

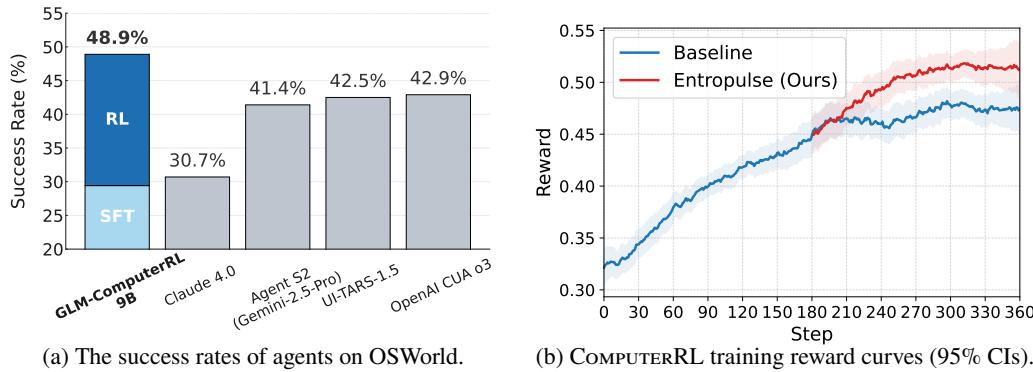
000 COMPUTERRL: SCALING END-TO-END ONLINE REINFORCE- 001 MENT LEARNING FOR COMPUTER USE AGENTS

002 **Anonymous authors**

003 Paper under double-blind review

004 ABSTRACT

005 We introduce COMPUTERRL, a framework for autonomous desktop intelligence
006 that enables agents to operate complex digital workspaces skillfully. COMPUTERRL
007 features the API-GUI paradigm, which unifies programmatic API calls and direct
008 GUI interaction to address the inherent mismatch between machine agents and
009 human-centric desktop environments. Scaling end-to-end RL training is crucial for
010 improvement and generalization across diverse desktop tasks; however, it remains
011 challenging due to environmental inefficiency and instability during extended
012 training. To support scalable and robust training, we develop a distributed RL
013 infrastructure capable of orchestrating thousands of parallel virtual desktop environ-
014 ments to accelerate large-scale online RL. Furthermore, we propose Entropulse, a
015 training strategy that alternates reinforcement learning with supervised fine-tuning,
016 effectively mitigating entropy collapse during extended training runs. We employ
017 COMPUTERRL on open models GLM-4-9B-0414 and GLM-4.1V-9B-Thinking, and
018 evaluate them on the OSWorld benchmark. The GLM-COMPUTERRL-9B achieves a
019 new state-of-the-art accuracy of **48.9%**, demonstrating significant improvements
020 for general agents in desktop automation. Our code and demos are available at this
021 <https://url>.



022 (a) The success rates of agents on OSWorld.
023 (b) COMPUTERRL training reward curves (95% CIs).
024
025 Figure 1: COMPUTERRL enables efficient end-to-end online policy optimization for OS agents.
026 (a) On OSWorld (Xie et al., 2024), GLM-COMPUTERRL, trained with COMPUTERRL, outperforms
027 state-of-the-art agents. (b) Our Entropulse approach yields higher average training rewards and
028 improves both learning efficiency and final performance over conventional methods.

029 1 INTRODUCTION

030 Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023b; Zeng et al., 2022; GLM
031 et al., 2024; Team et al., 2023; Guo et al., 2025; Bai et al., 2023a; Yang et al., 2025) have dramatically
032 expanded the scope and depth of artificial intelligence capabilities, driving a profound re-examination
033 of our understanding of machine intelligence. Among all scenarios, the emergence of LLM-based
034 GUI (graphical user interface) agents, capable of independently perceiving, reasoning, and executing
035 complex tasks on user devices, has aroused particular interest from researchers (Xi et al., 2023;
036 Wang et al., 2023; Liu et al., 2023). Given that desktops remain central to intelligence-intensive

054 tasks, developing computer use agents is crucial for fundamentally transforming human-computer
 055 interactions and elevating AI capabilities (Agashe et al., 2025; Wu et al., 2024a).
 056

057 Despite previous attempts to develop computer use agents (Agashe et al., 2025; Lei et al., 2024; Xie
 058 et al., 2025), enabling them to operate autonomously over extended periods in real-world scenarios
 059 remains a significant challenge. The first primary obstacle arises from the fact that GUIs are inherently
 060 designed for human interaction, making the simulation of human actions by GUI agents (Liu et al.,
 061 2024b; OpenAI, 2025; Qin et al., 2025) a non-trivial and cumbersome endeavor. Second, current
 062 mainstream approaches of behavior cloning (BC) (Bain & Sammut, 1995; Bratko et al., 1995),
 063 including manual annotation (He et al., 2025) and model distillation (Sun et al., 2024; Xu et al.,
 064 2024), are limited in scalability and effectiveness. Manual annotation, while precise, is prohibitively
 065 labor-intensive for complex tasks. Model distillation, on the other hand, is constrained by the
 066 performance of the teacher models, limiting overall capability. Both methods typically exhibit poor
 067 generalization and limited error recovery abilities. Finally, although reinforcement learning (RL)
 068 has shown potential for desktop automation tasks (Lu et al., 2025; Feng et al., 2025), its practical
 069 application remains restricted due to computational complexity and methodological challenges.
 070 Complex environments, slow convergence, and known inefficiencies in RL training (Xie et al., 2024;
 071 Bonatti et al., 2024; Yu et al., 2025; Fu et al., 2025) severely limit its large-scale adoption in training
 072 computer use agents.
 073

074 In this work, we propose COMPUTERRL, an end-to-end algorithmic framework designed to advance
 075 desktop-level planning, reasoning, and device operation. This framework includes a new API-GUI
 076 interaction paradigm, a scalable RL training infrastructure for computer environments, and an RL
 077 algorithm for extended effective training. First, we introduce API-GUI, a large-scale, automatically
 078 constructed API ecosystem that enables the agent to transcend the inherent biases of human-oriented
 079 operational paradigms. It instead leverages a more machine-oriented approach for device interaction,
 080 which combines API calls and GUI actions, thereby significantly enhancing both the versatility
 081 and overall performance of the agent. Second, we develop a distributed training infrastructure
 082 utilizing virtual machine clusters based on Docker and gRPC protocols for scalability, which is
 083 fully compatible with AgentBench (Liu et al., 2023). This infrastructure supports **thousands of**
 084 **parallel environments**, ensuring high scalability and consistent interactions across all environments.
 085 Additionally, we integrate the training infrastructure with the AgentRL framework (Zhang et al., 2025)
 086 to facilitate efficient asynchronous training, thereby accelerating the training process. Finally, to
 087 counteract stagnation and convergence issues in RL training—specifically, entropy collapse and rising
 088 KL divergence—we propose Entropulse, which alternates between RL and SFT phases periodically.
 089 This approach maintains exploratory capacity and ensures continuous performance gains (Figure 1b).
 090

091 As a result, by harnessing end-to-end RL and optimization in the desktop environment, COMPUTERRL
 092 has achieved remarkable improvement in understanding and operating GUIs. Evaluation on the
 093 OSWorld benchmark (Xie et al., 2024) shows COMPUTERRL’s significant improvements (see Figure 1a)
 094 in computer use challenges, achieving a success rate of **48.9%** (with 66% performance gain from
 095 RL), outperforming other state-of-the-art models including OpenAI CUA o3 (42.9%), UI-TARS-1.5
 096 (42.5%), and Anthropic Claude Sonnet 4 (30.7%).
 097

098 In summary, our contributions are as follows:
 099

- 100 • We propose a new interaction paradigm, a shift from human-centric to machine-oriented interaction
 101 by introducing a large-scale, automatically constructed API ecosystem integrated with conventional
 102 GUI operations. This approach addresses the inherent mismatch between human-designed interfaces
 103 and artificial agent capabilities, while achieving superior operational efficiency and generalization
 104 performance on computer-based tasks.
- 105 • We establish a large-scale, distributed RL infrastructure for computer use agents by reconstructing
 106 virtual machine clusters, achieving unprecedented scalability with thousands of parallel environments
 107 and seamless AgentBench compatibility, thereby overcoming the critical bottleneck that has limited
 108 RL-based computer use agent training to scale experiments and enabling breakthrough results in
 109 large-scale agent training.
- 110 • We introduce Entropulse, a novel training methodology that systematically addresses the challenges
 111 of entropy collapse and KL divergence accumulation in extended RL training through strategic
 112 alternation between RL and SFT phases, enabling sustained performance improvements and
 113 achieving state-of-the-art performance in computer automation.

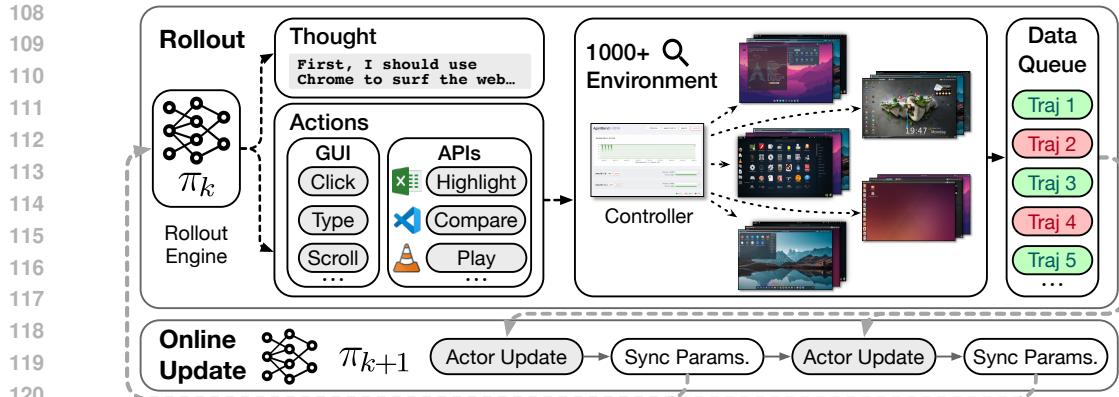


Figure 2: Overview of COMPUTERRL framework. We introduce an API-GUI action paradigm that seamlessly integrates automatically constructed APIs with GUI actions to improve agent efficiency and effectiveness. A large-scale parallel desktop environment with 1,000+ real-world instances, combined with an asynchronous RL framework, enables efficient sampling and robust agent training.

2 THE COMPUTERRL FRAMEWORK

The human-oriented design of GUIs hinders agent efficiency, while limited environment scalability restricts large-scale training. This section presents the COMPUTERRL framework (see Figure 2), which features an API-GUI paradigm that integrates human-like GUI interactions with efficient API invocation. Additionally, we develop a scalable Ubuntu desktop environment for parallelism and utilize a fully asynchronous RL framework for efficient training.

2.1 GENERAL API-GUI PARADIGM

Existing GUI agents face challenges due to their reliance on human-like interactions, while API-based control offers efficiency but introduces implementation complexity and security restrictions. To address these issues, we propose an API-GUI paradigm that unifies both action spaces, enabling agents to leverage API efficiency while retaining GUI versatility.

We develop an LLM-based automated workflow for application API development (Yang et al., 2024a; Wang et al., 2024), significantly lowering the barrier for API creation. Users provide exemplar tasks, and our system autonomously generates API code and test cases through three stages:

- **Requirement Analysis:** Users provide task examples for the target application. Our LLM analyzes these instances, extracts essential functionalities, and compares against existing API interfaces to identify gaps. New interfaces are automatically generated for uncovered functionalities, with a focus on general-purpose functions to minimize complexity and enhance usability.
- **API Implementation:** The workflow iterates over each interface definition, implementing API functionalities using designated Python libraries. Error-handling mechanisms and logging are implemented for debugging and maintenance purposes.
- **Test Case Generation:** Similar to Li & Yuan (2024), we verify API correctness by checking: (1) runtime error-free invocation and (2) correct results across parameter inputs; failed APIs receive error feedback for autonomous correction.

This methodology enables the creation of application-specific APIs with minimal human intervention. We have developed API sets for multiple Ubuntu applications and validated their effectiveness through experiments. Detailed API development workflow is provided in Appendix A. The agent action space and prompt formulation are detailed in Appendix B and C.

2.2 STABLE UBUNTU ENVIRONMENT FOR LARGE-SCALE PARALLELISM

A stable and scalable Ubuntu environment is essential for constructing behavior cloning data and large-scale RL training. Building on OSWorld (Xie et al., 2024), we identify key limitations:

- **Resource Intensiveness and Stability:** VMs are CPU-intensive and unstable under high concurrency, causing performance degradation and system freezes.
- **Network Bottlenecks:** Heavy workloads cause network overhead, connection failures, and IP address loss, hindering agent interaction and logging.
- **Lack of Native Distributed Support:** OSWorld lacks multi-node clustering support, preventing efficient distributed deployment.

To address these limitations, we build a robust and parallelizable OSWorld infrastructure (see Figure 2) with the following innovations:

- **Standardized, Decoupled Interface:** We refactor the environment via AgentBench API, providing a unified interface that decouples environment execution from the computational back-end and enables flexible resource management.
- **Lightweight VM Deployment:** Using `qemu-in-dockere`, we deploy containerized Ubuntu VMs with streamlined images that reduce network issues and optimize resource usage, significantly lowering per-instance CPU consumption.
- **Distributed Multi-Node Clustering:** We employ gRPC-based communication to link CPU nodes into a distributed cluster with centralized resource allocation and orchestration.
- **Web-based Visualization and Monitoring:** A web interface provides real-time visualization of environment statuses, agent states, and resource allocation, improving usability and debugging capabilities.

