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High-Order Graph Relationship-Based Sampling
Strategies for Recommendation Systems

Zhiqiang Huang

Abstract—In recommendation systems, collaborative filtering
typically leverages user-item interaction history to encode user
preferences and item characteristics into dense vectors. Most
existing research focuses on model architecture, such as Light-
GCN, which explicitly incorporates high-order graph neighbor
relationships into the embedding function, significantly enhancing
model performance. However, research on data-level strategies,
particularly sampling methods, remains limited. Most approaches
simply treat items interacted with by users as positive samples,
while all other items are considered negative samples. Negative
samples are then randomly selected or sampled based on popu-
larity. In contrast, we argue that high-order graph relationships
can be exploited at the data level to generate higher-quality
positive and negative samples, and can also serve as a form
of data augmentation. Furthermore, we introduce a curriculum
learning-based sampling strategy block (SSB) as a novel training
approach. Through extensive experiments, we analyze the impact
of the proposed sampling strategies and validate the effectiveness
of SSB.

Index Terms—Recommendation systems, Collaborative filter-
ing, Sampling strategies, Negative sampling, Curriculum learning

I. INTRODUCTION

W ITH the rapid development of the internet and the ex-
ponential growth of information, users are increasingly

facing the issue of data overload. In this context, recommen-
dation systems have become a key technology to mitigate this
problem, playing an indispensable role in areas such as e-
commerce, social media, and online entertainment [1] [2].
These systems help improve user experience and platform
efficiency by accurately filtering and delivering content that
aligns with users’ interests and needs.

Collaborative filtering (CF) [3]–[5], one of the most widely
used techniques in recommendation systems, has gained sig-
nificant attention for its ability to predict users’ preferences
based primarily on interactions between users and items. The
core assumption of CF is that users with similar behaviors
tend to have similar preferences [4], [5]. Classic CF models,
such as Matrix Factorization (MF) [3], LightGCN [6], and
SGL [7], have shown promising results. MF factorizes the
user-item interaction matrix into latent factors, capturing the
relationship between users and items. LightGCN enhances
traditional graph-based methods by encoding higher-order
neighborhood relations into embeddings via graph convolu-
tions. SGL, on the other hand, leverages contrastive learning
by introducing auxiliary self-discrimination tasks, generating
better representations. These advancements have significantly
improved the ability to capture complex patterns in user-item
interactions, leading to more accurate recommendations.

However, despite these advancements, current models still
face several challenges. One major issue is the potential for
bias in the learned representations because the used training
data usually contains biased user-item interactions [3], [8]–
[10], which can be further exacerbated by graph convolutions
[8], [11], [12]. While various methods have been proposed to
address bias, they often come with limitations. For example,
adversarial methods like IRGAN [13] use generative adversar-
ial networks (GANs) to select informative negative samples,
but these approaches often suffer from high computational
costs, unstable training, and long convergence times. Other
debiasing methods [14]–[16] aim to reduce bias during model
learning but struggle to eliminate all sources of bias effectively.

At the same time, research has also focused on improving
sampling strategies at the data level [17]–[20], which are cru-
cial for training effective recommendation models. Sampling
methods can be broadly categorized into several types: random
negative sampling [4], popularity-based sampling [21]–[23],
hard negative sampling [24], [25], and adversarial sampling
[13], [26]. Hard negative sampling prioritizes selecting the
most challenging negatives based on the model’s current pre-
dictions. While this accelerates convergence, it risks overfitting
by focusing too much on negatives that are too similar to
positives. Adversarial sampling incorporates GANs into the
process, where a generator selects negative samples to confuse
the discriminator (the recommendation model). While promis-
ing, this method faces challenges related to computational
complexity and unstable training. In summary, there is a need
for a more efficient sampling strategy, and existing methods
also overlook the impact on bias.

