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Abstract— Steganography is the technique of hiding secret
messages within seemingly harmless covers to elude examina-
tion by censors. Despite having been proposed several decades
ago, provably secure steganography has not gained popular-
ity among researchers due to its rigorous data requirements.
Recent advancements in generative models have enabled these
researchers to provide explicit data distributions, which has
contributed to the development of provably secure steganography
methods. However, these methods depend on the assumption
of a preshared key. In practical settings, these methods face
various challenges, including key agreement, key updating, and
user expansion. Although public-key steganography provides a
viable solution, existing public-key steganography approaches are
burdened with inefficiency and complex implementation in prac-
tical scenarios. In this paper, we proposes a practical public-key
steganography method based on elliptic curve cryptography and
a generative model. This method is the first comprehensive and
practical approach to public-key steganography and stegano-
graphic key exchange. Additionally, we provide a specific instance
to illustrate the proposed method. The security of the proposed
construction is also proven based on computational complexity
theory. Further experiments have demonstrated the security and
efficiency of the proposed method.

Index Terms— Public-key steganography, generative model,
elliptic curve cryptography, provable security.

I. INTRODUCTION

TEGANOGRAPHY [1], [2], [3] is a covert commu-
Snication technique that hides secret information within
seemingly innocent objects, such as text, images, audio, and
videos. This technology has gained increased attention in
recent years due to the rise in internet censorship [4], [5],
[6], as it not only protects the content of secret information
but also conceals the fact that covert communication is taking
place.

In steganographic communication, the steganographer
embeds secret information into the widely distributed covers
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to obtain the stegos and strives for the covers and the ste-
gos to be indistinguishable. The steganalyzer [7], conversely,
is dedicated to finding subtle differences in features between
the covers and the stegos. The corresponding technology is
called steganalysis [8].

In digital steganography, past methods such as least signif-
icant bit (LSB) replacement [9] and exploiting modification
direction (EMD) [10] were easily detected by artificial statis-
tical features [11]. To address this, researchers proposed the
minimum distortion model [12], focusing on designing distor-
tion functions [13] and steganographic codes [14]. Advances
include machine learning-based distortion [15], [16], [17],
[18], yet these methods remain vulnerable to deep learning-
based detection [19], [20], [21]. To improve security, it is
crucial to develop provably secure steganographic communi-
cation systems beyond empirical frameworks.

A. Classical Provably Secure Steganography

There have been two categories of provable security in
steganography thus far: information-theoretic security and
computational security. The information-theoretic security
model was proposed by Cachin [22], who first mod-
eled steganographic security by Dgp (Pc||Ps), which is the
Kullback-Leibler divergence between the cover distribution P,
and the stego distribution Ps. Hopper et al. [23] proposed a
steganographic model based on computational complexity the-
ory and constructed a provably secure steganographic method
based on the perfect sampler hypothesis and the rejection
sampling method.

The perfect sampler assumption in provable security
steganography requires precise sampling of a particular cover
distribution. Initially, email and camera were considered text
and image samplers respectively, but they did not meet
that requirement. Therefore, provably secure steganography
remained a theoretical concept at that time.

B. Generative Provably Secure Steganography

The development of deep learning and generative mod-
els [24], [25], [26] has significantly enhanced the ability
to learn probability distributions from samples and perform
accurate sampling from those distributions. This progress
has, in turn, greatly advanced the field of provably secure
steganography.
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Yang et al. [27] were the first to propose the idea
of implementing provably secure steganography by using
an autoregressive generative model and arithmetic coding
(AC). Chen et al. [28] and Ziegler et al. [29] extended this
method to text-to-speech and text-generation tasks, respec-
tively. Zhang et al. [30] introduced a steganography method
based on adaptive dynamic grouping (ADG), which can
achieve provable security if and only if the grouping is
perfectly balanced. Kaptchuk et al. [31] proposed Meteor,
a novel approach that addresses the randomness reuse problem
found in AC-based methods. Ding et al. [32] presented a more
efficient method based on distribution copies called Discop,
which outperforms previous attempts in the field. Recently,
de Witt et al. [33] demonstrated that achieving maximal
transmission efficiency among perfect security procedures is
equivalent to solving a minimum entropy coupling (MEC)
problem and introduced a method based on an iterative MEC
(AIMEC) procedure.

C. From Symmetric Steganography to Public-Key
Steganography

In the communication scenario, a session is a temporary
and interactive exchange of information between two or more
devices, users, or applications over a communication channel,
such as the Internet. Sessions involve a series of requests and
responses and are created and maintained to enable continuous
communication between the involved parties.

Session security in steganography typically encompasses
various aspects, including secure session establishment, ses-
sion concealment, message integrity within the session, and
identity authentication within the session. Secure session
establishment requires initiating the session with the negotia-
tion of a shared key, while session concealment demands that
session content and channel distributions be indistinguishable
to conceal covert communication as normal communication
processes. Message integrity requires verification that commu-
nication content remains unaltered, and identity authentication
requires confirming the identities of the communicators.

The symmetric steganography method such as AC [27],
Meteor [31] and Discop [32], are primarily limited to session
concealment. Normally they assume that communication users
have already shared a symmetric key, which remains unknown
to any potential attacker. The sender encrypts the plaintext
message by using this key and then embeds the encrypted
message (i.e., ciphertext) within the media. Although these
approaches have demonstrated promise, they have not pro-
posed solutions for other aspects of session security, inherently
restricting their applicability in general communication scenar-
i0s.

The concept of public-key steganography, which can effec-
tively address these aspects of session security, was initially
introduced by von Ahn and Hopper as early as 2004 [34].
Their model introduced a pivotal shift by substituting the
cryptographic algorithms traditionally used in symmetric key
provable security steganography methods with public-key
ciphers featuring pseudo-random output algorithms. Subse-
quent research endeavors further expanded the scope by
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incorporating considerations for active attack scenarios [35],
[36].

However, despite the theoretical promises of these
public-key steganography constructions, they have not gained
widespread adoption in practice. One of the key challenges lies
in the inability to achieve perfect sampling, which has hindered
their practical implementation. The samplers proposed by
Hopper et al. [23], [35], such as those tailored for email [23]
and document [34] use cases, prove to be impractical and
inefficient. These samplers fail to deliver the precise sampling
of the carriers, thereby posing a significant hurdle in the
practical application of this technique.

D. Our Method

Inspired by provably secure symmetric generative steganog-
raphy constructs and to make public-key steganography truly
practical, we present a comprehensive public-key steganog-
raphy scheme that leverages elliptic curve cryptography and
a generative model. More specifically, we present an indis-
tinguishable from random bits under the chosen plaintext
attack (IND$-CPA) secure public-key encryption scheme that
employs two hybrid encryption schemes. The first ciphertext
is generated by using a pseudorandom elliptic curve point
encoding technique called Elligator 2 [37], which transforms
points on the curve into a binary string indistinguishable
from a uniformly random string. To meet the Decisional
Diffie-Hellman (DDH) assumption [38] on elliptic curves,
we multiply the selected point by a constant factor and hash
the result to obtain a key for the second ciphertext. The
second ciphertext encrypts the message by using an IND$-
CPA secure symmetric encryption scheme, ensuring that the
overall encryption scheme is INDS$-CPA secure.

By using this public-key encryption system, we build a
public-key steganography system based on reversible map-
ping and sampling, which reversibly maps binary strings to
mutually exclusive and measure-equivalent subdistributions of
generative data. Afterward, we construct an instance of a
public-key steganography system based on a text-to-speech
model, WaveGlow [28]. By introducing reversible mapping
on zero-mean spherical Gaussian sampling, we can generate
highly naturalistic audio that can hide a message and thus put
our construction into practice. We deploy the whole system
on Curve25519 [39].

Additionally, we propose a one-round asynchronous
algorithm for steganographic key exchange, which is beneficial
in situations where revealing public keys poses challenges.

We also provide comprehensive proof that the proposed
public-key steganography construction is resistant to chosen
hiddentext attacks (CHA) [34] under complexity theory. The
security of the proposed scheme is also verified through
National Institute of Standards and Technology (NIST) pseu-
dorandomness tests [40] and steganalysis experiments [41],
[42], [43].

E. Contributions

The main contributions of this paper can be summarized as
follows:
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Fig. 1. Diagram of the symmetric steganography system.

