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ABSTRACT 1 

Air pollution is a major obstacle to future sustainability, and traffic pollution has 2 

become a large drag on the sustainable developments of future metropolises. Here, 3 

combined with the large volume of real-time monitoring data, we propose a deep 4 

learning model, iDeepAir, to predict surface-level PM2.5 concentration in Shanghai 5 

megacity and linked with emission inventory creatively to decipher urban traffic 6 

impacts on air quality. Our model exhibits high-fidelity in reproducing pollutant 7 

concentrations and reduces the MAE by 20% compared with other models and 8 

identifies the ranking of major factors. Local meteorological conditions have become a 9 

nonnegligible factor. Layer-wise relevance propagation (LRP) is used here to enhance 10 

the interpretability of the model and we visualized and analyzed the reasons for the 11 

different correlation between traffic density and PM2.5 concentration in various regions 12 

of Shanghai. Meanwhile, As the strict and effective industrial emission reduction 13 

measurements implementing in China, the contribution of urban traffic to PM2.5 14 

formation is gradually increasing from 21.62% in 2010 to 35.67% in 2017 in Shanghai, 15 

and the impact of traffic emissions would be ever-prominent in 2030 according to our 16 

prediction. We also infer that the promotion of vehicular electrification would achieve 17 

further alleviation of PM2.5 about 11.72% and reduce 11.72% by 2030 gradually. These 18 

insights are of great significance to provide the decision-making basis for accurate and 19 

high-efficient traffic management and urban pollution control, and eventually benefit 20 

people's lives and high-quality sustainable developments of cities.  21 
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1. Introduction 27 

Air pollution is a large obstacle to the world’s future sustainable developments, 28 

and millions of people die from air pollution-related diseases every year around the 29 

world (Zheng et al., 2017). This is seriously severe in some developing countries like 30 

China (Lelieveld et al., 2015), which has the highest country-level values globally for 31 

the population-weighted annual average concentration of PM2.5 (Tichenor and Sridhar, 32 

2019; Zhang et al., 2012)and has been a major public health concern in recent years (Li 33 

et al., 2019a). Shanghai, one of the most developed and populous cities in China, has 34 

suffered severe increasing haze episodes mostly attributed to the severe particle 35 

pollution especially fine particles (particles ≤2.5μm in aerodynamic diameter; PM2.5)  36 

(Li et al., 2019a)  since 1990s with the rapid urbanization and industrialization (Wang 37 

et al., 2015a). Under these circumstances, air pollution-related diseases have emerged 38 

gradually, such as respiratory diseases in the elderly and preterm birth and low birth 39 

weight for birth when maternal exposure to PM2.5 in Shanghai (Liu et al., 2017). 40 

Going further, the total number of vehicles in China has exceeded 200 million in 41 

2019 and increases by more than 20 million annually in the urban. Vehicular traffic is a 42 

principal source of air pollutants such as nitrogen oxides (NOx), carbon monoxide (CO) 43 

and carbonaceous particles (Zhang and Batterman, 2010). Traffic emission has become 44 

one of the important factors affecting air quality due to the extensive motor vehicles in 45 

China (Yan et al., 2020). Meanwhile, some secondary pollutants discharged like O3 , 46 

SO2 and a major portion of PM2.5 are generally diverse in different regions and time 47 

(Kroll et al., 2020). When they involve different changes or conditions, they could 48 



 

 

promote or alleviate the formation of PM2.5 in varying degrees such as high relative 49 

humidity promoting the formation of PM2.5 (Benas et al., 2013), higher temperature 50 

enhancing the photochemical reaction in the atmosphere (Dumka et al., 2015), wind 51 

contributing greatly to diffuse particulate matter (Xiao et al., 2011), which makes it 52 

difficult to trace and analyze the causes of local air pollution and the major drivers (Le 53 

et al., 2020) in a specific area. Generally speaking, atmospheric chemical reactions 54 

serve as essential nonlinear links between traffic emissions and atmospheric 55 

composition (Yang et al., 2021a; Zhu et al., 2021). Meanwhile, local meteorological 56 

factors, for instance, air temperature, wind-field (Zhou et al., 2021), humidity, and so 57 

on also strongly regulate photochemical formation of ozone and PM (Le, Wang, Liu, 58 