In this paper, we propose a novel sampling strategy that ex-
plicitly incorporates higher-order neighborhood relationships
from the graph at the data level. While most current methods
focus on popularity-based sampling [21]–[23], we argue that
integrating higher-order relationships can improve the learning
of the loss function, thereby improving the performance of
recommendation tasks. This is similar to the process where
graph convolutions utilize higher-order relationships [6], [27]
to improve the embedding function and, in turn, enhance
recommendation task performance. This idea also serves as
one of the inspirations for our proposed sampling strategy.
Unlike graph convolutions [6], which aggregate neighbors
and amplify bias [8], our approach incorporates higher-order
relations in the sampling process without aggregation, thereby
avoiding this issue. Additionally, by combining this with a
popularity-based sampling technique, we reduce the model’s
bias toward popular items, encouraging more balanced and
diverse learning.
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Inspired by the idea of curriculum learning [28], [29], we
also introduce a new block-based training strategy (referred to
as the Sampling Strategy Block, or SSB). In this framework,
a ”block” consists of several training stages, each employing
a different sampling strategy. The overall sample distribution
progresses from easy to difficult, ensuring stable training and
improved model performance.

The main contributions of this work are as follows:
1) We propose a novel sampling strategy that incorporates

higher-order neighborhood relationships into the sam-
pling process. Furthermore, we consider the impact on
bias.

2) We introduce a block-based sampling strategy (SSB),
inspired by curriculum learning, which ensures stable
training and efficient performance.

3) Through extensive experiments, including benchmark
and ablation studies, along with comprehensive vi-
sualizations, we demonstrate the effectiveness of the
proposed sampling strategy and block-based training
approach.

II. RELATED WORK

In this section, because we focus on sampling strategies in
collaborative filtering-based recommendation systems. We re-
view existing works on classical collaborative filtering models
and commonly used sampling strategies in recommendation
systems, which are most relevant to our work.

A. Collaborative filtering(CF) Models

CF [3]–[5] is a fundamental and popular topic in recommen-
dation systems. It aims to uncover users’ latent preferences and
items’ characteristics by mining user-item history interaction
data and encodes these relationships into dense vectors to
identify new user-item connections. These interactions are
typically implicit (e.g., clicks, add-to-cart actions) rather than
explicit (e.g., ratings, likes) [5].

Classical CF models evolved from early matrix factoriza-
tion (MF) [3] approaches, which merely parameterize user
and item embeddings and computes the relevance score to
reconstruct historical interactions. Subsequently, graph-based
methods such as NGCF [27] introduced explicit encoding
of high-order neighbor relationships and collaborative signals
into the embedding process. Building on this, the lightweight
yet effective LightGCN [6] model retained only the essential
graph convolution operations, achieving great results. How-
ever, studies have shown that graph convolutions can amplify
popularity bias [8], [11], [12], increasing the influence of
popular items and deviating from the real interests of the user.

Recent advancements include contrastive learning-based
graph models [7], [8], [30]–[32], which incorporate auxiliary
contrastive tasks to generate embeddings with desired prop-
erties, such as mitigating popularity bias or improving noise
robustness. Notable examples include SGL [7], SimGCL [31],
and RocSE [32]. Bias, a critical factor in recommendation
systems, has also been extensively studied. For instance, the
IPS [14] model balances accuracy and coverage by weighting
loss inversely with item popularity scores. The state-of-the-art

AdvDrop [8] model leverages adversarial learning to measure
bias, generating bias-aware and bias-mitigated subgraphs that
are then integrated into a contrastive learning framework. In
our work, we also examine how proposed sampling strategies
influence bias.

B. Sampling Strategies

In recommendation systems, negative samples are typically
employed in loss functions to contrast with positive samples
(e.g., BPR [4] and InfoNCE [33] loss functions), enabling the
model to learn ranking or preference relationships. Sampling
strategies play a pivotal role in mitigating data sparsity and
enhancing model performance. Existing sample methods can
be broadly classified into three categories: static negative
sampling [4], [21]–[23], hard negative sampling [24], [25],
and adversarial sampling [13], [26].

1) Static Negative Sampling: Static methods assume that
the probability of sampling negative examples remains con-
stant throughout training. These methods include:1)Random
Negative Sampling [4]: Negative samples are uniformly drawn
from missing data. This straightforward approach is commonly
adopted due to its simplicity.2)Popularity-Based Sampling
[21]–[23]: Negative samples are selected according to pop-
ularity distributions. For instance, in [23], Word2Vec applied
to Recommendation: random walk sequences are generated
using this strategy to capture graph structures.

