Under review as a conference paper at ICLR 2026

CompPUTERRL: ScaAaLING END-TO-END ONLINE REINFORCE-
MENT LEARNING FOR COMPUTER USE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce CompuTERRL, a framework for autonomous desktop intelligence
that enables agents to operate complex digital workspaces skillfully. CompuTERRL
features the API-GUI paradigm, which unifies programmatic API calls and direct
GUI interaction to address the inherent mismatch between machine agents and
human-centric desktop environments. Scaling end-to-end RL training is crucial for
improvement and generalization across diverse desktop tasks; however, it remains
challenging due to environmental inefficiency and instability during extended
training. To support scalable and robust training, we develop a distributed RL
infrastructure capable of orchestrating thousands of parallel virtual desktop environ-
ments to accelerate large-scale online RL. Furthermore, we propose Entropulse, a
training strategy that alternates reinforcement learning with supervised fine-tuning,
effectively mitigating entropy collapse during extended training runs. We employ
CompuTerRL on open models GLM-4-9B-0414 and GLM-4.1V-9B-Thinking, and
evaluate them on the OSWorld benchmark. The GLM-CompuTERRL-9B achieves a
new state-of-the-art accuracy of 48.9%, demonstrating significant improvements
for general agents in desktop automation. Our code and demos are available at this

https URL.,

55

ol 48.9% 0.551 i
= —— Baseline
N
% 45 4149 42.5% 42.9% 50{ —— Entropulse (Ours)
2
T 40
<
@ 35
Q 30.7%
S 30
(2]

25

20

g 3
ket IS o) eA® RN
@_co‘;g BV ANT I e e e e I e e
eV \ee‘“\“ o 0 30 60 90 120150180210 240270 300 330 360
Step
(a) The success rates of agents on OSWorld. (b) CompUTERRL training reward curves (95% CIs).

Figure 1: CompuTERRL enables efficient end-to-end online policy optimization for OS agents.
(a) On OSWorld (Xie et al., [2024)), GLM-CompuTERRL, trained with ComPUTERRL, outperforms
state-of-the-art agents. (b) Our Entropulse approach yields higher average training rewards and
improves both learning efficiency and final performance over conventional methods.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al.| 2023} Touvron et al.| 2023b; |Zeng et al., 20225 GLM
et al.,2024; Team et al., 2023} Guo et al.| 2025} [Bai et al.| [2023a; Yang et al.,2025) have dramatically
expanded the scope and depth of artificial intelligence capabilities, driving a profound re-examination
of our understanding of machine intelligence. Among all scenarios, the emergence of LLM-based
GUI (graphical user interface) agents, capable of independently perceiving, reasoning, and executing
complex tasks on user devices, has aroused particular interest from researchers (Xi et al., 2023},
Wang et al., 2023} |Liu et al., 2023). Given that desktops remain central to intelligence-intensive

https://computer-rl.vercel.app/
https://computer-rl.vercel.app/

Under review as a conference paper at ICLR 2026

tasks, developing computer use agents is crucial for fundamentally transforming human-computer
interactions and elevating Al capabilities (Agashe et al.,2025; 'Wu et al.| [2024al).

Despite previous attempts to develop computer use agents (Agashe et al., 2025} [Lei et al.| 2024} Xie
et al.| 2025)), enabling them to operate autonomously over extended periods in real-world scenarios
remains a significant challenge. The first primary obstacle arises from the fact that GUIs are inherently
designed for human interaction, making the simulation of human actions by GUI agents (Liu et al.,
2024b} |OpenAlL [2025; |Qin et al., [2025) a non-trivial and cumbersome endeavor. Second, current
mainstream approaches of behavior cloning (BC) (Bain & Sammut, [1995; |Bratko et al., [1995)),
including manual annotation (He et al.l [2025)) and model distillation (Sun et al., 2024; |Xu et al.|
2024), are limited in scalability and effectiveness. Manual annotation, while precise, is prohibitively
labor-intensive for complex tasks. Model distillation, on the other hand, is constrained by the
performance of the teacher models, limiting overall capability. Both methods typically exhibit poor
generalization and limited error recovery abilities. Finally, although reinforcement learning (RL)
has shown potential for desktop automation tasks (Lu et al., [2025; |[Feng et al., [2025), its practical
application remains restricted due to computational complexity and methodological challenges.
Complex environments, slow convergence, and known inefficiencies in RL training (Xie et al.,|2024;
Bonatti et al.,|2024; |Yu et al., 2025; |Fu et al.| [2025)) severely limit its large-scale adoption in training
computer use agents.

In this work, we propose ComPUTERRL, an end-to-end algorithmic framework designed to advance
desktop-level planning, reasoning, and device operation. This framework includes a new API-GUI
interaction paradigm, a scalable RL training infrastructure for computer environments, and an RL
algorithm for extended effective training. First, we introduce API-GUI, a large-scale, automatically
constructed API ecosystem that enables the agent to transcend the inherent biases of human-oriented
operational paradigms. It instead leverages a more machine-oriented approach for device interaction,
which combines API calls and GUI actions, thereby significantly enhancing both the versatility
and overall performance of the agent. Second, we develop a distributed training infrastructure
utilizing virtual machine clusters based on Docker and gRPC protocols for scalability, which is
fully compatible with AgentBench (Liu et al.| [2023)). This infrastructure supports thousands of
parallel environments, ensuring high scalability and consistent interactions across all environments.
Additionally, we integrate the training infrastructure with the AgentRL framework (Zhang et al.,[2025)
to facilitate efficient asynchronous training, thereby accelerating the training process. Finally, to
counteract stagnation and convergence issues in RL training—specifically, entropy collapse and rising
KL divergence—we propose Entropulse, which alternates between RL and SFT phases periodically.
This approach maintains exploratory capacity and ensures continuous performance gains (Figure[Tb).

As a result, by harnessing end-to-end RL and optimization in the desktop environment, CoMmPUTERRL
has achieved remarkable improvement in understanding and operating GUIs. Evaluation on the
OSWorld benchmark (Xie et al.l2024) shows CompuTERRL s significant improvements (see Figure[Ta)
in computer use challenges, achieving a success rate of 48.9% (with 66% performance gain from
RL), outperforming other state-of-the-art models including OpenAl CUA 03 (42.9%), UI-TARS-1.5
(42.5%), and Anthropic Claude Sonnet 4 (30.7%).

In summary, our contributions are as follows:

* We propose a new interaction paradigm, a shift from human-centric to machine-oriented interaction
by introducing a large-scale, automatically constructed API ecosystem integrated with conventional
GUI operations. This approach addresses the inherent mismatch between human-designed interfaces
and artificial agent capabilities, while achieving superior operational efficiency and generalization
performance on computer-based tasks.

* We establish a large-scale, distributed RL infrastructure for computer use agents by reconstructing
virtual machine clusters, achieving unprecedented scalability with thousands of parallel environments
and seamless AgentBench compatibility, thereby overcoming the critical bottleneck that has limited
RL-based computer use agent training to scale experiments and enabling breakthrough results in
large-scale agent training.

* We introduce Entropulse, a novel training methodology that systematically addresses the challenges
of entropy collapse and KL divergence accumulation in extended RL training through strategic
alternation between RL and SFT phases, enabling sustained performance improvements and
achieving state-of-the-art performance in computer automation.

Under review as a conference paper at ICLR 2026

p
(- N\ 4 N
Rollout (Thought Data
] First, I should use 1000+ O\ Queue
! S Chrome to surf the web..) Environment _
% | (Actions) —
) e o
< | (e APIs ' . N
T i (Ciick) || & (Highlight) L E =1,
Rollout | (Type) || >Q (Compare) Controller
Engine ™ (Scroll) & (Play) ——
\ \ e e) \ - - o) \ e) /

[8:22;2 % iy k+1 (Actor Update>—>(Sync Params.>—><Actor Update>—><8ync Params)j

Figure 2: Overview of CompUTERRL framework. We introduce an API-GUI action paradigm that
seamlessly integrates automatically constructed APIs with GUI actions to improve agent efficiency
and effectiveness. A large-scale parallel desktop environment with 1,000+ real-world instances,
combined with an asynchronous RL framework, enables efficient sampling and robust agent training.

2 THE CoMmPUTERRL FRAMEWORK

The human-oriented design of GUIs hinders agent efficiency, while limited environment scalability
restricts large-scale training. This section presents the CompuTERRL framework (see Figure [2),
which features an API-GUI paradigm that integrates human-like GUI interactions with efficient API
invocation. Additionally, we develop a scalable Ubuntu desktop environment for parallelism and
utilize a fully asynchronous RL framework for efficient training.

2.1 GeneraL API-GUI PArRaDpIGM

Existing GUI agents face challenges due to their reliance on human-like interactions, while API-based
control offers efficiency but introduces implementation complexity and security restrictions. To
address these issues, we propose an API-GUI paradigm that unifies both action spaces, enabling
agents to leverage API efficiency while retaining GUI versatility.

We develop an LLM-based automated workflow for application API development (Yang et al.| [2024aj
Wang et al., [2024)), significantly lowering the barrier for API creation. Users provide exemplar tasks,
and our system autonomously generates API code and test cases through three stages:

* Requirement Analysis: Users provide task examples for the target application. Our LLM analyzes
these instances, extracts essential functionalities, and compares against existing API interfaces to
identify gaps. New interfaces are automatically generated for uncovered functionalities, with a
focus on general-purpose functions to minimize complexity and enhance usability.

* API Implementation: The workflow iterates over each interface definition, implementing API
functionalities using designated Python libraries. Error-handling mechanisms and logging are
implemented for debugging and maintenance purposes.

* Test Case Generation: Similar to|Li & Yuan|(2024), we verify API correctness by checking: (1)
runtime error-free invocation and (2) correct results across parameter inputs; failed APIs receive
error feedback for autonomous correction.

