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Abstract

Large Language Models (LLMs) are increas-001
ingly employed in zero-shot documents rank-002
ing, yielding commendable results. However,003
several significant challenges still persist in004
LLMs for ranking: (1) LLMs are constrained005
by limited input length, precluding them from006
processing a large number of documents simul-007
taneously; (2) The output document sequence008
is influenced by the input order of documents,009
resulting in inconsistent ranking outcomes; (3)010
Achieving a balance between cost and ranking011
performance is quite challenging. To tackle012
these issues, we introduce a novel documents013
ranking method called TourRank, which is in-014
spired by the tournament mechanism. This ap-015
proach alleviates the impact of LLM’s limited016
input length through intelligent grouping, while017
the tournament-like points system ensures ro-018
bust ranking, mitigating the influence of the019
document input sequence. We test TourRank020
with different LLMs on the TREC DL datasets021
and the BEIR benchmark. Experimental results022
show that TourRank achieves state-of-the-art023
performance at a reasonable cost.024

1 Introduction025

Recently, Large Language Models (LLMs) have026

demonstrated great potential in numerous Natural027

Language Processing (NLP) tasks, especially under028

the zero-shot settings. Researchers and practition-029

ers have also tried to leverage LLMs document030

ranking, a core task in information retrieval, under031

the zero-shot settings. Most of the existing LLM-032

based document ranking methods can be divided033

into three categories: the Pointwise approach that034

prompts LLMs to independetly assess the relevance035

of each candidate document (Sachan et al., 2022;036

Liang et al., 2022; Zhuang et al., 2023a; Guo et al.,037

2024); the Pairwise approach that use LLMs to038

compare each document against all the other docu-039

ments (Qin et al., 2023); and the Listwise approach040

that instruct LLMs to generate a ranked list of doc- 041

ument labels according to their relevance to the 042

query (Sun et al., 2023; Ma et al., 2023; Pradeep 043

et al., 2023a,b; Zhuang et al., 2023c).1 044

While these three approaches lead to different 045

trade-offs between effectiveness and efficiency, the 046

listwise approach, such as RankGPT, is considered 047

as the preferred prompting strategy for the LLM- 048

based zero-shot document ranking task. Unlike the 049

pointwise approach, the listwise approach consid- 050

ers multiple documents simultaneously and thus 051

yields better effectiveness in ranking. Meanwhile, 052

listwise ranking eludes the quadratic growing cost 053

exposed in the comparisons of all document pairs, 054

resulting in improved efficiency. 055

Although the listwise approaches achieve a good 056

trade-off between effectiveness and efficiency and 057

thus are considered preferred prompting strate- 058

gies for LLM-based document ranking, they also 059

face certain challenges: (1) The maximum context 060

length of LLMs limits the number of documents 061

that can be compared in a single prompt; (2) The 062

listwise generation process can not run in parallel, 063

which makes it hard to return the final ranking list 064

under a tight time constraint. (3) The ranking re- 065

sults are highly dependent on the initial order of 066

the candidate documents in the input prompt. 067

To address these challenges, we need to de- 068

velop a prompting strategy for LLM-based docu- 069

ment ranking that can: (Requirement 1) establish a 070

global ranking for about 100 candidate documents 071

through multiple local comparisons of 2 to 10 doc- 072

uments in a single prompt; (Requirement 2) par- 073

allelize multiple LLM inferences to minimize the 074

overall ranking process time; and (Requirement 075

3) effectively utilize the initial order of candidate 076

documents set by the first-stage retrieval model 077

without relying too heavily on it. 078

1See Appendix A.2 for a more detailed literature review
of the pointwise, pairwise, and listwise approaches for LLM-
based document ranking.
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Figure 1: The 1982 FIFA World Cup.
In the first group stage, 24 teams were divided into six groups,
and the top 2 out of 4 teams in each group qualified. In the
second group stage, 12 teams were divided into 4 groups, and
only the top 1 out of 3 teams in each group advanced. In
knockout stages, only the winner in each two-team match
progressed to the next stage.