2) Hard Negative Sampling: Hard negative sampling [24],
[25] dynamically adjusts the distribution of candidate samples
during training, prioritizing the selection of the most challeng-
ing negatives based on the current model state. For example,
items with the highest predicted scores among a random
set of candidates are chosen as hard negatives. While this
approach accelerates model convergence, it risks overfitting
by overemphasizing negatives that closely resemble positives,
thereby compromising sample diversity.

3) Adversarial Sampling: Adversarial sampling [13], [26]
incorporates generative adversarial networks (GANs) into the
sampling process, engaging in a minimax game between a
generator and a discriminator to identify more informative
negatives. For instance, IRGAN [13] employs a generator to
select negatives that confuse the discriminator, which acts as
the recommendation model. Despite their potential, adversarial
sampling methods often face practical challenges, including
high computational complexity, unstable training, and long
convergence times, limiting their usability in real-world sce-
narios.

Our proposed sampling strategy takes a novel approach
by leveraging higher-order neighbor information. Specifically,
certain negative samples can be reclassified as positives during
training based on their relationships with high-order neighbors.
This strategy alleviates data sparsity [3], mitigates overfitting
risks, and enhances the model’s ability to learn higher-order
neighbor relationships. From both data and model perspec-
tives, this approach contributes to more robust and effective
recommendations.
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Fig. 1: Common training process of graph-based model architecture in CF.

III. PRELIMINARY

To better understand the role of sampling strategies in rec-
ommendation systems and provide context for our work, this
section focuses on introducing graph convolution frameworks
that achieve excellent results in collaborative filtering and the
fundamentals of negative sampling.

A. Graph Convolution Framework

Collaborative filtering (CF) [3]–[5] is a fundamental and
active area in recommendation systems. Its core assumption
is that users with similar behavior patterns exhibit similar
preferences [4], [5]. Most CF-based models aim to infer user
preferences and item features from historical user-item inter-
action data, encoding them into dense vectors for downstream
tasks.

Let U and I denote the sets of users and items, respectively,
and O+ = {yui | u ∈ U, i ∈ I} represents the observed
historical interactions between users and items. These interac-
tions are the primary training data for CF. A bipartite graph
G = (V,E) can be constructed based on the interaction
history, where V = U ∪ I is the set of nodes (users and
items) and E is the set of observed edges. If u has interacted
with i, then eui ∈ E. The adjacency matrix of G is denoted
as A. The goal of recommendation systems can be seen as
predicting new connections in A [3].

Graph Convolutional Networks(GCNs) [6], [27] have shown
great potential in collaborative filtering by encoding high-
order neighbor relationships into embeddings. GCNs typically
consist of three major components:

1) Embedding Initialization Layer: Each user and item
has an initial embedding, which are trainable parameters
denoted as ZU and ZI . For example, the initial embed-
ding of a user u ∈ U is z0u, and similarly for items.

2) Embedding Convolution Layers: These layers utilize
graph structure to propagate and aggregate information
from neighbors. For a specific user u, the embedding at
the l-th layer is given by:

z(l)u = fcombine

Ä
z(l−1)
u , faggregate({z(l−1)

i | i ∈ Nu})
ä
,

(1)

where Nu denotes the neighbors of u, faggregate combines
structural information from neighbors, and fcombine de-
termines how the previous layer’s representation of u is
updated.

3) Prediction Layer: After n layers of convolution, the
model aggregates embeddings z0u, z

1
u, . . . , z

n
u to produce

the final representation:

zu = freadout(z
0
u, z

1
u, . . . , z

n
u), (2)

where freadout could be a simple concatenation, weighted
sum, or a more complex function. Similarly, the final
item embedding zi is obtained. Finally, a similarity
function s(zu, zi), such as inner product or a neural
network, calculates the user-item score ŷui, which is
used for ranking or other recommendation tasks.