This methodology enables the creation of application-specific APIs with minimal human intervention.
We have developed API sets for multiple Ubuntu applications and validated their effectiveness through
experiments. Detailed API development workflow is provided in Appendix [A] The agent action space
and prompt formulation are detailed in Appendix [B]and|[C}

2.2 StABLE UBUNTU ENVIRONMENT FOR LARGE-SCALE PARALLELISM

A stable and scalable Ubuntu environment is essential for constructing behavior cloning data and
large-scale RL training. Building on OSWorld (Xie et al., [2024)), we identify key limitations:

Under review as a conference paper at ICLR 2026

* Resource Intensiveness and Stability: VMs are CPU-intensive and unstable under high
concurrency, causing performance degradation and system freezes.

* Network Bottlenecks: Heavy workloads cause network overhead, connection failures, and IP
address loss, hindering agent interaction and logging.

» Lack of Native Distributed Support: OSWorld lacks multi-node clustering support, preventing
efficient distributed deployment.

To address these limitations, we build a robust and parallelizable OSWorld infrastructure (see Figure[2)
with the following innovations:

» Standardized, Decoupled Interface: We refactor the environment via AgentBench API, providing
a unified interface that decouples environment execution from the computational back-end and
enables flexible resource management.

* Lightweight VM Deployment: Using gemu-in-dockere, we deploy containerized Ubuntu VMs
with streamlined images that reduce network issues and optimize resource usage, significantly
lowering per-instance CPU consumption.

* Distributed Multi-Node Clustering: We employ gRPC-based communication to link CPU nodes
into a distributed cluster with centralized resource allocation and orchestration.

* Web-based Visualization and Monitoring: A web interface provides real-time visualization of
environment statuses, agent states, and resource allocation, improving usability and debugging
capabilities.

Through these technical improvements, our system supports deployment of several thousands of
concurrent environments on a multi-node CPU cluster, as validated by extensive empirical evaluation.
Results confirm our platform’s superior stability, resource efficiency, and scalability, making it an
enabling infrastructure for large-scale RL and agent-based research.

2.3 FuLL-AsyncHRONOUS RL FRAMEWORK FOR EFFICIENT TRAINING

Existing RL frameworks rely on synchronous training paradigms, where rollout collection and
parameter updates are alternated, resulting in training inefficiencies. To address the limitation, we use
the AgentRL framework (Zhang et al., [2025) for fully asynchronous RL training with the following
designs:

* Resource Partitioning: Data collection runs on dedicated resources while the trainer streams
data from the replay engine, preventing mutual blocking.

* Dynamic Batch Sizing: The trainer processes incoming data with flexible batch sizes, reducing
idle time and improving efficiency.

* Modular Component Isolation: Actor, reference, and critic modules run independently with
dedicated resources. We utilize PyTorch distributed groups and NCCL for efficient parameter
sharing.

» Off-policy Bias Mitigation: We limit the replay buffer size and sync trajectories after each update,
ensuring trajectories remain close to the latest policy.

Through a stable, high-concurrency desktop environment and the decoupling of training from rollout,
we markedly enhance the efficiency of sampling and RL training. Our system achieves a high average
power consumption per GPU, reflecting optimal resource utilization. This design supports scalable,
high-throughput RL training by enabling dynamic workload balancing, resulting in a significant
improvement in hardware efficiency and overall training throughput.

3 Tue CoMmpPUTERRL TRAINING

In Section [2, we establish a robust foundation for large-scale agent training. However, scaling
end-to-end training still faces challenges in initializing a capable base policy and entropy collapse
during RL. This section details our scalable CompuTERRL training approach and its algorithmic
innovations for extended training in desktop environments.

https://github.com/qemus/qemu
https://github.com/grpc

Under review as a conference paper at ICLR 2026

Step 1: Step 2: Step 3:
Behavior Cloning for Cold First RL Phase & Rollout data | Entropulse and Second RL
Start Collection Phase
[£] Tasks w/ eval func. Rollout Data
| Initial Sampling RLVR: from All Policy
| Performance Entropulse:
100% 0% R Entropy Performance ~
6 KL Entropy 1
|2 g 1 KLO
5|2 (Modetpool) | E N N /X Rollout Data Model w/ High Explorati
=1 k< <] odel w/ High Exploration
S olerTeuvtivH
~© Filtering Performance
‘ H ! q Entropy
KL
e ser Daa .
% Correct Steps Er?t:op(:lse Final Agent Model

Figure 3: Overview of CompUuTERRL, which includes three stages: (1) BC cold start with trajectories
collected from general LLMs; (2) RL with step-level GRPO using verifiable, rule-based rewards; (3)
Entropulse, which alternates RL with SFT on correct rollouts to restore entropy and sustain learning.

3.1 BEeHAVIOR CLONING SETUP

To perform a cold start for our model, we employ BC as the initial stage of training. By imitating
user interactions, BC enables agents to acquire foundational competencies, thereby facilitating rapid
adaptation to computer operations and tasks.

Trajectory Collection with Multiple LL.Ms. We manually collect extensive tasks with corresponding
evaluation functions (see Appendix[G)) and augment to construct an 8k-task dataset. However, the large-
scale collection of high-quality trajectories remains challenging. Manual annotation is prohibitively
expensive, and relying on a single model for trajectory generation results in limited and homogeneous
data distribution constrained by that model’s capabilities. To address these limitations, we leverage
the complementary strengths of multiple advanced models to collect a diverse and high-quality set of
interaction trajectories. Concretely, our data pipeline consists of three key stages:

1. Inmitial Sampling: For each task, we utilize closed-source LLMs to sample several trajectories per
task independently. We record both the complete interaction trajectories and the outputs produced
by the respective evaluation functions. This procedure yields a rich set of diverse trajectories that
serve as the foundation for subsequent data augmentation and model adaptation.

2. Outcome Stratification: Following initial data collection, we perform a stratified analysis of task
outcomes by categorizing all tasks into three groups based on achieved accuracy: Fully Solved
(acc = 100%), Partially Solved (0 < acc < 100%), and Unsolved (acc = 0%).

3. Task-Oriented Augmentation with Stratified Sampling: For partially solved tasks, we conduct

SFT on our backbone model using the initial trajectories as input. The fine-tuned model is then
used to sample additional trajectories for each task, thereby substantially expanding the coverage
and quality of trajectories for tasks where model proficiency was previously limited.
For tasks classified as unsolved, we build a model pool of high-performing models and randomly
select one to determine each action. This approach leverages inter-model variance at the task level,
as different models exhibit distinct areas of expertise despite comparable aggregate performance,
enabling trajectory generation that is unattainable by any single model.

We systematically aggregate and filter the collected interaction data, retaining only successful
trajectories (180k+ correct steps), and employ them for supervised fine-tuning of the model. This
strategy equips the model with robust desktop manipulation capabilities and foundational reasoning
abilities, significantly enhancing the performance of the base model.

3.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Step-Level Group Relative Policy Optimization. We extend the GRPO algorithm (Shao et al.|
2024) to the step-level, making it more suitable for agent RL training. For each task 7, the policy g
interacts with the desktop environment and samples G trajectories 71, 7a, . . ., Ta. The i-th trajectory

Under review as a conference paper at ICLR 2026

consists of L; step-level actions 0; 1, ..., 0;,1,. All steps from the same task are grouped, and the
advantage A; ; is computed for each step The overall loss aggregates all step advantages as follows:

m0(04,514i,5)
0) =FE) E g —— s A S
Tsweparro(?) TNP(T)’{{"W'}JZI}iG:lN”%zd |: z 1 L (mm < v

=1 =1 T4 (0i,514i,5)

Clip(mm’ijmi’j)), 1—¢1+ 6) A@j) — BDKL(W9|TI'T6f)>:| ,

TOo1a (Oi,j qi,j

Ay = r;,; — mean(R)

? Yz = u,v :1,~.., s :1,...,Lu
: std(R) R=Aruo|u G, v }

Reward Design. We select a subset of the constructed human-annotated data (in Section [3.1)) for
RL and employ a rule-based verification function to provide verifiable training signals for each
trajectory. Successfully solved trajectories receive a reward of 1 for every correctly formatted action
that contributes to the solution; failed trajectories or improperly formatted actions receive a reward of
0. Unlike conventional approaches that propagate step-wise returns via the Bellman equation, our
methodology treats each prompt-response pair as an independent training instance with rewards based
on the final trajectory outcome. This direct reward assignment provides explicit feedback by coupling
agent behaviors with task success, facilitating effective policy optimization.

3.3 ENTROPULSE FOR SCALING RL TRAINING

In the RL training in Section [3.2] we observe that model performance plateaus after hundreds
of training steps, with stagnating task completion rates and decreasing entropy. This premature
convergence motivates us to investigate strategies for extending effective training and enhancing
policy exploration. Inspired by DAPO (Yu et al.| 2025), we experiment with increasing the clipping
threshold, which attenuates the decline in entropy but significantly slows down policy improvement.

To address the issue, we propose Entropulse, motivated by the observation that SFT and RL
objectives differ markedly during training. As entropy decreases during RL optimization, integrating
SFT at critical junctures enhances exploration and trajectory diversity, facilitating further policy
optimization. During initial RL training, we aggregate and retain all successful rollout trajectories.
While conventionally discarded after single use, these trajectories from various policies at different
training steps represent valuable and diverse behavioral data.

We process this dataset by randomly selecting successful trajectories per unique task to construct a
new SFT training set, which exhibits the following attributes:

1. High quality: All data comprises completed, high-fidelity trajectories.
2. Diversity: Rollouts originate from heterogeneous policies in different training steps, offering a
variety of problem-solving strategies.

3. Computational efficiency: The dataset leverages existing interaction data, eliminating the need
for additional environment rollouts.