« Session security. To comprehensively address all facets
of session security, we propose an efficient public-key
steganography method with favorable computational
complexity and embedding efficiency. Our proposed
method leverages elliptic curve cryptography and uti-
lizes a generative model to create a practical public-key
steganography approach. To the best of our knowledge,
this is the first comprehensive and practical method for
public-key steganography.

o Comprehensive proof. For the public-key steganography
construction we designed in the paper under the chosen
hiddentext attack, we provide comprehensive proof by
using computational complexity theory.

« Steganographic key exchange construction. We pro-
pose a steganographic key exchange based on the
elliptic-curve Diffie-Hellman (ECDH) and the generative
model, which can be used for covert key exchange in sit-
uations where revealing public keys poses challenges.

II. RELATED WORK
A. Symmetric Steganography System

The classical model of steganography, presented by Sim-
mons [7], describes the prisoners’ problem in which Alice and
Bob, as prisoners, plot their escape, as shown in Fig.1. Their
sole means of communication is a public channel under the
watchful eye of warden Eve. To deceive Eve and to maintain
the appearance of ordinary conversation, Alice and Bob must
skillfully embed their secret information within the seemingly
innocuous text by using a pre-shared key. Then, to accurately
decode the hidden data, Alice and Bob both use the same key
to extract the secret information from the text.

The classical model is symmetric, as shown in Fig.1. The
encoding algorithm takes a shared key with a message (known
as hiddentext) to produce stego, while the decoding algorithm
takes stego and the same key to extract the message. The
security goal is to ensure that stego and cover samples from
the channel Cj, are indistinguishable.

Similar to cryptography, steganography must follow Ker-
ckhoffs’s principle [44], which implies that any information
except the key must be presumed to be disclosed to Eve.

B. Public-Key Steganography System

The symmetric steganography system mainly focuses on
session security, which emphasizes the importance of sharing
a secret key between communicating parties to ensure the con-
fidentiality and integrity of the exchanged data. However, its
deficiencies become evident when multiple users persistently
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Fig. 2. Diagram of the public-key steganography system.

seek to participate in concealed communication on social
networks.

« No key negotiation before the session begins.

o Poor scalability. If a new user seeks to join a covert
communication network, they are required to establish
key exchanges with all individuals they intend to com-
municate with.

o Hardness for maintaining and key refreshing. For a
group of n users, the total number of keys that need to
be maintained is O (n?), increasing at a square rate. It is
difficult to guarantee forward security during key updates.

« No efficient identity authentication mechanism. The
absence of an effective identity authentication mechanism
in symmetric steganography leaves the system vulnerable
to potential attacks involving identity forgery.

Inspired by public-key encryption, which effectively
resolves these issues, von Ahn and Hopper [34] proposed
public-key steganography.

As shown in Fig.2, a public-key steganography system is a
triple of probabilistic algorithms SS = (SG, SE, SD). SG(1¥)
takes a random bitstream as input and generates a key pair
(PK, SK). SE(PK,m, h) takes the public key as input, the
hidden message m, and the distribution of the history-based
channel Cj,. It then outputs the stegotext s sampled from Cj,.
In this context, the channel refers to the cover medium used
for concealing the hidden message. SD(SK, s, h) takes the
private key, stegotext, and history, and outputs hiddentext m:

¥ m,h, (PK,SK) < SG(15).
SE, SD should be self-consistent, that is:
Pr[SD(SK,SE(PK,m,h),h) =m]>1—¢€k) (1)

which suggests that the decoding error probability can be
regarded as negligible.

Compared to symmetric steganography shown in Fig.1,
public-key steganography simplifies key distribution, stream-
lines key management, and enables the use of digital
signatures.

The existing constructions of public-key steganography,
as seen in works by Hopper et al. [23], [35], rely on
RSA [45] with the probabilistic bias removal method (PBRM)
and Elgamal [46]. The methods based on RSA suffer from
poor pseudo-randomness and those based on Elgamal cannot
compete with elliptic curve-based encryption algorithms [47]
regarding both encryption speed and key length. To enhance
computational efficiency, and encoding efficiency, and diver-
sify the solutions while maintaining the same level of security,
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we propose public-key steganography based on elliptic curve
cryptography.

C. Provably Secure Steganography

The concept of provable security in steganography can be
divided into two categories: information-theoretic security and
computational security.

1) Information-Theoretic Security: Cachin [22] first intro-
duced the information-theoretic definition of steganography
security based on relative entropy (a.k.a. Kullback-Leibler
divergence) between the cover distribution P, and the stego
distribution Py,

P (x)
Py(x)’

DKL (Pe||P) = ) Pe(x) log )

xeC

When Dy (Pc|| Ps) = 0, the stegosystem is considered to be
perfectly secure. In this case, the distributions P, and Ps are
the same.

2) Computational Security: In light of the fact that
information-theoretic security, as proposed by Cachin [22],
primarily provides a theoretical upper bound, Hopper et.
al. [23], [48] introduced computational complexity theory to
distinguish cover and stego distributions by allowing attackers
to engage in a probabilistic game, thereby defining the chosen
plaintext attack (CPA) and the computational security against
it. We provide detailed definitions in Section III.

3) Provably Secure Steganographic Construction: Since the
definition of computational security was provided by Hopper
et.al. [23], many provably secure steganographic constructions
have arisen [23], [36], [49], encompassing both public-key and
symmetric steganography. One common example is rejection
sampling construction, which is based on the perfect sampler
assumption.

Define a channel as a distribution with timestamp: C =
((c1,11), (c2,12),...), where Vi > 0 : f;11 > t;. Anyone
communicating on a channel can be regarded as implicitly
sampling from the channel conditioned on history 4, defined
as ¢ < Cy,.

Given an oracle OC over distribution C , A function f :
C — Ris called € —biased if |Pry—c[f(x) =0]—1/|R]|| <
€. We say f is perfectly unbiased if ¢ = 0. Given hiddentext
m, the rejection sampling is defined as follows:

sample x from OF until fx) =m.

Supposing m is computationally indistinguishable from a
uniform random string, the result of rejection sampling based
on channel C is computationally indistinguishable from the
channel distribution.

Hopper et al. [23], [34] assumed that the oracle over
the channel O€ is ideal, performing precise sampling on a
specific cover distribution independently and in parallel while
allowing state backtracking. Initially, email and camera were
deemed text and image samplers, respectively, but neither met
the perfect sampling requirements. As such, symmetric and
public-key steganography constructions remained theoretical
concepts.
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D. Generative Provably Secure Symmetric Steganography

Recently, we have witnessed the rapid development of deep
learning and generative models such as generative adversarial
networks (GANSs) [50], variational autoencoders (VAEs) [51]
and flow-based models [26].

Implicit generative models, such as GANs, VAEs, and flow-
based models, can generate new data samples by implicitly
modeling the underlying probability distribution of the data.
Specifically, they map from a noise distribution to the data
distribution by avoiding explicit modeling of the latter.

x = fg(2), z~ p(2),

x represents the object sampled from the generative model,
while z designates the latent variable that follows accessible
probability distribution.

The remaining concern is whether the generated data
are suitable for steganography. However, this challenge
has become less significant as the use of artificial
intelligence-generated content (AIGC) models, such as GPT-
4 [52] and Midjourney [53], are increasingly prevalent. The
generated data are widely spread in various real-world sce-
narios, including the generation of news [54], literature [55],
and music [56]. The widespread adoption of AIGC makes it
feasible for steganography to disguise itself as such without
raising suspicion.

In recent years, significant strides have been made in
advancing symmetric steganography, largely attributed to the
progress in generative models. The central concept revolves
around the mapping of a concealed message to a latent vari-
able, designated as z. When it comes to decoding, this latent
variable is retrieved through the probability distribution of a
shared model, streamlining the process of message extraction.

This form of steganography effectively addresses the chal-
lenge of perfect samplers mentioned earlier. In the context of
Adaptive Information Gathering Channels (AIGC), the chan-
nel’s distribution represents the normal sampling process of the
generative model, while generative steganography introduces
a specialized sampling process driven by the secret message.
The security of steganography lies in distinguishing between
these two sampling methods.

Several efforts have been made to use generative models
with provably secure Symmetric Steganography, including
AC [28], [29], ADG [30], Meteor [31], MEC [33] and
Discop [32]. Inspired by provably secure symmetric steganog-
raphy constructs, our study attempts to provide a practical and
complete design of provably secure public-key steganography
using generative models.