Through these technical improvements, our system supports deployment of **several thousands** of concurrent environments on a multi-node CPU cluster, as validated by extensive empirical evaluation. Results confirm our platform’s superior stability, resource efficiency, and scalability, making it an enabling infrastructure for large-scale RL and agent-based research.

2.3 FULL-ASYNCHRONOUS RL FRAMEWORK FOR EFFICIENT TRAINING

Existing RL frameworks rely on synchronous training paradigms, where rollout collection and parameter updates are alternated, resulting in training inefficiencies. To address the limitation, we use the AgentRL framework (Zhang et al., 2025) for fully asynchronous RL training with the following designs:

- **Resource Partitioning:** Data collection runs on dedicated resources while the trainer streams data from the replay engine, preventing mutual blocking.
- **Dynamic Batch Sizing:** The trainer processes incoming data with flexible batch sizes, reducing idle time and improving efficiency.
- **Modular Component Isolation:** Actor, reference, and critic modules run independently with dedicated resources. We utilize PyTorch distributed groups and NCCL for efficient parameter sharing.
- **Off-policy Bias Mitigation:** We limit the replay buffer size and sync trajectories after each update, ensuring trajectories remain close to the latest policy.

Through a stable, high-concurrency desktop environment and the decoupling of training from rollout, we markedly enhance the efficiency of sampling and RL training. Our system achieves a high average power consumption per GPU, reflecting optimal resource utilization. This design supports scalable, high-throughput RL training by enabling dynamic workload balancing, resulting in a significant improvement in hardware efficiency and overall training throughput.

3 THE COMPUTERRL TRAINING

In Section 2, we establish a robust foundation for large-scale agent training. However, scaling end-to-end training still faces challenges in initializing a capable base policy and entropy collapse during RL. This section details our scalable COMPUTERRL training approach and its algorithmic innovations for extended training in desktop environments.

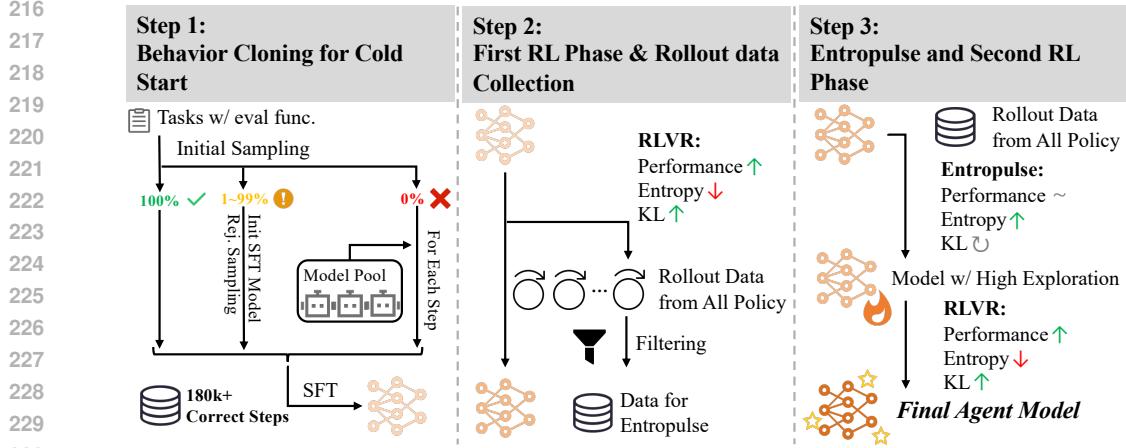


Figure 3: Overview of COMPUTERRL, which includes three stages: (1) BC cold start with trajectories collected from general LLMs; (2) RL with step-level GRPO using verifiable, rule-based rewards; (3) Entropulse, which alternates RL with SFT on correct rollouts to restore entropy and sustain learning.

3.1 BEHAVIOR CLONING SETUP

To perform a cold start for our model, we employ BC as the initial stage of training. By imitating user interactions, BC enables agents to acquire foundational competencies, thereby facilitating rapid adaptation to computer operations and tasks.

Trajectory Collection with Multiple LLMs. We manually collect extensive tasks with corresponding evaluation functions (see Appendix G) and augment to construct an 8k-task dataset. However, the large-scale collection of high-quality trajectories remains challenging. Manual annotation is prohibitively expensive, and relying on a single model for trajectory generation results in limited and homogeneous data distribution constrained by that model’s capabilities. To address these limitations, we leverage the complementary strengths of multiple advanced models to collect a diverse and high-quality set of interaction trajectories. Concretely, our data pipeline consists of three key stages:

1. **Initial Sampling:** For each task, we utilize closed-source LLMs to sample several trajectories per task independently. We record both the complete interaction trajectories and the outputs produced by the respective evaluation functions. This procedure yields a rich set of diverse trajectories that serve as the foundation for subsequent data augmentation and model adaptation.
2. **Outcome Stratification:** Following initial data collection, we perform a stratified analysis of task outcomes by categorizing all tasks into three groups based on achieved accuracy: **Fully Solved** (acc = 100%), **Partially Solved** (0 < acc < 100%), and **Unsolved** (acc = 0%).
3. **Task-Oriented Augmentation with Stratified Sampling:** For partially solved tasks, we conduct SFT on our backbone model using the initial trajectories as input. The fine-tuned model is then used to sample additional trajectories for each task, thereby substantially expanding the coverage and quality of trajectories for tasks where model proficiency was previously limited.

For tasks classified as unsolved, we build a model pool of high-performing models and randomly select one to determine each action. This approach leverages inter-model variance at the task level, as different models exhibit distinct areas of expertise despite comparable aggregate performance, enabling trajectory generation that is unattainable by any single model.

We systematically aggregate and filter the collected interaction data, retaining only successful trajectories (**180k+** correct steps), and employ them for supervised fine-tuning of the model. This strategy equips the model with robust desktop manipulation capabilities and foundational reasoning abilities, significantly enhancing the performance of the base model.

3.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Step-Level Group Relative Policy Optimization. We extend the GRPO algorithm (Shao et al., 2024) to the step-level, making it more suitable for agent RL training. For each task τ , the policy π_θ interacts with the desktop environment and samples G trajectories $\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_G$. The i -th trajectory

270 consists of L_i step-level actions $o_{i,1}, \dots, o_{i,L_i}$. All steps from the same task are grouped, and the
 271 advantage $A_{i,j}$ is computed for each step. The overall loss aggregates all step advantages as follows:
 272

$$\begin{aligned} 273 \quad \mathcal{J}_{StepGRPO}(\theta) = \mathbb{E}_{\mathcal{T} \sim P(\mathcal{T}), \{ \{o_{i,j}\}_{j=1}^{L_i}\}_{i=1}^G \sim \pi_{\theta_{old}}} & \left[\frac{1}{\sum_{i=1}^G L_i} \sum_{i=1}^G \sum_{j=1}^{L_i} \left(\min \left(\frac{\pi_{\theta}(o_{i,j}|q_{i,j})}{\pi_{\theta_{old}}(o_{i,j}|q_{i,j})} A_{i,j}, \right. \right. \right. \\ 274 & \left. \left. \left. \text{clip} \left(\frac{\pi_{\theta}(o_{i,j}|q_{i,j})}{\pi_{\theta_{old}}(o_{i,j}|q_{i,j})}, 1 - \epsilon, 1 + \epsilon \right) A_{i,j} \right) - \beta \mathbb{D}_{KL}(\pi_{\theta} \parallel \pi_{ref}) \right) \right], \\ 275 & A_{i,j} = \frac{r_{i,j} - \text{mean}(\mathcal{R})}{\text{std}(\mathcal{R})}, \quad \mathcal{R} = \{r_{u,v} \mid u = 1, \dots, G, v = 1, \dots, L_u\} \\ 276 & \\ 277 & \end{aligned}$$

280 **Reward Design.** We select a subset of the constructed human-annotated data (in Section 3.1) for
 281 RL and employ a rule-based verification function to provide verifiable training signals for each
 282 trajectory. Successfully solved trajectories receive a reward of 1 for every correctly formatted action
 283 that contributes to the solution; failed trajectories or improperly formatted actions receive a reward of
 284 0. Unlike conventional approaches that propagate step-wise returns via the Bellman equation, our
 285 methodology treats each prompt-response pair as an independent training instance with rewards based
 286 on the final trajectory outcome. This direct reward assignment provides explicit feedback by coupling
 287 agent behaviors with task success, facilitating effective policy optimization.
 288

289 3.3 ENTROPULSE FOR SCALING RL TRAINING

290 In the RL training in Section 3.2, we observe that model performance plateaus after hundreds
 291 of training steps, with stagnating task completion rates and decreasing entropy. This premature
 292 convergence motivates us to investigate strategies for extending effective training and enhancing
 293 policy exploration. Inspired by DAPO (Yu et al., 2025), we experiment with increasing the clipping
 294 threshold, which attenuates the decline in entropy but significantly slows down policy improvement.
 295

296 To address the issue, we propose Entropulse, motivated by the observation that SFT and RL
 297 objectives differ markedly during training. As entropy decreases during RL optimization, integrating
 298 SFT at critical junctures enhances exploration and trajectory diversity, facilitating further policy
 299 optimization. During initial RL training, we aggregate and retain all successful rollout trajectories.
 300 While conventionally discarded after single use, these trajectories from various policies at different
 301 training steps represent valuable and diverse behavioral data.

302 We process this dataset by randomly selecting successful trajectories per unique task to construct a
 303 new SFT training set, which exhibits the following attributes:
 304

- 305 **1. High quality:** All data comprises completed, high-fidelity trajectories.
- 306 **2. Diversity:** Rollouts originate from heterogeneous policies in different training steps, offering a
 307 variety of problem-solving strategies.
- 308 **3. Computational efficiency:** The dataset leverages existing interaction data, eliminating the need
 309 for additional environment rollouts.

310 SFT on this dataset produces notable shifts in policy behavior. While evaluation task performance
 311 remains stable, the resulting policy shows increased entropy relative to the original one, indicating
 312 enhanced exploration. Building upon this enhanced exploration capability, we conduct a second
 313 round of RL training, which yields significant performance improvements and enables us to achieve
 314 state-of-the-art results in computer automation. The training and hardware details are in Appendix D.
 315

316 4 EXPERIMENTS

317 We employ COMPUTERRL on GLM-4-9B-0414 (GLM et al., 2024) and GLM-4.1V-9B-Thinking (Hong
 318 et al., 2025), to produce GLM-COMPUTERRL-9b. We conduct extensive experiments across various
 319 scenarios to evaluate GLM-COMPUTERRL’s performance within the computer environment.
 320

321 4.1 MAIN RESULTS

322 To closely reflect the real user experience, we evaluate GLM-COMPUTERRL on the OSWorld (Xie
 323 et al., 2024) and OSWorld-Verified benchmark, comparing its performance against state-of-the-art

324 Table 1: GLM-COMPUTERRL performance on OSWorld and OSWorld-Verified (updated in 2025.08).
 325 We compare GLM-COMPUTERRL with state-of-the-art agents, including both proprietary and open
 326 models.

327 Agent Model	328 #Params	329 OSWorld	330 OSWorld-Verified
<i>Proprietary Models</i>			
Aria-UI w/ GPT-4o (Yang et al., 2024b)	-	15.2	-
Aguvis-72B w/ GPT-4o (Xu et al., 2024)	-	17.0	-
Claude 3.7 Sonnet (Anthropic, 2023)	-	28.0	35.8
Claude 4.0 Sonnet (Anthropic, 2023)	-	30.7	43.9
Agent S2 w/ Claude-3.7-Sonnet (Agashe et al., 2025)	-	34.5	-
InfantAgent (Lei et al., 2024)	-	35.3	-
OpenAI CUA 4o (OpenAI, 2025)	-	38.1	31.3
Agent S2 w/ Gemini-2.5-Pro (Agashe et al., 2025)	-	41.4	45.8
UI-TARS-1.5 (Qin et al., 2025)	-	42.5	-
OpenAI CUA o3 (OpenAI, 2025)	-	42.9	-
<i>Open Models</i>			
Qwen2.5-v1-72B (Bai et al., 2023b)	72B	8.8	5.0
PC Agent-E (He et al., 2025)	72B	14.9	-
UI-TARS-72B-SFT (Qin et al., 2025)	72B	18.8	-
UI-TARS-72B-DPO (Qin et al., 2025)	72B	24.6	27.1
UI-TARS-1.5-7B (Qin et al., 2025)	7B	26.9	27.4
Jedi-7B w/ GPT-4o (Xie et al., 2025)	7B+	27.0	29.3
UI-TARS-7B-1.5 + ARPO (Lu et al., 2025)	7B	29.9	-
<i>COMPUTERRL (ours)</i>			
w/ GLM-4-9B-0414	9B	48.1 ± 1.0	47.3
w/ GLM-4.1V-9B-Thinking	9B	48.9 ± 0.5	48.0

347
 348 models, including CUA (OpenAI, 2025), Claude-4 (Anthropic, 2023), and UI-TARS (Qin et al., 2025),
 349 among others. The comparative results are in Table 1. The results indicate that GLM-COMPUTERRL
 350 achieves superior performance across a range of domains, with its advantages most pronounced in the
 351 challenging multi-apps setting. Moreover, by employing the API-GUI strategy, GLM-COMPUTERRL
 352 can accomplish tasks using at most **1/3** of the steps required by the strongest baseline approaches,
 353 demonstrating remarkable gains in execution efficiency. These results underscore the potential of
 354 COMPUTERRL to advance the state of the art in computer automation across various applications.
 355

356 4.2 OFFICE APPLICATION PERFORMANCE

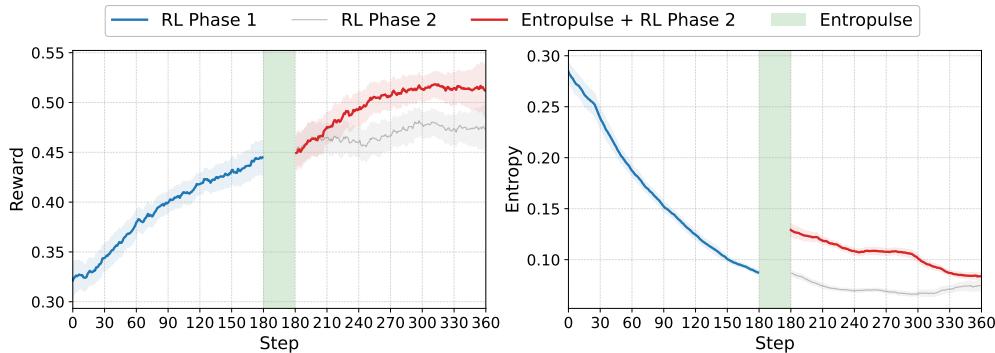
357
 358 As a critical interface for delivering and presenting, office application constitutes an important testbed
 359 for evaluating computer use agents. To assess agent performance in this domain, we curate a set of 180
 360 challenging tasks from three sources: SpreadsheetBench (Ma et al., 2024), PPTC (Guo et al., 2023),
 361 and in-house developed Writer domain tasks. These tasks are adapted as necessary to integrate them
 362 into the OSWorld framework. The resulting benchmark, termed **OfficeWorld**, enables systematic
 363 measurement of agent capabilities in office-oriented scenarios. The results are in Table 2.
 364

365 Table 2: GLM-COMPUTERRL performance on OfficeWorld compared to common baselines. We
 366 employ the same framework (with tools) and test settings to ensure a fair comparison.