SFT on this dataset produces notable shifts in policy behavior. While evaluation task performance
remains stable, the resulting policy shows increased entropy relative to the original one, indicating
enhanced exploration. Building upon this enhanced exploration capability, we conduct a second
round of RL training, which yields significant performance improvements and enables us to achieve
state-of-the-art results in computer automation. The training and hardware details are in Appendix [D]

4 EXPERIMENTS

We employ CompPuTERRL on GLM-4-9B-0414 (GLM et al.||2024)) and GLM-4.1V-9B-Thinking (Hong
et al.| 2025)), to produce GLM-CompuTERRL-9b. We conduct extensive experiments across various
scenarios to evaluate GLM-CompPuTERRL’s performance within the computer environment.

4.1 MaiN REsuLTS

To closely reflect the real user experience, we evaluate GLM-CompuTERRL on the OSWorld (Xie
et al.}|2024) and OSWorld-Verified benchmark, comparing its performance against state-of-the-art

https://xlang.ai/blog/osworld-verified

Under review as a conference paper at ICLR 2026

Table 1: GLM-CompuTERRL performance on OSWorld and OSWorld-Verified (updated in 2025.08).
We compare GLM-CompuTERRL with state-of-the-art agents, including both proprietary and open
models.

Agent Model #Params OSWorld OSWorld-Verified
Proprietary Models
Aria-UI w/ GPT-40 (Yang et al.|[2024b) - 15.2 -
Aguvis-72B w/ GPT-40 (Xu et al.[[2024) - 17.0 -
Claude 3.7 Sonnet (Anthropic/[2023) - 28.0 35.8
Claude 4.0 Sonnet (Anthropic|[2023) - 30.7 43.9
Agent S2 w/ Claude-3-7-Sonnet (Agashe et al.][2025) - 34.5 -
InfantAgent (Lei et al.|[2024) - 35.3 -
OpenAl CUA 4o (OpenAl|[2025) - 38.1 31.3
Agent S2 w/ Gemini-2.5-Pro (Agashe et al.|[2025) - 414 45.8
UI-TARS-1.5 (Qin et al.||2025) - 42.5
OpenAl CUA 03 (OpenAl[[2025) - 42.9 -
Open Models
Qwen2.5-vl-72B (Bai et al.| 2023b) 72B 8.8 5.0
PC Agent-E (He et al.[[2025) 72B 14.9 -
UI-TARS-72B-SFT(Q1n et al.|[2025) 72B 18.8 -
UI-TARS-72B-DPO (Qin et al.[[2025) 72B 24.6 27.1
UI-TARS-1.5-7B (Qin et al.[[2025) 7B 26.9 27.4
Jedi-7B w/ GPT-40 (Xie et al.[[2025) TB+ 27.0 29.3
UI-TARS-7B-1.5 + ARPO (Lu et al.][2025) 7B 29.9 -
ComPUTERRL (ours)

w/ GLM-4-9B-0414 9B 48.1£1.0 47.3

w/ GLM-4.1V-9B-Thinking 9B 48.9+0.5 48.0

models, including CUA (OpenAlL 2025), Claude-4 (Anthropic}[2023)), and UI-TARS (Qin et al., 2025)),
among others. The comparative results are in Table[I] The results indicate that GLM-CompuTERRL
achieves superior performance across a range of domains, with its advantages most pronounced in the
challenging multi-apps setting. Moreover, by employing the API-GUI strategy, GLM-CompPUTERRL
can accomplish tasks using at most 1/3 of the steps required by the strongest baseline approaches,
demonstrating remarkable gains in execution efficiency. These results underscore the potential of
ComputerRL to advance the state of the art in computer automation across various applications.

4.2 OFFICE APPLICATION PERFORMANCE

As a critical interface for delivering and presenting, office application constitutes an important testbed
for evaluating computer use agents. To assess agent performance in this domain, we curate a set of 180
challenging tasks from three sources: SpreadsheetBench (Ma et al.,[2024)), PPTC (Guo et al.} 2023),
and in-house developed Writer domain tasks. These tasks are adapted as necessary to integrate them
into the OSWorld framework. The resulting benchmark, termed OfficeWorld, enables systematic
measurement of agent capabilities in office-oriented scenarios. The results are in Table 2]

Table 2: GLM-CompuTERRL performance on OfficeWorld compared to common baselines. We
employ the same framework (with tools) and test settings to ensure a fair comparison.

Agent Model Word Excel PPT Average
DeepSeek-V3.1 (Liu et al.|[2024a) 6.7 35.0 21.7 21.1
DeepSeek-R1|Guo et al.[(2025) 13.3 36.7 18.3 22.8
Claude 3.7 Sonnet (Anthropic/|2023) 15.0 25.0 25.0 21.7
Claude 4.0 Sonnet (Anthropic/2023) 18.3 35.0 20.0 24 .4
Gemini-2.5-Pro (Team et al.[[2023) 5.0 11.7 20.0 12.2
GPT-40 (Hurst et al.[[2024) 18.3 21.7 8.3 16.1
GPT-4.1 (Achiam et al.[[2023) 21.7 25.0 28.3 25.0
OpenAl 03 (Jaech et al..| [2024) 233 36.7 41.7 33.9
ComPUTERRL (ours)

w/ GLM-4-9B-0414 21.7 58.3 43.3 41.1

w/ GLM-4.1V-9B-Thinking 30.0 58.3 41.7 43.3

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on framework designs and training methods. We categorize OSWorld into
five distinct domains to facilitate a granular comparison of different strategies across various domains.

Method oS Office Daily Professional Workflow Avg.
Framework Ablation (w/ GPT-40)

GUI Only 41.7 6.2 12.3 14.3 7.5 11.2
API-GUI 52.6 279 25.7 41.6 10.8 26.2
Training Ablation (w/ Qwen2.5-14B)

Untrained 20.8 17.2 19.7 22.9 3.3 15.2
+) Behavior Cloning 54.2 35.0 37.2 45.8 10.8 31.9
+) RL Phase 1 83.3 46.1 45.1 56.3 16.1 42.0
+) Entropulse 75.0 42.3 50.6 52.1 18.9 41.5
+) RL Phase 2 83.3 46.2 46.7 60.4 27.2 45.8
—— RL Phase 1 RL Phase 2 —— Entropulse + RL Phase 2 Entropulse

0.551 0.30
0.50 //"v\ 025
T 0.45 20.201
2 £
& 0.40 & 0.15 |
0.351 0101 \
0.30 e B S S U N N T N s
0 30 60 90 120150180 180210240270 300 330 360 0 30 60 90 120150180 180210240270 300 330 360
Step Step

Figure 4: CompuTERRL training curves of reward (left) and entropy (right) with 95% confidence
intervals. The red line denotes the training with entropy recovery via Entropulse after the first RL
stage, while the grey line denotes continued training with only reference resetting.

4.3 ABLATION STUDY

To evaluate the influence of various algorithms and training datasets on agent performance, we present
an ablation study on the OSWorld benchmark in Table[3]

Framework Ablation. We compare the performance of the GUI-only approach with our proposed
API-GUI paradigm using GPT-40. The results demonstrate that the API-GUI paradigm substantially
outperforms the GUI-only baseline across all domains. Specifically, the API-GUI strategy achieves
an average success rate of 26.2%, representing a 134% improvement over the GUI-only approach
(11.2%). The most significant gains are observed in the Office (27.9% vs. 6.2%) and Professional
(41.6% vs. 14.3%) domains, where API-GUI provides 350% and 191% improvements, respectively.
These results validate our core hypothesis that combining API calls with GUI interactions enables
more efficient and reliable task execution, particularly for complex professional workflows that benefit
from programmatic control.

Training Ablation. We study the progressive impact of different training stages using Qwen2.5-14B.
Starting from the backbone, Behavior Cloning (BC) establishes a solid foundation with 31.9%.
The first RL phase (RL1) yields substantial gains, increasing the performance to 42.0% (+10.1%).
Interestingly, Entropulse phase maintains similar performance (41.5%) while significantly increasing
action entropy, which enhances exploration diversity and enables the final RL2 phase to achieve
further improvements. The RL2 phase achieves the best performance at 45.8% (+3.8% from RL1),
benefiting from the increased exploration capacity introduced by Entropulse. Notably, the Workflow
domain shows the most dramatic improvement throughout training (10.8% — 27.2%), while the other
domains maintain consistently high performance, highlighting the importance of multi-stage training.

RL Scalability. We present the RL training reward and entropy curves in Figure[d]to study the impact
of Entropulse on the extended RL training dynamics. After the first RL phase converges, we compare
the second RL phase with and without Entropulse. To ensure a fair comparison, we reset the reference
model in both scenarios.

Under review as a conference paper at ICLR 2026

The results demonstrate that incorporating Entropulse increases the model’s entropy, thereby restoring
its exploratory capacity. This enhanced exploration substantially scales the effective training steps,
ultimately leading to improved overall performance.

4.4 CASE STuDpY AND ERROR ANALYSIS

We conduct a case study in the desktop environment to identify potential 14.2%
avenues for system optimization. Although our model exhibits robust
performance across most scenarios, several limitations have been
identified. In particular, errors encountered during task execution 25.6%

25.8%
can be categorized into four primary types: visual perception errors,
multi-application coordination failures, operational illusions, and other
errors. The distribution of these error types is presented in Figure 5]
Error Type
Illusion Vision

Appendix [E] and [F] present more experimental results. Additional
examples (including both good and bad) are provided in Appendix [
to further illustrate the model’s capabilities and limitations. Figure 5: Error distribution.

Others mmm Multiple App

5 RELATED WORK

Large Language Models. LLMs, such as GPT (Achiam et al., [2023)), Gemini (Team et al., |2023)),
Claude (Anthropic, [2023)), Llama (Touvron et al., 2023a)), GLM (Zeng et al., 2022; Du et al., 2022),
Qwen (Team) 2024), and Deepseek (Liu et al.|[2024a), have demonstrated remarkable capabilities in
knowledge representation and language understanding, leading to diverse downstream applications.
Vision-Language Models (VLMs) (Hong et al., 2023; 2025; |Bai et al., 2023b; |[Hurst et al., 2024))
further extend LLMs to multimodal inputs, enabling joint reasoning over text and images.