Interestingly, we find that using LLMs and079

prompts to rank documents for a query can be anal-080

ogous to ranking teams or athletes in a sports tour-081

nament, as the design of a sports tournament has082

similar requirements. A tournament in sports is a083

structured competition involving multiple teams or084

individual competitors who compete against each085

other in a series of matches or games, with the goal086

of determining a champion or ranking the partic-087

ipants. Figure 1 shows the format and results of088

an example tournament, the 1982 FIFA World Cup.089

The tournament consists of two group stages and090

two knockout stages (i.e., the semi-finals and the091

final). Analogous to Requirement 1, each group in092

the group stages and each two-team match in the093

knockout stages served as a local comparison; the094

results of these local matches determined which095

teams could advance to the next stage and their096

final rankings in the tournament. To expedite the097

ranking process, the World Cup organized multiple098

parallel matches across different groups. This par-099

allelization allowed the tournament to progress effi-100

ciently and fit into a tight 4-week schedule, which101

meets Requirement 2. Regarding Requirement 3,102

the initial groupings were based on seeding and103

previous performance, providing an initial order104

of teams. However, the tournament did not solely105

rely on these seedings; each team’s performance in106

the group stage and subsequent rounds determined107

their advancement and final rankings.108

Therefore, inspired by the tournament mecha-109

nism, we propose a new zero-shot document rank-110

ing method called TourRank, which can fulfill the111

three requirements and mitigate the challenges in112

existing methods. In TourRank, we regard each can- 113

didate document as a participant in a multi-stage 114

tournament. In each stage, we group the candidate 115

documents and prompt the LLM to select the most 116

relevant documents in each group to advance to 117

the next stage. The LLM inferences across dif- 118

ferent groups in a single stage can be parallelized. 119

We also design a grouping strategy, similar to the 120

seeding strategy in sports tournaments, to make 121

use of the initial document order provided by the 122

first-stage retrieval model in ranking. In addition, 123

to further improve the effectiveness and robustness, 124

we design a point system to assign different points 125

to each candidate document based on its ranking 126

in each round tournament and perform multiple 127

rounds of tournament. In this way, the ranking list 128

can be obtained based on the final accumulated 129

points in descending order. 130

To prove the effectiveness of our approach, We 131

test TourRank and baselines on the TREC DL 132

19 (Craswell et al., 2020), TREC DL 20 datasets 133

(Craswell et al., 2021), and 8 datasets from BEIR 134

benchmark (Thakur et al., 2021). 135

To conclude, our contributions can be summa- 136

rized as follows: 137

• We introduce TourRank, a novel zero-shot 138

documents ranking method based on LLMs. 139

By conducting multiple rounds of tourna- 140

ment, TourRank outperforms existing prompt- 141

ing strategies for zero-shot documents rank- 142

ing. 143

• TourRank effectively mitigates the shortcom- 144

ings of current methods, particularly their sen- 145

sitivity to the initial candidate documents. 146

• TourRank strikes a commendable balance be- 147

tween inference cost and effectiveness, further 148

solidifying its advantages. 149

• Our experimental results confirm that Tour- 150

Rank also achieves SOTA on the open-source 151

models Mistral-7B (Jiang et al., 2023) and 152

Llama-3-8B (MetaAI, 2024). 153

2 Related Works 154

Neural Network Approaches Recent advance- 155

ments in document ranking have been achieved 156

with the help of pre-trained language models like 157

BERT (Devlin et al., 2018) and T5 (Raffel et al., 158

2020). Notably, Nogueira and Cho (2019) develop 159

a multi-stage text ranking system using BERT, 160

while Nogueira et al. (2020) and Zhuang et al. 161

(2023b) employ T5 for document ranking. 162

2



LLMs Approaches Recent studies have utilized163

LLMs for ranking tasks, employing pointwise, pair-164

wise, and listwise approaches. Pointwise meth-165

ods, such as Query Generation (QG) (Sachan et al.,166

2022) and Binary Relevance Generation (B-RG)167

(Liang et al., 2022), use LLMs to compute the168

probability or likelihood of query-passage pairs.169

Pairwise approaches, such as Pairwise Ranking170

Prompting (PRP) (Qin et al., 2023), leverage LLMs171

to conduct pairwise comparisons and ranking of172

retrieved documents. RankGPT (Sun et al., 2023)173

is a listwise method that adopts a sliding window174

strategy for document ranking. There are also other175

listwise methods, like RankVicuna (Pradeep et al.,176

2023a) and RankZephyr (Pradeep et al., 2023b),177

which employ instruction-tuning for documents178

ranking. Setwise prompting (Zhuang et al., 2023c)179

enhances efficiency by reducing model inferences180

and prompt token consumption.181

More introduction of existing works can be seen182

in the Appendix A.183

3 Method: TourRank184

In this section, we introduce our novel zero-shot185

ranking approach called TourRank, which is in-186

spired by the tournament mechanism and includes187

multiple parallel tournaments. Similar to how play-188

ers are ranked based on the accumulated points189

of multiple tournaments in descending order in a190

season, TourRank gets the ranking order of candi-191

date documents based on the accumulated points192

of multi-round tournaments in descending order.193

Next, we first delineate how a basic tournament194

works in TourRank. Then, we explain how to get195

the accumulated points of the candidate documents,196

which are subsequently utilized for document rank-197

ing. Lastly, we propose a specific grouping method198

to circumvent the constraints on the input length199

of LLMs and make full use of the initial ranking200

order.201

3.1 A Basic Tournament202

In one tournament of TourRank, we select NK203

documents from N1 candidates that are most rele-204

vant to the query in a stage-by-stage manner and205

each document gets a corresponding point after206

a whole tournament. As shown in Figure 2 (a),207

we choose the documents by stagewise selection208

(N1 → N2 → · · · → NK−1 → NK). In the k-th209

selection stage (k ∈ {1, 2, · · ·K − 1}), the most210

top-Nk+1 relevant documents to the given query211

are selected from Nk documents to next selection 212

stage. After the k-th selection stage, the points of 213

the Nk+1 selected documents are added by 1 to 214

k. And the points of Nk − Nk+1 documents that 215

are not selected are still k − 1. In this way, after a 216

full round of tournament, all candidate documents 217

can get the corresponding points PTr which is ex- 218

pressed as Table 1. In our experiments, the number 219

of candidate documents is 100, and the specific 220

points of all 100 documents after one tournament 221

are shown in Table 9 in Appendix G. 222

Number of Docs Points of Docs

NK K − 1

NK−1 −NK K − 2

· · · · · ·

Nk −Nk+1 k − 1

· · · · · ·

N1 −N2 0

Table 1: The points of all candidate documents after
one tournament. For example, there are Nk − Nk+1

documents with a score of k−1. (k ∈ {1, 2, · · ·K−1})

The parameter r of PTr represents the r-th round 223

of tournaments. As shown in Figure 3, R rounds 224

of tournaments can be performed in parallel, so we 225

have r ∈ {1, 2, · · · , R}. 226

3.2 Getting The Accumulated Points 227

Since the points obtained by one tournament are 228

coarse, multiple tournaments are required to ob- 229

tain more fine-grained document points. Figure 230

3 illustrates the process of multiple tournaments, 231

where we can see that points of candidate doc- 232

uments PTr(r ∈ {1, · · · , R}) are obtained after 233

each round of the tournament. 234

Because there are many factors that affect the 235

output content of LLMs, such as decoding strategy, 236

temperature coefficient, and especially the order 237

of documents input to LLMs, may introduce some 238

bias, so each set of points (PT1 , · · · , PTR
) obtained 239

by R rounds of tournaments are a little bit different. 240

If these points are added up, the bias of each round 241

tournament could be reduced to some extent, and 242

the accumulated points PT , which is expressed 243

as Equation (1), are more fine-grained and robust. 244

So the final ranking list is obtained according to 245

the accumulated points PF in descending order. 246

The analysis in Appendix D shows how exactly 247

TourRank-r improves document ranking. 248
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Figure 2: (a) A basic tournament. (b) The grouping strategy in the selection stage of the tournament.
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PT =
R∑