367 Agent Model	368 Word	369 Excel	370 PPT	371 Average
DeepSeek-V3.1 (Liu et al., 2024a)	6.7	35.0	21.7	21.1
DeepSeek-R1 Guo et al. (2025)	13.3	36.7	18.3	22.8
Claude 3.7 Sonnet (Anthropic, 2023)	15.0	25.0	25.0	21.7
Claude 4.0 Sonnet (Anthropic, 2023)	18.3	35.0	20.0	24.4
Gemini-2.5-Pro (Team et al., 2023)	5.0	11.7	20.0	12.2
GPT-4o (Hurst et al., 2024)	18.3	21.7	8.3	16.1
GPT-4.1 (Achiam et al., 2023)	21.7	25.0	28.3	25.0
OpenAI o3 (Jaech et al., 2024)	23.3	36.7	41.7	33.9
<i>COMPUTERRL (ours)</i>				
w/ GLM-4-9B-0414	21.7	58.3	43.3	41.1
w/ GLM-4.1V-9B-Thinking	30.0	58.3	41.7	43.3

378 Table 3: Ablation study on framework designs and training methods. We categorize OSWorld into
 379 five distinct domains to facilitate a granular comparison of different strategies across various domains.

Method	OS	Office	Daily	Professional	Workflow	Avg.
Framework Ablation (w/ GPT-4o)						
GUI Only	41.7	6.2	12.3	14.3	7.5	11.2
API-GUI	52.6	27.9	25.7	41.6	10.8	26.2
Training Ablation (w/ Qwen2.5-14B)						
Untrained	20.8	17.2	19.7	22.9	3.3	15.2
+ Behavior Cloning	54.2	35.0	37.2	45.8	10.8	31.9
+ RL Phase 1	83.3	46.1	45.1	56.3	16.1	42.0
+ Entropulse	75.0	42.3	50.6	52.1	18.9	41.5
+ RL Phase 2	83.3	46.2	46.7	60.4	27.2	45.8



403 Figure 4: COMPUTERRL training curves of reward (left) and entropy (right) with 95% confidence
 404 intervals. The red line denotes the training with entropy recovery via Entropulse after the first RL
 405 stage, while the grey line denotes continued training with only reference resetting.

4.3 ABLATION STUDY

408 To evaluate the influence of various algorithms and training datasets on agent performance, we present
 409 an ablation study on the OSWorld benchmark in Table 3.

411 **Framework Ablation.** We compare the performance of the GUI-only approach with our proposed
 412 API-GUI paradigm using GPT-4o. The results demonstrate that the API-GUI paradigm substantially
 413 outperforms the GUI-only baseline across all domains. Specifically, the API-GUI strategy achieves
 414 an average success rate of 26.2%, representing a 134% improvement over the GUI-only approach
 415 (11.2%). The most significant gains are observed in the Office (27.9% vs. 6.2%) and Professional
 416 (41.6% vs. 14.3%) domains, where API-GUI provides 350% and 191% improvements, respectively.
 417 These results validate our core hypothesis that combining API calls with GUI interactions enables
 418 more efficient and reliable task execution, particularly for complex professional workflows that benefit
 419 from programmatic control.

420 **Training Ablation.** We study the progressive impact of different training stages using Qwen2.5-14B.
 421 Starting from the backbone, Behavior Cloning (BC) establishes a solid foundation with 31.9%.
 422 The first RL phase (RL1) yields substantial gains, increasing the performance to 42.0% (+10.1%).
 423 Interestingly, Entropulse phase maintains similar performance (41.5%) while significantly increasing
 424 action entropy, which enhances exploration diversity and enables the final RL2 phase to achieve
 425 further improvements. The RL2 phase achieves the best performance at 45.8% (+3.8% from RL1),
 426 benefiting from the increased exploration capacity introduced by Entropulse. Notably, the Workflow
 427 domain shows the most dramatic improvement throughout training (10.8% → 27.2%), while the other
 428 domains maintain consistently high performance, highlighting the importance of multi-stage training.

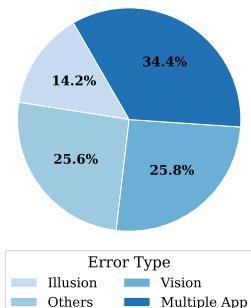
429 **RL Scalability.** We present the RL training reward and entropy curves in Figure 4 to study the impact
 430 of Entropulse on the extended RL training dynamics. After the first RL phase converges, we compare
 431 the second RL phase with and without Entropulse. To ensure a fair comparison, we reset the reference
 model in both scenarios.

432 The results demonstrate that incorporating Entropulse increases the model’s entropy, thereby restoring
 433 its exploratory capacity. This enhanced exploration substantially scales the effective training steps,
 434 ultimately leading to improved overall performance.
 435

436 4.4 CASE STUDY AND ERROR ANALYSIS

438 We conduct a case study in the desktop environment to identify potential
 439 avenues for system optimization. Although our model exhibits robust
 440 performance across most scenarios, several limitations have been
 441 identified. In particular, errors encountered during task execution
 442 can be categorized into four primary types: visual perception errors,
 443 multi-application coordination failures, operational illusions, and other
 444 errors. The distribution of these error types is presented in Figure 5.

445 Appendix E and F present more experimental results. Additional
 446 examples (including both good and bad) are provided in Appendix I
 447 to further illustrate the model’s capabilities and limitations.



448 Figure 5: Error distribution.

449 5 RELATED WORK

450
 451 **Large Language Models.** LLMs, such as GPT (Achiam et al., 2023), Gemini (Team et al., 2023),
 452 Claude (Anthropic, 2023), Llama (Touvron et al., 2023a), GLM (Zeng et al., 2022; Du et al., 2022),
 453 Qwen (Team, 2024), and Deepseek (Liu et al., 2024a), have demonstrated remarkable capabilities in
 454 knowledge representation and language understanding, leading to diverse downstream applications.
 455 Vision-Language Models (VLMs) (Hong et al., 2023; 2025; Bai et al., 2023b; Hurst et al., 2024)
 456 further extend LLMs to multimodal inputs, enabling joint reasoning over text and images.

457 **Computer Use Agents.** CogAgent (Hong et al., 2023) introduces multimodal GUI understanding.
 458 AutoGLM (Liu et al., 2024b) decouples planning and grounding with online RL improvement.
 459 OS-Atlas (Wu et al., 2024b) proposes a foundational GUI action model. Aguvis (Xu et al., 2024)
 460 enables cross-platform interaction through visual training. PC-Agent-E (He et al., 2025) utilizes
 461 trajectory boosting for enhanced proficiency. UI-TARS (Qin et al., 2025) performs human-like GUI
 462 interactions from screenshots. Agent S2 (Agashe et al., 2025) integrates grounding with hierarchical
 463 reasoning. CUA (OpenAI, 2025) offers programmable desktop automation.

464 **Computer Use Benchmarks.** WebArena (Zhou et al., 2023) provides simulated websites for online
 465 interactions, but has limitations: discrepancies from real-world environments and a web-only focus.
 466 Similar issues exist in other web-focused benchmarks (Yao et al., 2022; Koh et al., 2024; Chezelles
 467 et al., 2024; Miyai et al., 2025). Software engineering benchmarks (Jimenez et al., 2023; Yang
 468 et al., 2024a; Li et al., 2024; Zan et al., 2025; Padigela et al., 2025) lack comprehensive desktop
 469 evaluation. OSWorld (Xie et al., 2024) addresses these gaps with 369 tasks with 134 evaluation
 470 functions. Windows Agent Arena (Bonatti et al., 2024) expands this with 150+ Windows-based tasks.

471 **RL and Entropy Management for LLMs.** PPO (Schulman et al., 2017) addresses instability in
 472 policy gradients for RL training. GRPO (Guo et al., 2025) extends PPO with group sampling and
 473 removes value updates. Maximum entropy RL (Haarnoja et al., 2018) and ensemble methods (Lee
 474 et al., 2021; De Paola et al., 2025) maintain diversity through regularization or multiple models. Recent
 475 work identifies entropy collapse as a critical challenge in LLM RL (Cui et al., 2025), with proposed
 476 solutions including DAPO (Yu et al., 2025) with adaptive clipping and token-level interventions (Hao
 477 et al., 2025). Entropulse takes a different approach by actively restoring collapsed entropy through
 478 targeted SFT training on diverse rollout data, achieving extended training.

480 6 CONCLUSION

481 In this work, we present COMPUTERRL, a novel computer use agent that integrates API-based and
 482 GUI-based actions with scalable RL training. Our experiments on OSWorld and OfficeWorld
 483 demonstrate superior performance compared to prior approaches, laying the groundwork for more
 484 capable autonomous computer use agents.
 485

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
492 s2: A compositional generalist-specialist framework for computer use agents. *arXiv preprint*
493 *arXiv:2504.00906*, 2025.

494 Anthropic. Model card and evaluations for claude models. 2023.

495 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
496 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023a.

497 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
498 and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. *arXiv*
499 *preprint arXiv:2308.12966*, 2023b.

500 Michael Bain and Claude Sammut. A framework for behavioural cloning. In *Machine intelligence 15*,
501 pp. 103–129, 1995.

502 Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
503 Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
504 multi-modal os agents at scale. *arXiv preprint arXiv:2409.08264*, 2024.

505 Ivan Bratko, Tanja Urbančič, and Claude Sammut. Behavioural cloning: phenomena, results and
506 problems. *IFAC Proceedings Volumes*, 28(21):143–149, 1995.

507 De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lù, Ori
508 Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart, et al. The browsergym ecosystem
509 for web agent research. *arXiv preprint arXiv:2412.05467*, 2024.

510 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
511 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
512 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.

513 Vincenzo De Paola, Riccardo Zamboni, Mirco Mutti, and Marcello Restelli. Enhancing diversity in
514 parallel agents: A maximum state entropy exploration story. *arXiv preprint arXiv:2505.01336*,
515 2025.

516 Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
517 General language model pretraining with autoregressive blank infilling. In *Proceedings of the 60th*
518 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
519 320–335, 2022.

520 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
521 agent training. *arXiv preprint arXiv:2505.10978*, 2025.

522 Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun Mei,
523 Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for language
524 reasoning. *arXiv preprint arXiv:2505.24298*, 2025.

525 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng,
526 Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b to
527 glm-4 all tools. *arXiv preprint arXiv:2406.12793*, 2024.

528 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
529 Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via
530 reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

531 Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao, and Nan Duan. Pptc benchmark: Evaluating
532 large language models for powerpoint task completion. *arXiv preprint arXiv:2311.01767*, 2023.

540 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 541 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference*
 542 *on machine learning*, pp. 1861–1870. Pmlr, 2018.

543

544 Zhezheng Hao, Hong Wang, Haoyang Liu, Jian Luo, Jiarui Yu, Hande Dong, Qiang Lin, Can Wang,
 545 and Jiawei Chen. Rethinking entropy interventions in rlrv: An entropy change perspective. *arXiv*
 546 *preprint arXiv:2510.10150*, 2025.

547 Yanheng He, Jiahe Jin, and Pengfei Liu. Efficient agent training for computer use. *arXiv preprint*
 548 *arXiv:2505.13909*, 2025.

549

550 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 551 Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. *arXiv*
 552 *preprint arXiv:2312.08914*, 2023.

553 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 554 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 555 with scalable reinforcement learning. *arXiv e-prints*, pp. arXiv–2507, 2025.

556 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
 557 AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 558 *arXiv:2410.21276*, 2024.

559

560 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 561 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 562 *arXiv:2412.16720*, 2024.

563 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 564 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint*
 565 *arXiv:2310.06770*, 2023.