B. Bayesian Personalized Ranking and Negative Sampling

To learn model parameters, the Bayesian Personalized
Ranking (BPR) [4] loss is widely used due to its ability to
capture preference ordering effectively:

LBPR = −
∑

(u,i,j)∈O

lnσ(ŷui − ŷuj) + λ∥Θ∥22, (3)

where σ is the sigmoid function, O is the set of triplets (u, i, j)
such that (u, i) is an observed interaction and (u, j) is not, and
Θ represents model parameters. BPR loss encourages higher
scores for observed interactions compared to unobserved ones.

Negative sampling [4], [6], [13], [21]–[27] plays a criti-
cal role in learning effective representations, as it provides
contrastive signals to distinguish observed from unobserved
interactions. Negative samples are typically drawn from un-
observed user-item interactions. For example, the (u, j) pairs
in BPR loss above. Common strategies include static negative
sampling, hard negative sampling and adversarial sampling,
which are elaborated in RELATIVE WORK partII-B.

In a nutshell, effective negative sampling is crucial, as
it directly impacts the quality of learned embeddings and
the model’s ability to generalize. The graph-based model
architecture in collaborative filtering can be referred to Fig.
1. It is worth mentioning that Graph Contrastive Learning [7],
[8], [31], [32] has recently gained attention for its ability to
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improve node representations by introducing the node self-
discriminating task as a auxiliary task. These tasks involve
contrasting positive and negative samples, and losses like
InfoNCE [33] is employed. However, due to time and resource
constraints, our current work focuses on sampling strategies in
the main task of recommendation rather than auxiliary tasks,
leaving the exploration of sample strategy in auxiliary task for
future work.

IV. METHODOLOGY

In this section, we first review the training framework
for model parameters in collaborative filtering(CF) [3]–[5],
where the loss function is based on preference relationships
(e.g., BPR [4] loss function), as shown in Fig. 1. Initially,
the training data can be viewed as a bipartite graph, where,
for each user, we perform positive and negative sampling.
During model training, this is done in batches. The model then
outputs embedding vectors for the users or items, which are
used to compute the loss through a loss function. The model
parameters are optimized via stochastic gradient descent or
other optimization methods.

Let us focus on the sampling process. The positive and
negative samples used for learning the loss function essentially
correspond to samples with stronger and weaker preference
signals, respectively [4]. These samples are relative: an item
that a user has interacted with is assumed to have a stronger
preference signal for that user, which is a natural assumption.
Almost all methods treat items that a user has interacted
with as positive samples. Additionally, an item that a user
has not interacted with but is associated with similar users
is also assumed to have some preference signal for the user
under collaborative filtering assumptions [4], [5]. Moreover,
compared to other items with no significant relationship, these
items naturally carry stronger preference signals. This obser-
vation justifies the sampling strategies we propose. Below, we
will describe two types of sampling strategies we introduce: a
higher-order interaction-based [6], [27] sampling strategy and
a curriculum learning-based [28], [29] sampling strategy block
(SSB).

A. Higher-Order Relationship-Based Sampling Strategy

u1

u3

i1

i3

i5

u2

u4

i4

i2 u1 i1

u2

u3

i3

i5

i2

i4

User-Item Interaction Graph High-order Interaction of u1

Fig. 2: An simple example of the user-item interaction graph
and the high-order Interaction.

Let’s begin with a simple example, as shown in Fig. 2. On
the left, we have the user-item bipartite interaction graph, and

on the right, we have the higher-order interaction graph for
user u1, which illustrates the general relationships between
u1 and other users/items. We define the shortest path from u1

to any node as the number of hops from u1 to that node. For
example, if the shortest path from u1 to i3 is u1 → i1 →
u2 → i3, then i3 is a 3-hop neighbor of u1. It is important to
note that in a bipartite graph, odd-numbered hops correspond
to items, and even-numbered hops correspond to users. Since
we sample items in positive-negative sampling, we consider
odd-numbered hops.