r=1

PTr (1)249

3.3 The Grouping and Selection Strategy250

Considering the limitation of the input length of251

LLMs, in some stages of TourRank, such as the252

stage of selecting Nk+1 documents from Nk candi-253

dates in Figure 2 (a), we may not be able to input254

all Nk documents into LLMs at once. Therefore,255

we take the approach of assigning Nk candidate256

documents to several groups and then inputting257

documents of each group into LLMs separately258

and simultaneously.259

As shown in Figure 2 (b), the Nk documents are260

divided into G groups, each of which contains n261

documents. Here the relative order of Nk initial262

documents is given by the retrieval model, such as263

BM25 (Robertson et al., 2009), etc. When grouping264

in a sports tournament, the seeded players and the265

weaker players are evenly assigned into different266

groups to ensure the fairness of the competition.267

Similarly, we used a similar strategy to group the268

documents by evenly distributing the documents269

in the initial order into different groups as shown 270

in Figure 2 (b). In this way, there will be some 271

difference in the relevance of the documents within 272

a group, making it easier for LLMs to select the 273

more relevant documents. 274

Additionally, Liu et al. (2024) find that current 275

language models do not robustly access and use 276

information in long input contexts because of the 277

position bias. In order to eliminate the bias of 278

LLMs on document input order and achieve a ro- 279

bust ranking, the order of documents in each group 280

will be shuffled before entering LLMs and the mul- 281

tiple tournaments will be performed as shown in 282

Figure 3. 283

After grouping the documents, we select the 284

most relevant m documents from the n (m < n) 285

documents in each group. In Figure 2 (b), we mark 286

the selected m documents in red in each group, and 287

these documents advance to the next stage. 288

Eventually, through the k-th selection stage of 289

the tournament, Nk+1 more relevant documents are 290

selected from the Nk documents to advance to the 291

next stage. Benefiting from this smart grouping 292

stage and multi-round tournaments mechanism, we 293

solve the problem of limited input length of LLMs 294

while achieving a more robust selection. 295

3.4 The Overall of TourRank 296

As the Pseudo-code of TourRank shown in Algo- 297

rithm 1, we perform R parallel tournaments as the 298

process in Figure 3 for the given query q and the 299

candidate documents list D. In r-th round tourna- 300

ment, we first initialize the points of all N1 candi- 301

date documents, that is PTr = 0 for N1 documents. 302

Then, we select and increase the points of the docu- 303

ments in a stage-by-stage way in which K−1 times 304

selection stages are executed serially, and this is 305
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corresponds to Figure 2 (a). In k-th selection stage,306

we adopt a suitable grouping approach (Figure 2307

(b)) to get the Nk+1 documents which can advance308

to the next selection stage, while adding points to309

the selected Nk+1 documents. After R rounds tour-310

nament, the points PTr , r ∈ {1, · · · , R} can be311

obtained. We can calculate the final points PT ac-312

cording to Equation (1). Finally, we re-rank the can-313

didate documents list according to the final points314

PT in descending order.315

Algorithm 1 The Pseudo-code of TourRank
1: Input: The query q and candidate documents list D
2: Perform R tournaments in parallel, r ∈ {1, · · · , R}:
3: Initialize the points as PTr = 0 for N1 documents.
4: Perform k-th selection stages, for k in range(1,K):
5: Assign Nk documents to G groups and each group

has n documents.
6: Select m documents that are more relevant to the

query q from n in each group in parallel.
7: Get the selected Nk+1 documents to advance to

next stage.
8: The points PTr of the selected Nk+1 documents

add 1.
9: Get a set of points PTr for all N1 documents.

10: After R times parallel tournaments, the final points PT

can be obtained according to Equation (1).
11: Rank the candidate documents D according to PT in