566

567 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
 568 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
 569 multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

570 Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
 571 framework for ensemble learning in deep reinforcement learning. In *International conference on*
 572 *machine learning*, pp. 6131–6141. PMLR, 2021.

573 Bin Lei, Yuchen Li, Yiming Zeng, Tao Ren, Yi Luo, Tianyu Shi, Zitian Gao, Zeyu Hu, Weitai Kang,
 574 and Qiuwu Chen. Infant agent: A tool-integrated, logic-driven agent with cost-effective api usage.
 575 *arXiv preprint arXiv:2411.01114*, 2024.

576

577 Bowen Li, Wenzhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian, Binyuan
 578 Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software development.
 579 *CoRR*, 2024.

580 Kefan Li and Yuan Yuan. Large language models as test case generators: Performance evaluation and
 581 enhancement, 2024. URL <https://arxiv.org/abs/2404.13340>.

582

583 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 584 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 585 *arXiv:2412.19437*, 2024a.

586

587 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
 588 Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. *arXiv preprint*
 589 *arXiv:2308.03688*, 2023.

590

591 Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
 592 Iong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. *arXiv*
 593 *preprint arXiv:2411.00820*, 2024b.

594

595 Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo: End-to-end policy
 596 optimization for gui agents with experience replay. *arXiv preprint arXiv:2505.16282*, 2025.

594 Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xiaokang Zhang, Xiaohan Zhang, Sijia Luo, Xi Wang,
 595 and Jie Tang. Spreadsheetbench: Towards challenging real world spreadsheet manipulation.
 596 *Advances in Neural Information Processing Systems*, 37:94871–94908, 2024.

597

598 Atsuyuki Miyai, Zaiying Zhao, Kazuki Egashira, Atsuki Sato, Tatsumi Sunada, Shota Onohara,
 599 Hiromasa Yamanishi, Mashiro Toyooka, Kunato Nishina, Ryoma Maeda, et al. Webchorearena:
 600 Evaluating web browsing agents on realistic tedious web tasks. *arXiv preprint arXiv:2506.01952*,
 601 2025.

602

603 OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital
 604 world. 2025. URL <https://openai.com/index/computer-using-agent>.

605

606 Harshith Padigela, Chintan Shah, and Dinkar Juyal. ML-dev-bench: Comparative analysis of ai agents
 607 on ml development workflows. *arXiv preprint arXiv:2502.00964*, 2025.

608

609 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 610 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 611 agents. *arXiv preprint arXiv:2501.12326*, 2025.

612

613 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 614 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

615

616 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
 617 Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
 618 open language models. *arXiv preprint arXiv:2402.03300*, 2024.

619

620 Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
 621 Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
 622 construction via reverse task synthesis. *arXiv preprint arXiv:2412.19723*, 2024.

623

624 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
 625 Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
 626 multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

627

628 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

629

630 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 631 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 632 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

633

634 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 635 Bashlykov, Soumya Batra, Prajwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
 636 fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

637

638 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 639 Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A survey on large
 640 language model based autonomous agents. *arXiv preprint arXiv:2308.11432*, 2023.

641

642 Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
 643 Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
 644 developers as generalist agents. *arXiv preprint arXiv:2407.16741*, 2024.

645

646 Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
 647 Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
 648 *arXiv preprint arXiv:2402.07456*, 2024a.

649

650 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
 651 Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
 652 agents. *arXiv preprint arXiv:2410.23218*, 2024b.

648 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
 649 Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,
 650 Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
 651 Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
 652 Huang, and Tao Gui. The rise and potential of large language model based agents: A survey. *arXiv*
 653 preprint arXiv:2309.07864, 2023.

654 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
 655 Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osword: Benchmarking multimodal agents
 656 for open-ended tasks in real computer environments. *Advances in Neural Information Processing*
 657 *Systems*, 37:52040–52094, 2024.

658 Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
 659 Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
 660 decomposition and synthesis. *arXiv preprint arXiv:2505.13227*, 2025.

662 Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
 663 and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. *arXiv*
 664 preprint arXiv:2412.04454, 2024.

666 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 667 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 668 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 669 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
 670 Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
 671 Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
 672 Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yingger Zhang,
 673 Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
 674 Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

675 John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press, Niklas
 676 Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal: Do ai
 677 systems generalize to visual software domains? *arXiv preprint arXiv:2410.03859*, 2024a.

678 Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
 679 Visual grounding for gui instructions. *arXiv preprint arXiv:2412.16256*, 2024b.

680 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 681 real-world web interaction with grounded language agents. *Advances in Neural Information*
 682 *Processing Systems*, 35:20744–20757, 2022.

684 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 685 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
 686 scale. *arXiv preprint arXiv:2503.14476*, 2025.

687 Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
 688 Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
 689 *arXiv preprint arXiv:2504.02605*, 2025.

691 Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
 692 Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. In *The Eleventh*
 693 *International Conference on Learning Representations*, 2022.

694 Hanchen Zhang, Xiao Liu, Bowen Lv, Xueqiao Sun, Bohao Jing, Iat Long Long, Zehan Qi, Hanyu Lai,
 695 Yifan Xu, Rui Lu, Zhenyu Hou, Hongning Wang, Jie Tang, and Yuxiao Dong. Agentrl: Reinforce
 696 all-round agents from zero. *arXiv preprint*, 2025.

697 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 698 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
 699 autonomous agents. In *Second Agent Learning in Open-Endedness Workshop*, 2023.

700

702 **A API DEVELOPMENT WORKFLOW**
703704 In this section, we detail the methodology for leveraging LLMs to automate API construction. We
705 propose a semi-automated workflow wherein users need only supply exemplar tasks performed within
706 the target application; the LLM then autonomously generates both the necessary API code and
707 corresponding test cases. The workflow comprises three primary stages: requirement analysis, API
708 implementation, and test case generation.709 **Requirement Analysis** During the requirements analysis phase, users provide a set of task examples
710 related to the target application as input. The workflow leverages the LLM to analyze these task
711 instances, extracting the essential functionalities required for task completion. It then compares these
712 requirements against the existing API interface definitions to identify potential gaps. If uncovered
713 functionalities are detected, the system automatically generates new API interfaces along with their
714 corresponding parameter specifications.715 Notably, we limit the generated interfaces to encapsulate only general-purpose functionalities,
716 thereby avoiding excessive complexity and the proliferation of APIs. This design choice mitigates
717 implementation difficulty and reduces the adaptation burden on the agent.719 **API Implementation** Upon obtaining the interface definitions, the workflow systematically iterates
720 over each interface and its associated parameters. For each specification, it leverages the designated
721 Python libraries of the target application to implement the corresponding API functionalities.
722 Additionally, the workflow incorporates error-handling mechanisms and logging to facilitate human
723 debugging and maintenance. This automated approach not only streamlines API development but
724 also enhances consistency and reusability across different application contexts.725 **Test Case Generation** Following the implementation of API functionalities, the workflow conducts
726 fundamental unit testing to ensure the correctness and robustness of each API. Specifically, the testing
727 process verifies: (1) whether the API can be invoked without runtime errors, and (2) whether the API
728 returns correct results across a range of parameter inputs. For API implementations that fail these
729 tests, the workflow provides detailed error feedback to the API implementation module, which then
730 autonomously attempts corrections until the APIs pass all tests.731 This automated methodology substantially lowers the manual effort required, enabling the creation
732 of application-specific API sets with minimal human intervention. As a result, the barrier for users
733 to develop APIs for diverse applications is significantly reduced. We have developed API sets for
734 multiple commonly used default applications in Ubuntu and integrated them into our Ubuntu virtual
735 machine environment.736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **B ACTION SPACE**
757758 Our action space for GLM-COMPUTERRL is shown in Table 4, and our API number for each application
759 is in Table 5.
760761 Table 4: Action space of GLM-COMPUTERRL
762

763 Function	764 Description
764 open_app(app_name)	765 Open specified application (e.g., Chrome, Terminal).
765 click(coordinates, 766 num_clicks,button_type)	767 Click at coordinates [x, y] with the specified mouse button and 768 number of clicks.
768 type(coordinates, text, 769 overwrite, enter)	770 Type text at coordinates; optionally overwrite existing content and/or 771 press Enter.
770 drag_and_drop(drag_from, 771 drop_on)	772 Drag from [x ₁ , y ₁] and drop onto [x ₂ , y ₂].
772 scroll(coordinates, 773 direction)	774 Scroll at coordinates in direction (up / down).
774 switch_window(window_id)	775 Switch focus to the window with given ID.
775 hotkey(keys)	776 Press a key combination (e.g., [ctrl, c]).
776 quote(content)	777 Record content for memory.
777 wait()	778 Pause execution temporarily.
778 exit(success)	779 Terminate task with success (True) or failure (False).

780 Table 5: Statistics of the number of available APIs per application
781

782 Application	783 Number of APIs
784 Code	785 12
785 Chrome	786 11
786 LibreOffice Calc	787 27
787 LibreOffice Impress	788 22
788 LibreOffice Writer	789 19
789 VLC	790 12
790 Total	791 103

810 C PROMPT FORMULATION FOR GLM-COMPUTERRL
811812 The design of the observation space is pivotal, as it directly constrains the upper bound of the agent’s
813 performance. In this section, we detail the integration of the API set with GUI operations, alongside
814 the incorporation of contextual information from the desktop environment, to systematically construct
815 both the agent’s observation space and action space. This unified framework ensures that the designed
816 observation and action spaces capture the complexity of real-world tasks, providing a solid foundation
817 for robust agent learning and generalization.818 **Action space formulation** The integration of a large number of APIs with GUI operations, while
819 ensuring effective agent interaction, remains a significant challenge. In practice, we mitigate this
820 complexity by dynamically detecting the currently active application to infer potentially relevant
821 APIs, thereby reducing the number of available APIs and lowering the agent’s adaptation overhead.
822 Furthermore, we use Python classes and descriptive docstrings to delineate each operation type,
823 ensuring they are clearly interpretable by most LLMs. This object-oriented strategy enhances the
824 model’s understanding and precision in performing operations. These classes are provided to the agent
825 via the system prompt, enabling interaction through Python function calls. This design facilitates rapid
826 agent adaptation and efficient generalization of operations across diverse applications. Additionally,
827 the agent’s output format is standardized in the system prompt, which encourages the agent to interleave
828 reasoning and action execution. This approach promotes enhanced planning and reflective capabilities
829 within the agent, thus improving its overall performance in complex task execution scenarios.830 **Observation formulation** To facilitate the effective perception and manipulation of GUIs by the
831 model, we leverage the Python Accessibility Toolkit Service Provider Interface (pyatspi) to extract
832 comprehensive attributes of desktop elements systematically. Each GUI element encompasses the
833 element’s semantic type, visible text content, precise screen coordinates, and spatial dimensions.
834 This structured representation enables the LLM agent to parse, ground, and reason over the GUI in a
835 manner analogous to human users.836 We present the element format of the environment a11y tree in our observation space as follows:
837838

tag	text	position (center x & y)	size (w & h)
-----	------	-------------------------	--------------

839 The tag is the XML tag of the element, such as div or button. The text is the text content of the
840 element, which can be empty for elements that do not have text. The position is represented by the
841 center coordinates (x, y) of the element, and the size is represented by its width (w) and height (h).
842843 For the multimodal model, the a11y tree is removed from the input. Instead, we capture the GUI
844 screenshot at a resolution of 1920 × 1080 pixels (1080p) and subsequently resize it to 1280 × 720
845 pixels (720p), which serves as the input representation of the desktop environment.846 Beyond the extraction of individual GUI components, we augment the input space with rich contextual
847 metadata to provide a holistic depiction of the agent’s operational environment. Specifically, we provide
848 a comprehensive enumeration of open desktop windows, including their hierarchical relationships,
849 as well as the name and additional information of the currently focused application. To promote
850 consistent and adaptive behavior, we also deliver feedback from the most recent GUI action or tool
851 call, which may include environmental status updates, confirmations, or error signals.852 The app format of the observation space is as follows:
853854

Window ID	App Name	Title
-----------	----------	-------

855 The Window ID is the unique identifier of the application window, App Name is the name of the
856 application, and Title is the title of the application window.
857858 **History formulation** Given the extensive length of GUI observations and the inherent constraints
859 imposed by the model’s context window, it is necessary to efficiently manage the input history across
860 multiple interaction rounds. For each interaction, we omit redundant and detailed interface information
861 while preserving the complete sequence of the agent’s reasoning process, actions taken, and the
862 corresponding operation feedback. This approach ensures the retention of the essential operational
863 trajectory, thereby maximizing the informativeness of the historical context while maintaining
compatibility with the model’s capacity limitations.

864 Collectively, the components above constitute the observation space and action space of our agent.
 865 This representation not only enhances the agent's environmental cognition but also enables better
 866 strategies for long-horizon planning and reasoning. As a result, the agent is better equipped to execute
 867 complex, multi-step tasks across diverse applications in the desktop environment.