Existing sampling methods, such as random sampling [4],
popularity-based sampling [21]–[23], hard negative sampling
[24], [25], and adversarial sampling [13], [26], treat interacted
items as positive samples, with other un-interacted items being
considered negative samples. The primary difference lies in
how negative samples are selected. However, we propose lever-
aging the graph structure to more finely partition the items.
On the one hand, we exploit the higher-order neighborhood
relationships of users in the data, and on the other hand, richer
positive and negative sample choices can help alleviate issues
like data sparsity and overfitting [3] [6].

Our sampling strategy involves dividing all items into three
categories: (1) items directly interacted with by the user (e.g.,
the nodes inside the yellow box in Fig. 2), (2) 3-hop items
(e.g., the nodes inside the green box in Fig. 2), and (3) other
items (e.g., the nodes inside the black box in Fig. 2). We
refer to these as easy positive items, uncertain items, and easy
negative items. The two basic versions of our higher-order
sampling strategies are as follows:

1) Easy positive items as positive samples, uncertain
items as negative samples, without considering easy
negative items. We argue that uncertain items, as 3-
hop neighbors of the user, are likely to be items the
user would be interested in. Intentionally using these
items as negative samples helps the model learn to better
distinguish between user preferences.
This strategy is similar to hard negative sampling [24],
[25], where negative samples are selected with scores
close to the positive ones to provide stronger contrastive
signals. However, our approach is based on a static
graph structure and directly utilizes the graph’s structural
information as a strong supervisory signal, independent
of the current model training results. Nevertheless, like
hard negative sampling, this strategy can accelerate
model convergence but may also lead to overfitting.
Moreover, using this strategy alone misses out on valu-
able information, such as the contrast between easy
positive and easy negative items. If we force the model
to distinguish between similar items too early, it may
destabilize training and lead to suboptimal solutions.
Therefore, we do not recommend using this strategy
alone.
The primary motivation for this strategy is twofold: it
helps the model fine-tune its ability to distinguish user
preferences and accelerates convergence. We apply this
strategy in the sampling strategy blocks discussed later.

2) Easy positive items and uncertain items as positive
samples, easy negative items as negative samples. As
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mentioned earlier, uncertain items, being 3-hop neigh-
bors, are assumed to carry preference signals for the
user. Therefore, it is natural to treat uncertain items as
positive samples.
This can be seen as explicitly using the higher-order
neighborhood relationships in the graph [6], [27] as a
contrastive signal. This strategy also serves as a form of
data augmentation, which helps alleviate data sparsity
[3]. However, it is important to note that the number of
uncertain items is typically very large, and we explain
this later. To prevent an overemphasis on uncertain
items, we propose a refined sampling rule that limits the
number of uncertain items selected as positive samples.
Specifically, the number of uncertain items selected as
positive samples is constrained by the user’s average
interaction count, the number of uncertain items, and
the number of easy positive items. The mathematical
expression is as follows:

min

Å
max

Å
ninter

nuser
− nep, 0

ã
, nun, λnep

ã
(4)

where ninter is the total number of interactions (edges in
the bipartite graph), nuser is the total number of users, nep
is the number of easy positive items for a user, nun is the
number of uncertain items for a user, and λ controls the
maximum proportion of uncertain items relative to easy
positive items. The first constraint focuses on augment-
ing data for users with fewer interactions, the second
limits the number of times each uncertain item can be
selected as a positive sample, preventing overfitting to
the graph’s structure, and the third constraint ensures that
the main contrast signal comes from direct interactions
rather than from the graph structure.

Based on the above sampling strategy, we can further
apply random sampling, popularity-based sampling, or Inverse
Propensity Scoring (IPS) sampling to the negative sample
set to achieve different effects. Random sampling is the
most common approach [4]. Popularity-based sampling and
IPS sampling [21]–[23] help the model learn the differences
between positive samples and specific sets of items based on
their popularity. Popularity-based sampling tends to focus on
negative samples with higher popularity, which may be more
challenging for the model to distinguish.

B. Curriculum Learning-Based Sampling Strategy Block
(SSB)

basic-uniform UN-IPS basic-uiniform

UP-uniformUN-popularity

Fig. 3: A specific Sampling Strategy Block(SSB).