1II. DEFINITION
A. Negligible Function

A function f : N — [0,1] is negligible if for any
polynomial poly(-), AN € N, Yn > N, f(n) < 1/poly(n).

B. Elliptic Curve Group and Computations

1) Elliptic Curve and Points on the Curve: Let F), denote
the finite field modulo prime p and E denote an elliptic curve
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over F, described in Weierstrass form [57]:

Eap:y'=x’+Ax+B, A ,Be Fp,

With the discriminant, A = 4A3 + 27B? # 0. The set of
rational points in E4 g over F), is given by

Eap(Fp) ={(x.y) € Fp: Exp(x.y) =0} ] O,

where O is the point at infinity.

Define #E 4 p(Fp) or ||[E4 g(Fp)|l as the cardinality of the
set of points on the elliptic curve E4 p(F)) defined over the
finite field F,. In other words, it represents the number of
points on the curve.

2) Addition: Let P and Q be points on an elliptic curve
E, with coordinates (xp, yp) and (xg, yp), respectively. The
addition P + Q is defined as follows:

o If P and Q are the same point, then P + Q = 2P.

o If either P or Q is the point at infinity, then P + Q is

defined to be the other point.

o Otherwise, draw the line passing through P and Q, and
let it intersect the curve at a third point R. Then, P 4+ Q
is defined as the reflection of R across the x-axis.

This definition of point addition satisfies the group axioms,
making the set of points on an elliptic curve into an abelian
group (E4,p(Fp), +).

3) Scalar Multiplication: (Ea p(F)p),+) form an Abelian
group. Thus, we define scalar multiplication (-) over E4 g (F))
as follows:

k-P=P+P+P+...+ P (k times),
keN, PeEpp(Fp).

C. Decisional Diffie-Hellman Assumption in Elliptic Curve
Group (ECDDH)

Let G = E p(F ») be the group of an elliptic curve points
such that a sufficiently large prime Q divides #G. Let k denote
the binary length of P. Let g € G have order Q.

Let A be a probabilistic polynomial time machine (PPTM)
that takes as input three elements of G and outputs a single
bit. The ECDDH advantage of A over (g, G, Q) is defined as:

Pr [A(a-g,b~g,a-b~g)=l]

Advidh 4y = | P G
5.G.0(A Pr [.A(a-g,b-g,c-g):l] )
a,b,c,r
where r, a, b, ¢ are chosen uniformly at random from Zg.
The ECDDH insecurity of (g, G, Q) is defined as
InSec)’f, , (1) = Argi)((t){Advg‘}g’Q(A)}, 4)

where the maximum is taken over all 4 running in time .

The decisional Diffie-Hellman assumption in the Elliptic
curve group is a computational hardness assumption requiring
that InSecg"jg’ o () is negligible in k, where 1 = poly(k).
In other words, for any sufficiently small € (k) = pol;ﬁ(k), there
is no PPTM A running in time ¢ that achieves Advg"ic’ Q(.A) <
€ (k).

This assumption forms the basis for the security of many
elliptic curve-based cryptographic constructions, such as ellip-
tic curve Diffie-Hellman (ECDH) and elliptic curve-based

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

ElGamal encryption [47], which rely on the notion that
computing discrete logarithms on elliptic curves is a difficult
problem. If this assumption proves false, the security of these
cryptographic constructions may be compromised.

It is widely believed that this assumption holds for a
prime-order elliptic curve E over the field G F(p), where p
is prime. This is known as the ECDDH assumption.

D. Chosen Hiddentext Attack

We will provide a detailed introduction to our threat model
in this subsection.

Threat Model. Consider a public-key steganography sys-
tem SS = (SG, SE, SD) and an attacker A. A play a game
named chosen hiddentext attack (CHA) described as follows:

« Key generation stage. (PK, SK) < SG (1*).

o Learning stage. .4 sends hiddentext m 4 and history
h 4 and gets return SE(PK, m 4, h). A can perform this
stage multiple times.

o Challenge stage. 4 sends hiddentext m € A\ {m_4} to
an oracle, which will flip a coin b € {0,1}. If b =10, A
obtains s = SE(PK,m, h);if b =1, A obtains ¢ < Cj,.

« Guess stage. A outputs a bit b’ as its “guess” to determine
whether it has received a stegotext or a covertext.

Define the Chosen Hiddentext Attack (CHA) [23] advantage
of A against SS over channel C by:

Pr [A(PK,s) =1]

cha _ | PK
AdVER2 (A, k) = Yo ko= | )

Define the insecurity of SS over channel C by

InSec§s(t,1.k) = max {Adv{{c(A. L)},  (6)

Ae .0

where A ) is the set of all adversaries that send at most (k)
bits and run in time # (k). [(k) and (k) are polynomials of k.
SS is secure against CHA if InSecglfg?C(t, 1, k) is negligible in
k, i.e., no probabilistic polynomial time (PPT) adversary can
distinguish s and ¢ with nonnegligible probability.

Remark. In the Chosen Hiddentext Attack scenario,
we assume that an adversarial attacker, denoted as A, has
taken control of an identical steganographic encoder during the
learning stage. A can interact with this encoder and input the
hiddentext m 4 multiple times, generating stegos that conceal
m 4 under any given history & 4, i.e., SE(PK,m_4, h). Then,
during the Challenge stage, A is presented with either a
stego s = SE(PK, m, h) that may have been generated from
some hiddentext m using the same encoder, or it could be
a cover ¢ < Cj randomly sampled from the channel. With
the knowledge acquired, .4 needs to guess at the Guess stage
with a probability significantly greater than 0.5, determining
whether it is a cover or a stego, thus achieving a successful
attack.

This threat model is a passive attack and is conceptually
similar to the cryptographic CPA (Chosen Plaintext Attack)
which we will describe below, except that CPA focuses on
guessing additional information related to the key, while
CHA requires guessing the presence or absence of secret
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information. CHA encompasses scenarios where the stegano-
graphic encoder is compromised, covering nearly all aspects
of steganalysis.

E. Chosen Plaintext Attack

Consider a public-key cryptography system CS =
(G, E, D) and a chosen plaintext attacker A. A is allowed
to play a game described as follows:

« Key generation stage. (PK, SK) < G(1%).

« Learning stage. .4 sends plaintext m 4 to the oracle and
returns E(PK,m ). A can perform this stage multiple
times.

o Challenge stage. 4 sends hiddentext m € A\ {m_4} to
the oracle, which will flip a coin b € {0,1}. If b = 0,
A obtains ¢ = E(PK,m); If b = 1, A obtains u <«
Uik -

o Guess stage. A output a bit b’ as a “guess” about whether
it obtains a plaintext or a random string.

Define the Chosen Plaintext Attack (CPA) advantage of A

against S by:

Pr [A(PK,c) =1]

AV (AR = | FK 7
VesAD =1y A PK. ) = 1] ™
PK
Define the insecurity of CS over by
InSecl§ (t,1,k) = max {Adv{ (A, K)}, (8)
E.A(r )

A1) denotes the set of all adversaries that send at most /(k)
bits and run in time # (k). I(k) and (k) are polynomials of k.

A public-key encryption system that is indistinguishable
from uniformly random bits under chosen plaintext attack
(IND$-CPA) if InSec’¢ (¢, 1, k) is negligible in k, i.e., no PPT
adversary can dlstmgulsh encryption results and uniform ran-
dom strings with nonnegligible probability.

F. Pseudorandom Elliptic Curve Point Encoding

Typical elliptic curve public-key encryption schemes are
not IND$-CPA secure because plaintext points possess unique
algebraic properties that make them identifiable.

For instance, given suspected points (x,y) € F), on the
curve E4 p : By2 =x3+ Ax? +x (mod p), a detector can
ascertain if they lie on the curve by verifying the equation.
Similarly, if a detector has suspected coordinate x € F),
they can compute (x> + Ax + B) and examine whether the
result is a quadratic residue of the field F, in polynomial
time. Since the quadratic residue of field F, contains prl
elements, transmitting untreated elliptic curve points directly
during covert communication is perilous.

To address this issue, many efforts have been made includ-
ing Elligator2 [37]. This method comprises a pair of bijection
functions ( ¢ ¥ ) used to encode elliptic curve points into
a uniform random string and to decode a string into elliptic
curve points. All calculations below are performed in the F),
field, which we will not emphasize further.