descending order.
12: Output: A ranked list of candidate documents D

The specific hyperparameters of TourRank can316

be seen in Table 8 in the Appendix G.317

4 Experiments318

Our experiments mainly focus on the following319

research questions:320

• RQ.1: Whether TourRank outperforms existing321

ranking methods based on LLMs.322

• RQ.2: Is TourRank sensitive to the candidate323

documents retrieved by different models and the324

initial order of documents, that is, does it have a325

robust ranking?326

• RQ.3: Is TourRank easy to achieve a trade-off be-327

tween effectiveness and resource consumption?328

• RQ.4: Can TourRank achieve the best perfor-329

mance based on different LLMs (open-source330

and close-source)?331

4.1 Experimental Settings332

Datasets We conduct experiments to answer the333

above research questions on TREC DL datasets334

(Craswell et al., 2020, 2021) and BEIR benchmark335

(Thakur et al., 2021). TREC is a widely used336

benchmark in IR research. We use the test sets 337

of TREC DL 19 and TREC DL 20, which con- 338

tain 43 and 54 queries. BEIR is a heterogeneous 339

zero-shot evaluation benchmark. Following Sun 340

et al. (2023), we select 8 datasets for evaluation, in- 341

cluding Covid, Touche, DBPedia, SciFact, Signal, 342

News, Robust04, and NFCorpus. 343

Metrics In the next evaluations, we re-rank the 344

top-100 documents retrieved by the first-stage re- 345

trieval model. If not specified, we use BM25 as the 346

default retrieval model and PySerini for implemen- 347

tation.2 We use NDCG@{5, 10, 20} as evaluation 348

metrics. 349

Baselines We compare TourRank with sev- 350

eral state-of-the-art baselines in documents rank- 351

ing, including the supervised methods monoBERT 352

(Nogueira and Cho, 2019) and monoT5 (Nogueira 353

et al., 2020), and zero-shot methods based on 354

LLMs: two pointwise methods, DIRECT(0, 10) 355

(Guo et al., 2024), Binary Relevance Generation 356

(B-RG) (Liang et al., 2022), one pairwise method 357

PRP (Qin et al., 2023), and two listwise methods, 358

Setwise (Zhuang et al., 2023c) and RankGPT (Sun 359

et al., 2023). The detailed introductions of these 360

baselines are in the Appendix B. 361

4.2 Experimental Results 362

Results on TREC DL datasets Table 2 shows 363

the performance of different methods on TREC DL 364

datasets. We compare NDCG@{5, 10, 20}, and the 365

best top-4 results of zero-shot LLM methods are 366

shaded. We reproduce all zero-shot LLM methods 367

with gpt-3.5-turbo API. From the results, we can 368

make the following findings: 369

(1) Our TourRank-10 outperforms all zero-shot 370

ranking baselines. It is worth noting that after 371

two tournaments (TourRank-2) the performance 372

is much better than one tournament (TourRank- 373

1), and TourRank-2 can significantly outper- 374

form RankGPT. This indicates that TourRank can 375

achieve good results with fewer tournaments. 376

(2) Generally, the two pointwise methods tend 377

to underperform in comparison to the pairwise 378

method, PRP-Allpair. However, the PRP-Allpair 379

falls short when compared to the listwise methods, 380

Setwise.bubblesort and our TourRank-10. This in- 381

dicates that listwise, which considers multiple doc- 382

uments simultaneously, is generally more effective 383

among LLM-based zero-shot ranking methods. 384

(3) PRP-Allpair achieves about the same per- 385

2https://github.com/castorini/pyserini
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Methods TREC DL 19 TREC DL 20
NDCG@5 NDCG@10 NDCG@20 NDCG@5 NDCG@10 NDCG@20

BM25 52.78 50.58 49.14 50.67 47.96 47.21

Supervised Methods

monoBERT (340M) 73.25 70.50 - 70.74 67.28 -
monoT5 (220M) 73.77 71.48 - 69.40 66.99 -

monoT5 (3B) 73.74 71.83 - 72.32 68.89 -

Zero-Shot LLM Methods

DIRECT(0, 10) 54.22 54.59 54.15 55.17 55.35 54.73
B-RG 63.33 62.51 60.00 65.04 63.37 60.47

PRP-Allpair 70.43 68.18 64.61 69.75 66.40 64.03
Setwise.bubblesort 73.58 71.16 67.89 71.66 69.04 65.52

RankGPT 72.05 68.19 62.21 67.25 63.60 59.12

TourRank-1 70.95 66.23 62.49 66.65 63.74 60.59
TourRank-2 72.24 69.54 65.03 67.65 65.20 62.78
TourRank-10 73.83 71.63 68.37 72.49 69.56 66.13

Table 2: Performance comparison of different methods on TREC datasets. We reproduce all the zero-shot LLM
methods with gpt-3.5-turbo API. The best-performing algorithms for supervised methods and zero-shot LLM
methods are bolded, respectively. The best top-4 results of zero-shot LLM methods are shaded in each metric.
TourRank-r represents that we perform r times tournaments.

formance as RankGPT on TREC DL 19, and386

outperforms RankGPT on TREC DL 20. Set-387

wise.bubblesort outperforms RankGPT on both388

datasets and is second only to TourRank-10.389

However, PRP-Allpair and Setwise.bubblesort390

achieve relatively good results at the cost of much391

higher complexity and resource consumption than392

RankGPT and TourRank. We discuss the effective-393

ness and cost of them in Section 4.5.394

(4) TourRank-10 achieves comparable results to the395

best supervised methods on TREC DL 19, and on396

TREC DL 20 TourRank-10 outperforms the best397

performing supervised method monoT5 (3B). It398

can be seen that TourRank is the only zero-shot399

method based on gpt-3.5-turbo API that can do this.400

We also perform TourRank with other close and401

open source LLMs in Section 4.6.402

Results on BEIR benchmark Table 3 shows403

the NDCG@10 of different methods on 8 tasks of404

BEIR benchmark. The following are some valuable405

discussions:406

(1) TourRank-10 achieves the best performance in407

6 out of 8 tasks and the best average NDCG@10408

across 8 tasks among zero-shot LLM methods.409

(2) The average of TourRank-2 (49.46) outper-410

forms RankGPT (49.37) in terms of NDCG@10411

in Table 3, which, together with the better perfor-412

mance of TourRank-2 over RankGPT on TREC DL413

datasets shown in Table 2, prove that our TourRank414

algorithm can achieve good results with only a few415

times tournaments.416

(3) Note that on the Touche task and Signal task,417

all supervised methods and zero-shot methods in 418

Table 3 perform even worse than BM25. The 419

NDCG@10 of all methods on these two tasks is 420

low, only about 0.3. According to Thakur et al. 421

(2024), the poor performance of neural retrieval 422

models is mainly due to the large number of short 423

texts and unlabeled texts in the Touche dataset. 424

The results on TREC datasets and BEIR bench- 425

mark jointly answer the RQ.1. 426

4.3 Sensitivity Analysis to Initial Ranking 427

We compare 3 different initial ranking: 1) BM25: 428

Get top-100 documents by BM25; 2) Ran- 429

domBM25: Shuffle the order of BM25; 3) In- 430

verseBM25: Reverse the order of BM25. Figure 4 431

shows the results of RankGPT and our TourRank 432

based on 3 initial rankings and all these experi- 433

ments are based on gpt-3.5-turbo API. 434

From Figure 4, we can see that RankGPT is very 435

sensitive to the initial permutation of documents 436

list. When the initial permutation is shuffled or 437

reversed, the performance of RankGPT becomes 438

much worse. This is caused by the ranking mecha- 439

nism of RankGPT, which adjusts the overall permu- 440

tation of documents list through the sliding window 441

strategy. Sliding the window from bottom to top 442

makes it easier for documents that are originally 443

near the top to be ranked at top positions in the final 444

permutation. Whereas documents that are at the 445

bottom of the initial permutation need to be ranked 446

at the top of every comparison in corresponding 447

sliding window in order to be ranked at the top of 448
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Methods Covid NFCorpus Touche DBPedia SciFact Signal News Robust04 Average

BM25 59.47 30.75 44.22 31.80 67.89 33.05 39.52 40.70 43.42

Supervised Methods

monoBERT (340M) 70.01 36.88 31.75 41.87 71.36 31.44 44.62 49.35 47.16
monoT5 (220M) 78.34 37.38 30.82 42.42 73.40 31.67 46.83 51.72 49.07

monoT5 (3B) 80.71 38.97 32.41 44.45 76.57 32.55 48.49 56.71 51.36

Zero-Shot LLM Methods

RankGPT 76.67 35.62 36.18 44.47 70.43 32.12 48.85 50.62 49.37

TourRank-1 77.17 36.35 29.38 40.62 69.27 29.79 46.41 52.70 47.71
TourRank-2 79.85 36.95 30.58 41.95 71.91 31.02 48.13 55.27 49.46
TourRank-10 82.59 37.99 29.98 44.64 72.17 30.83 51.46 57.87 50.94

Table 3: Performance (NDCG@10) comparison of different methods on BEIR benchmark. The best-performing
algorithms for supervised methods and zero-shot LLM methods are bolded. TourRank-r represents that we perform
r times tournaments.

