-duration workflows. While current solutions excel at bounded, atomic
tasks, they fall short of orchestrating complex, multi-step objectives over extended horizons. Our
ambition is to endow the agent with hierarchical planning capabilities, allowing it to reason, learn,
and revise strategies dynamically across arbitrarily long task sequences. Realizing this vision will
catalyze a paradigm shift: automating not just discrete operations, but entire workstreams and creative
processes end-to-end, fundamentally reshaping the productivity landscape for the cloud-native era.

H.3 Foundations for Safe and Aligned Autonomy

Autonomous control over desktop platforms raises profound questions about safety, trustworthiness,
and user agency. The margin for error narrows dramatically when agents are empowered to modify
files, access sensitive data, or execute unbounded actions. Mitigating these risks requires a rigorous
and principled approach to safe behavior and alignment. Our roadmap includes architecting granular
permissioning frameworks, embedding robust pre-action validation, and multi-stage approval protocols.
Ultimately, we aim to establish safety standards and best practices that can serve as foundational
infrastructure, not just for our agent but for the future ecosystem of intelligent digital collaborators.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

I Demonstration

This section presents examples drawn from a variety of application scenarios, including the initial
four positive cases and the final two negative ones. Each example illustrates our API-GUI operational
paradigm, which addresses the diverse challenges and requirements that arise within different
applications.

Figure 10: Examples of GLM-ComputerRL’s execution on four user tasks, including image
processing between GIMP and LibreOffice Writer, monitoring system resource usage in Terminal,
table calculation in LibreOffice Calc, and document formatting in LibreOffice Writer.

I.1 Create Monthly Sales Summary Table

The targeted task to be executed is "Create a table with two headers (’Month’ and ’Total’) in a new
sheet to show the total sales for all months." The actual execution steps can be summarized as follows:

• Step1: Switch to ‘Sheet2‘
• Step2: Set cell ‘A1‘ as "Month"
• Step3: Set cell ‘B1‘ as "Total"
• Step4: Get monthly sales data from ‘Sheet1‘
• Step5: Switch to ‘Sheet1‘
• Step6: Switch to ‘Sheet2‘
• Step7: Set month names in column A
• Step8: Set total formula for Jan in ‘B2‘
• Step9: Set total formula for Feb in ‘B3‘
• Step10: Set total formula for Mar in ‘B4‘
• Step11: Set total formula for Apr in ‘B5‘
• Step12: Set total formula for May in ‘B6‘
• Step13: Set total formula for Jun in ‘B7‘

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

• Step14: Exit after completion

As Figure 11,12 shows, a summary table is created successfully.

I.2 Convert Uppercase Text to Lowercase in Document

The targeted task to be executed is "Convert all uppercase text to lowercase in the document for
consistent text presentation." The actual execution steps can be summarized as follows:

• Step1: Use the text case conversion tool to change all text to lowercase.
• Step2: Click the formatting menu.
• Step3: Select the specific formatting option.
• Step4: Open the relevant submenu.
• Step5: Select all text in the document.
• Step6: Click the formatting menu again.
• Step7: Select the specific formatting option again.
• Step8: Open the relevant submenu again to apply the changes.
• Step9: Exit after finishing the operation.

As Figure 13 shows, all uppercase text has been successfully converted to lowercase, ensuring a
uniform and polished document appearance.

I.3 Generate System Resource Monitoring Report

The targeted task to be executed is "Use the ’sar’ command in the ’sysstat’ toolkit to monitor system
activity and output the results to ’System_Resources_Report.txt’ under Desktop." The actual execution
steps can be summarized as follows:

• Step1: Open the Terminal application.
• Step2: Type the command sar 1 30 > /Desktop/System_Resources_Report.txt.
• Step3: Execute sudo apt install sysstat to install the toolkit.
• Step4: Enter the password if prompted.
• Step5: Re-type the sar command to start monitoring.
• Step6: Wait for 30 seconds while system activity is being recorded.
• Step7: Open the Files application.
• Step8: Navigate to and click on the report file under Desktop.
• Step9: Exit after confirming the report has been generated.

As Figure 14 shows, a system resource report file was generated successfully on the Desktop after
monitoring, fulfilling the target task.