Let x define the Legendre sign of field F), i.e.,

X :Fp— Fp, (a)—a2

3153

/ ﬁ

‘\ \ 25

\)\/

W(Er(Fp))

¥ 10,1, é(r) = ¢(=r)

Fig. 3. The relation of encode function and decode function.

Let the square root for the set of quadratic residue F 5 be a
single-valued function, i.e.,
—}

.2
VX F2 0,1, 5

Suppose that the elliptic curve over F), satisfies the follow-
ing forms:

Ex B :y2 = x3 + Ax? + Bx,
p=1(mod 4), x(A> —4B) = —
AB(A% — 4B) # 0.

Arbitrarily select u € F), satisfying x(u) = —
Define Decode Function Feasible Region R C Fp:

R={reF,:r#0, 1 +ur’ #0, A%ur® # B(1 +ur®)?}.
Define Decode Function ¢ : R — E(F)):

4 ©)
V= ———,
1+ ur?
€ = x(v° 4+ Av® + Bv), (10)
(1—-e)A
= -, 11
X =¢€v 5 (11)
y = —evx3 + Ax? 4 Bx. (12)

Define Encode Function Feasible Region Egr(F),) C E(F)):

Er(Fp) = {(x, y)|(x,y) € E(F))
x#—-A; y=0=>x=0; x(—ux(x+A) =1}.

Define Encode Function \ : Eg(F)) — Fp:

. .

Y((x,y) =7 = \/E ’fye\/F»p
—-x+A

\/?7 ifygé\/F»;,

As shown in Fig.3 and Theorem 6 (see Appendix), the func-
tions ( ¢ ¥ ) create a bijective function relationship between
approximately half of the elliptic curve points Eg(F,) and
uniform random strings {0, 1, -- -, pT_l}.

Choosing p = 2X — e, the likelihood of distinguishing v/
encoding output from a truly random (k — 1)-bit string is 1 —
”’2*,;—9/2 < 2%, which is negligible in parameter k. Therefore,
the output of the encoding function is indistinguishable from
a uniformly random string.

In this paper, it is crucial to emphasize that Elligator2 serves
solely as a point obfuscation technique, with the capability
of covering curve points of arbitrary order. As a result,
relying on Elligator2 alone does not ensure that encryption

13)
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and decryption operations are performed within the large
prime order subgroup, which consequently cannot guarantee
the validity of the Decisional Diffie-Hellman assumption in
the elliptic curve group (ECDDH). Therefore, to construct an
IND$-CPA secure public-key encryption system, we develop a
public-key cryptography scheme that combines the Elligator2
method with additional measures to ensure the satisfaction
of the Elliptic Curve Decisional Diffie-Hellman (ECDDH)
problem criteria.

IV. OUR PROPOSED METHOD

The architecture of our proposed public-key steganography
system framework is illustrated in Fig.4. We will outline the
thought process behind constructing this system as follows.

According to Hopper’s theory [34], to create a public-key
steganography system that can withstand chosen hiddentext
attacks, it is necessary to build a public-key encryption system
that is indistinguishable from uniformly random bits under
chosen plaintext attack (IND$-CPA). To achieve this, we pro-
pose a public-key encryption system based on the Elligator2
technique that meets the requirements of the Elliptic Curve
Decisional Diffie-Hellman (ECDDH) problem.

Using the above public-key encryption system, we build a
public-key steganography system based on reversible mapping
and sampling. For the public-key steganography construction
designed in our paper under the chosen hiddentext attack,
we provide comprehensive proof of its security.

In addition, we construct an instance of a public-key
steganography system based on a text-to-speech model, Wave-
Glow. By introducing reversible mapping on zero-mean
spherical Gaussian sampling, we are able to generate highly
naturalistic audio that can hide a message and thus put our
construction into practice.

In the implementation, we deploy the entire system on
Curve25519, which satisfies all the necessary parameter
constraints described in Sec III-F for using the Elligator2
technique.

A. Pseudorandom Public-Key Encryption Construction Using
Elligator2

We propose a public-key encryption construction that is
IND$-CPA secure. The construction consists of two hybrid
encryption constructions. First, suppose that the sender and
the receiver share a base point By of elliptic curve order.
We obtain the first ciphertext by uniformly sampling points
on the entire curve using By and its scalar multiplication and
apply the Elligator2 [37] encoding function, yielding a binary
string that is indistinguishable from a uniformly random string.
Next, to satisfy the elliptic curve Decisional Diffie-Hellman
assumption, the chosen point will be multiplied by a fixed
constant factor to map it to a curve point of order a large prime
Q, following which the resulting point is hashed to generate
the key for the second ciphertext. Furthermore, the message
is encrypted with an IND$-CPA secure symmetric encryption
construction to obtain the second ciphertext. By combining
these two encryption constructions, we achieve IND$-CPA
security for the entire encryption construction.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Here, we introduce the details of our proposed public-key
encryption construction using Elligator2. Let E4 p(x,y) be
an elliptic curve defined over F, that satisfies the following
conditions: ¢ = 1 (mod 4), x(A®> — 4B) = —1, and
AB(A% —4B) # 0. Suppose H : {0, 1}x — {0, 1} denotes
the hash function, x < k = [p|. E¢)(), D()(-) denote the
encryption and decryption functions of a symmetric encryption
construction satisfying IND$-CPA, keyed by «-bit keys. Easy
to find such symmetric encryption construction (such as AES).

Assume that the order of E4 g(x,y), |Ea p(F))l, satisfies
|Ea,g(F)p)| =rQ, where Q is a sufficiently large prime and
(r, Q) = 1. Let By € E4 g(Fp), where Order(Bg) = rQ.
Then, we compute B’ = r - By, hence Order(B’) = Q. B’
generates the subgroup of |E4 p(F),)| whose order is Q, thus
the ECDDH assumption holds.

Assuming that (PK,SK) = (x - B/, x), we present our
pseudorandom public-key encryption algorithm E and decryp-
tion algorithm D through Algorithm 1 and Algorithm 2,
respectively.

Algorithm 1 Elliptic Curve Pseudorandom Public-Key
Encryption (E)
INPUT: m € {0, 1}*, By, B',r, Q, PK =x - B’
OUTPUT: ¢
1: repeat
2 a<UQ,rQ)
3 V=a-By
4: until V € ER(F)y)
5
6
7

:K=H(@a-PK)=H(a-x-B)
e =y¥(V),co = Ex(m), c = cillez
: return c

Algorithm 2 Elliptic Curve Pseudorandom Public-Key
Decryption (D)
INPUT: ¢, By, B',r, Q,SK =x
OUTPUT: m
separate ¢ into ci, ¢
2.V =¢(c1)
K=H@@-x-B)Y=H(a-x-r-B)=H(x-r-V)
4: m = Dg(c2)
return m

The output of the encryption algorithm consists of 2 parts,
c1 and ¢3. c¢1 is a product of Elligator2’s encode function
Y such that the ECDDH assumption holds. Therefore, it is
IND$-CPA secure. ¢ is a result of a reliable symmetric
encryption construction and is assumed to be secure against
CPA. As aresult, the overall construction is IND$-CPA secure,

cpa

with InSec ¢ (¢, [, k) negligible in k.

B. Public-Key Steganography System Based on a Generative
Model

For generative models with accessible probability distribu-
tions, it is essential to emphasize that our proposed stegano-
graphic method, based on reversible mapping, is specifically
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Fig. 4. The framework of our public-key steganography system.

designed for such models. These generative models, exem-
plified by autoencoders [51], generative adversarial networks
(GANSs) [15], invertible neural networks (INNs) [58], and
others, provide users with access to either the input data or
the generated data’s probability distribution. Our method is
tailored to leverage this accessibility, ensuring both high effi-
ciency and provable security. These models can fit natural data
distributions into one or multiple latent variable distributions
during training and allow for sampling from these distributions
in the generation process.

Let C; be the explicit data distribution of the generative
model when given history h. Let f; : m € {0, 1} — C}' €
Cj, be a reversible function from an g-bit binary string to a
certain subdistribution, where | J,, 0.10 Cp = Cpand Vmy #
my, C;"' N C;"* = . Reversibility means we can calculate the
binary string by fh_1 :Cp— {0, 1)9.