Yang, Yung, Li and Seinfeld, 2020; Wu et al., 2020; Yang, Wen, Wang, Zhang, Pinto, 59 

Pennington, Wang, Wu, Sander, Jiang, Hao, Yung and Seinfeld, 2021a). Here, we 60 

disentangle the complex factors involving emissions inventory, transport emission, and 61 

meteorological conditions to evaluate the effect of different factors on air quality in 62 

urban area by deep-learning. 63 

To disentangle the complex factors, we focus on the issue of pollution tracing by 64 

deep learning. Relatively speaking, traditional source apportionment (SA) methods 65 

which mainly based on receptor-oriented model and source-oriented model (Huang et 66 

al., 2014; Zhang et al., 2017), are flawed for PM2.5 source identification and traffic 67 

emission impact evaluation for the following reasons: a) most parameters in these 68 

models, which are determined from the laboratory (Julie et al., 2016), cannot accurately 69 

reflect the real scene, and it is quite time-consuming to get these parameters; b) many 70 



 

 

important influential factors such as meteorological conditions, pollutant discharge, 71 

secondary chemical substances formed during pollutants diffusion are not considered, 72 

hence results in poor accuracy of the simulating results (Kumar et al., 2018; Li et al., 73 

2017a; Souri et al., 2016); c) the validity of quantifying impacts of different 74 

anthropogenic emissions remains uncertain (Daskalakis et al., 2016; Gao et al., 2018; 75 

Kumar, Peuch, Crawford and Brasseur, 2018). Compared with traditional chemical 76 

transport modeling, the data-driven based data analysis method has more flexibility in 77 

leveraging real-world data and could better fit nonlinear relationship  (Yang et al., 78 

2021a; Zhu et al., 2021)  which has been considered as a new perspective to conduct 79 

environment-related research in recent years (Alfaseeh et al., 2020; Wang et al., 2020) 80 

since this technology is able to simulate complex pollution formation mechanisms by 81 

focusing on data itself.  82 

Some researchers think that deep learning is suitable for analyzing air 83 

pollution(Hino et al., 2018; Xing et al., 2020), such as PM2.5 concentration prediction 84 

via interpretable convolutional neural networks (Park et al., 2020; Zhou, Zhang, Du and 85 

Liu, 2021), assessing traffic impacts by random forest (Yang, Wen, Wang, Zhang, Pinto, 86 

Pennington, Wang, Wu, Sander, Jiang, Hao, Yung and Seinfeld, 2021a), air quality 87 

prediction in an image-based deep learning model (Zhang et al., 2020). Actually, deep 88 

learning technologies has demonstrated its strong ability and applied in multiple fields 89 

including intelligent driving (Zhang et al., 2018), intelligent medical (Li et al., 2019b; 90 

Lindsey et al., 2018) , life science studies (Anonymous, 2019; Ham et al., 2019; Yuan 91 

and Bar-Joseph, 2019). 92 



 

 

In order to enhance the interpretability of the model, Layer-wise relevance 93 

propagation is used here. LRP (Bach et al., 2015a), a method for explaining the 94 

predictions of a broad class of machine learning models, has been widely applied and 95 

well verified in many scenarios, such as machine translation, emotion analysis and text 96 

classification text classification (Arras et al., 2017a; Arras et al., b; Ding et al., 2017). 97 

According to the contribution of neurons in the former layer to the latter layer, all 98 

relevant values in the latter layer are allocated to the former layer and pushed back to 99 

the input layer. In the process of pushing back, this follows the conservation principle 100 

(Lapuschkin et al., 2019).  101 

In this paper, we propose a novel deep learning network, iDeepAir, to decipher the 102 

impact of urban traffic on air quality by combining the multi source real-time data such 103 

as traffic information, in situ surface-level pollutant concentrations and meteorology. 104 

We assess the sensitivity of PM2.5 in Shanghai to traffic emission changes at different 105 

stages by comparing predicted concentrations under different traffic emission scenarios. 106 