Computer Use Agents. CogAgent (Hong et al.,[2023) introduces multimodal GUI understanding.
AutoGLM (Li1u et al.l 2024b) decouples planning and grounding with online RL improvement.
OS-Atlas (Wu et al.| [2024b) proposes a foundational GUI action model. Aguvis (Xu et al.| [2024)
enables cross-platform interaction through visual training. PC-Agent-E (He et al., 2025)) utilizes
trajectory boosting for enhanced proficiency. UI-TARS (Qin et al., 2025) performs human-like GUI
interactions from screenshots. Agent S2 (Agashe et al., [2025)) integrates grounding with hierarchical
reasoning. CUA (OpenAll 2025) offers programmable desktop automation.

Computer Use Benchmarks. WebArena (Zhou et al.,[2023)) provides simulated websites for online
interactions, but has limitations: discrepancies from real-world environments and a web-only focus.
Similar issues exist in other web-focused benchmarks (Yao et al.l 2022} [Koh et al., 2024; |Chezelles
et al} 2024; Miyai et al., 2025). Software engineering benchmarks (Jimenez et al., 2023 Yang
et al.| |2024a; [Li et al.| [2024} Zan et al., [2025; |Padigela et al., [2025) lack comprehensive desktop
evaluation. OSWorld (Xie et al.| |2024) addresses these gaps with 369 tasks with 134 evaluation
functions. Windows Agent Arena (Bonatti et al.|[2024) expands this with 150+ Windows-based tasks.

RL and Entropy Management for LLMs. PPO (Schulman et al.,|2017) addresses instability in
policy gradients for RL training. GRPO (Guo et al., 2025) extends PPO with group sampling and
removes value updates. Maximum entropy RL (Haarnoja et al.,2018) and ensemble methods (Lee
etal.}2021;/De Paola et al.,[2025)) maintain diversity through regularization or multiple models. Recent
work identifies entropy collapse as a critical challenge in LLM RL (Cui et al.||2025)), with proposed
solutions including DAPO (Yu et al., 2025) with adaptive clipping and token-level interventions (Hao
et al.}2025). Entropulse takes a different approach by actively restoring collapsed entropy through
targeted SFT training on diverse rollout data, achieving extended training.

6 CONCLUSION

In this work, we present CompUTERRL, a novel computer use agent that integrates API-based and
GUI-based actions with scalable RL training. Our experiments on OSWorld and OfficeWorld
demonstrate superior performance compared to prior approaches, laying the groundwork for more
capable autonomous computer use agents.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

Anthropic. Model card and evaluations for claude models. 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966, 2023b.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine intelligence 15,
pp. 103-129, 1995.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Ivan Bratko, Tanja Urbancic¢, and Claude Sammut. Behavioural cloning: phenomena, results and
problems. IFAC Proceedings Volumes, 28(21):143—149, 1995.

De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lu, Ori
Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart, et al. The browsergym ecosystem
for web agent research. arXiv preprint arXiv:2412.05467, 2024.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Vincenzo De Paola, Riccardo Zamboni, Mirco Mutti, and Marcello Restelli. Enhancing diversity in
parallel agents: A maximum state entropy exploration story. arXiv preprint arXiv:2505.01336,
2025.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
320-335, 2022.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun Mei,
Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for language
reasoning. arXiv preprint arXiv:2505.24298, 2025.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng,
Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b to
glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via
reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao, and Nan Duan. Pptc benchmark: Evaluating
large language models for powerpoint task completion. arXiv preprint arXiv:2311.01767, 2023.

10

Under review as a conference paper at ICLR 2026

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. Pmlr, 2018.

Zhezheng Hao, Hong Wang, Haoyang Liu, Jian Luo, Jiarui Yu, Hande Dong, Qiang Lin, Can Wang,
and Jiawei Chen. Rethinking entropy interventions in rlvr: An entropy change perspective. arXiv
preprint arXiv:2510.10150, 2025.

Yanheng He, Jiahe Jin, and Pengfei Liu. Efficient agent training for computer use. arXiv preprint
arXiv:2505.13909, 2025.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. arXiv
preprint arXiv:2312.08914, 2023.

Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
with scalable reinforcement learning. arXiv e-prints, pp. arXiv—2507, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International conference on
machine learning, pp. 6131-6141. PMLR, 2021.

Bin Lei, Yuchen Li, Yiming Zeng, Tao Ren, Yi Luo, Tianyu Shi, Zitian Gao, Zeyu Hu, Weitai Kang,
and Qiuwu Chen. Infant agent: A tool-integrated, logic-driven agent with cost-effective api usage.
arXiv preprint arXiv:2411.01114, 2024.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian, Binyuan
Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software development.
CoRR, 2024.

Kefan Li and Yuan Yuan. Large language models as test case generators: Performance evaluation and
enhancement, 2024. URL https://arxiv.org/abs/2404.13340.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Tong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. arXiv
preprint arXiv:2411.00820, 2024b.

Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy
optimization for gui agents with experience replay. arXiv preprint arXiv:2505.16282, 2025.

11

https://arxiv.org/abs/2404.13340

Under review as a conference paper at ICLR 2026

Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xiaokang Zhang, Xiaohan Zhang, Sijia Luo, Xi Wang,
and Jie Tang. Spreadsheetbench: Towards challenging real world spreadsheet manipulation.
Advances in Neural Information Processing Systems, 37:94871-94908, 2024.

Atsuyuki Miyai, Zaiying Zhao, Kazuki Egashira, Atsuki Sato, Tatsumi Sunada, Shota Onohara,
Hiromasa Yamanishi, Mashiro Toyooka, Kunato Nishina, Ryoma Maeda, et al. Webchorearena:
Evaluating web browsing agents on realistic tedious web tasks. arXiv preprint arXiv:2506.01952,
2025.

OpenAl. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world. 2025. URL https://openai.com/index/computer-using-agent.

Harshith Padigela, Chintan Shah, and Dinkar Juyal. Ml-dev-bench: Comparative analysis of ai agents
on ml development workflows. arXiv preprint arXiv:2502.00964, 2025.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A survey on large
language model based autonomous agents. arXiv preprint arXiv:2308.11432, 2023.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen

Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024b.

12

https://openai.com/index/computer-using-agent

Under review as a conference paper at ICLR 2026

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,
Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
Huang, and Tao Gui. The rise and potential of large language model based agents: A survey. arXiv
preprint arXiv:2309.07864, 2023.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040-52094, 2024.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
decomposition and synthesis. arXiv preprint arXiv:2505.13227, 2025.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
Yu Wan, Yuqgiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press, Niklas
Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal: Do ai
systems generalize to visual software domains? arXiv preprint arXiv:2410.03859, 2024a.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744-20757, 2022.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. In The Eleventh
International Conference on Learning Representations, 2022.

Hanchen Zhang, Xiao Liu, Bowen Lv, Xueqiao Sun, Bohao Jing, Iat Long Iong, Zehan Qi, Hanyu Lai,
Yifan Xu, Rui Lu, Zhenyu Hou, Hongning Wang, Jie Tang, and Yuxiao Dong. Agentrl: Reinforce
all-round agents from zero. arXiv preprint, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In Second Agent Learning in Open-Endedness Workshop, 2023.

13

https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

A API DEVELOPMENT WORKFLOW

In this section, we detail the methodology for leveraging LLMs to automate API construction. We
propose a semi-automated workflow wherein users need only supply exemplar tasks performed within
the target application; the LLM then autonomously generates both the necessary API code and
corresponding test cases. The workflow comprises three primary stages: requirement analysis, API
implementation, and test case generation.

Requirement Analysis During the requirements analysis phase, users provide a set of task examples
related to the target application as input. The workflow leverages the LLM to analyze these task
instances, extracting the essential functionalities required for task completion. It then compares these
requirements against the existing API interface definitions to identify potential gaps. If uncovered
functionalities are detected, the system automatically generates new API interfaces along with their
corresponding parameter specifications.

Notably, we limit the generated interfaces to encapsulate only general-purpose functionalities,
thereby avoiding excessive complexity and the proliferation of APIs. This design choice mitigates
implementation difficulty and reduces the adaptation burden on the agent.

API Implementation Upon obtaining the interface definitions, the workflow systematically iterates
over each interface and its associated parameters. For each specification, it leverages the designated
Python libraries of the target application to implement the corresponding API functionalities.
Additionally, the workflow incorporates error-handling mechanisms and logging to facilitate human
debugging and maintenance. This automated approach not only streamlines API development but
also enhances consistency and reusability across different application contexts.

Test Case Generation Following the implementation of API functionalities, the workflow conducts
fundamental unit testing to ensure the correctness and robustness of each API. Specifically, the testing
process verifies: (1) whether the API can be invoked without runtime errors, and (2) whether the API
returns correct results across a range of parameter inputs. For API implementations that fail these
tests, the workflow provides detailed error feedback to the API implementation module, which then
autonomously attempts corrections until the APIs pass all tests.

This automated methodology substantially lowers the manual effort required, enabling the creation
of application-specific API sets with minimal human intervention. As a result, the barrier for users
to develop APIs for diverse applications is significantly reduced. We have developed API sets for
multiple commonly used default applications in Ubuntu and integrated them into our Ubuntu virtual
machine environment.