868 Below is our detailed prompt organization for GLM-COMPUTERRL:

```

870 You are an agent which follow my instruction and perform desktop computer
871 tasks as instructed.
872 You have good knowledge of computer and good internet connection and
873 assume your code will run on a computer for controlling the mouse and
874 keyboard.
875 For each step, you will get an observation of the desktop by 1)
876 screenshot; 2) current application name; 3) accessibility tree, which
877 is based on AT-SPI library; 4) application info; 5) last action
878 result.
879 You should first generate a plan for completing the task, confirm the
880 previous results, reflect on the current status, then generate
881 operations to complete the task in python-style pseudo code using the
882 predefined functions.

883 Your output should STRICTLY follow the format:
884 <think>
885 {**YOUR-PLAN-AND-THINKING**}
886 </think>
887     ````python
888 {**ONE-LINE-OF-CODE**}
889     ````

890 You will be provided access to the following methods to interact with the
891 UI:
892 1. class Agent, a grounding agent which provides basic action space
893     to interact with desktop.
894 2. class {tool_class_name}, which provides tools to interact with the
895     current application {app_name}.

896 Here are the defination of the classes:
897     ````python
898 {class_content}
899     ````

900 * Note:
901 - Your code should be wrapped in ````python```` , and your plan and thinking
902     should be wrapped in <think></think>.
903 - Only **ONE-LINE-OF-CODE** at a time.
904 - Each code block is context independent, and variables from the previous
905     round cannot be used in the next round.
906 - Do not put anything other than python code in ````python```` .
907 - You **can only use the above methods to interact with the UI**, do not
908     invent new methods.
909 - Return with 'Agent.exit(success=True)' immediately after the task is
910     completed.
911 - If you think cannot complete the task, **DO NOT keep repeating actions,
912     just return with 'Agent.exit(success=False)'**.
913 - The computer's environment is Linux, e.g., Desktop path is '/home/user/
914     Desktop'
915 - My computer's password is 'password', feel free to use it when you need
916     sudo rights

917 **IMPORTANT** You are asked to complete the following task: {instruction}