We say f;, is perfectly unbiased if V m € {0,1}? and
h, Pr(C,’l") = zi[,, which means fj reversibly maps the g-bit
binary string to 29 mutually exclusive and measure-equivalent
subdistributions.

We say fj, is e-biased if V m € {0, 1}9 and h, |Pr(CZ1) —
2]—q| = e(k), where € is a function of parameter k.

Combining reversible mapping and our pseudorandom
public-key encryption construction, we propose our construc-
tion of public-key steganography system SS = (SG, SE, SD).
SG(1%) takes a random bitstring as input and generates a key
pair (PK, SK). SE(PK,m, h) takes the public key, hidden
text m and distribution of the history-based channel Cj, and
outputs a stegotext s sampled from C. SD(SK, s, h) takes the
private key, stegotext and history, and outputs the hidden text
m. Here, we introduce the details of our proposed public-key
steganography construction. Algorithms 3, 4, and 5 presented
below illustrate the specific procedures for SG, SE, and SD,
respectively.

Suppose we have selected curve E4 p(x, y) over Fp, |P| <
k satisfying E4 p y? = x> + Ax*> + Bx, p =
1(mod 4), x(A®> —4B) = —1, AB(A* —4B) # 0, whose
order is N, and N has a sufficiently large prime factor Q,
N =rQ,(Q,r) = 1. We can easily find u € F, satisfying
x (u) = —1. Assume that the reversible function fj, is e-biased
when € is negligible in k.

In SG, as described in Algorithm 3, the secret key x
is repeatedly selected, and the corresponding public key is
calculated on a prime-order group generated by the base point

Algorithm 3 Steganography Key Pair Generation (SG)

INPUT: 1% € U(Jk|)
OUTPUT: PK,SK
Given E4 p(x, y).find base point By : Order(By) = N.
Computing B’ = r - By.
repeat
x<U@©Q), V=x-B
until V € ER(Fp)
PK=V,SK =x

AN

B’. This process continues until the public key can be encoded
by using the Elligator2 technique.

Algorithm 4 Steganography Encode (SE)
INPUT: m € {0, 1}*, Bo, B',r, Q, PK =x-B',h, f,G
OUTPUT: s

1: repeat

2 a<UQ0,rQ), V=a- By

3: until V e ER(F))

4: K=H(a-PK)=H(a-x-B)
5:c1 =Y (V),c2 = Ex(m), c =cillca, so = {}
6
7
8
9

: n=length(c),i =0
: while i < n do
x=cli:i+q]

i Cp <G, C; = frn(x,Cp)
10 s <« Cp CCy
11:  append s to sg, append s to h, i =i +¢q
12: end while
13: return s

In SE, as described in Algorithm 4, we encrypt the con-
cealed text by using the pseudorandom public-key encryption
construction that we have proposed. Subsequently, we group
the data into segments of ¢ bits each and apply reversible
mapping to map them onto a unique subdistribution of data.
From this unique subdistribution, we proceed to randomly
sample the stego.

In SD, as described in Algorithm 5, we take advantage
of the reversibility of the mapping to extract the ciphertext
from the subdistribution where the stego is located. Subse-
quently, we decrypt the ciphertext by using the pseudorandom
public-key encryption construction.
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Algorithm 5 Steganography Decode (SD)
INPUT: s, By, B',r, Q,SK =x,Cp, f
OUTPUT: m
c={}
2: for each x € sg do
Cn < G(h)
4 c=cll fy'x )
end for
6: separate c into ci, ¢
V=¢(c1)
8: K=H(a-x-B)Y=H(a-x-r-By)=H(x-r-V)
m = Dk (c2)
10: return m

In essence, our approach begins by designing a public-key
algorithm in SE and SD that achieves IND$-CPA. In practical
scenarios involving Artificial Intelligence-Generated Content
(AIGC), where the channel is inundated with content from
various generative models, we utilize a pre-trained white-box
generative model. This model provides us with a probability
distribution for either the input or the generated data, enabling
the construction of an unbiased function. For creating the
cover, we employ random sampling with the white-box gen-
erative model, driven by random bit strings. When generating
stego content, we ensure that the sampling process is guided by
the public key-encrypted ciphertext and the unbiased function.
This way, we reduce the challenge of distinguishing stego
from cover in a Channel to distinguishing public key-encrypted
ciphertext from random bit strings, a task already guaranteed
by the security properties of the public key algorithm INDS$-
CPA.

Here comes a rigorous proof. Given the steganography
system SS = (SG, SE, SD), and the algorithm definition is
shown above, we sketch the proof of security of SS against
CHA.

Theorem 1: InSecCS@“’C (t,1, k) is negligible in k.

Proof: Assume that there exists a PPTM A that achieves
a nonnegligible advantage Advfgg‘fc (A, k) = |Pr[A(PK, s) =
1] — PrlA(PK, ¢) = 1]| in distinguishing between the out-
put of algorithm SE and the generated data sampled from
C;' € Cy. Furthermore, let us assume that A can question
an oracle, which means that A is allowed to access the same
generated model. We will construct a program A’ that plays
the chosen-plaintext attack against the public-key encryption
system CS = (G, E, D),where we define E and D as before
and use SG as G. The goal of A’ is to distinguish plaintext
Epk (m_4) from uniform random string U|g(pk,.|-

A’ first chooses history & 4 and a message m 4 and then runs
A to go through the key generation stage and learning stage to
obtain a well-trained PPTM A that achieves Advghs‘fc (A, k) =
|Pr[A(PK,s) = 1]-Pr[A(PK, c) = 1]| is nonnegligible in k.
During the Challenge stage, A’ picks plaintext m € A\ {m 4}
and sends it to the oracle. The oracle will flip a coin b, where
for b = 0, A’ obtains ¢ = Epg (m), and for b = 1, A’ obtains
u < Ug(pk..). After receiving the oracle’s return, A" encodes
it into multimedia data using the generated model and sends
it to W to let it guess. A outputs a bit &’ as its answer, which

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I

THE EXPECTED RUNNING TIME OF PSEUDORANDOM
SCHEME

PUBLIC-KEY

Encrypt (E)
O(m| - log(N))
O(|Pgg| + Iml)

O(|Peccl + |ml)

Decrypt (D)
O(lm| - log(N))
O(|Peg| + Iml)

O(|Pecc| + Im|)

RSA-based method [23]
Elgamal-based method [23]
Our ECC-base method

is also A”’s answer. The total time of the whole process is
t 4+ O(lk).

Since the reversible mapping f is e-biased, we have
|Pr[A'(PK,c) = 1] — PrlA(PK,SE(PK,m,hy)) = 1]| <
(%] - € and |Pr[A"(PK,u) = 1] — Pr[A(PK,c <«
cpy = 1] < r%w - €. Since Advl{ (AL k) =
|Pr[A'(PK,c) = 1] — Prf[A/(PK,u)] = 1|, we have
InsecS (r + O(k), 1, k) = maxseq,, (Advis (A K} >
Adv§i (A k) — max{r‘?—'}, (‘Z—'n - €, which is nonnegligi-
ble in k. This contradicts the proposition Insec’ (7,1, k) is
negligible in k.

Therefore, Insec{y’.(t,, k) is negligible in k. O

C. Computational Complexity and Embedding Efficiency

Assuming |m| is the length of the message, N is the large
integer chosen for RSA, Pgg is the modulus for ElGamal,
and Pgcc is the modulus for ECC. The complexity of these
algorithms is presented in Table I:

The encryption result for these three methods not only
includes the ciphertext bits but also an additional term. The
length of this additional term is influenced by the security
parameter settings of the encryption algorithms, such as the
bit length of the large integer N in RSA, the bit length of
the selected prime Pgg in Elgamal, and the bit length of
the selected prime Pgcc in ECC. This becomes a bottleneck,
impacting both communication and computational efficiency.
When these three algorithms operate at the same security
level (e.g., 128 security bits), ECC requires a significantly
smaller parameter length (256) compared to RSA (3,072) and
Elgamal (3,072). In summary, due to its smaller parameter
length requirement at an equivalent security level, ECC out-
performs other algorithms in the same class in terms of both
computational complexity and embedding efficiency.