14

Under review as a conference paper at ICLR 2026

B AcTIiON SPACE

Our action space for GLM-CompuTerRL is shown in Table[d} and our API number for each application
is in Table

Table 4: Action space of GLM-CompPUTERRL

Function Description

open_app (app_name) Open specified application (e.g., Chrome, Terminal).
click(coordinates, Click at coordinates [x, y] with the specified mouse button and
num_clicks,button_type) number of clicks.

type(coordinates, text, Type text at coordinates; optionally overwrite existing content and/or
overwrite, enter) press Enter.

drag_and_drop(drag_from, Drag from [X;, y;] and drop onto [x», y»].

drop_on)

scroll(coordinates, Scroll at coordinates in direction (up / down).

direction)

switch_window(window_id) Switch focus to the window with given ID.

hotkey (keys) Press a key combination (e.g., [ctrl, c]).

quote(content) Record content for memory.

wait() Pause execution temporarily.

exit(success) Terminate task with success (True) or failure (False).

Table 5: Statistics of the number of available APIs per application

Application Number of APIs
Code 12
Chrome 11
LibreOffice Calc 27
LibreOffice Impress 22
LibreOffice Writer 19
VLC 12
Total 103

15

Under review as a conference paper at ICLR 2026

C Prompt ForMuLATION FOR GLM-ComMmpPUTERRL

The design of the observation space is pivotal, as it directly constrains the upper bound of the agent’s
performance. In this section, we detail the integration of the API set with GUI operations, alongside
the incorporation of contextual information from the desktop environment, to systematically construct
both the agent’s observation space and action space. This unified framework ensures that the designed
observation and action spaces capture the complexity of real-world tasks, providing a solid foundation
for robust agent learning and generalization.

Action space formulation The integration of a large number of APIs with GUI operations, while
ensuring effective agent interaction, remains a significant challenge. In practice, we mitigate this
complexity by dynamically detecting the currently active application to infer potentially relevant
APIs, thereby reducing the number of available APIs and lowering the agent’s adaptation overhead.
Furthermore, we use Python classes and descriptive docstrings to delineate each operation type,
ensuring they are clearly interpretable by most LLMs. This object-oriented strategy enhances the
model’s understanding and precision in performing operations. These classes are provided to the agent
via the system prompt, enabling interaction through Python function calls. This design facilitates rapid
agent adaptation and efficient generalization of operations across diverse applications. Additionally,
the agent’s output format is standardized in the system prompt, which encourages the agent to interleave
reasoning and action execution. This approach promotes enhanced planning and reflective capabilities
within the agent, thus improving its overall performance in complex task execution scenarios.

Observation formulation To facilitate the effective perception and manipulation of GUIs by the
model, we leverage the Python Accessibility Toolkit Service Provider Interface (pyatspi) to extract
comprehensive attributes of desktop elements systematically. Each GUI element encompasses the
element’s semantic type, visible text content, precise screen coordinates, and spatial dimensions.
This structured representation enables the LLM agent to parse, ground, and reason over the GUIl in a
manner analogous to human users.

We present the element format of the environment al ly tree in our observation space as follows:

tag text position (center x & y) size (w & h)

The tag is the XML tag of the element, such as div or button. The text is the text content of the
element, which can be empty for elements that do not have text. The position is represented by the
center coordinates (X, y) of the element, and the size is represented by its width (w) and height (h).

For the multimodal model, the ally tree is removed from the input. Instead, we capture the GUI
screenshot at a resolution of 1920 x 1080 pixels (1080p) and subsequently resize it to 1280 x 720
pixels (720p), which serves as the input representation of the desktop environment.

Beyond the extraction of individual GUI components, we augment the input space with rich contextual
metadata to provide a holistic depiction of the agent’s operational environment. Specifically, we provide
a comprehensive enumeration of open desktop windows, including their hierarchical relationships,
as well as the name and additional information of the currently focused application. To promote
consistent and adaptive behavior, we also deliver feedback from the most recent GUI action or tool
call, which may include environmental status updates, confirmations, or error signals.

The app format of the observation space is as follows:

Window ID App Name Title

The Window ID is the unique identifier of the application window, App Name is the name of the
application, and Title is the title of the application window.

History formulation Given the extensive length of GUI observations and the inherent constraints
imposed by the model’s context window, it is necessary to efficiently manage the input history across
multiple interaction rounds. For each interaction, we omit redundant and detailed interface information
while preserving the complete sequence of the agent’s reasoning process, actions taken, and the
corresponding operation feedback. This approach ensures the retention of the essential operational
trajectory, thereby maximizing the informativeness of the historical context while maintaining
compatibility with the model’s capacity limitations.

16

Under review as a conference paper at ICLR 2026

Collectively, the components above constitute the observation space and action space of our agent.
This representation not only enhances the agent’s environmental cognition but also enables better
strategies for long-horizon planning and reasoning. As a result, the agent is better equipped to execute
complex, multi-step tasks across diverse applications in the desktop environment.

Below is our detailed prompt organization for GLM-ComPUTERRL:

You are an agent which follow my instruction and perform desktop computer

tasks as instructed.

You have good knowledge of computer and good internet connection and
assume your code will run on a computer for controlling the mouse and

keyboard.

For each step, you will get an observation of the desktop by 1)
screenshot; 2) current application name; 3) accessibility tree, which

is based on AT-SPI library; 4) application info; 5) last action
result.

You should first generate a plan for completing the task, confirm the
previous results, reflect on the current status, then generate
operations to complete the task in python-style pseudo code using the

predefined functions.

Your output should STRICTLY follow the format:
<think>

{**YOUR-PLAN-AND-THINKING*=*}

</think>

‘¢“‘python

{**xONE -LINE -OF -CODE x*}

¢

You will be provided access to the following methods to interact with the
UT:
1. class Agent, a grounding agent which provides basic action space
to interact with desktop.
2. class {tool_class_name}, which provides tools to interact with the
current application {app_name}.

Here are the defination of the classes:
‘¢“‘python
{class_content}

¢

* Note:
- Your code should be wrapped in python
should be wrapped in <think></think>.
- Only **ONE-LINE-OF-CODE** at a time.
- Each code block is context independent, and variables from the previous
round cannot be used in the next round.
- Do not put anything other than python code in ‘‘‘python‘ ‘.
- You **can only use the above methods to interact with the UIx*, do not
invent new methods.
- Return with ‘Agent.exit(success=True)‘ immediately after the task is
completed.
- If you think cannot complete the task, **DO NOT keep repeating actions,
just return with ‘Agent.exit(success=False) ¢.*x%
- The computer’s environment is Linux, e.g., Desktop path is ’/home/user/
Desktop’
- My computer’s password is ’password’, feel free to use it when you need
sudo rights

I i

and your plan and thinking

**x IMPORTANT **x You are asked to complete the following task: {instruction}

Below is our history and input prompt for GLM-CompUTERRL:

<|user|>
xEnvironment State (Omitted)==*

17

Under review as a conference paper at ICLR 2026

<|assistant|>
<think>
{round@_thinking}
</think>

‘¢“‘python
{round@_operation}

€

<|user|>
*xEnvironment State (Omitted)*x
Previous Action Result: {round@_operation_feedback}

<|assistant|>
<think>
{round1_thinking}
</think>

‘“‘python
{round1_operation}

I

<|user|>
*xEnvironment State (Omitted)x*x
Previous Action Result: {roundl_operation_feedback}

<|assistant|>
<think>
{round2_thinking}
</think>

‘¢“‘python
{round2_operation}

I

<|user|>
{screenshot_for_multimodal}

* Apps: {all_apps}

* Current App: {cur_window_id}

* Ally Tree: {ally_tree_for_text}
* App Info: {app_info}

* Previous Action Result: {operation_feedback?}

18

Under review as a conference paper at ICLR 2026

D TrRAINING & HARDWARE DETAILS

D.1 TRAINING PROCESS & HYPERPARAMETER SETTINGS

During the behavior cloning stage, we construct approximately 8,000 tasks through manual annotation
and data augmentation. We employ multiple advanced models to generate diverse samples for each
task, and subsequently apply the eval function to filter out successful trajectories. This process yields
a high-quality BC dataset comprising roughly 180,000 steps, which is then used for SFT training. We
employ a 16-node computing cluster for fine-tuning, with a maximum learning rate set to 1 x 107>, a
sequence length of 32,768 tokens, and a global batch size of 256, over a total of three training epochs.

In the RL stage, the key training hyperparameters are summarized in Table[6] We initially train
the BC policy (using the 1-epoch checkpoint for diversity) for 180 steps, after which performance
improvements began to plateau. At this point, we collect rollouts during RL, perform task-level
random selection, and curate approximately 130,000 additional steps of data for Entropulse training.
The hyperparameters in this phase are identical to those used in the BC stage, except for a reduced
learning rate of 5 x 107%. RL training is then resumed until a total of 360 steps have been reached.

D.2 TRrRAINING CLUSTER CONFIGURATION

Our training infrastructure consists of a high-performance GPU cluster. The complete specifications,
including GPU, CPU, cache, memory, and network configuration, are detailed in Tablem Our training
pipeline requires at least 4 GPU nodes to run distributed RL training.

D.3 ENVIRONMENT CLUSTER CONFIGURATION

For running distributed RL environments, we employ a dedicated compute cluster with 7 nodes. The
complete specifications are shown in Table[§] In our empirically validated deployment:

* Each GPU achieves optimal utilization when paired with approximately 80 rollouts.
» Each environment server can reliably host 200 concurrently running virtual environments.

This ratio maintains equilibrium between GPU computation and environment sampling, minimizing
idle computational resources.

D.4 VIrTUuAL ENVIRONMENT INSTANCE CONFIGURATION

Each RL task is executed within a dedicated virtual machine instance. The specifications are detailed
in Table Q]

Note: Each virtual environment instance runs an independent Ubuntu 20.04 desktop environment
for executing GUI-based tasks. The lightweight resource configuration (2 cores/4GB) ensures high
concurrency under limited hardware resources, supporting the environment parallelism required for
large-scale distributed RL training.