Then, we utilize iDeepAir model to account for the nonlinear interactions among 107 

different input parameters to fit the complex chemical reaction and temporal 108 

accumulation procedure of PM2.5 formation. Furthermore, with the embedded LRP 109 

algorithm (Bach, Binder, Montavon, Klauschen, Mueller and Samek, 2015a; 110 

Lapuschkin, Waeldchen, Binder, Montavon, Samek and Mueller, 2019), the 111 

contribution of each pollutant on the formation of PM2.5 can be quantified clearly and 112 

separately which enhance the interpretability of the model. Moreover, to quantify the 113 

contribution of anthropogenic emissions to PM2.5 development for each year from 2010 114 



 

 

to 2017 we couple the emission inventories with the iDeepAir. And finally, considering 115 

the development of new energy transportation policy and traffic emissions in the future, 116 

we assess the possible benefits of future traffic evolution on PM2.5 reductions and derive 117 

some potential impacts of new energy transportation policy in 2030. 118 

 119 

 120 

2. Material and methods  121 

 122 

2.1. Study area and datasets 123 

 124 

Thanks to the development of environmental monitoring technology, we can 125 

obtain a large number of historical monitoring data for academic research. The 126 

iDeepAir model based on observation values connects multiple feature time series data 127 

to predict PM2.5 concentration. The study focuses on Shanghai region, which is one of 128 

the most developed area in China including 16 districts with different terrain and 129 

population density. The location information of monitoring points and road network are 130 

present in Fig.1. 131 

The dataset used in this research consists of four parts: transportation-related 132 

data, air quality data, meteorological data and pollutant emission load related data. 133 

The detailed composition of the dataset and related statistical results are 134 

presented in Table 1. (1) Transportation-related data. This dataset includes two 135 

parts: Total numbers of both petrol and new energy vehicles and Traffic State 136 



 

 

Indexes (TSIs). Total numbers of petrol and new energy vehicles, which are from 137 

Shanghai Statistical Yearbook (http://tjj.sh.gov.cn) and Shanghai Traffic 138 

Comprehensive Annual Report. TSIs, which can be obtained from Shanghai 139 

Traffic Information Platform (http://www.jtcx.sh.cn), includes 68 traffic state 140 

indexes reflecting the real-time traffic status in different regions of the city. 141 

Regarding one specific region, this index is calculated with real-time road traffic 142 

status that is collected from intraregional road segments every 2 minutes (Text 143 

S1). (2) Air quality data. This data, which contains the hourly average monitored 144 

air quality data of Shanghai, is collected from the Real-time Air Quality 145 

Reporting System (http://219.233.250.38:8087/AQI/siteAQI.aspx). The detailed 146 

elements of monitored data include Time, PM2.5, PM10, O3, SO2, NO2, CO, and 147 

all contaminant concentrations are recorded in micrograms per cubic meter 148 

(μg/m3). (3) Meteorological data. The meteorological data of Shanghai is 149 

collected from the platform of Weather Underground, by taking the Shanghai 150 

Hongqiao international Airport Monitoring Station as the reference point 151 

(https://www.wunderground.com/weather/ZSSS). The detailed categories of 152 

each meteorological record are shown in Table 1 and the sampling interval of 153 

meteorological data is 30 minutes. (4) Pollutant emission load related data. The 154 

annual total pollutant emission loads from the sectors of industry, resident, and 155 

transportation can be found from Shanghai Municipal Statistics Bureau 156 

(http://tjj.sh.gov.cn, http://www.stats.gov.cn). The annual generated electricity in 157 

Shanghai, which can be used to infer the emissions of the power sector. 158 



 

 

All data are one-hour interval, with a total of 5969 records. The datasets are 159 

divided randomly into a training set (80%), and a test set (20%). 160 

 161 

2.2. iDeepAir architecture 162 

 163 

The iDeepAir adopts an encoder-decoder architecture, which consists of 164 

three kinds of modules: Traffic Fusion Module (TFM), Feature Interaction 165 

Module (FIM) and Time Interaction Module (TIM) (Fig. 2). (a) Traffic Fusion 166 

Module. We employ an independent TFM to exploit the spatial dependence 167 

between the road traffic status and air pollution with its multiple embedded 168 

convolutional layers, and the results are combined with geographic information 169 

to present the spatial distribution of the dependencies within traffic status and air 170 

pollution. (b) Feature Interaction Module. In this module, we simulate the 171 

complex chemical reactions between different contaminants by employing the 172 

Multi-Head Attention structure(Vaswani et al., 2017) to achieve the interactions 173 

between different features. Considering that not all of these features can 174 

contribute to the prediction of air pollution, we then introduce traditional 175 

attention mechanism into this module to highlight key features. By combining 176 

the self-attention and attention mechanism, this module can not only enable the 177 

interactions between different features, but also can address sequential 178 

forecasting problems with long-term dependency. Besides, this can achieve 179 



 