```

918 Below is our history and input prompt for GLM-COMPUTERRL:

```

919 <|user|>
920 **Environment State (Omitted)**
```

```

918 <|assistant|>
919 <think>
920 {round0_thinking}
921 </think>
922 ````python
923 {round0_operation}
924 ````

925 <|user|>
926 **Environment State (Omitted)**
927 Previous Action Result: {round0_operation_feedback}

928 <|assistant|>
929 <think>
930 {round1_thinking}
931 </think>
932 ````python
933 {round1_operation}
934 ````

935 <|user|>
936 **Environment State (Omitted)**
937 Previous Action Result: {round1_operation_feedback}

938 <|assistant|>
939 <think>
940 {round2_thinking}
941 </think>
942 ````python
943 {round2_operation}
944 ````

945 ...
946 <|user|>
947 {screenshot_for_multimodal}
948 * Apps: {all_apps}

949 * Current App: {cur_window_id}
950
951 * A11y Tree: {a11y_tree_for_text}
952
953 * App Info: {app_info}

954 * Previous Action Result: {operation_feedback}
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```

972 **D TRAINING & HARDWARE DETAILS**
973974 **D.1 TRAINING PROCESS & HYPERPARAMETER SETTINGS**
975976 During the behavior cloning stage, we construct approximately 8,000 tasks through manual annotation
977 and data augmentation. We employ multiple advanced models to generate diverse samples for each
978 task, and subsequently apply the eval function to filter out successful trajectories. This process yields
979 a high-quality BC dataset comprising roughly 180,000 steps, which is then used for SFT training. We
980 employ a 16-node computing cluster for fine-tuning, with a maximum learning rate set to 1×10^{-5} , a
981 sequence length of 32,768 tokens, and a global batch size of 256, over a total of three training epochs.
982983 In the RL stage, the key training hyperparameters are summarized in Table 6. We initially train
984 the BC policy (using the 1-epoch checkpoint for diversity) for 180 steps, after which performance
985 improvements began to plateau. At this point, we collect rollouts during RL, perform task-level
986 random selection, and curate approximately 130,000 additional steps of data for Entropulse training.
987 The hyperparameters in this phase are identical to those used in the BC stage, except for a reduced
988 learning rate of 5×10^{-6} . RL training is then resumed until a total of 360 steps have been reached.
989990 **D.2 TRAINING CLUSTER CONFIGURATION**
991992 Our training infrastructure consists of a high-performance GPU cluster. The complete specifications,
993 including GPU, CPU, cache, memory, and network configuration, are detailed in Table 7. Our training
994 pipeline requires at least **4 GPU nodes** to run distributed RL training.
995996 **D.3 ENVIRONMENT CLUSTER CONFIGURATION**
997998 For running distributed RL environments, we employ a dedicated compute cluster with 7 nodes. The
999 complete specifications are shown in Table 8. In our empirically validated deployment:
10001001

- Each GPU achieves optimal utilization when paired with approximately **80 rollouts**.
- Each environment server can reliably host **200 concurrently running virtual environments**.

1002 This ratio maintains equilibrium between GPU computation and environment sampling, minimizing
1003 idle computational resources.
10041005 **D.4 VIRTUAL ENVIRONMENT INSTANCE CONFIGURATION**
10061007 Each RL task is executed within a dedicated virtual machine instance. The specifications are detailed
1008 in Table 9.
10091010 **Note:** Each virtual environment instance runs an independent Ubuntu 20.04 desktop environment
1011 for executing GUI-based tasks. The lightweight resource configuration (2 cores/4GB) ensures high
1012 concurrency under limited hardware resources, supporting the environment parallelism required for
1013 large-scale distributed RL training.
10141015 **D.5 TRAINING DURATION AND FLOPs STATISTICS**
10161017 Table 10 presents the complete training time and FLOPs statistics for the multimodal training.
1018
1019
1020
1021
1022
1023
1024
1025

Table 6: Training configuration for RL training of GLM-COMPUTERRL.

Category	Parameter (Value)
Data	
Task type	Multi-turn chat
Max prompt length	63,488 tokens
Max response length	2,048 tokens
Train batch size	32
Responses per prompt	16
Concurrency	1024
Shuffle	True
Seed	42
Actor	
Exchange size	1×10^{10}
Gradient checkpointing	Enabled
Strategy	FSDP
FSDP offloading	Param + Optimizer
Sequence parallel size	2
Max tokens / GPU	32,768
Precision dtype	bfloat16
Algorithm	
Advantage estimator	GRPO
Discount factor γ	1.0
GAE parameter λ	1.0
Use remove padding	True
Use dynamic bsz	True
Mini-batch size	32,768
Micro-batch size / GPU	1
Logprob micro-batch size / GPU	1
KL loss	Enabled (<i>low_var_kl</i>), coef = 0.0003
Entropy coefficient	0.0
Clip ratio	0.2
Optimizer	
Actor learning rate	1×10^{-6}
LR warmup steps ratio	0.0
Warmup style	constant
Gradient clipping	1.0
Save frequency	25
Rollout	
Enable chunked prefill	True
Max new tokens (generation)	2,048
Do sample	True
Sampling temperature	0.8
Max turns	30
GPU memory utilization	0.7
Pools rollout	2
Pools other	6

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

1090
1091

Table 7: Training Cluster Specifications

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Configuration	Specification
<i>Cluster Overview</i>	
Cluster Size	16 nodes
<i>GPU Configuration</i>	
GPU Type	NVIDIA H800
GPUs per Node	8
Total GPUs	128 (16 nodes × 8 GPUs)
<i>CPU Configuration</i>	
CPU Model	Intel Xeon Gold 6430
Architecture	x86_64
Physical Sockets	2
Cores per Socket	32
Total Cores	64
Threads	64 (1 thread/core)
Base Frequency	2.1 GHz
Minimum Frequency	800 MHz
Instruction Set Extensions	AVX-512, AVX512_FP16, AMX (INT8/BF16/Tile)
<i>Cache Configuration</i>	
L1 Data Cache	3 MiB (64 instances)
L1 Instruction Cache	2 MiB (64 instances)
L2 Cache	128 MiB (64 instances)
L3 Cache	120 MiB (2 instances)
<i>Memory Configuration</i>	
Total Memory Capacity	2.0 TiB
Available Memory	1.9 TiB
NUMA Nodes	2
NUMA Node 0 CPUs	0-31
NUMA Node 1 CPUs	32-63
Swap	Disabled (0 B)
<i>Network Configuration</i>	
Interconnect	InfiniBand/High-speed Ethernet
Address Width	Physical 46-bit, Virtual 57-bit

1134
1135

Table 8: Environment Cluster Specifications

Configuration	Specification
<i>Cluster Overview</i>	
Cluster Size	7 nodes
Total Cluster Memory	~7.7 TiB
<i>CPU Configuration</i>	
CPU Model	Intel Xeon 6986P-C (Granite Rapids)
Architecture	x86_64
Physical Sockets	1
Cores per Socket	120
Total Cores	120
Threads	240 (2 threads/core, hyper-threading enabled)
Base Frequency	3.3 GHz
Max Turbo Frequency	3.9 GHz
Minimum Frequency	800 MHz
Instruction Set Extensions	AVX-512, AVX512_BF16, AMX, SHA-NI
<i>Cache Configuration</i>	
L1 Data Cache	5.6 MiB
L1 Instruction Cache	7.5 MiB
L2 Cache	240 MiB
L3 Cache	504 MiB
<i>Memory Configuration</i>	
Memory per Node	1.1 TiB
Available Memory	949 GiB
NUMA Nodes	3
NUMA Node 0 CPUs	0-39, 120-159
NUMA Node 1 CPUs	40-79, 160-199
NUMA Node 2 CPUs	80-119, 200-239
Swap	Disabled (0 B)
<i>Virtualization and Features</i>	
Virtualization Technology	Intel VT-x, EPT, VPID
Security Features	Enhanced IBRS, IBPB, Spectre/Meltdown mitigations
Cryptographic Acceleration	AES-NI, SHA-NI, AVX512_VAES
AI Acceleration	AMX, AVX512_BF16, AVX512_VNNI
Address Width	Physical 52-bit, Virtual 57-bit

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

Table 9: Virtual Environment Instance Specifications

Configuration	Specification
Operating System	Ubuntu 20.04 LTS
vCPU Cores	2
Memory Allocation	4 GB
Runtime Average Bandwidth	0.4 Mbps
Virtualization Platform	KVM/QEMU

1183

1184

1185

1186

1187

Table 10: Training Time and FLOPs Statistics (Multimodal)

Training Stage	Duration (hours)	Total FLOPs
SFT (Behavior Cloning)	16	1.67×10^{16}
SFT (Entropulse)	11	1.22×10^{16}
RL (Two-stage)	58	3.21×10^{17} (estimated)

1188
1189

D.6 KEY PERFORMANCE TRADE-OFFS AND BOTTLENECKS

1190
1191
1192

Our observations identify two principal hyperparameters that significantly influence the balance between training efficiency and convergence stability.

1193
1194
1195

1. RESPONSES PER PROMPT (RpP) – EXPLORATION UPPER BOUND VS. SAMPLING EFFICIENCY

1196
1197

Role. RpP defines the breadth of the search space in Best-of-N (BoN) sampling.

Trade-off:

1198
1199
1200

- A **higher RpP** broadens exploration, increasing the likelihood of discovering high-quality trajectories, but sampling latency grows roughly linearly.
- A **lower RpP** yields faster sampling but may omit promising solutions, constraining exploration scope.

1202
1203
1204

Bottleneck. Excessively large RpP values incur substantial sampling overhead with diminishing marginal gains.

1205
1206
1207

2. BATCH SIZE (B) – TRAINING STABILITY VS. ITERATION THROUGHPUT

1208
1209
1210

Role. B specifies the number of samples processed in each gradient update.

Trade-off:

1211
1212
1213

- A **larger B** improves gradient estimation accuracy and stabilizes training, but extends iteration time.
- A **smaller B** accelerates iterations but introduces higher gradient variance, potentially destabilizing convergence.

1214
1215
1216

Bottleneck. Too small B values cause pronounced oscillations in the training curve, while too large values extend iteration time.

Optimal Configuration: RpP = 16, B = 32. Systematic experimentation confirms that RpP = 16 and B = 32 represent an optimal balance across competing objectives:

1217
1218
1219

- **Exploration Adequacy** – RpP = 16 affords sufficient BoN sampling scope to cover the majority of feasible solution trajectories.
- **Training Stability** – B = 32 maintains variance in gradient estimates within acceptable bounds, promoting smooth convergence.
- **Resource Efficiency** – This configuration ensures balanced utilization of both GPU and environment clusters, avoiding throughput bottlenecks.
- **Performance Outcome** – Using this configuration, we achieved the reported final performance, outperforming other settings in the efficiency–accuracy trade-off.

1220

D.7 ADDITIONAL OBSERVED BOTTLENECKS

1221
1222
1223

1. ENVIRONMENT HETEROGENEITY

1224
1225
1226

Issue. Significant variance in task execution time results in some GPUs waiting for slower environments to complete.

1227
1228
1229

Mitigation. An asynchronous rollout collection mechanism allows fast environments to submit results without delay.

1230
1231
1232

2. INTER-CLUSTER NETWORK BANDWIDTH

1233
1234
1235

Issue. High concurrency in environment simulation can saturate network bandwidth due to frequent transmission of screenshots and state data, occasionally causing Docker network stalls.

1236
1237
1238

Mitigation. Employing image compression reduces network load; optimizing Docker networking decreases virtual NIC overhead.

1242 3. INTERNET BANDWIDTH CONSTRAINTS
12431244 **Issue.** Large-scale simultaneous environment instances can generate excessive external network
1245 traffic.1246 **Mitigation.** Packet-level traffic analysis enables elimination of unnecessary transmissions; construct-
1247 ing an IP proxy pool mitigates service blocking risks.
12481249 E ADDITIONAL EXPERIMENTAL INDICATORS
12501251 To more comprehensively validate the effectiveness of our method, we report detailed experimental
1252 indicators to support our conclusions, as shown in Figure 6. These indicators include Average Reward,
1253 Entropy Loss, KL Loss, PPO KL, Average Margin, BoN Reward, Average Turns, and Response
1254 Length. Based on these metrics, we make the following observations:
12551256

- 1257 Entropulse effectively increases the stochasticity of the policy, leading to a substantial
1258 improvement in BoN after activation. This, in turn, drives the growth of the margin and
1259 enables the policy to continue learning and improving.
- 1260 After applying Entropulse, the response patterns of the policy (including response length
1261 and number of dialogue turns) become closer to those before the first-stage RL training (i.e.,
1262 shorter), while maintaining comparable scores. This indicates that Entropulse helps the
1263 policy discover better solutions along shorter trajectories, thereby suppressing excessive
1264 reasoning and redundant steps.
- 1265 After resetting the reference model, the KL Loss is also reset, allowing the policy to explore
1266 a larger space relative to the new reference. This prevents the policy from being overly
1267 constrained by its previous strategy.

1268 F REPETITIVE EXPERIMENTS WITH DIFFERENT BASE MODELS
12691270 To further verify the effectiveness of our method, we conduct repetitive experiments with different
1271 base models (both text and multimodal), demonstrating the stability and superiority of our approach.
1272 The results are reported in Figure 7.
12731274 G HUMAN ANNOTATION PROTOCOL
12751276 Our annotation process involves ten trained annotators with master’s degrees, who are recruited and
1277 compensated in compliance with local labor laws and regulations. Annotators are provided with clear
1278 written guidelines to ensure consistency and accuracy, as outlined in our annotation protocol (see
1279 Figures 8 and 9). All tasks are designed to avoid sensitive personal data, and all annotated content
1280 is in English with no identifying information. The process includes task expansion—transforming
1281 generalized instructions into explicit, executable tasks—and strict result verification to minimize
1282 errors. Quality control measures include verification passes and clear formatting rules to improve