(a) TREC DL 19

(b) TREC DL 20

Figure 4: The sensitivity analysis to initial ranking of
TourRank and RankGPT on TREC DL 19 and TREC
DL 20.

the final permutation, otherwise they are left at the449

bottom or middle of the whole documents list. So,450

this is the reason why RankGPT is very sensitive451

to the initial ranking.452

However, our TourRank is quite robust to differ-453

ent initial orderings, as shown by the fact that shuf-454

fling and reversing the initial order has almost no455

effect on TourRank-r. The robustness of TourRank456

to the initial ranking benefits from the tournament457

mechanism presented in Figure 2. Each tournament458

is a selection over all candidate documents, not just459

a fine-tuning of the initial ranking like RankGPT.460

4.4 Analysis to Different Retrieval Models461

In addition to BM25, we also obtain top-100 docu-462

ments based on two more powerful retrieval mod-463

els, including a dense retriever model Contriever464

(Izacard et al., 2021) and a neural sparse retrieval 465

model SPLADE++ ED (Formal et al., 2022), as the 466

first-stage retrieval model. Then, we perform Tour- 467

Rank and RankGPT to re-rank the top-100 candi- 468

date documents retrieved by different retrieval mod- 469

els based on gpt-3.5-turbo API. The results in Ta- 470

ble 4 show that TourRank-10 achieves SOTA rank- 471

ing performance based on 3 kinds of different top- 472

100 initial candidate documents. And TourRank-2 473

can also outperform RankGPT in general. 474

Methods Top-100 TREC DL 19 TREC DL 20

BM25 - 50.58 47.96
RankGPT

BM25
68.19 63.60

TourRank-2 69.54 65.20
TourRank-10 71.63 69.56

Contriever - 62.02 63.42
RankGPT

Contriever
69.70 68.47

TourRank-2 69.12 71.89
TourRank-10 70.77 73.19

SPLADE++ ED - 73.08 71.97
RankGPT

SPLADE++ ED
74.56 70.75

TourRank-2 74.86 74.11
TourRank-10 75.35 77.09

Table 4: NDCG@10 of TourRank and RankGPT based
on different retrieval models. Here we use gpt-3.5-turbo
API for TourRank and RankGPT.

The results in Table 4 and the analysis in Sec- 475

tion 4.3 jointly answer the RQ.2, that is, TourRank 476

has the ability of robust ranking. 477

4.5 The Trade-Off between Effectiveness and 478

Resource Consumption 479

Table 5 shows the approximation of the theoretical 480

lowest time complexity of different methods and 481

the number of documents LLMs need to receive. 482

All the contents of Table 5 are based on the rec- 483

ommended parameters. More detailed discussions 484
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on precise time complexity and number of input485

documents are in Table 7 in the Appendix E. From486

Table 5, we can see that:487

(1) PointWise has the lowest time complexity and488

the lowest number of documents received by LLMs,489

but the experimental results of DIRECT(0, 10) and490

B-RG in Table 2 show that PointWise exhibits poor491

performance.492

(2) Although the pairwise method PRP-Allpair per-493

forms well in the experiments on TREC datasets,494

the number of input documents required by PRP-495

AllPair is N2 −N , which will greatly increase the496

cost of ranking.497

(3) Setwise.bubblesort performs very well on498

TREC DL datasets in Table 2 and is second only499

to TourRank-10. However, the multiple steps of500

Setwise have dependencies and cannot be run in501

parallel, resulting in the time complexity of Setwise502

being extremely high and unacceptable.503

(4) Two listwise methods RankGPT and our Tour-504

Rank take into account both the time complexity505

and the number of documents inputted to LLMs.506

The experimental results in Table 2 and 3 show that507

TourRank-2 can outperform RankGPT. From Table508

5, we can see that TourRank-2 (r = 2) achieves509

this goal with about twice as many documents to510

LLMs as RankGPT but with lower time complexity.511

We also compare TourRank with running RankGPT512

multiple iterations in serial (Appendix F), and Tour-513

Rank demonstrates better performance and lower514

consumption.515

Methods Time Complexity No. of Docs to LLMs

PointWise O(1) N

PRP-Allpair O(1) N2 −N

Setwise.bubblesort ≈ O(12k ∗N) ≈ 3
2k ∗N

RankGPT ≈ O( 1
10 ∗N) ≈ 2 ∗N

TourRank-r O(K − 1) ≈ 2r ∗N

Table 5: A approximation of the theoretical lowest time
complexity of various methods and the number of docu-
ments which are inputted to LLMs for each method. N
is the number of candidate documents. Setwise rank the
top-k (k < N ) documents through bubblesort. K − 1 is
the times of the selection stages in a tournament (Figure
2 (a)) and r is the times of tournaments in TourRank-r.
(Note: The approximate contents in this table are based
on the recommended parameters.)