 

higher accuracy forecasting. (c) Time Interaction Module. We use Temporal 180 

Convolutional Network (TCN) to capture the long-term and deep interactions 181 

between pollutant ingredients in the temporal dimension and simulate the 182 

pollutant accumulation processes over time in chemical reactions with the inputs 183 

of fine-grained meteorological records and learned feature interactions, and 184 

finally generate the sequence of PM2.5 concentration in next 24 hours (Text S3). 185 

TCN contains three sub-structures: causal convolution, dilation convolution and 186 

residual connection (Text S3). 187 

 188 

2.3. iDeepAir training algorithm 189 

We implement and train the iDeepAir network with the deep learning 190 

toolkits Keras (version 2.2.4) and Tensorflow (version 1.10.0) in Python (version 191 

3.6.6). The training process is performed on Tesla V100-PCIE GPU, running 192 

under the CentOS Linux 7 server. During the training phase, the batch size is 128 193 

and the learning rate is 0.001. Adam optimizer is adopted and the objective loss 194 

function is formulated as follows: 195 

𝐿𝑜𝑠𝑠 = ‖𝑦̂ − 𝑦‖2
2 196 

where 𝑦̂  and 𝑦  are the predicted vector and the ground truth vector 197 

respectively. 198 

 199 

2.4. Evaluation methods 200 



 

 

 201 

We use the mean absolute error (MAE), and Root Mean Squared Error 202 

(RMSE) as the measurement to evaluate the prediction performance of our 203 

proposed iDeepAir. Given a test set 𝑌 = {𝑦1, 𝑦2, ⋯ , 𝑦𝑛}, the MAE and RMSE is 204 

as follows: 205 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖̂ − 𝑦𝑖|

𝑛

𝑖=1

 206 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑|𝑦𝑖̂ − 𝑦𝑖|2

𝑛

𝑖=1

 207 

where 𝑌̂ = {𝑦1̂, 𝑦2̂, ⋯ , 𝑦𝑛̂} is the set of the predicted value. 208 

 209 

2.5. Layer-wise relevance propagation 210 

 211 

Regarding a deep learning neural network, the input vector can be denoted 212 

as 𝑉 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛}, and the prediction result of the network is 𝑓(𝑉), LRP 213 

produces a decomposition 𝑅 = {𝑟1, 𝑟2, ⋯ , 𝑟𝑛}  of that prediction on the input 214 

variables satisfying: 215 

∑ 𝑟𝑖 = 𝑓(𝑥)

𝑛

𝑖=1

 216 

The LRP method is based on a backward propagation mechanism applying 217 

uniformly to all neurons in the network. By employing the LRP method on our 218 



 

 

iDeepAir network, we then obtain the relevance between all 5 pollutants and the 219 

output, and denote these as {𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4}. 220 

 221 

2.6. Calculations of emission inventory 222 

 223 

Based on the annual total pollutant emission loads of industrial, residential 224 

and transportation sectors, the emission loads of SO2, NO2, CO, PM10, and PM2.5 225 

from these three sectors can be directly calculated with considering the 226 

proportional relationship among sulphur content, nitrogen content, and carbon 227 

content within fuel. Further, based on the annual generated electricity in 228 

Shanghai, the emission load of power sector can be calculated by: 229 

𝜀𝑒𝑛𝑒𝑟𝑔𝑦
𝑦𝑒𝑎𝑟

= 𝑒𝑔
𝑦𝑒𝑎𝑟

∗ 𝜆 230 

where 𝜀𝑒𝑛𝑒𝑟𝑔𝑦
𝑦𝑒𝑎𝑟

 corresponds to the emission loads from power sector in a 231 

specific year, 𝑒𝑔
𝑦𝑒𝑎𝑟

 indicates the generated electricity in that year, and 𝜆 is the 232 

emission factor of generated electricity. 233 

 234 

2.7. Quantifying contribution of emission sources 235 

 236 

Assuming 𝑐𝑖  is the contribution of the 𝑖_th emission source (Here 𝑖 ∈237 

{0,1,2,3}), and we have 238 



 