The basic unit of our sampling strategy block is a sampling
strategy, which includes common strategies (e.g., treating
interacted items as positive samples and others as negative
samples) and our proposed rules for classifying positive and
negative samples, along with weight rules for sampling from
the negative sample set. We define the most basic strategy
as basic, the previously proposed strategy (1) in IV-A part
as UN (uncertain negative sample), which focuses on negative
sampling of uncertain items, and strategy (2) as UP (uncer-
tain positive sample), which focuses on positive sampling
of uncertain items. We also append -uniform, -IPS, and
-popularity to indicate whether the negative sample set is
sampled with uniform, IPS-based, or popularity-based weights.
For example, UP-popularity means that easy positive
items and uncertain items are used as positive samples, while
easy negative items are used as negative samples, with negative
samples being sampled based on their popularity.

A specific SSB, used in our experiments, is shown in Fig.
3. Each small box represents a sampling strategy, and each
epoch uses one strategy, with the strategy switching in the
direction of the arrows for the next epoch. At the beginning
of training, the sampling strategy corresponds to the one
outlined in the black-bordered box in Fig. 3. The overall
design of the sampling strategy block follows the idea of
curriculum learning [28], [29]: starting with simple strate-
gies and gradually increasing the complexity. For instance,
basic-uniform ensures model stability and prevents bias,
while UP-uniform serves as a form of data augmenta-
tion, helping alleviate data sparsity and reduce overfitting
risks. UN-popularity biases the sampling toward high-
popularity and strongly collaborative negative samples, which
can be considered very hard negatives. When the model is
performing well, this module helps fine-tune the model and
enables it to distinguish user preferences more precisely.

C. Justification for the Positive-Negative Sample Partitioning
Strategy

In the proposed sampling strategies, we classify items into
three categories: 1-hop, 3-hop, and other items. Higher-order
hops (e.g., 5-hop, 7-hop) are not further considered for two
reasons. First, the collaborative signal from 5-hop items as
positive samples would have significantly diminished. Second,
the number of 3-hop items is already very large and can
provide ample structural information. The number of n-hop
items grows exponentially as n increases. Suppose each node
in the user-item interaction graph has an average of k edges.
After 1 hop, we obtain k nodes; after 2 hops, we obtain k2

nodes; and after n hops, we obtain kn nodes. For instance,
if k = 10, then after 3 hops, we can get 1000 nodes, which
is a 100-fold increase. Although some of these 1000 nodes
may overlap, the total number of nodes is still on the order of
O(k3), which is why we consider 3-hop neighbors sufficient
for capturing the graph’s structural information.

V. EXPERIMENTS
We conducted extensive experiments on real-world datasets

to validate the proposed method and address the following
research questions:
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Fig. 4: Performance on Coat test id

• RQ1: How does the SSB-based curriculum learning
approach perform compared to other baseline models?

• RQ2: How does the proposed high-order neighbor
relationship-based sampling strategy perform when used
in isolation?

• RQ3: Can SSB mitigate biases in the recommendation
process?

A. Experimental Setup

Datasets: We used the small Coat [8], [34] dataset, which
contains user ratings of outerwear items during shopping
sessions. The dataset includes a biased dataset and an unbiased
random dataset. The biased dataset was split into training,
validation, and test sets in a 7:1:2 ratio (with test_id
representing the in-distribution test set), while the unbiased
dataset was used as an out-of-distribution (OOD) test set,
referred to as test_ood.

Baselines: We compared our method with several classic
and state-of-the-art models, including Matrix Factorization
(MF) [3], LightGCN [6] models with 0, 2, and 4 layers, as well
as bias-correction models like IPS-CN [14] and the adversarial
learning-based model AdvDrop [8], which has recently shown
excellent results.

Evaluation Metrics: To assess model performance, we used
NDCG@K [8] and Recall@K [8] as evaluation metrics.

B. Comparison w line Performance (RQ1)

Due to time and resource constraints, we applied the
SSB-based curriculum learning strategy only to the 2-layer
LightGCN model, which we call LightGCN-2-block. We then
compared its performance with that of the baselines. It is
important to note that the SSB-based strategy is related to the
sampling method and is independent of the model architecture;
we will investigate its effect on other models in future research.