D.5 TraINING DuraTION AND FLOPS STATISTICS

Table[T0|presents the complete training time and FLOPs statistics for the multimodal training.

19

Under review as a conference paper at ICLR 2026

Table 6: Training configuration for RL training of GLM-CompUTERRL.

Category Parameter (Value)
Data

Task type Multi-turn chat
Max prompt length 63,488 tokens
Max response length 2,048 tokens
Train batch size 32

Responses per prompt 16
Concurrency 1024

Shuffle True

Seed 42

Actor

Exchange size 1 x 1010
Gradient checkpointing Enabled
Strategy FSDP

FSDP offloading Param + Optimizer
Sequence parallel size 2

Max tokens / GPU 32,768
Precision dtype bfloat16
Algorithm

Advantage estimator GRPO
Discount factor y 1.0

GAE parameter \ 1.0

Use remove padding True

Use dynamic bsz True
Mini-batch size 32,768
Micro-batch size / GPU 1

Logprob micro-batch size / GPU 1

KL loss

Enabled (low_var_kl), coef = 0.0003

Entropy coeflicient 0.0

Clip ratio 0.2
Optimizer

Actor learning rate 1x10°6
LR warmup steps ratio 0.0
Warmup style constant
Gradient clipping 1.0
Save frequency 25
Rollout

Enable chunked prefill True
Max new tokens (generation) 2,048
Do sample True
Sampling temperature 0.8

Max turns 30

GPU memory utilization 0.7
Pools rollout 2

Pools other 6

20

Under review as a conference paper at ICLR 2026

Table 7: Training Cluster Specifications

Configuration Specification

Cluster Overview

Cluster Size 16 nodes

GPU Configuration

GPU Type NVIDIA H800

GPUs per Node 8

Total GPUs 128 (16 nodes x 8 GPUs)
CPU Configuration

CPU Model Intel Xeon Gold 6430
Architecture x86_64

Physical Sockets 2

Cores per Socket 32

Total Cores 64

Threads 64 (1 thread/core)
Base Frequency 2.1 GHz

Minimum Frequency 800 MHz

Instruction Set Extensions AVX-512, AVX512_FP16, AMX (INT8/BF16/Tile)
Cache Configuration

L1 Data Cache 3 MiB (64 instances)
L1 Instruction Cache 2 MiB (64 instances)
L2 Cache 128 MiB (64 instances)
L3 Cache 120 MiB (2 instances)

Memory Configuration
Total Memory Capacity 2.0TiB

Available Memory 1.9 TiB

NUMA Nodes 2

NUMA Node 0 CPUs 0-31

NUMA Node 1 CPUs 32-63

Swap Disabled (0 B)

Network Configuration

Interconnect InfiniBand/High-speed Ethernet
Address Width Physical 46-bit, Virtual 57-bit

21

Under review as a conference paper at ICLR 2026

Table 8: Environment Cluster Specifications

Configuration Specification

Cluster Overview

Cluster Size 7 nodes

Total Cluster Memory ~7.7TiB

CPU Configuration

CPU Model Intel Xeon 6986P-C (Granite Rapids)
Architecture x86_64

Physical Sockets 1

Cores per Socket 120

Total Cores 120

Threads

Base Frequency

Max Turbo Frequency
Minimum Frequency
Instruction Set Extensions

240 (2 threads/core, hyper-threading enabled)
3.3GHz

3.9GHz

800 MHz

AVX-512, AVX512_BF16, AMX, SHA-NI

Cache Configuration

L1 Data Cache 5.6 MiB

L1 Instruction Cache 7.5 MiB

L2 Cache 240 MiB

L3 Cache 504 MiB
Memory Configuration

Memory per Node 1.1 TiB
Available Memory 949 GiB
NUMA Nodes 3

NUMA Node 0 CPUs 0-39, 120-159
NUMA Node 1 CPUs 40-79, 160-199
NUMA Node 2 CPUs 80-119, 200-239
Swap Disabled (0 B)

Virtualization and Features
Virtualization Technology
Security Features
Cryptographic Acceleration
Al Acceleration

Address Width

Intel VT-x, EPT, VPID

Enhanced IBRS, IBPB, Spectre/Meltdown mitigations
AES-NI, SHA-NI, AVX512_VAES

AMX, AVX512 BF16, AVX512_VNNI

Physical 52-bit, Virtual 57-bit

Table 9: Virtual Environment Instance Specifications

Configuration Specification
Operating System Ubuntu 20.04 LTS
vCPU Cores 2

Memory Allocation 4 GB

Runtime Average Bandwidth 0.4 Mbps
Virtualization Platform KVM/QEMU

Table 10: Training Time and FLOPs Statistics (Multimodal)

Training Stage Duration (hours) Total FLOPs
SFT (Behavior Cloning) 16 1.67 x 10'¢
SFT (Entropulse) 11 1.22 x 1016
RL (Two-stage) 58 3.21 x 1017 (estimated)

22

Under review as a conference paper at ICLR 2026

D.6 KEey PERFORMANCE TRADE-OFFS AND BOTTLENECKS

Our observations identify two principal hyperparameters that significantly influence the balance
between training efficiency and convergence stability.

1. REspoNSsEs PER PRoMPT (RPP) — ExpLORATION UPPER BOUND vs. SAMPLING EFFICIENCY

Role. RpP defines the breadth of the search space in Best-of-N (BoN) sampling.
Trade-off:

* A higher RpP broadens exploration, increasing the likelihood of discovering high-quality trajecto-
ries, but sampling latency grows roughly linearly.

* A lower RpP yields faster sampling but may omit promising solutions, constraining exploration
scope.

Bottleneck. Excessively large RpP values incur substantial sampling overhead with diminishing
marginal gains.

2. BatcH Sizg (B) — TRAINING STABILITY VS. ITERATION THROUGHPUT

Role. B specifies the number of samples processed in each gradient update.

Trade-off:

* Alarger B improves gradient estimation accuracy and stabilizes training, but extends iteration time.

* A smaller B accelerates iterations but introduces higher gradient variance, potentially destabilizing
convergence.

Bottleneck. Too small B values cause pronounced oscillations in the training curve, while too large
values extend iteration time.

Optimal Configuration: RpP =16, B = 32. Systematic experimentation confirms that RpP = 16
and B = 32 represent an optimal balance across competing objectives:

* Exploration Adequacy — RpP = 16 affords sufficient BoN sampling scope to cover the majority of
feasible solution trajectories.

* Training Stability — B = 32 maintains variance in gradient estimates within acceptable bounds,
promoting smooth convergence.

* Resource Efficiency — This configuration ensures balanced utilization of both GPU and environment
clusters, avoiding throughput bottlenecks.

* Performance Outcome — Using this configuration, we achieved the reported final performance,
outperforming other settings in the efficiency—accuracy trade-off.

D.7 AbbitioNAL OBSERVED BOTTLENECKS
1. ENVIRONMENT HETEROGENEITY

Issue. Significant variance in task execution time results in some GPUs waiting for slower environments
to complete.

Mitigation. An asynchronous rollout collection mechanism allows fast environments to submit
results without delay.

2. INTER-CLUSTER NETWORK BANDWIDTH

Issue. High concurrency in environment simulation can saturate network bandwidth due to frequent
transmission of screenshots and state data, occasionally causing Docker network stalls.

Mitigation. Employing image compression reduces network load; optimizing Docker networking
decreases virtual NIC overhead.

23

Under review as a conference paper at ICLR 2026

3. INTERNET BANDWIDTH CONSTRAINTS

Issue. Large-scale simultaneous environment instances can generate excessive external network
traffic.

Mitigation. Packet-level traffic analysis enables elimination of unnecessary transmissions; construct-
ing an IP proxy pool mitigates service blocking risks.

E AbpbpitioNaL EXPERIMENTAL INDICATORS

To more comprehensively validate the effectiveness of our method, we report detailed experimental
indicators to support our conclusions, as shown in Figure[6] These indicators include Average Reward,
Entropy Loss, KL Loss, PPO KL, Average Margin, BoN Reward, Average Turns, and Response
Length. Based on these metrics, we make the following observations:

» Entropulse effectively increases the stochasticity of the policy, leading to a substantial
improvement in BoN after activation. This, in turn, drives the growth of the margin and
enables the policy to continue learning and improving.

 After applying Entropulse, the response patterns of the policy (including response length
and number of dialogue turns) become closer to those before the first-stage RL training (i.e.,
shorter), while maintaining comparable scores. This indicates that Entropulse helps the
policy discover better solutions along shorter trajectories, thereby suppressing excessive
reasoning and redundant steps.

* After resetting the reference model, the KL Loss is also reset, allowing the policy to explore
a larger space relative to the new reference. This prevents the policy from being overly
constrained by its previous strategy.

F RepeTITIVE EXPERIMENTS WITH DIFFERENT BASE MODELS

To further verify the effectiveness of our method, we conduct repetitive experiments with different
base models (both text and multimodal), demonstrating the stability and superiority of our approach.
The results are reported in Figure[7]

G Human AnNoTATION PROTOCOL

Our annotation process involves ten trained annotators with master’s degrees, who are recruited and
compensated in compliance with local labor laws and regulations. Annotators are provided with clear
written guidelines to ensure consistency and accuracy, as outlined in our annotation protocol (see
Figures[8land[0). All tasks are designed to avoid sensitive personal data, and all annotated content
is in English with no identifying information. The process includes task expansion—transforming
generalized instructions into explicit, executable tasks—and strict result verification to minimize
errors. Quality control measures include verification passes and clear formatting rules to improve
annotation reliability. No annotator is exposed to harmful, discriminatory, or unsafe content during the
process, and all work adheres to the Code of Ethics regarding fairness, privacy, and legal compliance.