 

𝑐𝑖 =
∑ 𝑝𝑖

𝑘𝑟𝑘
4
𝑘=0

∑ ∑ 𝑝𝑖
𝑘𝑟𝑘

4
𝑘=0

3
𝑖=0

 239 

Here 𝑝𝑖
𝑘 is the value of 𝑘_th pollutant component discharged by the 𝑖_th 240 

emission source from the emission inventories. 241 

 242 

2.8. Prediction of future contribution of traffic emissions 243 

 244 

Based on the total numbers of petrol vehicles in Shanghai from 2010 to 2019, 245 

we first learn the growth regularity of the total number of urban petrol vehicles 246 

with regression analysis, and the regression equation can be written as (Fig.S1): 247 

𝑣𝑦𝑒𝑎𝑟
𝑝 = 26.569 × (𝑦𝑒𝑎𝑟 − 2009) + 111.81 248 

where variable 𝑦𝑒𝑎𝑟  indicates the year for prediction, and 𝑣𝑦𝑒𝑎𝑟
𝑝

 249 

corresponds to the predicted number of petrol vehicles in the year for prediction. 250 

Also, we can predict the number of Electrified vehicles in Shanghai based on 251 

regression analysis on the historical numbers of new energy vehicles during 252 

2013-2019, the regression equation is (Fig.S2): 253 

𝑣𝑦𝑒𝑎𝑟
𝑛 = 0.4634 × (𝑦𝑒𝑎𝑟 − 2012)2 + 1.162 × (𝑦𝑒𝑎𝑟 − 2012) − 2.0102 254 

where variable 𝑦𝑒𝑎𝑟 also means the year for prediction, and 𝑣𝑦𝑒𝑎𝑟
𝑛  is the 255 

predicted number of new energy vehicles in the year for prediction. By 256 

combining the contributed average PM2.5 concentration of transportation 257 

emissions from 2010 to 2017 with the actual number of petrol vehicles in 258 



 

 

Shanghai during the same time, we then learned the regression equation which 259 

represents the correlations among these two kinds of dataset (Fig.S3):   260 

𝑝𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛
𝑦𝑒𝑎𝑟

= 0.3054 × (𝑣𝑦𝑒𝑎𝑟
𝑝 )

0.6885
 261 

where 𝑝𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛
𝑦𝑒𝑎𝑟

 is the predicted average PM2.5 concentration that 262 

traffic emission contributes in the year for prediction. And if we replace the 263 

variable 𝑣𝑦𝑒𝑎𝑟
𝑝

  with 𝑣𝑦𝑒𝑎𝑟
𝑛 , this equation can be easily used to calculate the 264 

PM2.5 reductions caused by the promotion of new energy vehicles in a 265 

corresponding year.  266 

 267 

3. Results and discussion 268 

 269 

3.1. Evaluations of iDeepAir on PM2.5 predictions 270 

 271 

In this subsection, the performance of iDeepAir on simulating the dynamic 272 

spatiotemporal generation and evolution processes of urban air pollution can be 273 

evaluated by measuring its accuracy on future PM2.5 concentration prediction (Fig. 3a). 274 

Besides, we compared our model with several alternative neural networks for sequence 275 

forecasting including ARIMA (Autoregressive integrated moving average (Box and 276 

Pierce, 1970)), GBDT (Gradient Boosting Regression Tree(Friedman, 2001)) and 277 

emerging deep learning based methods including LSTM (Long-short-term-memory 278 

network(Hochreiter and Schmidhuber, 1997)), GRU (Gated Recurrent Unit(Cho et al., 279 



 

 

2014)), Seq2seq (Sequence to sequence(Sutskever et al., 2014)), DA-RNN (Dual-stage 280 

Attention-based Recurrent Neural network(Yao et al., 2017)), ADAIN (Neural 281 

Attention Model for Urban Air Quality Inference (Cheng et al., 2018)), Geo-MAN 282 

(Multi-level-attention-based RNN Model for Time Series Prediction(Liang et al., 283 

2018)). These methods use the same dataset, but the input data could be adjusted for 284 

different models (Text S2).  285 

The results of models for PM2.5 concentration prediction in different time periods 286 