1283 annotation reliability. No annotator is exposed to harmful, discriminatory, or unsafe content during the
1284 process, and all work adheres to the Code of Ethics regarding fairness, privacy, and legal compliance.
12851286
1287
1288
1289
1290
1291
1292
1293
1294
1295

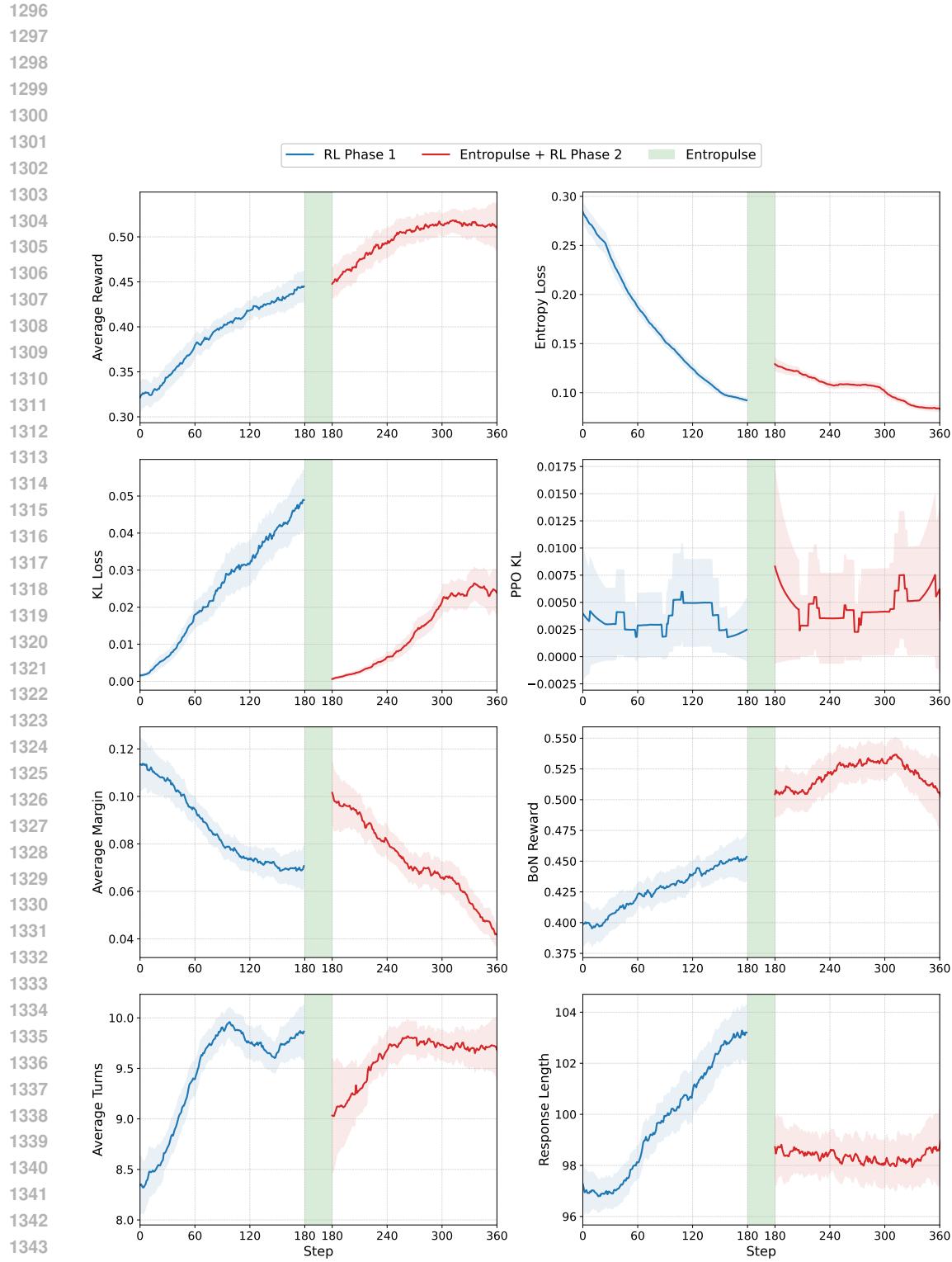


Figure 6: Detailed experimental indicators for COMPUTERRL (95% CIs).

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

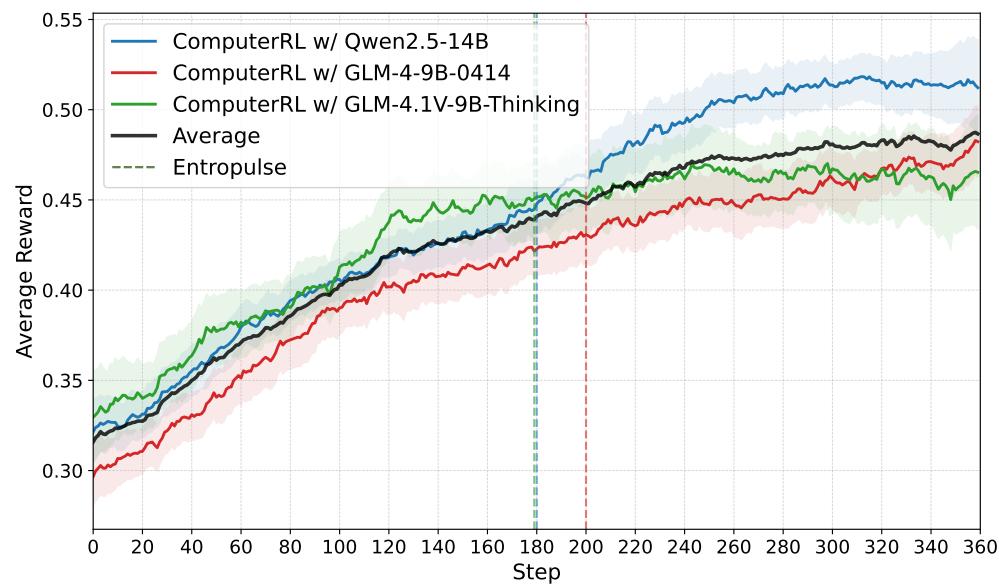


Figure 7: Repetitive experiments with different base models (95% CIs).

1404

1405

1406

1407

1408

1409

1410

1411

Annotation Guidelines

1412

1413

1414

1415

I. Project Background

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

II. Data Description

Phase 1: Task Expansion

Fields to be completed (No need to execute in a virtual machine, only need to fill in):

1. **Expanded Task**

- Modify the generalized task description into an **independent, executable** task.
- **No pronominal references** allowed.
- All operations must explicitly specify that they are performed **on a file located under /home/user/work/** (the prefix `/home/user/work/` is fixed).
- Instructions must be as clear and executable as possible.
 - **Prohibited example:** “Help me find some good movies” (too vague).
- You may appropriately **reduce the difficulty** of the task, for example:
 - If the original task is “Collect data from 2013–2020,” you may adjust it to “Collect data from 2013–2015” (simplify content preparation for Phase 2).

2. **Notes** – Provide guidance for Phase 2 (described in Chinese for convenience).

- Example:

“Prepare a `test.docx` file containing multiple sentences, where the first letter of each sentence is lowercase. Verify using `compare_with_golden(result_path, golden_path)`. The result passes if the first English letter of each sentence is capitalized, other characters remain unchanged, and the content is exactly the same as the golden file.”

- You must specify:
 - What type of file** to prepare
 - The file content format**

Figure 8: Document for Human Annotation (1 / 2)

1458
 1459
 1460
 1461
 1462
 1463
 1464 c. **Which function** to use for verification
 1465 d. **Which fields** to check during verification
 1466

1467 **Phase 2: Virtual Machine Function Verification & Field Completion**
 1468

1469 **Fields to be completed:**

1470

1471 1. **Target File**
 1472 • All files in the task that require model operations (unprocessed files).
 1473 • For `compare_with_golden` (only supports `xlsx`, `docx`, `csv`, `txt`):
 1474 ◦ If the task involves other file types or functions, these can be omitted.

1475 2. **Detection Target**
 1476 • The name(s) of the file(s) that need to be compared.

1477 3. **Golden File** (*only filled when the verification function is `compare_with_golden`*)
 1478 • Name of the standard answer file used for comparison.

1479 4. **check_list** (*required if the Notes or task description explicitly specifies formatting*):
 1480 • Optional if content comparison is default.
 1481 • Single/multiple choice:
 1482 ◦ `font` : Compare font name, color, size, bold, italic, etc.
 1483 ◦ `fill` : Compare cell fill color.
 1484 ◦ `alignment` : Compare alignment (e.g., center).
 1485 ◦ `para_format` : Compare paragraph formatting (alignment, line spacing).
 1486 ◦ `table` : Compare text in inserted tables (format comparison not currently supported).

1487 5. **Files**
 1488 • All files required for the task.
 1489 • You must create your own file names (arbitrary), but the file names **must be consistent**
 1490 **across all fields** (important).

1491

1492

1493 **III. Annotation Notes**

1494

1495 1. **Focus on evaluation** — ensure the model's required operations are properly executed; avoid
 1496 cases where detection passes without actual modifications.

1497 2. **All data must be in English**, ensure logical correctness after translation.

1498 3. For manually typed scenarios, verify multiple times to minimize error rate:
 1499 • Especially check IDs and file paths.
 1500 • OCR (from screenshots) is recommended for accuracy.

1501 4. Report issues promptly in the annotation group to avoid unnecessary rework.

1502 5. For color-related tasks, use **red, yellow, blue, green**; avoid visually similar colors.

1503 6. For downloading plugins or apps — **assume they are already installed**.

1504

1505

1506

1507 Figure 9: Document for Human Annotation (2 / 2)

1508

1509

1510

1511

1512 H FUTURE DIRECTION 1513

1514 While our advancements with COMPUTERRL mark a significant leap forward in intelligent desktop
1515 automation, we see this work as a foundation for a radical transformation in human-computer
1516 interaction. Unleashing the full potential of autonomous agents on the desktop frontier demands
1517 reimagining long-standing paradigms across several axes.
1518

1519 H.1 TOWARDS ROBUST PERFORMANCE 1520

1521 GLM-COMPUTERRL has demonstrated remarkable proficiency across a spectrum of desktop tasks.
1522 However, genuine universality requires transcending current boundaries in coverage and generalization.
1523 Real-world digital environments are characterized by continual flux and heterogeneity, encompassing
1524 unfamiliar applications, emergent workflows, and rare edge cases that lie beyond the scope of existing
1525 datasets. A next-generation agent must dynamically adapt to shifting GUIs, unpredictable pop-ups,
1526 and entirely novel interfaces. To this end, we are re-architecting data pipelines to facilitate exponential
1527 expansion in training diversity and pioneering infrastructure to distill knowledge from real-world user
1528 interactions at scale continuously.
1529

1530 H.2 BREAKTHROUGHS IN LONG-HORIZON AUTONOMY 1531

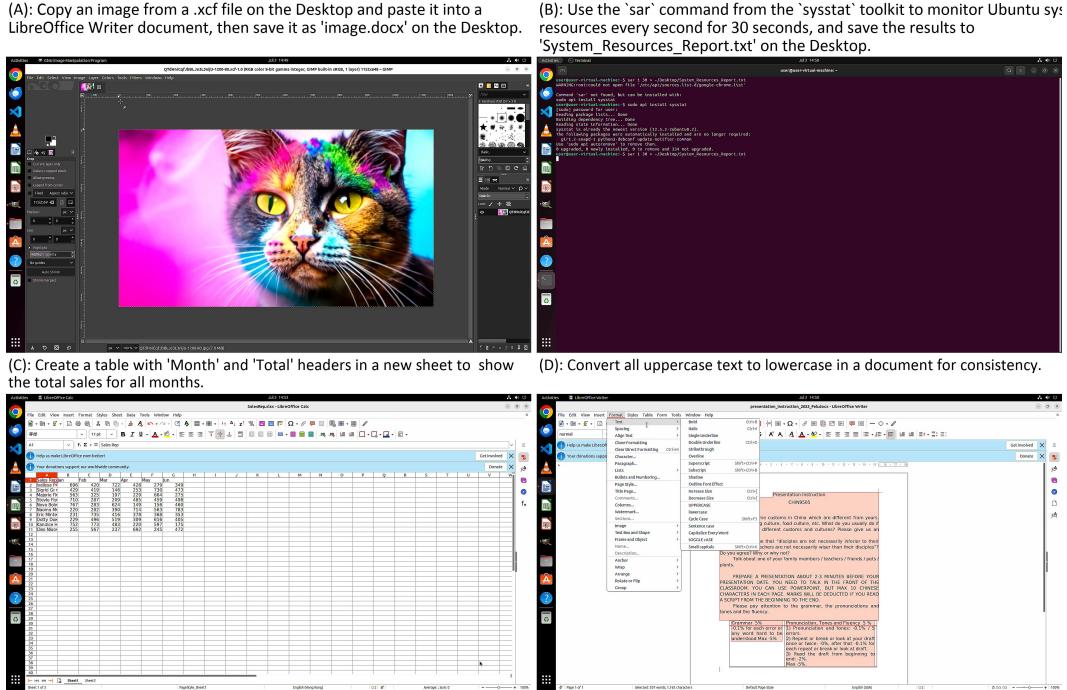
1532 Envisioning the autonomous desktop assistant as an always-available cognitive collaborator necessitates
1533 mastering sustained, long-duration workflows. While current solutions excel at bounded, atomic
1534 tasks, they fall short of orchestrating complex, multi-step objectives over extended horizons. Our
1535 ambition is to endow the agent with hierarchical planning capabilities, allowing it to reason, learn,
1536 and revise strategies dynamically across arbitrarily long task sequences. Realizing this vision will
1537 catalyze a paradigm shift: automating not just discrete operations, but entire workstreams and creative
1538 processes end-to-end, fundamentally reshaping the productivity landscape for the cloud-native era.
1539

1540 H.3 FOUNDATIONS FOR SAFE AND ALIGNED AUTONOMY 1541

1542 Autonomous control over desktop platforms raises profound questions about safety, trustworthiness,
1543 and user agency. The margin for error narrows dramatically when agents are empowered to modify
1544 files, access sensitive data, or execute unbounded actions. Mitigating these risks requires a rigorous
1545 and principled approach to safe behavior and alignment. Our roadmap includes architecting granular
1546 permissioning frameworks, embedding robust pre-action validation, and multi-stage approval protocols.
1547 Ultimately, we aim to establish safety standards and best practices that can serve as foundational
1548 infrastructure, not just for our agent but for the future ecosystem of intelligent digital collaborators.
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 I DEMONSTRATION

1568 This section presents examples drawn from a variety of application scenarios, including the initial
 1569 four positive cases and the final two negative ones. Each example illustrates our API-GUI operational
 1570 paradigm, which addresses the diverse challenges and requirements that arise within different
 1571 applications.



1596 Figure 10: Examples of GLM-COMPUTERRL’s execution on four user tasks, including image
 1597 processing between GIMP and LibreOffice Writer, monitoring system resource usage in Terminal,
 1598 table calculation in LibreOffice Calc, and document formatting in LibreOffice Writer.

1600 I.1 CREATE MONTHLY SALES SUMMARY TABLE

1602 The targeted task to be executed is "Create a table with two headers ('Month' and 'Total') in a new
 1603 sheet to show the total sales for all months." The actual execution steps can be summarized as follows:

- 1605 • Step1: Switch to 'Sheet2'
- 1606 • Step2: Set cell 'A1' as "Month"
- 1607 • Step3: Set cell 'B1' as "Total"
- 1608 • Step4: Get monthly sales data from 'Sheet1'
- 1609 • Step5: Switch to 'Sheet1'
- 1610 • Step6: Switch to 'Sheet2'
- 1611 • Step7: Set month names in column A
- 1612 • Step8: Set total formula for Jan in 'B2'
- 1613 • Step9: Set total formula for Feb in 'B3'
- 1614 • Step10: Set total formula for Mar in 'B4'
- 1615 • Step11: Set total formula for Apr in 'B5'
- 1616 • Step12: Set total formula for May in 'B6'
- 1617 • Step13: Set total formula for Jun in 'B7'

1620 • Step14: Exit after completion
 1621

1622 As Figure 11,12 shows, a summary table is created successfully.
 1623

1624 I.2 CONVERT UPPERCASE TEXT TO LOWERCASE IN DOCUMENT 1625

1626 The targeted task to be executed is "Convert all uppercase text to lowercase in the document for
 1627 consistent text presentation." The actual execution steps can be summarized as follows:

1628 • Step1: Use the text case conversion tool to change all text to lowercase.
 1629 • Step2: Click the formatting menu.
 1630 • Step3: Select the specific formatting option.
 1631 • Step4: Open the relevant submenu.
 1632 • Step5: Select all text in the document.
 1633 • Step6: Click the formatting menu again.
 1634 • Step7: Select the specific formatting option again.
 1635 • Step8: Open the relevant submenu again to apply the changes.
 1636 • Step9: Exit after finishing the operation.
 1639

1640 As Figure 13 shows, all uppercase text has been successfully converted to lowercase, ensuring a
 1641 uniform and polished document appearance.
 1642

1643 I.3 GENERATE SYSTEM RESOURCE MONITORING REPORT 1644

1645 The targeted task to be executed is "Use the 'sar' command in the 'sysstat' toolkit to monitor system
 1646 activity and output the results to 'System_Resources_Report.txt' under Desktop." The actual execution
 1647 steps can be summarized as follows:

1648 • Step1: Open the Terminal application.
 1649 • Step2: Type the command `sar 1 30 > /Desktop/System_Resources_Report.txt`.
 1650 • Step3: Execute `sudo apt install sysstat` to install the toolkit.
 1651 • Step4: Enter the password if prompted.
 1652 • Step5: Re-type the sar command to start monitoring.
 1653 • Step6: Wait for 30 seconds while system activity is being recorded.
 1654 • Step7: Open the Files application.
 1655 • Step8: Navigate to and click on the report file under Desktop.
 1656 • Step9: Exit after confirming the report has been generated.
 1659

1660 As Figure 14 shows, a system resource report file was generated successfully on the Desktop after
 1661 monitoring, fulfilling the target task.
 1662

1663 I.4 COPY IMAGE FROM .XCF FILE TO LIBREOFFICE WRITER AND SAVE 1664

1665 The targeted task to be executed is "Copy the image from an .xcf file located on the Desktop and
 1666 paste it into a LibreOffice Writer document, then save the document as `image.docx` on the Desktop."
 1667 The actual execution steps can be summarized as follows:

1668 • Step1: Open the Files application.
 1669 • Step2: Navigate to the Desktop folder.
 1670 • Step3: Double-click to open the .xcf image file.
 1671 • Step4: Copy the image in the image editor.
 1672 • Step5: Open LibreOffice Writer.
 1673

- 1674 • Step6: Paste the copied image into the Writer document.
- 1675 • Step7: Save the document.
- 1676 • Step8: Enter the filename as `image.docx` and select the Desktop as the save location.
- 1677 • Step9: Navigate to the Desktop folder.
- 1678 • Step10: Confirm and click save.
- 1679

1680 As Figure 15 shows, the image from the `.xcf` file was successfully pasted into a LibreOffice Writer
 1681 document and saved as `image.docx` on the Desktop, completing the task.

1684 I.5 QUESTION MISUNDERSTANDING ERROR

1685 The targeted task to be executed is "Append `
` to the end of each line in '`1\n2\n3`' and save in
 1686 `output.txt`." The actual execution steps can be summarized as follows:

- 1687 • Step1: Type the command `echo -e '1\n2\n3'` in the terminal.
- 1688 • Step2: Exit after execution.
- 1689

1690 As Figure 16 shows, the agent misunderstood the requirement and only echoed the content without
 1691 appending `
` to each line or saving it into `output.txt`. This results in a task failure due to a
 1692 misunderstanding of the question.

1695 I.6 CLICK OPERATION ERROR

1696 The targeted task to be executed is "Please help change GIMP's theme from dark to light." The actual
 1697 execution steps can be summarized as follows:

- 1698 • Step1: Click on the menu in GIMP.
- 1699 • Step2: Attempt to click the Preferences option.
- 1700 • Step3: Repeat the click on Preferences.
- 1701 • Step4: Try to use the shortcut `Shift+Ctrl+P` to open Preferences.
- 1702 • Step5: Exit without successfully changing the theme.
- 1703

1704 As Figure 17 shows, the theme remains dark, indicating that the agent failed to change GIMP's theme
 1705 to light due to incorrect click operations.

1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

Figure 11: Task (Step 1-10): Create a table with two headers ("Month" and "Total") in a new sheet to show the total sales for all months.