The above experimental results and the analysis516

of the trade-offs between effectiveness and effi-517

ciency jointly answer the RQ.3.518

4.6 TourRank Based on Other LLMs 519

We also perform TourRank based on the open- 520

source models Mistral-7B (Jiang et al., 2023) and 521

Llama-3-8B (MetaAI, 2024), and gpt-4-turbo API. 522

Table 6 shows the performance of TourRank 523

with different LLMs. The top-100 candidate doc- 524

uments are retrieved by BM25. The results show 525

that RankGPT performs far worse based on the 526

open-source LLMs than based on OpenAI’s APIs. 527

However, the performances of our TourRank based 528

on open-source LLMs are still good. Especially 529

on TREC DL 19 dataset, the performance of 530

TourRank-10 based on Llama 3 8B achieves 72.76, 531

which is higher than the performance of TourRank- 532

10 based on gpt-3.5-turbo (71.63). In addition, 533

TourRank-5 with gpt-4-turbo outperforms all meth- 534

ods based on gpt-3.5-turbo in Table 2, which in- 535

dicates that TourRank can achieve higher perfor- 536

mance with fewer tournaments times r based on a 537

stronger model. 538

Methods LLMs TREC DL 19 TREC DL 20

BM25 - 50.58 47.96

RankGPT
Mistral-7B

61.90 58.54
TourRank-2 65.47 61.52

TourRank-10 68.93 65.53

RankGPT
Llama-3-8B

59.48 54.47
TourRank-2 68.95 65.62

TourRank-10 72.76 68.05

RankGPT
gpt-4-turbo

72.67 69.48
TourRank-1 72.46 67.38
TourRank-5 74.13 69.79

Table 6: NDCG@10 of TourRank and RankGPT based
on open-source LLMs, Mistral 7B and Llama 3 8B, and
gpt-4-turbo API.

These experiments shows that TourRank can 539

achieve good performance not only based on Ope- 540

nAI’s API, but also based on open source LLMs, 541

answering the RQ.4. 542

5 Conclusions 543

We introduce TourRank, a novel zero-shot docu- 544

ments ranking method inspired by the tournament 545

mechanism. TourRank addresses challenges in 546

large language models for ranking, such as input 547

length limitations and sensitivity to input order. 548

Our experiments show that TourRank outper- 549

forms existing LLM-based zero-shot ranking meth- 550

ods, balances effectiveness and cost. This demon- 551

strates that TourRank is a promising approach for 552

future research in zero-shot documents ranking. 553
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Limitations554

The performance of TourRank is inherently depen-555

dent on the capabilities of the underlying LLMs. If556

the LLMs can’t follow the instructions well, it will557

be difficult to achieve good results.558

Although multiple tournaments of TourRank can559

be performed in parallel in a multi-process manner,560

for example, based on the API of OpenAI, it is561

difficult to run the open-source models in a multi-562

process manner under the environment of limited563

computing resources.564
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Appendix694

A More Related Works695

A.1 Neural Network Approaches696

Documents ranking has made significant progress,697

with the help of pre-trained language models, such698

as BERT (Devlin et al., 2018) and T5 (Raffel699

et al., 2020). Nogueira and Cho (2019) present700

a multi-stage text ranking system using BERT,701

introducing monoBERT and duoBERT models702

that offer a balance between quality and latency,703

achieving state-of-the-art results on MS MARCO704

and TREC CAR datasets. Nogueira et al. (2020)705

introduce a new method for document ranking706

using a pre-trained sequence-to-sequence model,707

T5, which outperforms classification-based mod-708

els, especially in data-poor scenarios, and demon-709

strates the model’s ability to leverage latent knowl-710

edge from pretraining for improved performance.711

Zhuang et al. (2023b) introduce RankT5, a method712

for fine-tuning the T5 model for text ranking us-713

ing ranking losses, which shows significant per-714

formance improvements over models fine-tuned715

with classification losses and demonstrates better716

zero-shot ranking performance on out-of-domain717

data.718

A.2 LLMs Approaches719

Pointwise Approaches There are several works720

that employ various zero-shot pointwise rankers.721

Query Generation (QG) (Sachan et al., 2022) in-722

volves rescoring retrieved passages by leveraging723

a zero-shot question generation model. The model724

uses a pre-trained language model to compute the725

probability of the input question, conditioned on a726

retrieved passage. Binary Relevance Generation (B-727

RG) (Liang et al., 2022) proposes to utilize LLMs728

to make predictions on a query-passage pair, uti-729

lizing the likelihood of “Yes/No” responses for the730

computation of ranking scores. The Rating Scale731

0−k Relevance Generation (RS-RG) (Zhuang et al.,732

2023a) incorporates fine-grained relevance labels733

into the prompts for LLM rankers to better differen-734

tiate documents of varying relevance levels to the735

query, thereby achieving more accurate rankings.736

Guo et al. (2024) propose a multi-perspective evalu-737

ation criteria-based ranking model to overcome the738

deficiencies of LLM rankers in standardized com-739

parison and handling complex passages, thereby740

significantly enhancing the pointwise ranking per-741

formance. Guo et al. (2024) have also considered742

the Rating Scale 0− k Directly Score (DIRECT(0, 743

k)) method. This approach prompts the LLM to 744

directly generate the relevance score for each query- 745

passage pair. 746

Pairwise Approaches Pradeep et al. (2021) de- 747

sign a pairwise component to enhance the early 748

precision performance of the text ranking system 749

by employing a pre-trained sequence-to-sequence 750

model (such as T5 (Raffel et al., 2020)) to con- 751

duct pairwise comparisons and reranking of re- 752

trieved document pairs. Qin et al. (2023) intro- 753

duce a method called Pairwise Ranking Prompting 754

(PRP), which effectively enables LLMs to perform 755

text ranking tasks by simplifying the prompt de- 756

sign and achieving competitive performance across 757

multiple benchmark datasets. 758

Listwise Approaches LRL (Ma et al., 2023) en- 759

hances text retrieval reranking by employing a large 760

language model as a zero-shot listwise reranker, 761

utilizing a simple instruction template and a slid- 762

ing window strategy to process multi-document 763

information. Similarly, Sun et al. (2023) introduce 764

a novel instructional permutation generation ap- 765

proach called RankGPT, utilizing a sliding window 766

strategy to effectively enable LLMs (such as Chat- 767

GPT (OpenAI) and GPT-4 (Achiam et al., 2023)) 768

to be used for relevance ranking tasks in informa- 769

tion retrieval, achieving competitive and even su- 770

perior results on popular IR benchmarks. In addi- 771

tion, both RankVicuna (Pradeep et al., 2023a) and 772

RankZephyr (Pradeep et al., 2023b) utilize open- 773

source LLMs and employ instruction fine-tuning 774

to achieve zero-shot listwise document reranking, 775

thereby enhancing the ranking performance of 776

smaller LLMs. Zhuang et al. (2023c) propose a 777

novel Setwise prompting approach to enhance the 778

efficiency and effectiveness of LLMs in zero-shot 779

document ranking tasks, by reducing the number 780

of model inferences and prompt token consump- 781

tion, which significantly improves computational 782

efficiency while maintaining high ranking perfor- 783

mance. 784

B Introduction of Baselines 785

B.1 Supervised Methods 786

• monoBERT (Nogueira and Cho, 2019): A rank- 787

ing method with a cross-encoder architecture 788

based on BERT-large, trained on MS MARCO. 789

• monoT5 (Nogueira et al., 2020): A ranking 790

method that calculates the scores using T5 model. 791
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(a) TREC DL 19 (b) TREC DL 20

(c) Average of 8 tasks on BEIR

Figure 5: The performance of TourRank with different times of tournaments. The abscissa is the times of
tournaments, and the ordinate is NDCG@{5, 10, 20, 30, 50}. All the results are based on gpt-3.5-turbo API.