In Fig. 4, we can see the approximate result comparison of
each model on Coat test id. The detailed results on the biased
test_id dataset are shown in Table I. From the table, we
draw the following conclusions:

• The LightGCN model outperforms the traditional MF
model by a significant margin. The 2-layer LightGCN

TABLE I: Performance on Coat test id

Metrics Recall@3 NDCG@3 Recall@5 NDCG@5
MF 0.0725 0.0719 0.1023 0.0826

LightGCN-0 0.0630 0.0680 0.0878 0.0755
LightGCN-2 0.1060 0.1156 0.1451 0.1274
LightGCN-4 0.1066 0.1170 0.1340 0.1230

IPS 0.1084 0.1153 0.1483 0.1276
AdvDrop 0.1011 0.1072 0.1401 0.1197

LightGCN-2-block 0.1086 0.1170 0.1505 0.1303

TABLE II: Performance on Coat test ood

Metrics Recall@3 NDCG@3 Recall@5 NDCG@5
MF 0.3124 0.6266 0.4552 0.6928

LightGCN-0 0.2891 0.5822 0.4210 0.5824
LightGCN-2 0.3362 0.6430 0.5070 0.6552
LightGCN-4 0.3419 0.6410 0.5073 0.6525

IPS 0.3440 0.6484 0.5114 0.6584
AdvDrop 0.3559 0.6708 0.5091 0.6706

LightGCN-2-block 0.3430 0.6443 0.5091 0.6706

shows a 46% improvement in Recall@3 and a 41.8%
improvement in Recall@5, further validating the effec-
tiveness of graph convolution.

• However, increasing the number of layers does not always
lead to better performance. The 4-layer LightGCN actu-
ally performs worse than the 2-layer version, indicating
that the model suffers from over-smoothing in this small
dataset.

• Both the bias-correction models IPS and AdvDrop
achieved good performance, with IPS being the best
among all baselines.

• The LightGCN-2-block model, which incorporates the
SSB strategy, achieved a 2.45% improvement in Re-
call@3 and a 3.72% improvement in Recall@5 compared
to the standard LightGCN-2, surpassing IPS and becom-
ing the best model on all metrics in the test_id set.

The results on the unbiased test_ood dataset are shown
in Table II. From these results, we draw the following conclu-
sions:

• The 2-layer LightGCN shows only a 7.6% improvement
in Recall@3 and an 11.4% improvement in Recall@5
compared to MF, which is much smaller than the im-
provement on the biased test set (test_id). This sug-
gests that while LightGCN can better leverage high-order
neighbor relationships through graph convolution, it also
amplifies popularity bias and learns biased representa-
tions, which limits its improvement on unbiased data.

• Both AdvDrop and IPS effectively mitigate bias and
achieved the best performance in Recall@3 and Re-
call@5, respectively.

• The LightGCN-2-block model, which incorporates the
SSB strategy, shows improvement on all metrics in
test_ood, indicating that SSB helps the model learn
less biased representations. This may be due to one of
the sampling strategies in SSB mitigating popularity bias
during training.
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TABLE III: Ablation study about sampling strategies on Coat

Metrics test id test ood
Recall@3 NDCG@3 Recall@5 NDCG@5 Recall@3 NDCG@3 Recall@5 NDCG@5

basic-uniform 0.1060 0.1156 0.1451 0.1274 0.3362 0.6430 0.5070 0.6552
basic-popularity 0.1054 0.1166 0.1440 0.1282 0.3458 0.6489 0.5081 0.6579

Basic-IPS 0.1063 0.1160 0.1453 0.1288 0.3460 0.6491 0.5068 0.6575
UP-uniform 0.0973 0.1030 0.1388 0.1173 0.3457 0.6484 0.5107 0.6587

UP-popularity 0.1023 0.1111 0.1351 0.1203 0.3423 0.6422 0.5047 0.6517
UP-IPS 0.1059 0.1166 0.1420 0.1269 0.3451 0.6414 0.5100 0.6546