D. An Instance of Public-Key Steganography Based on
WaveGlow

WaveGlow is a reversible generative model constructed
using affine coupling layers. It generates samples from a
zero-mean spherical Gaussian, which have the same num-
ber of dimensions as the intended output. During inference,
given a Gaussian latent variable 7z ~ N(z;0,I) and the
mel-spectrogram of a paragraph of certain text, WaveGlow
computes the distribution of audio samples conditioned on the
mel-spectrogram:

X = fOOfl O...Ofk(Z, Finel),

where f; denotes the i-th invertible affine coupling layer.
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Fig. 5. Examples of mapping (¢ = 1, 2 bits).

Assuming that two communicating parties share the same
spectrogram generation model (SPN) and a pretrained WaveG-
low model, we design a reversible mapping from a uniformly
random g-bit binary message m to a Gaussian latent variable
sample unbiasedly:

fim — (@a_,ay) CN( 0,1,

7 (o, ay),

where a_ = F_l(zﬂq), ay = F_l(’"z—ng) and F~1 denote
the inverse of cumulative distribution function (CDF) of the
Gaussian distribution.

Consider Fig.5 as an example. We partition the Gaussian
distribution into 29 segments, each with an equal probability.
This guarantees that when m is selected uniformly, it falls
within every interval with identical probability.

Building upon this mapping, we present an instance of
public-key steganography based on WaveGlow, wherein the
Gaussian distribution is transformed into the desired dis-
tribution through a series of invertible layers using the
mel-spectrogram and the generated samples. First, given a
text, the SPN transforms it into a mel-spectrogram Fy,;.
Afterward, we map the binary message to a series of Gaussian
latent variables. Finally, the mel-spectrogram Fj,.; and a series
of Gaussian latent variables z are input into WaveGlow to
generate stego audio x. The specific procedures for the SE and
S D processes are illustrated in Algorithm 6 and Algorithm 7,
respectively, as presented below.

For each bit fragment, SE maps it to a specific interval
of the Gaussian distribution. The stego is sampled from this
subdistribution. Since the mapping is unbiased and the bit
string is assumed to be pseudorandom, the distribution of the
stego is indistinguishable from the Gaussian distribution.

The decoding process SD is simple. After the receiver
obtains the text from the stego audio, the same mel spec-
trogram Fy,,; is obtained by using the SPN. By using the
reversibility of WaveGlow, the latent variable z is obtained.
Then the receiver checks the interval where z falls and obtains
m. This WaveGlow-based public-key steganography instance
can be efficiently deployed in environments such as Discord,
an online gaming community platform that incorporates a
variety of Al-generated services for text, image, audio, and
video where the use of generated audio seamlessly integrates
into the user experience, remaining both permissible and
unobtrusive.

Given the steganography system SS = (SG, SE, SD) based
on WaveGlow, and the algorithm definition shown above,
we sketch the proof of security of SS against the Chosen-
Hiddentext attack.

3157

Algorithm 6 Public-Key Steganography Encode (SE) Based
on WaveGlow
INPUT: m € {0, 1}*, By, B',r, Q, PK = x - B, text
OUTPUT: s
1: repeat
2 a<U@O,rQ), V=a- By
3: until V € Eg(F))
4: K=H(a-PK)=H(a-x-B)
5: c1 =¥ (V),c2 = Eg(m), c = cillez
6
7
8
9

:z0=1{}, n=Ilength(c),i =0
: while i <n do
For bit fragment c[i : i +¢] :
me = I8 eli + j1% 2

10: o =F' (%), ap = F7'(%th
11: sample z from (a¢—,ay) C N(z;0,1)
12: append z to zg9, i =i +¢q

13: end while

14: Fy,01 = SPN(text)

15: audio = WaveGlow (F,.1, z0)
16: return audio

Algorithm 7 Public-Key Steganography Decode (SD) Based
on WaveGlow
INPUT: audio, By, B',r, Q, SK = x, text
OUTPUT: m
Fnet = SPN(text)
2: zo = WaveGlow ™! (Fyer, audio), ¢ = {}
for each z € zp do
4 c=cl|| F(z)*29]

end for

6: separate ¢ into ci, ¢
V =¢(c1)

8: K=H(@a-x-B)Y=H(a-x-r-By)=H(x-r-V)
m = Dk (c2)

10: return m

Theorem 2: InSecg}g‘fc (t,1,k) is negligible in k.

Proof: Assume that there exists a PPTM A with a
nonnegligible advantage AdVCS’g?C(A, k) = |Pr[A(PK,s) =
1] — PrlA(PK, ¢) = 1]| in distinguishing between the out-
put of algorithm SE and randomly generated audio whose
latent variable is sampled from a standard Gaussian dis-
tribution. Additionally, suppose .4 can question an oracle,
which means that A is allowed to access the same Wave-
Glow and SPN model. Construct a program A’ that plays
the chosen-plaintext attack against the public-key encryption
system CS = (G, E, D).

During the challenge stage, A’ selects a plaintext m € A\
{m 4} and sends it to the oracle. The oracle will flip a coin b.
For b = 0, A’ obtains ¢ = Epg(m). For b = 1, A’ obtains
u < UE(pK’.).

After receiving the oracle’s return, A’ encodes it into audio
using WaveGlow and sends it to A to let it guess. .A outputs a
bit b’ as its answer, which is also .A”’s answer. The total time
of the whole process is t + O(lk).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 02,2025 at 12:27:05 UTC from IEEE Xplore. Restrictions apply.



3158

Since WaveGlow uses unbiased mapping and the encoding
procedure is reversible, we have Pr[A'(PK,c) = 1] =
Pr[A(PK,SE(PK,m,hy,)) = 1] and Pr[A'(PK,u) =
1] = PrfA(PK,c < Cp) = 1]. Thus, Advg (A k) =
|PrLA'(PK, ¢) = 1] = PrLA/(PK,w)] = 1| = Adv{i¥ (A, k).
Insec/S (r + O(lk), 1, k) = maxseq,, {Advis (A k)} >
Advg}g‘fC(A, k) is nonnegligible in k. This contradicts the
proposition that Insec?; (t,1, k) is negligible in k.

Therefore, InsecCS}g’fc (t,1, k) is negligible in k. O

E. Implement Public-Key Steganography on Curve25519

We use Curve25519 for the entire system, which is an
elliptic curve used in elliptic-curve cryptography; it offers
128 bits of security (256-bit key size). Additionally, it is one
of the fastest curves in ECC. The parameter specifications are
shown below.

[ p =25 - 19,
2_ .3 2
y°=x" +486662x~ 4+ x,
A = 486662, B =1,
IE(Fp)l =2 +e,e < 21,
IE(F,)| =8P, P =2%2 4 g large prime,

Curve25519

Base point B’ : x = 9.

Given that the parameters satisfy p = 1(mod 4), x(A* —
4B) = —1, A#0, B#0, A>—4B # 0. We select u =
2 such that x(u) = —1. Since 1ERUDI 1

EE)T ~ 2 approximately
half the points on the curve can be encoded into random
strings.

V. STEGANOGRAPHIC KEY EXCHANGE

Public-key steganography can be effectively utilized for key
transmission. Once a connection is established, more efficient
symmetric steganography can be employed for communica-
tion. Moreover, for communication entities that lack public
keys, a steganographic key exchange approach can be adopted.

The steganographic key exchange involves transmitting a
sequence of messages that simulate typical communication
traffic between Alice and Bob, ultimately using these messages
to establish a shared key. The success of this method depends
on whether the shared key is indistinguishable from a random
key by the warden. Alice and Bob can then use their shared
key with confidence in a secret-key system.

Our proposal is a single-round asynchronous algorithm
based on the Elliptic Curve Diffie-Hellman (ECDH) for covert
key exchange, as shown in the following algorithm (taking
Alice’s node as an example).

To negotiate the session key K, both participants in com-
munication must perform one round of encoder operations,
transmit the stego, and then perform independent decoder
operations. The session key is derived from the content being
communicated.