B.2 Zero-Shot Methods792

• DIRECT(0, 10) (Guo et al., 2024): A pointwise793

method which gives the relevance scores ranging794

from 0 to 10 to each query-document pair in text795

format using LLMs. Then, rank the documents796

according to these scores in descending order.797

• Binary Relevance Generation (B-RG) (Liang798

et al., 2022): A pointwise method which ranks799

the candidate documents according to the likeli-800

hood of "Yes or No" on a query-document pair.801

• PRP (Qin et al., 2023): A pairwise method that802

reduces the burden on LLMs by using a technique803

called Pairwise Ranking Prompting.804

• Setwise (Zhuang et al., 2023c): A listwise805

method that improves the efficiency of LLM-806

based zero-shot ranking. The authors introduce807

two setwise methods, setwise.bubblesort and set-808

wise.heapsort. Because the former has better809

performances on experiments, we reproduce set-810

wise.bubblesort in our experiments (Table 2).811

And we set c = 3 which is the best value for 812

setwise.bubblesort. c is the number of compared 813

documents in a prompt. 814

• RankGPT (Sun et al., 2023): A listwise method 815

that uses a sliding window strategy to achieve list- 816

wise ranking based on LLMs. In the experiments, 817

we observed some instability in the performance 818

of RankGPT. So the values in Table 2 and Figure 819

4 are the average by running RankGPT 3 times. 820

C The Performance of TourRank-r 821

Figure 5 shows the trend of NDCG@{5, 10, 20, 30, 822

50} with the increase of the number of tournaments 823

for TourRank on TREC datasets and BEIR bench- 824

mark. We can see that after the first two tourna- 825

ments, TourRank-2 achieves relatively good results 826

on all datasets, outperforming RankGPT on all cor- 827

responding metrics shown. Even in TourRank-10, 828

the metrics still have the potential to continue to 829

increase. 830
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Figure 6: The relationship between the accumulated points PT and the corresponding labels for TourRank-1 and
TourRank-10. The query of this case is "how long is life cycle of flea" which is one of the queries in the TREC DL
19.

Since the number of tokens consumed by Tour-831

Rank scales linearly with the number of tourna-832

ments, we can control the number of consumed833

tokens by controlling the number of tournaments.834

Thus, the balance between effectiveness and token835

consumption can be achieved.836

D Case Study: How Does TourRank837

Improve the Performance of838

Documents Ranking?839

In Figure 6, the horizontal coordinate represents the840

ranking position of top-50 documents, the red lines841

represent the accumulated points PT of TourRank-842

1 and TourRank-10 respectively, and the blue star843

points represent the corresponding real labels (inte-844

gers from 0 to 3).845

It can be seen that the PT of TourRank-1 is846

coarse, and the labels for the top-50 ranked doc-847

uments are also relatively scattered. However,848

the accumulated points PT of TourRank-10 be-849

come much more fine-grained after 10 tourna-850

ments, and the labels corresponding to top-50 docu-851

ments are relatively concentrated. After testing, the852

NDCG@{10, 50} of the case query have increased853

from {0.7078, 0.8186} to {0.8715, 0.911}.854

Therefore, as the times of tournaments increases,855

the accumulated points PT become more fine-856

grained. This is how exactly TourRank improves857

the document ranking performance.858

E The Discussions on Time Complexity859

and Number of Documents Inputted to860

LLMs861

Table 7 is a more precise version of Table 5 which862

shows the theoretical lowest time complexity of var-863

ious methods and the number of documents which864

are inputted to LLMs for each method. Then, we865

analysis the content in Table 7.866

E.1 Time Complexity 867

PointWise and Pairwise Since PointWise scor- 868

ing a single document and PRP-Allpair comparing 869

a pair of documents can be performed in paral- 870

lel, the theoretical lowest time complexity is O(1). 871

However, since pairwise methods need to compare 872

about O(N2) pairs of documents, the theoretical 873

minimum time complexity O(1) is difficult to im- 874

plement. 875

Setwise.bubblesort According to (Zhuang et al., 876

2023c), the time complexity of Setwise.bubblesort 877

is O(k∗ N
c−1). Setwise rank the top-k (k < N ) doc- 878

uments through bubblesort, and c is the documents 879

compared in a prompt of Setwise. Considering 880

that Setwise can achieve the best performance with 881

c = 3, the time complexity is: 882

O(k ∗ N

c− 1
) ≈ O(

1

2
k ∗N) 883

RankGPT RankGPT uses sliding window strat- 884

egy, so its time complexity is O(N−ω
s ). The best 885

window size is ω = 20 and the best step size is 886

s = 10 in RankGPT. Based on the optimal pa- 887

rameters (ω = 20 and s = 10) and considering 888

that ω is often much smaller than N , the best time 889

complexity of RankGPT is: 890

O(
N − ω

s
) = O(

N − 20

10
) ≈ O(

1

10
∗N) 891

TourRank-r One tournament includes K − 1 892

times selection stages shown in Figure 2, so the 893

time complexity of one tournament is O(K − 1). 894

Because r rounds tournaments can be performed 895

in parallel, the time complexity of TourRank-r is 896

also O(K − 1). 897
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Methods Time Complexity No. of Docs to LLMs