UN-uniform 0.1008 0.1118 0.1472 0.1277 0.3483 0.6544 0.5096 0.6621
UN-popularity* 0.1070 0.1162 0.1501 0.1304 0.3443 0.6479 0.5012 0.6529

UN-IPS 0.1021 0.1116 0.1466 0.1265 0.3425 0.6477 0.5140 0.6614

C. Impact of Single Sampling Strategies (RQ2)

We also conducted a series of experiments to eval-
uate the impact of using individual sampling strategies,
specifically our proposed high-order neighbor-based sam-
pling strategies. We replaced the sampling strategy in the
2-layer LightGCN model and treated it as an extreme ab-
lation study, where only one sampling unit from SSB was
used. We compared different sampling strategies, including
basic-uniform, basic-popularity, basic-IPS,
UP-uniform, UP-popularity, UP-IPS, UN-uniform,
UN-popularity, and UN-IPS (detailed descriptions of
these terms can be found in the METHODOLOGYIV-B sec-
tion).

The results are shown in Table III. From these experiments,
we observe the following:

• Using a single sampling strategy generally leads to a
decrease in performance on the test_id dataset, but an
increase in performance on the test_ood dataset. This
suggests that leveraging high-order neighbor relationships
at the data level can help mitigate the bias amplification
issue caused by graph convolution.

• The UN-popularity strategy improved performance
on test_id, but its performance decreased on
test_ood. This may be because UN-popularity
focuses on sampling popular items, which amplifies pop-
ularity bias and leads to more biased representations.

D. Visualizing the Impact of SSB on Bias (RQ3)

To further investigate the effect of SSB on bias, we vi-
sualized the embeddings learned by the 0-layer, 2-layer, and
4-layer LightGCN models, as well as the 2-layer LightGCN
model trained with SSB. We used t-SNE [35] to reduce
the embedding dimensions to 2D and considered specific
categories: user gender and item popularity. Item popularity
was categorized into three groups based on the number of
interactions. The results are shown in Figs. 5.

From Fig. 5a-5c and 5e-5g, we can see that graph con-
volutions tend to exacerbate bias, which is the same result
as [8]. However, Figures 5d and 5h show that the SSB-
trained model (i.e., LightGCN-2-block mitigates some of this
bias, generating more unbiased representations compared to
the original LightGCN with two layers. This suggests that
SSB indeed helps in learning more balanced and less biased
embeddings.

VI. LIMITATIONS
Although training based on SSB achieves some performance

improvements, there are several limitations to the current
approach. First, the design of SSB is still largely reliant on
manual crafting, depending heavily on the designer’s intuition
and experience. Furthermore, the effectiveness of SSB may
be dataset-specific. The underlying principle of SSB is rooted
in curriculum learning, where the difficulty of training varies
across different datasets. As a result, the sampling units may
need to be adjusted in order to maintain stable for different
models.

Another limitation is related to the high-order neighbor-
based sampling strategy we proposed, which requires consid-
ering items up to the 3-hop level. The number of items grows
exponentially as the hop distance increases. For example, if
each node in the graph has an average of 100 connections,
a user’s 3-hop items could amount to approximately 106

items—an extremely large number. In large-scale datasets,
this can result in significant computational costs and memory
usage, making these sampling strategies potentially impractical
for very large datasets. Therefore, further work is needed to
explore how these strategies can be adapted or optimized for
scalability in large-scale recommendation systems.

VII. CONCLUSION
In this work, we introduced high-order neighbor

relationship-based sampling strategies which aim to leverage
graph structural information at the data level, and the
SSB(Sampling Strategy Block) training framework. The
proposed sampling strategies can alleviate the sparsity
problem to some extent and helps the model learn more
unbiased representations. Through extensive experiments, we
validated the effectiveness of SSB and investigated how the
proposed sampling strategies impact model performance.

This work may provide insights into related areas such as
data augmentation and training stability in recommendation
systems. We believe there is substantial potential for future
research in improving how sampling strategies can explicitly
utilize high-order graph neighbor relationships, as well as
designing more efficient and scalable SSB frameworks.
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