24

Under review as a conference paper at ICLR 2026

—— RLPhase 1 —— Entropulse + RL Phase 2 Entropulse

0.301
0.501 0.25 {

0.45

0.359

Average Reward

o
=
o

Entropy Loss

o o

= N

w o

0.101 \’\

0.301
0 60 120 180 180 240 300 360 0 60 120 180 180 240 300 360
0.0175
0.051 0.01504
0.0125+4
0.044
" _, 0.01001
3 ¥
S 0.03 O 0.00751
< &
0.024 0.0050 -
0.0025 1
0.014
0.0000 -
0.00 T T T T T T _000257 T T T T T T
0 60 120 180 180 240 300 360 0 60 120 180 180 240 300 360
0.5501
0.121
0.525 1 M
£ 0.10 0.500 1
2 o
© ©
= % 0.4754
5% 2 04
e ’g 0.450 4
>
< 0.06 0.4254
0.400 1
0.044
T T T T T T 0.3754 T T T T T T
0 60 120 180 180 240 300 360 0 60 120 180 180 240 300 360
10.04 1044
<
2 9.5 5 1024
= c
= 3
@ [}
g 90 g 100
v o
>
< 3 W
8.51 * 984
8.01 96 1
0 60 120 180 180 240 300 360 0 60 120 180 180 240 300 360
Step Step

Figure 6: Detailed experimental indicators for CompUTERRL (95% Cls).

25

Under review as a conference paper at ICLR 2026

0.551
—— ComputerRL w/ Qwen2.5-14B
—— ComputerRL w/ GLM-4-9B-0414
0504 —— ComputerRL w/ GLM-4.1V-9B-Thinking
—— Average
---- Entropulse
T 0.451
g i
< i
§0.40- i E
5 i
E L
Il 1
0.35 b
Il 1
Il 1
1 i
i
0.30 b
Il 1
1 |

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Step

Figure 7: Repetitive experiments with different base models (95% Cls).

26

Under review as a conference paper at ICLR 2026

Annotation Guidelines

l. Project Background

Currently, when agents perform different application tasks, various execution issues may arise. To
address this problem, the core of this annotation task is:

1. First, expand the user’s seed instruction into more executable instructions.
2. Then, conduct strict result verification after each task execution to ensure the accuracy of the
execution chain.

Il. Data Description

Phase 1: Task Expansion
Fields to be completed (No need to execute in a virtual machine, only need to fill in):

1. Expanded Task
* Modify the generalized task description into an independent, executable task.
¢ No pronominal references allowed.
* All operations must explicitly specify that they are performed on a file located under
/home/user/work/ (the prefix /home/user/work/ is fixed).
¢ Instructions must be as clear and executable as possible.
o Prohibited example: “Help me find some good movies” (too vague).
¢ You may appropriately reduce the difficulty of the task, for example:
o If the original task is “Collect data from 2013-2020,” you may adjust it to “Collect data
from 2013-2015" (simplify content preparation for Phase 2).
2. Notes - Provide guidance for Phase 2 (described in Chinese for convenience).
e Example:
“Prepare a test.docx file containing multiple sentences, where the first letter of each
sentence is lowercase. Verify using
compare_with_golden(result_path, golden_path) . The result passes if the first
English letter of each sentence is capitalized, other characters remain unchanged, and
the content is exactly the same as the golden file.”

¢ You must specify:
a. What type of file to prepare
b. The file content format

Figure 8: Document for Human Annotation (1 /2)

27

Under review as a conference paper at ICLR 2026

c. Which function to use for verification
d. Which fields to check during verification

Phase 2: Virtual Machine Function Verification & Field Completion

Fields to be completed:

1. Target File
o All files in the task that require model operations (unprocessed files).
e For compare_with_golden (only supports xlsx, docx , csv, txt):
o [f the task involves other file types or functions, these can be omitted.
2. Detection Target
* The name(s) of the file(s) that need to be compared.
3. Golden File (only filled when the verification function is compare_with_golden)
¢ Name of the standard answer file used for comparison.
4. check_list (required if the Notes or task description explicitly specifies formatting):
¢ Optional if content comparison is default.
¢ Single/multiple choice:
o font : Compare font name, color, size, bold, italic, etc.
o fill: Compare cell fill color.
o alignment : Compare alignment (e.g., center).
o para_format : Compare paragraph formatting (alignment, line spacing).
o table : Compare text in inserted tables (format comparison not currently supported).
5. Files
¢ All files required for the task.
¢ You must create your own file names (arbitrary), but the file names must be consistent

across all fields (important).

I1l. Annotation Notes

1. Focus on evaluation — ensure the model’s required operations are properly executed; avoid
cases where detection passes without actual modifications.
2. All data must be in English, ensure logical correctness after translation.
3. For manually typed scenarios, verify multiple times to minimize error rate:
e Especially check IDs and file paths.
¢ OCR (from screenshots) is recommended for accuracy.
4. Report issues promptly in the annotation group to avoid unnecessary rework.
5. For color-related tasks, use red, yellow, blue, green; avoid visually similar colors.
6. For downloading plugins or apps — assume they are already installed.

Figure 9: Document for Human Annotation (2 / 2)

28

Under review as a conference paper at ICLR 2026

H Furure DIRECTION

While our advancements with CompUTERRL mark a significant leap forward in intelligent desktop
automation, we see this work as a foundation for a radical transformation in human-computer
interaction. Unleashing the full potential of autonomous agents on the desktop frontier demands
reimagining long-standing paradigms across several axes.

H.1 Towarps RoBusT PERFORMANCE

GLM-CompuTerRL has demonstrated remarkable proficiency across a spectrum of desktop tasks.
However, genuine universality requires transcending current boundaries in coverage and generalization.
Real-world digital environments are characterized by continual flux and heterogeneity, encompassing
unfamiliar applications, emergent workflows, and rare edge cases that lie beyond the scope of existing
datasets. A next-generation agent must dynamically adapt to shifting GUIs, unpredictable pop-ups,
and entirely novel interfaces. To this end, we are re-architecting data pipelines to facilitate exponential
expansion in training diversity and pioneering infrastructure to distill knowledge from real-world user
interactions at scale continuously.

H.2 BREAKTHROUGHS IN LoNG-HORIZON AUTONOMY

Envisioning the autonomous desktop assistant as an always-available cognitive collaborator necessitates
mastering sustained, long-duration workflows. While current solutions excel at bounded, atomic
tasks, they fall short of orchestrating complex, multi-step objectives over extended horizons. Our
ambition is to endow the agent with hierarchical planning capabilities, allowing it to reason, learn,
and revise strategies dynamically across arbitrarily long task sequences. Realizing this vision will
catalyze a paradigm shift: automating not just discrete operations, but entire workstreams and creative
processes end-to-end, fundamentally reshaping the productivity landscape for the cloud-native era.

H.3 FOUNDATIONS FOR SAFE AND ALIGNED AUTONOMY

Autonomous control over desktop platforms raises profound questions about safety, trustworthiness,
and user agency. The margin for error narrows dramatically when agents are empowered to modify
files, access sensitive data, or execute unbounded actions. Mitigating these risks requires a rigorous
and principled approach to safe behavior and alignment. Our roadmap includes architecting granular
permissioning frameworks, embedding robust pre-action validation, and multi-stage approval protocols.
Ultimately, we aim to establish safety standards and best practices that can serve as foundational
infrastructure, not just for our agent but for the future ecosystem of intelligent digital collaborators.

29

Under review as a conference paper at ICLR 2026

I DEMONSTRATION

This section presents examples drawn from a variety of application scenarios, including the initial
four positive cases and the final two negative ones. Each example illustrates our API-GUI operational
paradigm, which addresses the diverse challenges and requirements that arise within different
applications.

(A): Copy an image from a .xcf file on the Desktop and paste it into a (B): Use the ‘sar' command from the ‘sysstat’ toolkit to monitor Ubuntu sys
LibreOffice Writer document, then save it as 'image.docx' on the Desktop. resources every second for 30 seconds, and save the results to
'System_Resources_Report.txt' on the Desktop.

(C): Create a table with 'Month' and 'Total' headers in a new sheet to show
the total sales for all months.

: Convert all uppercase text to lowercase in a document for consistency.

ANRBBE Q- R0 RE-8 /
= o @@ ax==0-0-00

Figure 10: Examples of GLM-CompPUTERRL’s execution on four user tasks, including image
processing between GIMP and LibreOffice Writer, monitoring system resource usage in Terminal,
table calculation in LibreOffice Calc, and document formatting in LibreOffice Writer.

I.1 CREATE MONTHLY SALES SUMMARY TABLE

The targeted task to be executed is "Create a table with two headers ("Month’ and *Total’) in a new
sheet to show the total sales for all months." The actual execution steps can be summarized as follows:

» Stepl: Switch to ‘Sheet2*

» Step2: Set cell ‘A1° as "Month"

» Step3: Set cell ‘B1° as "Total"

» Step4: Get monthly sales data from ‘Sheetl ¢
» Step5: Switch to ‘Sheetl

* Step6: Switch to ‘Sheet2°

» Step7: Set month names in column A

» Step8: Set total formula for Jan in ‘B2°

» Step9: Set total formula for Feb in ‘B3*

» Stepl0: Set total formula for Mar in ‘B4°
» Stepll: Set total formula for Apr in ‘B5°
» Stepl2: Set total formula for May in ‘B6°
» Stepl3: Set total formula for Jun in ‘B7¢

30

Under review as a conference paper at ICLR 2026

 Stepl4: Exit after completion

As Figure [TT][T2] shows, a summary table is created successfully.

1.2 ConNvEeERT UPPERCASE TEXT TO LOWERCASE IN DOCUMENT

The targeted task to be executed is "Convert all uppercase text to lowercase in the document for
consistent text presentation." The actual execution steps can be summarized as follows:

» Stepl: Use the text case conversion tool to change all text to lowercase.
 Step2: Click the formatting menu.

» Step3: Select the specific formatting option.

* Step4: Open the relevant submenu.

 Step5: Select all text in the document.