I.4 Copy Image from .xcf File to LibreOffice Writer and Save

The targeted task to be executed is "Copy the image from an .xcf file located on the Desktop and
paste it into a LibreOffice Writer document, then save the document as image.docx on the Desktop."
The actual execution steps can be summarized as follows:

• Step1: Open the Files application.
• Step2: Navigate to the Desktop folder.
• Step3: Double-click to open the .xcf image file.
• Step4: Copy the image in the image editor.
• Step5: Open LibreOffice Writer.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

• Step6: Paste the copied image into the Writer document.
• Step7: Save the document.
• Step8: Enter the filename as image.docx and select the Desktop as the save location.
• Step9: Navigate to the Desktop folder.
• Step10: Confirm and click save.

As Figure 15 shows, the image from the .xcf file was successfully pasted into a LibreOffice Writer
document and saved as image.docx on the Desktop, completing the task.

I.5 Question Misunderstanding Error

The targeted task to be executed is "Append
 to the end of each line in ’1\n2\n3’ and save in
output.txt." The actual execution steps can be summarized as follows:

• Step1: Type the command echo -e ’1\n2\n3’ in the terminal.
• Step2: Exit after execution.

As Figure 16 shows, the agent misunderstood the requirement and only echoed the content without
appending
 to each line or saving it into output.txt. This results in a task failure due to a
misunderstanding of the question.

I.6 Click Operation Error

The targeted task to be executed is "Please help change GIMP’s theme from dark to light." The actual
execution steps can be summarized as follows:

• Step1: Click on the menu in GIMP.
• Step2: Attempt to click the Preferences option.
• Step3: Repeat the click on Preferences.
• Step4: Try to use the shortcut Shift+Ctrl+P to open Preferences.
• Step5: Exit without successfully changing the theme.

As Figure 17 shows, the theme remains dark, indicating that the agent failed to change GIMP’s theme
to light due to incorrect click operations.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 11: Task (Step 1-10): Create a table with two headers ("Month" and "Total") in a new sheet to
show the total sales for all months.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 12: Task (Step 11-14): Create a table with two headers ("Month" and "Total") in a new sheet
to show the total sales for all months.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure 13: Task: I am currently engaged in text processing and require assistance in converting all
uppercase text to lowercase within my document. This precision is critical for maintaining a uniform
and polished presentation. Could you help me on this?

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 14: Task: Please use the ‘sar‘ command in the ‘sysstat‘ toolkit to monitor system activity, eval-
uate the status once every second for 30 seconds, output the results to "System_Resources_Report.txt"
under Desktop.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 15: Task: I’ve stored my .xcf file on the Desktop. Can you assist me in copying the image and
pasting it into a LibreOffice Writer document? Save the document as ’image.docx’ on the Desktop,
please.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Figure 16: Fail Task (Question Misunderstanding Error): Append "
" to the end of each line in
"1\n2\n3" and save in output.txt

Figure 17: Fail Task (Click Operation Error): Please help change GIMP’s theme from dark to light.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

J Use of LLMs

During the preparation of this manuscript, we employed LLMs to assist with language refinement and
grammar correction. All research ideas, methodologies, experiments, and analyses were independently
conceived, designed, and validated by the authors.

39

	Introduction
	The ComputerRL Framework
	General API-GUI Paradigm
	Stable Ubuntu Environment for Large-Scale Parallelism
	Full-Asynchronous RL Framework for Efficient Training

	The ComputerRL Training
	Behavior Cloning Setup
	Reinforcement Learning with Verifiable Rewards
	Entropulse for Scaling RL Training

	Experiments
	Main Results
	Office Application Performance
	Ablation Study
	Case Study and Error Analysis

	Related Work
	Conclusion
	API Development Workflow
	Action Space
	Prompt Formulation for GLM-ComputerRL
	Training & Hardware Details
	Training process & hyperparameter settings
	Training Cluster Configuration
	Environment Cluster Configuration
	Virtual Environment Instance Configuration
	Training Duration and FLOPs Statistics
	Key Performance Trade-offs and Bottlenecks
	Additional Observed Bottlenecks

	Additional Experimental Indicators
	Repetitive Experiments with Different Base Models
	Human Annotation Protocol
	Future Direction
	Towards Robust Performance
	Breakthroughs in Long-Horizon Autonomy
	Foundations for Safe and Aligned Autonomy

	Demonstration
	Create Monthly Sales Summary Table
	Convert Uppercase Text to Lowercase in Document
	Generate System Resource Monitoring Report
	Copy Image from .xcf File to LibreOffice Writer and Save
	Question Misunderstanding Error
	Click Operation Error

	Use of LLMs