The security of this method is straightforward since the
public key pk generates a point on a large prime order
subgroup and is mapped to a uniform random string. Thus,
it is difficult to distinguish between the stego generated and
to compute the private key sk.
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Algorithm 8 Steganographic Key Exchange Encoder
INPUT: By, B',r, Q,text

OUTPUT: s
1: repeat
2 ska <~ U0, rQ)
3 pka = sky - By
4: until pky € ERr(F)p)
5: ¢ =¥ (pka)
6: s = WaveGlow_Encoder(c, text)
7: return s

Algorithm 9 Steganographic Key Exchange Decoder
INPUT: s, By, B',r, Q, pkp, xa, text
OUTPUT: K
¢ = WaveGlow_Decoder(s, text)
2. pkp = ¢(c)
K =x4-r-pkp
4: return K

TABLE II
STATISTICAL TEST FOR PSEUDORANDOMNESS OF ENCRYPTION
ALGORITHM E

NIST SP 800-22 n = 100 a =0.01
Statistical Test P-VALUE PROPORTION  Result
Frequency 0.319084 98,/100 PASS
BlockFrequency 0.534146 99/100 PASS
CumulativeSums 0.275709 96,/100 PASS
Runs 0.062821 100/100 PASS
LongestRun 0.026948 100/100 PASS
Rank 0.040108 100/100 PASS
FFT 0.779188 100/100 PASS
NonOverlappingTemplate ~ 0.637119 99/100 PASS
OverlappingTemplate 0.350485 100/100 PASS
Universal 0.474986 99/100 PASS
ApproximateEntropy 0.719747 100/100 PASS
RandomExcursions 0.134686 62/62 PASS
Serial 0.096578 98/100 PASS
LinearComplexity 0.437274 98,/100 PASS

VI. EXPERIMENTS

In this section, we evaluate the pseudorandomness of the
proposed elliptic curve pseudorandom public-key encryption
algorithm through statistical tests. Additionally, we validate
the security of our proposed public-key steganography instance
based on WaveGlow through steganalysis experiments.

A. Statistical Test for Pseudorandomness

To test the pseudorandomness of our elliptic curve pseu-
dorandom public-key encryption algorithm, we employed the
NIST SP 800-22 test suite.

First, we generated a key pair and randomly selected
plaintext m to obtain the encryption result ¢ = Epg(m).
We repeated this process and accumulated the results in binary
string form until we obtained more than 10® bits. The string
was then divided into 100 streams of equal length to conduct
15 statistical tests. We repeated the process with different key
pairs multiple times and obtained similar outcomes. Finally,
we select one trial and present the results below:
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To test the randomness of the encrypted data, we computed
the proportion of sequences that passed a particular statis-
tical test. With a significance level of « = 0.01 and n =
100 sequences, we calculated the acceptable range of propor-

tions by using the confidence interval formula p £ 3 @,
where p = 1—a. If the proportion falls outside of this interval,
then there is evidence that the data are nonrandom.

For n = 100 and ¢ = 0.01, the calculated confidence

interval is 0.99 + 3,/20=2) — 099 + 0.0298 (i.c., the
proportion should be greater than 0.9602).

Based on Table II, our designed public-key encryption
algorithm passed all 15 types of tests in the NIST SP 800-22
suite, ensuring that its encrypted output demonstrates pseudo-
randomness as demonstrated by the experimental results.

B. Steganalysis Experiments

Steganalysis is a technology for distinguishing stegotext
from covertext, the essence of which is a binary classifier.

0, if ®(X) <0.5,

. (14)
1, if &(X)>0.5,

F(X) = [
where ©(X) € [0, 1] is the probability that the input X is a
cover (F = 0) or a stego (F = 1). The false alarm occurs when
X is a cover audio while F = 1, and missed detection occurs
when X is a stego audio while F = 0. False alarm and miss
detection are, respectively defined as

Pea =Pr{F(X) = 1| X € C},
Pup = Pr{F(X) =0 | X € S).

15)
(16)

where C and S are the cover set and the stego set respectively.
Then the total performance is the probability of detection error
computed from Pgp and Pyp as follows.

_ Pra+ Pvp
==

We randomly selected various short sentences and trans-
formed them into mel-spectrograms using the SPN networks.
By using the generated key pair via SG and the algorithm
SE, we encoded a specific message into audio, creating the
stegotext set. In addition, we generated normal audio from
identical short text sentences to establish the covertext set.

We employ three advanced audio steganography techniques
(two based on machine learning and one based on deep
learning), namely Liu et al.’s [43], Luo et al.’s [41] and Lin
et al’s [59]. Liu et al.’s method relies on the audio second
derivative of the mel-frequency cepstral coefficients (MFCC)
feature detection method. Luo et al.’s method uses a detection
method based on the frequency-domain MFCC feature of the
second-order difference residual signal and the time-domain
Markov transition probability feature of the original audio
signal. Lin et al.’s approach is based on CNN’s audio steganog-
raphy method, with a carefully designed convolutional layer.
The steganalysis experiments were conducted on a dataset
consisting of 10000 samples of stegotext and covertext, which
were divided into a training set, validation set, and test set in
different ratios.

Pg a7
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TABLE III

STEGANALYSIS EVALUATION OF LIU ET AL.”S AND LUO ET AL.”S METH-
ODS FOR STEGANOGRAPHIC ALGORITHMS (SE)

Ratio (TRN:TST) P P Pwp
8:2 04971 04944  0.4999
. , 7:3 0.4973  0.4960  0.4986
Liu et al’s [42] 6:4 04959  0.4976  0.4941
5:5 0.4977  0.4990  0.4963
8:2 0.5010  0.4900  0.5120
Lo et al’s [41] 7:3 0.5032 05019  0.5044
S 6:4 0.5020 0.4855 0.5184
5:5 0.4999  0.4890  0.5108

TABLE IV

STEGANALYSIS EVALUATION OF LIN ET AL.’S METHODS FOR STEGANO-
GRAPHIC ALGORITHMS (SE)

Ratio (TRN:VAL:TST) Pr

5:1:4 0.5006
Lin et al.’s [59] ?fifi g'g(fég
8:1:1 0.5115

The results are presented in Table IV, which reveals that
even under such a large scale, the detection error rates are still
close to 50%. The false alarm rate and missed detection rate
are also consistently near 50%. These results suggest that it is
challenging to distinguish between the distribution of speech
with secret information and the original speech.

We also intentionally adjusted the ratio between the training
and testing datasets to evaluate its impact on the security
analysis. Notably, we observed that our method consistently
maintained its indistinguishability between stego and cover,
even as the dataset’s balance underwent irregular changes. This
distinguishes our approach from many other empirically secure
steganographic techniques. Under CHA attacks, our method
remains robust regardless of the dataset’s unpredictable shifts
in balance.

VII. CONCLUSION

In this paper, we propose a practical and complete
public-key steganography construction based on elliptic curve
cryptography. First, we construct an IND$-CPA secure
public-key encryption construction using the Elligator2 tech-
nique. Using this scheme, we then construct a public-key
steganography system based on reversible mapping and
sampling. Next, we provide an instance of public-key
steganography using WaveGlow. The proposed scheme is
proven to be resistant to CHA and verified through NIST
pseudorandomness tests and steganalysis experiments. Addi-
tionally, we propose a single-round asynchronous algorithm
for steganographic key exchange. Finally, message integrity
can be achieved by appending Message Authentication Codes
(MAC:s) to the message ciphertext. As for identity authenti-
cation, it can be accomplished by using a public-private key
pair duality to perform a pseudorandom signature.

In terms of the limitations of our work, firstly, it’s worth
noting that CHA attacks are essentially passive. We did not
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consider scenarios where attackers actively attempt to imper-
sonate or maliciously tamper with data to probe steganography
users. This omission stems from the fact that, in practice, the
number of steganographers is typically quite low compared to
regular users, making such attacks costly. However, this may
not hold in other contexts.

Additionally, regarding the issue of how public keys are
obtained, our proposed approach relies on utilizing existing
legitimate public keys. However, this may not meet the param-
eter requirements of Elligator 2. Nevertheless, in more recent
Elligator variations like Elligator Squared [60] or Elligator
Swift [61], the parameter requirements have been significantly
relaxed and can be updated for practical use.

Furthermore, we aspire to extend more communication
protocols into the realm of steganography, including group
signatures and ring signatures in covert application scenarios.
In the future, we may be able to establish a parallel world in
the context of large-scale applications like AIGC, where we
have communication tools similar to those in the real world
but remain undetectable to external observers.

APPENDIX

Four theorems are listed below to prove that the functions
(¢ V) create a bijective function relationship between approx-
imately half of the elliptic curve points and uniform random
strings.

Theorem 3: R = Fy\{0}, if p mod 4 =1 and x (A% —
4B) = —1.