(+6h, +12h, +24h, +48h) are presented in Table 2. The best results are marked in bold. 287 

Obviously, the results demonstrate that our iDeepAir outperforms other alternative 288 

solutions in each prediction task, particularly in short-term predictions, iDeepAir has a 289 

great prediction effect with the least MAR and RMSE. Totally, these models tend to 290 

have greater inaccuracies in long-term prediction (+24h, +48h) but iDeepAir has a 291 

better prediction accuracy compared with other baselines. Specifically, compared to the 292 

baseline of ARIMA, iDeepAir can reduce the MAE from 30.252 μg/m3 to 16.961μg/m3 293 

(Table 2 and Fig. 3b). Besides, we further discover that those hierarchical structured 294 

networks such as seq2seq, DA-RNN, ADAIN, and Geo-MAN, can significantly surpass 295 

those non-hierarchical structured networks, and this explains the superiority of our 296 

hierarchical iDeepAir which is carefully designed based on the prior knowledge of the 297 

dynamic formation process of PM2.5 (firstly the vehicle exhaust is discharged into the 298 

atmosphere to affect the pollutant concentration data of the atmosphere, and then the 299 

generation of PM2.5 is enhanced or offset under different meteorological conditions). 300 

To verify the effectiveness of each module and the robustness of the model, we conduct 301 



 

 

a series of ablation studies by removing and replacing each module of the integrated 302 

iDeepAir framework. It can be observed that existed modules can effectively improve 303 

the performance of the integrated model independently. These experiments verify the 304 

predictive ability and robustness of the algorithm under different time lengths, and 305 

reflects the practicality and stability (Fig. 3c).   306 

In terms of verifying the accuracy of future PM2.5 concentration prediction, 307 

iDeepAir has a distinct advantage with high fidelity. In addition, an important output 308 

of iDeepAir is a ranking of the contributions of single parameter to the prediction in 309 

LRP method (take the 24-hour prediction results as an example) (Bach et al., 2015b) 310 

(Fig. 3d). For PM2.5, the five major governing factors are air quality, wind direction, 311 

weather conditions, pressure and wind speed which are mainly some meteorological 312 

factors. Secondary pollutants like O3, and NO2 and traffic emission are also important 313 

precursors of PM2.5 (Wang et al., 2015b) which are also important influence factors. 314 

Some open source such as urban dust, soil dust, and cement dust could directly affect 315 

the air quality, and then they remain in the air or are not completely removed, which 316 

would still promote or inhibit the formation of PM2.5 in the future (L et al., 2014). 317 

Besides, the formation of PM2.5 is correlated to wind direction and wind speed due to 318 

the dilution or aerial migration effect and slightly decreased as pressure increases 319 

because of the change of air pressure will lead to the movement of air flow, which 320 

would contribute to the diffusion of pollutants (Li et al., 2017b; Liu et al., 2020). As 321 

the variation of meteorological conditions, secondary pollutants or precursor gases (e.g. 322 

sulfate, nitrate, ammonium and carbonaceous matters) are essential to participate in the 323 



 

 

generation of PM2.5 through photo-chemical reactions forming ozone and biogenic 324 

VOC (volatile organic compound) to cause the severe PM2.5 pollution in Shanghai 325 

megacity (Wang, Qiao, Lou, Zhou, Chen, Wang, Tao, Chen, Huang, Li and Huang, 326 

2015b). Furthermore, weather condition is a key factor by changing solar irradiance 327 

that is a limiting factor that influences ozone-related photochemistry (Parker et al., 2020; 328 

Pusede et al., 2014; Yang et al., 2021b). Such a ranking of influencing factors of PM2.5 329 

formation is comparatively consistent with current research (Su et al., 2020; Yang, Wen, 330 

Wang, Zhang, Pinto, Pennington, Wang, Wu, Sander, Jiang, Hao, Yung and Seinfeld, 331 

2021a). 332 

 333 

3.2. Spatial contribution from crucial domain on air quality  334 

 335 

Combined with the spatial location of Shanghai, we analyzed the correlation 336 

between traffic flow and PM2.5 in the mesh division of 16 × 16. With the embedded 337 