```

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798 Step 11: CalcTools.set_cell_value('B5', '=SUM(Sheet1.E2...
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808 Step 12: CalcTools.set_cell_value('B6', '=SUM(Sheet1.F2...
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818 Step 13: CalcTools.set_cell_value('B7', '=SUM(Sheet1.G2...
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

```

Step 11: CalcTools.set_cell_value('B5', '=SUM(Sheet1.E2...')

Step 12: CalcTools.set_cell_value('B6', '=SUM(Sheet1.F2...')

Step 13: CalcTools.set_cell_value('B7', '=SUM(Sheet1.G2...')

Step 14: Agent.exit(success=True))

Figure 12: Task (Step 11-14): Create a table with two headers ("Month" and "Total") in a new sheet to show the total sales for all months.

1836

1837 Step 1: WriterTools.change_text_case('lowercase', '/*...',

1838

1839

1840

1841

1842

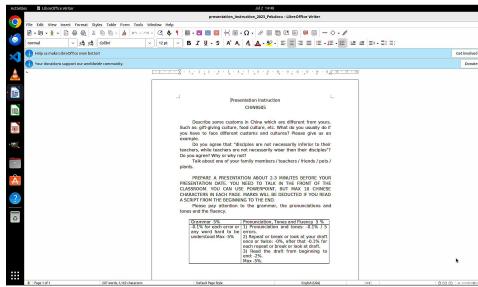
1843

1844

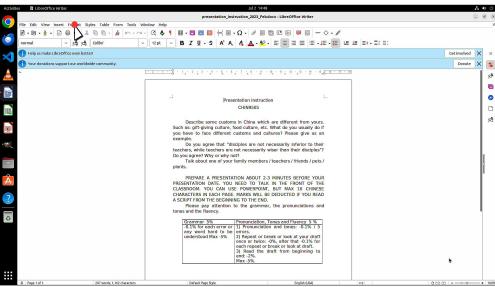
1845

1846

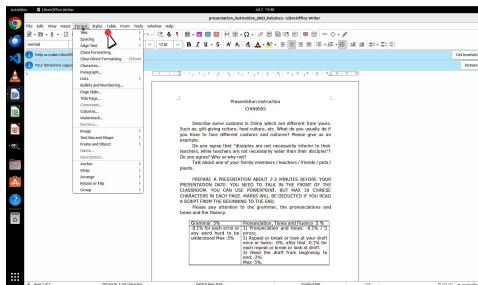
1847



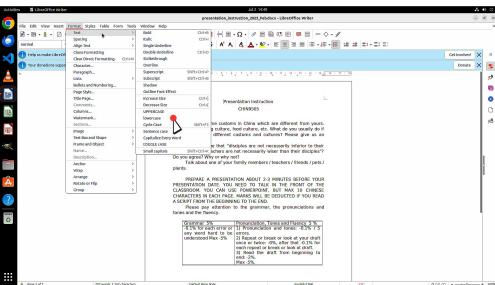
Step 2: Agent.click([290, 76])



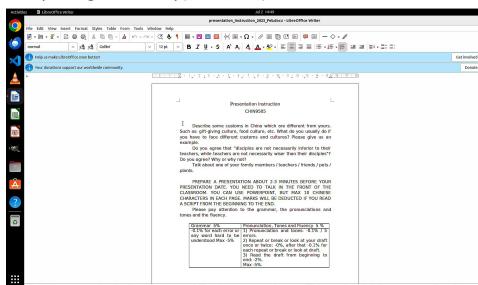
Step 3: Agent.click([392, 101])



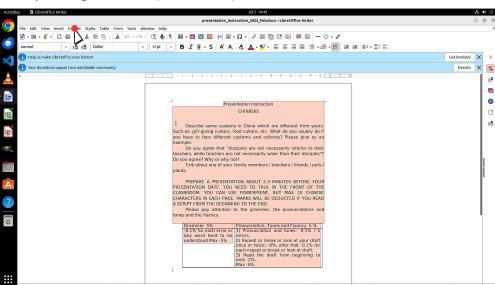
Step 4: Agent.click([670, 430])



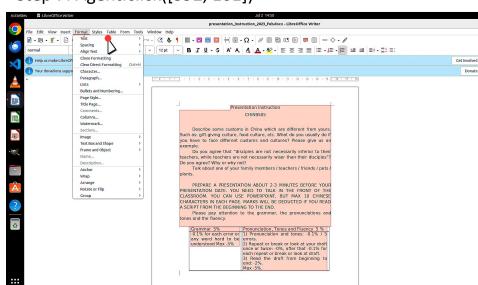
Step 5: Agent.hotkey(['ctrl', 'a'])



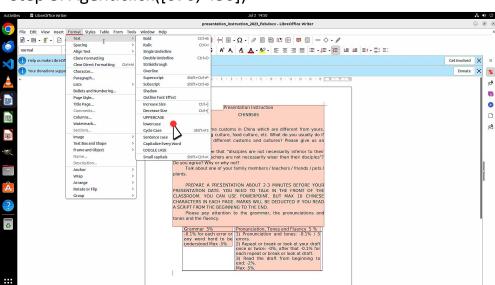
Step 6: Agent.click([290, 76])



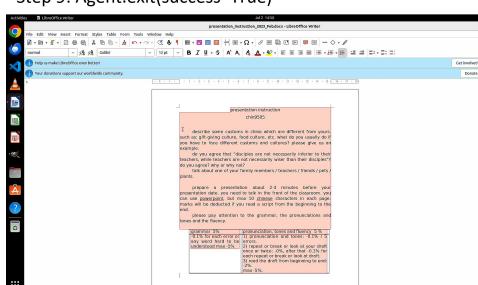
Step 7: Agent.click([392, 101])



Step 8: Agent.click([670, 430])



Step 9: Agent.exit(success=True)



1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Figure 13: Task: I am currently engaged in text processing and require assistance in converting all uppercase text to lowercase within my document. This precision is critical for maintaining a uniform and polished presentation. Could you help me on this?

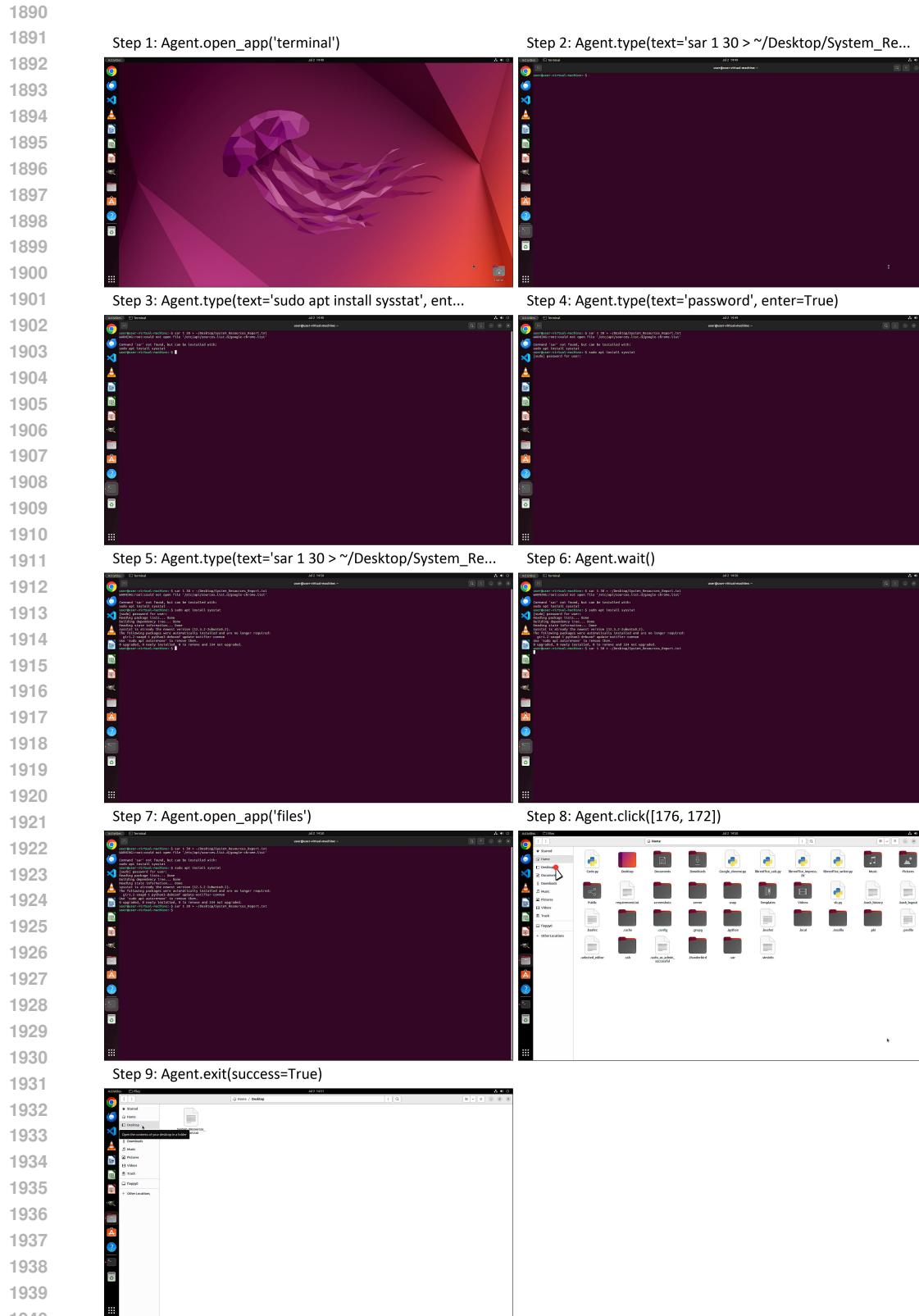


Figure 14: Task: Please use the ‘sar’ command in the ‘sysstat’ toolkit to monitor system activity, evaluate the status once every second for 30 seconds, output the results to “System_Resources_Report.txt” under Desktop.

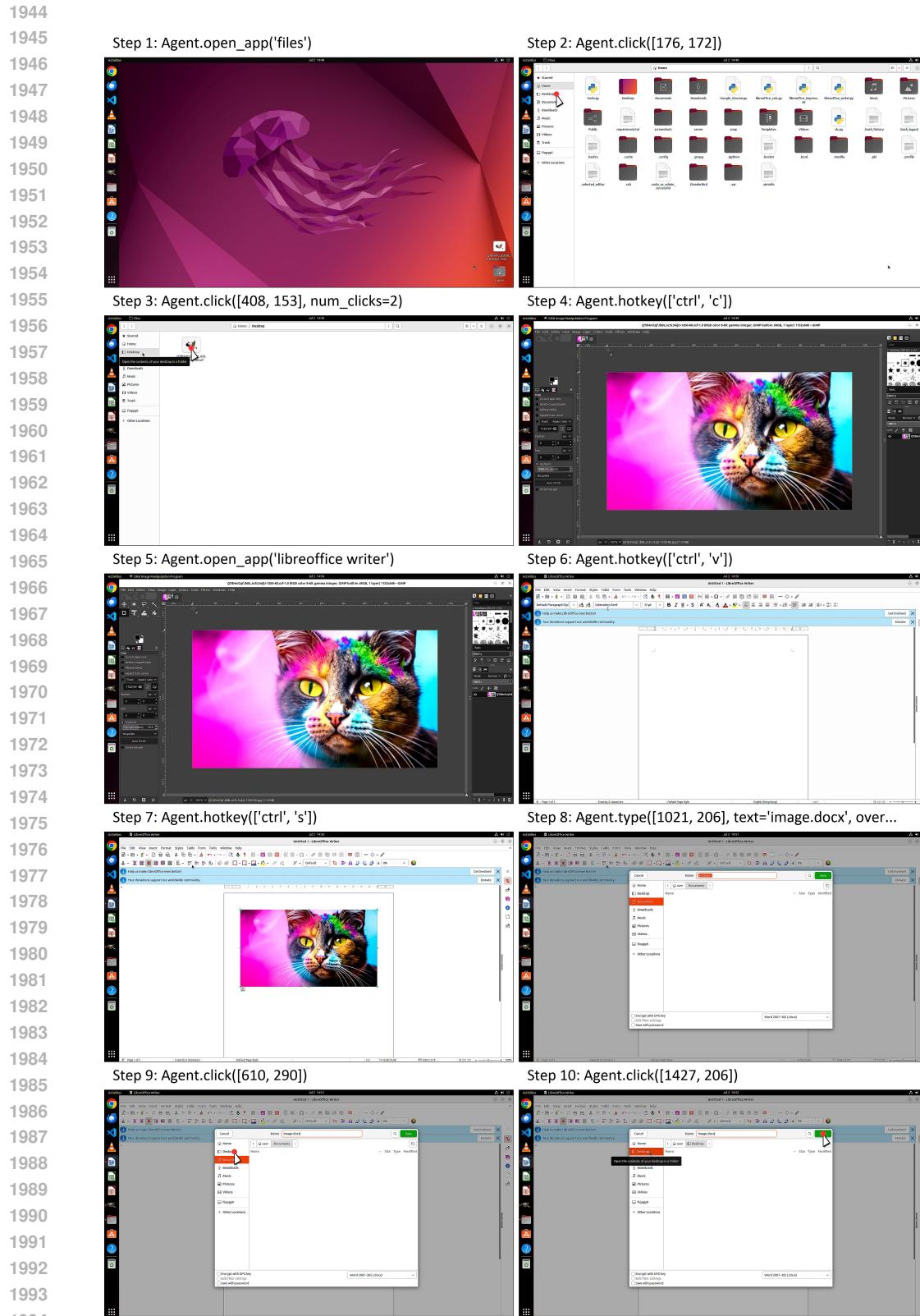
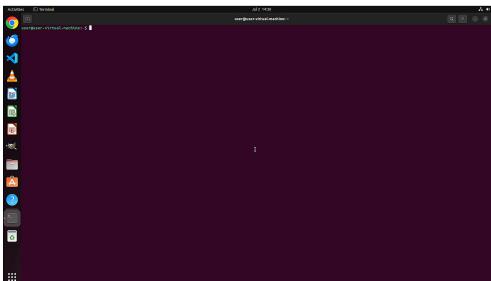


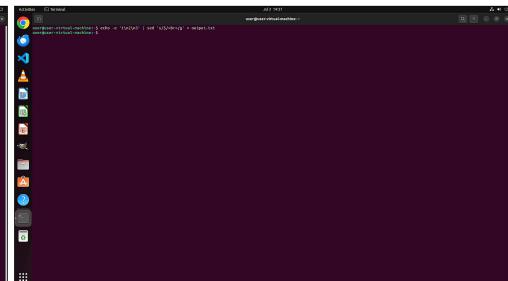
Figure 15: Task: I've stored my .xcf file on the Desktop. Can you assist me in copying the image and pasting it into a LibreOffice Writer document? Save the document as 'image.docx' on the Desktop, please.

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

Step 1: Agent.type(text="echo -e '1\\2\\3' | sed 's/\$/<br...")

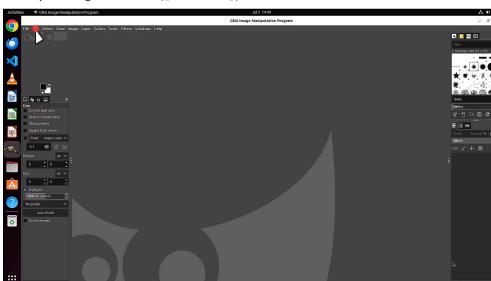


Step 2: Agent.exit(success=True)

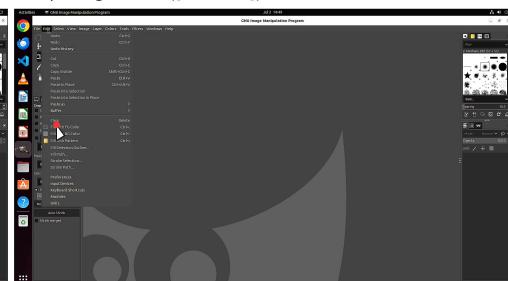


2011
2012
2013
2014
2015
2016
2017
2018
2019

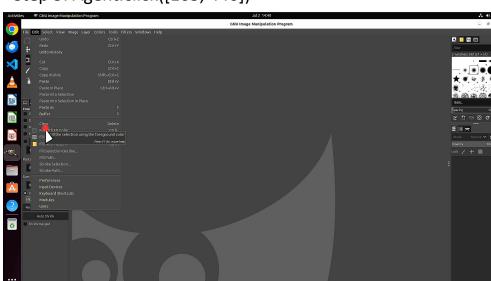
Step 1: Agent.click([125, 76])



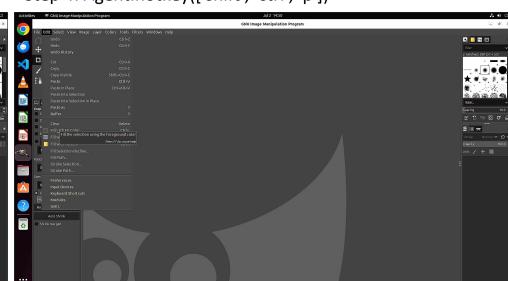
Step 2: Agent.click([163, 446])



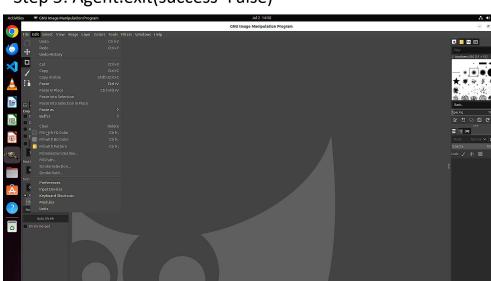
Step 3: Agent.click([163, 446])



Step 4: Agent.hotkey(['shift', 'ctrl', 'p'])



Step 5: Agent.exit(success=False)



2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Figure 16: Fail Task (Question Misunderstanding Error): Append "
" to the end of each line in "1\\n2\\n3" and save in output.txt

2052 **J USE OF LLMs**
20532054 During the preparation of this manuscript, we employed LLMs to assist with language refinement and
2055 grammar correction. All research ideas, methodologies, experiments, and analyses were independently
2056 conceived, designed, and validated by the authors.
20572058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105