PointWise O(1) N

PRP-Allpair O(1) N2 −N

Setwise.bubblesort O(k ∗ N
c−1) ≈ O(12k ∗N) k ∗ N

c−1 ∗ c ≈ 3
2k ∗N

RankGPT O(N−ω
s ) ≈ O( 1

10 ∗N) ω ∗ N−ω
s ≈ 2 ∗N

TourRank-r O(K − 1)
(∑K−1

k=0
N
2k

)
∗ r ≈ 2r ∗N

Table 7: This Table is a more precise version of Table 5. The theoretical lowest time complexity of various methods
and the number of documents which are inputted to LLMs for each method. N is the number of candidate documents.
Setwise rank the top-k (k < N ) documents through bubblesort, and c = 3 is the documents compared in a prompt
of Setwise. ω = 20 is window size and s = 10 is step size in RankGPT. K − 1 is the times of the selection stages
in a tournament (Figure 2 (a)) and r is the times of tournaments in TourRank-r. All the approximate contents in this
table are based on the recommended parameters.

E.2 No. of Docs to LLMs898

PointWise Since the PointWise method scores899

each document once, the number of documents900

inputted to LLMs is N .901

Pairwise However, PRP-Allpair needs to form902

at least N∗(N−1)
2 pairs for N candidate documents,903

and since one pair of documents is inputted to904

LLMs each time, the number of documents it inputs905

to LLMs is N2 −N .906

Setwise.bubblesort The time complexity of Set-907

wise.bubblesort is O(k∗ N
c−1) and c = 3 documents908

is compared in a prompt, so the number of docu-909

ments inputted to LLMs for Setwise.bubblesort is:910

k ∗ N

c− 1
∗ c ≈ 3

2
k ∗N911

RankGPT In RankGPT, we know that ω docu-912

ments need to be inputted into each window, and913

a total N−ω
s intra-window ranking need to be per-914

formed, so the number of documents input to LLMs915

is ω ∗ N−ω
s . The best window size ω given in916

RankGPT is 20 and the best step size s is 10. Based917

on the optimal parameters and considering that ω918

is often much smaller than N , the number of docu-919

ments inputted into the LLMs of RankGPT is:920

ω ∗ N − ω

s
= 20 ∗ N − 20

10
≈ 2 ∗N921

TourRank-r In TourRank, if close to half of922

the documents are selected to advance to the next923

selection stage in a tournament (that is, m ≈ 1
2n),924

the total number of documents input to LLMs is925

about:926

N +
N

2
+ · · ·+ N

2K−2
=

K−1∑
k=0

N

2k
927

= N ∗
1−

(
1
2

)K−1

1− 1
2

928

≈ 2 ∗N 929

The TourRank-r performs r rounds tournaments, 930

so the number of documents inputted to LLMs of 931

TourRank is about: 932

(
K−1∑
k=0

N

2k

)
∗ r ≈ 2r ∗N 933

F Comparison Between Serial RankGPT 934

and Parallel TourRank-r 935

We also run RankGPT multiple times in seriality 936

called RankGPT (serial), that is, the documents 937

order obtained by this iteration is used as the ini- 938

tial order for the next iteration. Figure 7 shows the 939

comparison of RankGPT (serial) and our TourRank. 940

We can see that on both TREC DL 19 and TREC 941

DL 20 datasets, the NDCG@10 of RankGPT (se- 942

rial) goes up for the first three iterations, but stops 943

going up after that. This indicates that RankGPT 944

will reach the upper limit after a few serial runs. 945

However, after multiple iterations (or tournaments) 946

of TourRank-r, the NDCG@10 still continues to 947

rise and performs much better than RankGPT (se- 948

rial). 949

RankGPT (serial) and TourRank after the same 950

r iterations: (1) The number of documents inputted 951

to LLMs are both about 2r ∗N ; (2) The time com- 952

plexity O(K − 1) of TourRank is also significantly 953
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(a) TREC DL 19 (b) TREC DL 20

Figure 7: The comparison of NDCG@10 between running RankGPT multiple times in serial and running TourRank-
r in parallel.

less than O( r
10 ∗N) of RankGPT (serial); (3) The954

performance of TourRank is significantly better955

than RankGPT (serial). These indicate that Tour-956

Rank can achieve a better balance between effec-957

tiveness and efficiency.958

G The Detail Hyperparameters of959

TourRank960

The detail of hyperparameters of TourRank are961

shown in Table 8.962

Table 9 shows the specific points of candidate963

document after 1 time tournament under the setting964

of our experiments.965

H Prompts966

Table 10 shows the prompt used in the grouping967

and selction stage (Figure 2 (b)) of TourRank.968
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Parameters Explanation Value

R The rounds of tournament in TourRank. 10

K One tournament contains K − 1 times selection stages. 6

Nk
The number of candidate documents in k-th selection stages in a
tournament. (k ∈ {1, · · · ,K})

N1 = 100
N2 = 50
N3 = 20
N4 = 10
N5 = 5
N6 = 2

G/n/m

G: Divide candidate documents into G groups.
n: Each group has n documents.
m: Select m documents from each group.

100 → 50 : 5/20/10
50 → 20 : 5/10/4
20 → 10 : 1/20/10
10 → 5 : 1/10/5
5 → 2 : 1/5/2

Table 8: Hyperparameters of TourRank.

Number of Docs Points of Docs

N6 = 2 5

N5 −N6 = 3 4

N4 −N5 = 5 3

N3 −N4 = 10 2

N2 −N3 = 30 1

N1 −N2 = 50 0

Table 9: The specific points of all documents after one tournament in our experimental settings.

system: You are an intelligent assistant that can compare multiple documents based on
their relevancy to the given query.

user: I will provide you with the given query and n documents. Consider the content of
all the documents comprehensively and select the m documents that are most relevant
to the given query: query.

assistant: Okay, please provide the documents.

user: Document 1: Doc1
assistant: Received Document 1.

user: Document 2: Doc2
assistant: Received Document 2.

(User input more documents to assistant.)

user: The Query is: query. Now, you must output the top m documents that are most
relevant to the Query using the following format strictly, and nothing else. Don’t output
any explanation, just the following format:
Document 3, ..., Document 1

Table 10: The prompt of the grouping and selection stage of TourRank.
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