Layer-wise Relevance Propagation (LRP) algorithm, the spatial traffic emissions are 338 

located and tracked clearly. The overall spatial patterns of urban traffic follow a core-339 

peripheral distribution, and Huangpu district, which lies in the core area of Shanghai, 340 

is the most congested district in the city. In addition, there are two minor cores in 341 

Baoshan District and Pudong New District respectively (Fig. 4a). Regarding Huangpu 342 

district which is highly-developed, the more traffic emissions due to its developed 343 



 

 

economy and the less diffusion caused by its internal skyscrapers will definitely lead to 344 

more serious air pollution.  345 

The spatial correlation between urban traffic and PM2.5 concentration is shown 346 

with a citywide heat-map in Fig. 4b. As observed, there exist strong positive spatial 347 

correlations within traffic patterns and PM2.5 concentration (Circled blue and marked 348 

A). And most significant correlations are focused on the west side of Huangpu River 349 

since this area has more focused traffic flows. Besides, in the central area of the city, 350 

there exist two interesting sub-regions (Circled green and marked B) where the traffic 351 

flow is relatively high while the correlations are inconspicuous. Through practical field 352 

investigations, we discover most of these sub-regions are parklands and the heights of 353 

most buildings in these two sub-regions are relatively low, and infer that this kind of 354 

specific land properties could effectively accelerate the diffusion of air pollution, hence 355 

reduce the impacts of traffic emissions on pollution. Furthermore, there exist some 356 

particular sections (Circled black and marked C) with conflicting heavy traffic and 357 

scarce correlations. Considering the industrial distribution of Shanghai, we believe the 358 

correlations between urban traffic and PM2.5 concentration have been masked by the 359 

dominant industrial emissions (Wang et al., 2014a). 360 

 361 

3.3. Calculate Emission inventory from 2010 to 2017 362 

 363 



 

 

Based on the released emission loads of different pollutants from anthropogenic 364 

sources and the generated electricity in Shanghai from 2010 to 2017, we calculate and 365 

reconstruct the emission inventories for Shanghai for each year from 2010 to 2017 (Fig. 366 

S4). During these years, the industrial emissions were always the source with the 367 

highest emission load, and the transportation sector was the second-highest emission 368 

source. Moreover, the emission loads of the industrial and power sectors decreased 369 

significantly with the strictest industrial emission limitation measurements ever such as 370 

simultaneous desulfurization and denitrification since 2013 as the consequence of clean 371 

air actions (Tang et al., 2019; Zhang et al., 2019). However, even though strict license 372 

plate limitation policy and vehicle emission standard had been employed during these 373 

years, the emission load of transportation sector decreased laxly and limitedly since the 374 

absolute total number of vehicles increased with great rapidity. Based on the calculated 375 

emission inventories, we also discovered that the total emission loads of the key 376 

pollutants of CO, NO2, and SO2 have been reduced by 59.81%, 72.03%, and 60.93% 377 

respectively, and the air pollution limitation measurements that Shanghai had employed 378 

were quite effective. Given the unsatisfactory transportation emission reductions, we 379 

should increase our efforts in this regard (Fig. 5a). 380 

 381 

3.4. Quantified contribution of anthropogenic emissions to PM2.5 formation 382 

 383 



 

 

Based on the surveilled air quality data of Shanghai, we decompose the final 384 

prediction results in terms of the input features with the embedded LRP algorithm of 385 

iDeepAir, and cooperating this learned relevance with the calculated emission 386 

inventories, the contribution of anthropogenic emissions to PM2.5 formation could be 387 

directly and separately calculated (Fig. 5b). As demonstrated, the emission contribution 388 

of the industrial, residential and power sectors to PM2.5 formation decreased steadily 389 

and continuously, while the contribution of traffic emissions increased independently 390 

and smoothly (Fig. 5a). We believe that the effectiveness of the strictest industrial and 391 

power emission limitation measurements has been verified. Given the fact that industry 392 

and power will be stick to these limitation measurements chronically, we should 393 

definitely take the issue of reducing traffic emissions as the priority in subsequent 394 

efforts on sustainably improving urban air quality.  395 

To verify the correctness of our quantified contribution, we compared our results 396 

with the official announced results. From an analysis report of PM2.5 source which was 397 

publicly released by Shanghai Municipal Bureau of Ecology and Environment, the 398 

traffic emissions accounted for 22.6%~33.6% of the total impacts of all local emissions 399 

on PM2.5 formation in Shanghai, this report is generated with some previous mentioned 400 

methods(Wang et al., 2014b; Wang et al., 2006; Yao et al., 2002) which distinguish the 401 

impacts of different emissions. In our calculation, transportation emissions accounted 402 

for 22.69% and 24.35% of the total impacts of all local emissions on PM2.5 formation 403 