» Step6: Click the formatting menu again.

 Step7: Select the specific formatting option again.

 Step8: Open the relevant submenu again to apply the changes.

» Step9: Exit after finishing the operation.

As Figure [T3] shows, all uppercase text has been successfully converted to lowercase, ensuring a
uniform and polished document appearance.

1.3 GENERATE SYSTEM RESOURCE MONITORING REPORT

The targeted task to be executed is "Use the *sar’ command in the ’sysstat’ toolkit to monitor system
activity and output the results to ’System_Resources_Report.txt’ under Desktop." The actual execution
steps can be summarized as follows:

» Stepl: Open the Terminal application.

» Step2: Type the command sar 1 30 > /Desktop/System_Resources_Report.txt.
» Step3: Execute sudo apt install sysstat to install the toolkit.

 Step4: Enter the password if prompted.

» StepS: Re-type the sar command to start monitoring.

 Step6: Wait for 30 seconds while system activity is being recorded.

» Step7: Open the Files application.

» Step8: Navigate to and click on the report file under Desktop.

* Step9: Exit after confirming the report has been generated.

As Figure [[4]shows, a system resource report file was generated successfully on the Desktop after
monitoring, fulfilling the target task.

1.4 Cory IMAGE FrROM .XCF FILE TO LIBREOFFICE WRITER AND SAVE

The targeted task to be executed is "Copy the image from an . xcf file located on the Desktop and
paste it into a LibreOffice Writer document, then save the document as image . docx on the Desktop."
The actual execution steps can be summarized as follows:

 Stepl: Open the Files application.
» Step2: Navigate to the Desktop folder.
 Step3: Double-click to open the . xcf image file.

 Step4: Copy the image in the image editor.
 Step5: Open LibreOffice Writer.

31

Under review as a conference paper at ICLR 2026

* Step6: Paste the copied image into the Writer document.

 Step7: Save the document.

» Step8: Enter the filename as image.docx and select the Desktop as the save location.
» Step9: Navigate to the Desktop folder.

* Stepl0: Confirm and click save.

As Figure[I5]shows, the image from the . xcf file was successfully pasted into a LibreOffice Writer
document and saved as image.docx on the Desktop, completing the task.

1.5 QUuUEsTION MISUNDERSTANDING ERROR

The targeted task to be executed is "Append
 to the end of each line in *1\n2\n3’ and save in
output.txt." The actual execution steps can be summarized as follows:

» Stepl: Type the command echo -e ’1\n2\n3’ in the terminal.

» Step2: Exit after execution.
As Figure[T6]shows, the agent misunderstood the requirement and only echoed the content without

appending
 to each line or saving it into output.txt. This results in a task failure due to a
misunderstanding of the question.

1.6 Crick OpERATION ERROR

The targeted task to be executed is "Please help change GIMP’s theme from dark to light." The actual
execution steps can be summarized as follows:

 Stepl: Click on the menu in GIMP.

» Step2: Attempt to click the Preferences option.

 Step3: Repeat the click on Preferences.

» Step4: Try to use the shortcut Shift+Ctrl+P to open Preferences.

» Step5: Exit without successfully changing the theme.

As Figure[T7)shows, the theme remains dark, indicating that the agent failed to change GIMP’s theme
to light due to incorrect click operations.

32

Under review as a conference paper at ICLR 2026

Step 1: CalcTools.switch_active_sheet('Sheet2')

Step 2: CalcTools.set_cell_value('Al', '"Month')

3lmmala:nE blass alo-0:E
| |
I I
Step 4: CalcTools.get_column_data('B')
. @B@ 4820000 .
ol .
B
M- |
& &
af
CalcTools.switch_active_sheet('Sheet1')
R e TBilaaanenananenD0a
|
I
CalcTools.set_column_values('A’, ['Jan', 'Feb’',... Step 8: CalcTools.set_cell_value('B2', '=SUM(Sheet1.B2:...
Pk MM aTHL|3 |8 B ale B Ela A eD0G
|
I
CalcTools.set_cell_value('B3', '=SUM(Sheet1.C2:... Step 10: CalcTools.set_cell_value('B4', '=SUM(Sheet1.D2...
ilaBule-aaalaasaloaa N T
I |
I I

Figure 11: Task (Step 1-10): Create a table with two headers ("Month" and "Total") in a new sheet to

show the total sales for all months.

33

Under review as a conference paper at ICLR 2026

Step 11: CalcTools.set_cell_value('B5', '=SUM(Sheet1.E2...

Step 12: CalcTools.set_cell_value('B6', '=SUM(Sheet1.F2...

FREEF Q.o EC RE-H /
Bl =@BE 330000

Step 13: CalcTools.set_cell_value('B7', '=SUM(Sheet1.G2...

Step 14: Agent.exit(success=True))

to show the total sales for all months.

34

Under review as a conference paper at ICLR 2026

Step 1: WriterTools.change_text_case('lowercase’, '.*',... Step 2: Agent.click([290, 76])

B-8EEHE-Q s EBOE 8E -0/
BIyU-5 AAAAR cE2zEBuaan.zs

Step 3: Agent.click([392, 101])

Step 5: Agent.hotkey(['ctrl', 'a']) Step 6: Agent.click([290, 76])

Step 7: Agent.click([392, 101]) Step 8: Agent.click([670, 430])

DD D

ae sl

Step 9: Agent.exit(success=True)

uppercase text to lowercase within my document. This precision is critical for maintaining a uniform
and polished presentation. Could you help me on this?

35

Under review as a conference paper at ICLR 2026

Step 1: Agent.open_app('terminal’) Step 2: Agent.type(text="sar 1 30 > ~/Desktop/System_Re...

SBOEN iDBPFL&60:
OEN fDPBML6D:;

Step 3: Agent.type(text="sudo apt install sysstat', ent... Step 4: Agent.type(text="password', enter=True)

CEN iDBPNFL60]
Qﬂl.‘DDI’DP‘_‘OO‘

Step 5: Agent.type(text='sar 1 30 > ~/Desktop/System_Re... Step 6: Agent.wait()

OEN fDBDBMFL60

OEN DB D

-]
-]

Step 7: Agent.open_app('files') Step 8: Agent.click([176, 172])

Step 9: Agent.exit(success=True)

Figure 14: Task: Please use the ‘sar command in the ‘sysstat® toolkit to monitor system activity, eval-
uate the status once every second for 30 seconds, output the results to "System_Resources_Report.txt"
under Desktop.

36

Under review as a conference paper at ICLR 2026

Step 1: Agent.open_app('files') Step 2: Agent.click([176, 172])

$Q

i D>

a
L]
®
8

Step 3: Agent.click([408, 153], num_clicks=2)

L4869

DD D

aeEn

Step 5: Agent.open_app('libreoffice writer')

n £ 88 A4 lAcie R 2 8 525
M ‘ s
B-.] .
B .
B B
a = |
- A
@ 8
Step 8: Agent.type([1021, 206], text="image.docx', over...
osa
Q0. sEa0E WL -0/)
) Szl nzadudin @)
= = - =3 [
. =
= :
“ “
I
|
..! 0.?
BERAkDen
C Cl
. =
. -
o o
A A

Figure 15: Task: I've stored my .xcf file on the Desktop. Can you assist me in copying the image and
pasting it into a LibreOffice Writer document? Save the document as ’image.docx’ on the Desktop,
please.

37

Under review as a conference paper at ICLR 2026

Step 1: Agent.type(text="echo -e '1\2\3' | sed 's/$/<br... Step 2: Agent.exit(success=True)

=4
e

)
A
-]
a
=
-
®

Figure 16: Fail Task (Question Misunderstanding Error): Append "
" to the end of each line in
"1\n2\n3" and save in output.txt

Step 1: Agent.click([125, 76]) Step 2: Agent.click([163, 446])

o"
.

©Q

DD D
v

ae=n

Step 3: Agent.click([163, 446]) Step 4: Agent.hotkey(['shift’, 'ctrl', 'p'])

©£0:

‘DD BD>LA60

oo

Step 5: Agent.exit(success=False)

0

DD DM

=
L]
o"

Figure 17: Fail Task (Click Operation Error): Please help change GIMP’s theme from dark to light.

38

Under review as a conference paper at ICLR 2026

J Use or LLMs

During the preparation of this manuscript, we employed LLMs to assist with language refinement and
grammar correction. All research ideas, methodologies, experiments, and analyses were independently
conceived, designed, and validated by the authors.

39

	Introduction
	The ComputerRL Framework
	General API-GUI Paradigm
	Stable Ubuntu Environment for Large-Scale Parallelism
	Full-Asynchronous RL Framework for Efficient Training

	The ComputerRL Training
	Behavior Cloning Setup
	Reinforcement Learning with Verifiable Rewards
	Entropulse for Scaling RL Training

	Experiments
	Main Results
	Office Application Performance
	Ablation Study
	Case Study and Error Analysis

	Related Work
	Conclusion
	API Development Workflow
	Action Space
	Prompt Formulation for GLM-ComputerRL
	Training & Hardware Details
	Training process & hyperparameter settings
	Training Cluster Configuration
	Environment Cluster Configuration
	Virtual Environment Instance Configuration
	Training Duration and FLOPs Statistics
	Key Performance Trade-offs and Bottlenecks
	Additional Observed Bottlenecks

	Additional Experimental Indicators
	Repetitive Experiments with Different Base Models
	Human Annotation Protocol
	Future Direction
	Towards Robust Performance
	Breakthroughs in Long-Horizon Autonomy
	Foundations for Safe and Aligned Autonomy

	Demonstration
	Create Monthly Sales Summary Table
	Convert Uppercase Text to Lowercase in Document
	Generate System Resource Monitoring Report
	Copy Image from .xcf File to LibreOffice Writer and Save
	Question Misunderstanding Error
	Click Operation Error

	Use of LLMs