As per THEOREM 1, the decode function’s extended
domain is F, when the curve meets specific requirements.
This finding indicates that we can apply the decode function
to all elements within F,\0.

Extend domain R £ RU {0} = F),.

Theorem 4: ¢(Ié) = ER(F)), if pmod 4 =1 and X(Az—
4B) = —1.

THEOREM 2 demonstrates that the Encode Function’s
domain is identical to that of the Decode Function. During
the proof of this proposition (refer to the appendix), we have
established that ¢ (¥ ((x, ¥)) = (x, y).

Theorem 5: ¢(r) = ¢(r') < r' € {r, —r}. wherer,r’ € R.

As per Theorem 3, any nonzero element (x,y) € q)(lé)
corresponds precisely to two preimages in F),. Additionally,

the two preimages satisfy r = —r’, and (0, 0) has only one
preimage r = 0.
Th . _ IRrI _ IEpl+t ;
eorem 6: ||[ER(Fp)| = 5 + 1= ~5H5—, |- || is the
number of elements in the set.
. Fyl+1
Theorem 4 demonstrates the existence of % = pTH

encodable points on an elliptic curve. These points form
ER(F)). Defining R = 0,1,2,3,..., prl creates a bijective
relationship between R and Eg(F »). Therefore, any arbitrary
string from R can be decoded as an elliptic curve point in
ERr(Fp) by ¢, and any elliptic curve point in R can be encoded
by ¥ as a string belonging to R.

A. Proof of THEOREM 3

Proof: The curve should satisfy AB(A? —4B) # 0, so
A#0, B#0, A2—4B #0.VreF, and r #0, By the
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definition of R, s = ur?, x(u) = 1, therefore, x(s) € {0, 1}.
Since p mod 4 =1, x(=1)=x(1)=1,s # £1.
Then we assume that AZs = B(1 + s)z,

A%s = B(1+5),

(A> —4B)s = B(1 — 5)°.
Thus, (A2 —4B)A%s? = B>(1 4 5)%(1 — 5)%, x(s) € {0, —1},
s0 x((A2—4B)A%s%) = x(B*(1+4s5)*(1—s5)?) = 1, contrary
to x (A>—4B) = —1. Consequently, A%s # B(1+5)%, r € R.
Since r is chosen arbitrarily, F,\{0} € R. By definition of R,
we have R C F),\{0}. In conclusion, R = F,;\{0}. (]

B. Remark

Here, we will present some proofs of completeness of
definitions, as well as explanations about the properties of R
and ¢.

o v is defined to be complete and v # 0. This follows from

l1+ur>#0and A #0.

e V24 Av2 4+ Bv # 0, ie. € # 0. Assuming that v3 +
Av? + By # 0 holds, we have v+ Av = —B. By the
definition v = —A/(1 + ur2), we have v + vur? = —A.
Therefore, v2 + Av = —v?ur? = — B, which contradicts
A%ur? # B(1 4+ ur?)?.

e x(x3 4+ Ax? + Bx) = 1, and thus the definition of y is

complete.

e x #0and y # 0, it follows from x (x> + Ax2 + Bx) =
1#0and e #0.

e x # A If (v + Av>’ + Bv) =1 =¢, thenx = v
since v+vur? = —A and vur? # 0 (because v, u, r # 0);

hence, x # —A. If ¢(v3 + Av? + Bv) = —1 = ¢, then
x=—-v—A#0.

o ¢(r) = ¢(—r). It follows from v = ﬁ and the
single-valuedness of the square root function with respect
to r2.

C. Proof of THEOREM 4

Proof: (=) Proof that ¢(1§) C ERr(Fy).

Obviously, ¢(0) = (0,0) € Er(F,). Now consider the case
r #20. Letr € ﬁ\O = R be arbitrary, and suppose ¢ (r) =
(x,y). By Remark, we have x # —A and y # 0. Additionally,
from x(x +A) = v(v+A), we obtain —ux(x+A) = —uv(v+
A) = u?v2r?. Note that u, v, r # 0, so x(—ux(x + A)) =
x (u?v*r?) = 1. Therefore, ¢(r) = (x,y) € Eg(F,).

Thus, we have shown that qb(]i’) C Er(Fy).

(<) Prove that ¢(R) 2 Eg(F,).

We will show that for any (x,y) € Eg(Fy), there exists
7 € R such that ¢(7F) = (x,y). If (x,y) = (0,0), we can
choose ¥ = 0, and ¢ (¥) = (0, 0) holds.

Now consider the case where y # 0. By the definition of
Er(Fy) 2 E(F,), we have y2 = x3 + Ax? + Bx where
A #0,B # 0, and AB(A2 — 4B) # 0. Therefore, we have
x # 0 and x>+ Ax+B # 0. Additionally, x (x>+Ax>+Bx) =
1. Since x # —A, we have (x + A) # 0. Let u be a fixed
parameter with # 7% 0 and x (u) = —1.

Therefore, both (X;ﬁ)u and *’;jA) are well defined, and

X () = X (5 = x(—ux(x + A) = 1.
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V (x+A)u’ ifye \/>
S ipy e [R2

defined. By the definition of r, 7 # 0.

We now prove that r € RC R, ie. 1+ ur? £ 0, A%ui? #
B(14ui?). Our idea is to use ¢ to try to decode 7 and obtain
a series of temporary variables to assist in our proof.

All calculations below are assumed to be complete.

() If y e \/F? and y = vx3 + Ax2 + Bx, then 72 =
G L+ uw? = £ #0. Let 0 = 7 = (A +x),
X(@) = x(—=x — A) = x(ux) = —x(x), V> + A + B =
(A+x)>2—A(A+x)+ B =x*>+ Ax + B. Letg—x(a +
A2+ BD) = x(0)x (02 + A0+ B) = —x () x x>+ Ax+B) =
—X(x3+Ax2+Bx)=—1.Let3€=ev—T€>A —v—A=
—(—(A4+x)— A =x.Let y = —e+/x3 4+ Ax2+ Bx =
—&v/x3 + Ax?2 4 Bx = y.

Define r as follows: r is well

@1 yg¢ [F2andy = Va7 A 4 Bx, P2 = ~utA),
1+m72=_—A#O,thenletl'):;—A_=x,€=X({)3+A{)2+
Bo) = x(® + Ax> + Bx) = 1, ¥ = &0 — 1524 — 5 = x,

and y = —év/X3 + Ax%Z + Bx = —v/x3 + Ax? +Bx—
Both (1) and (2) have 1 + ui? # 0 and o2 4+ AD + B

X —|—Ax—|—B Substituting v, we have v>+Av+B = (1+f?4—ﬂ)2
252
+B — BU+ur)’—A%ur? Therefore, we have — AZui? +

1+1,tr2 (1+ur?)?

B(1 + ui*)? = (1 4+ ur)*>(¥®> + Av + B) # 0, noting that

(1 4+ ur?) #0 and x2 4+ Ax + B # 0.

r#0,

1+ ui® £0,

A%ui? # B(1 + ur®)>.

Therefore, for any (x,y) € Er(Fy), there exists 7 € R such

that ¢ (¥) = (x, y), which implies that ¢(1§) 2 ERr(Fy).
Combining the “if” and “only if” statements, we have

#(R) = Er(Fy). U

Overall, we have =r eR.

D. Proof of THEOREM 5

(=) When r = 0, it is easy to prove that ¢(0) = (0, 0)
and ¢(# 0) = (x,y) # (0,0) (by Remark), so there must

exist ¥’ = 0. For the case of r,r’ # 0, we have (x/,y') =
¢(r) o) = (x,y). Since y = —6«/x3+Ax2+Bx =
y = —€/+/x3 4+ Ax"? + Bx’, we have € = €’ # 0 due to
x’:x and x> + Ax2 +Bx #0, and v = v’ due to x = ev —
1-6)A 1—€)A _ _

54 =x' = v - 26)'Byv=1+uAr2=v/=1+uAr’2

(where A, u # 0), we have r2 = r’2, thus r’ € r, —r.
(<) The fact that ¢ (r) = ¢ (—r) has already been proven
in Remark.

E. Proof of THEOREM 6

Combining THEOREM 3, THEOREM 4 and THEOREM 5,

¢ and  are bijection functions. Therefore, [|Er(Fp)ll
\RH +1= |Fp|+1
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