(Fig. 5a) respectively in 2012 and 2013, and this is quite consistent with the official 404 

released report. 405 



 

 

 406 

3.5. Prediction of contribution of transportation emissions in future and Air quality 407 

benefit for future new energy vehicle promotion  408 

 409 

By learning the current growth rates of the total petrol and new energy vehicle 410 

numbers in Shanghai from historical dataset, the current vehicle license plate limitation 411 

and new energy promotion policies, we first estimate the possible total numbers of both 412 

petrol and new energy vehicles in future (Fig. 6a). As predicted, the numbers of both 413 

traditional petrol and new energy vehicles increase significantly during the next ten 414 

years, and even though the absolute number of new energy vehicles may be up to 1.69 415 

million, they may only account for a small part of 21.63% of total urban vehicles in 416 

2030. Meanwhile, we use a power function to approximate the relationships between 417 

with the actual numbers of petrol vehicles and the real contributed PM2.5 concentration 418 

of transportation emissions during 2010-2017, and use this approximated function to 419 

predict the possible contributed PM2.5 concentration of urban traffic in the following 420 

ten years. Afterward, to be fair, we assume that no further limitation measurements will 421 

be employed on reducing industrial and power emissions and the contributed 422 

concentration of these two kinds of emissions are fixed for the next ten years, and the 423 

contribution of urban petrol vehicles to PM2.5 formation are calculated for the next ten 424 

years (Fig. 6b). In 2030, the emissions from urban petrol vehicles may account for more 425 

than 50% of the total impacts of all local emissions on PM2.5 formation, and petrol 426 

vehicle emissions will be the primary source of urban PM2.5, and our initial conjecture 427 



 

 

that the issue of reducing traffic emissions should be considered as the priority in 428 

improving urban air quality is verified positively. Fortunately, we are delighted to 429 

discover that the promotion of new energy vehicles may bring us an obvious reduction 430 

on PM2.5 formation in 2030, considering the current fleet electrification promotion 431 

policy and the possible contribution of petrol vehicle emissions to PM2.5, which is a 432 

very valuable solution. 433 

 434 

3.6. Effectiveness evaluation of new energy vehicle promotion policies 435 

 436 

Given the effectiveness of the promotion of new energy vehicles on PM2.5 437 

reductions and the giant prospective total number of petrol vehicles in 2030, it is a 438 

realistic way to alleviate urban air pollution by improving the promotion of new energy 439 

vehicles. We here evaluate the effectiveness of improving the promotion of new energy 440 

vehicles on PM2.5 reductions (Fig. 6c). As shown, if 50% of all petrol vehicles are 441 

replaced by new energy vehicles in 2030, the contribution of transportation emissions 442 

to PM2.5 can be reduced by 11.72%, and the absolute value that traffic emissions 443 

contribute to PM2.5 can be reduced from 25.33μg/m3 to 15.72μg/m3 (Fig. 6d). And the 444 

reductions of transportation contribution on PM2.5 and the absolute traffic contributed 445 

PM2.5 concentration can reach 25.24% and 8.36μg/m3 respectively in case that 80% of 446 

all petrol vehicles are replaced by new energy vehicles. Based on this analysis, we 447 



 

 

suggest that more forceful policies on enhancing the promotion of new energy vehicles 448 

should be considered for greener and sustainable future developments of modern cities. 449 

 450 

4. Conclusions 451 

 452 

In this paper, we propose a novel method to quantify the influence of 453 

anthropogenic emissions on PM2.5 concentration with a novel and traceable deep 454 

learning model. Our experiment results indicate that the proposed model could 455 

achieve better fitting and prediction performances than the LSTM, GBRT, 456 

Seq2Seq, DA-RNN model and other deep learning models. Furthermore, we 457 

output the contributions of input parameter to the prediction in LRP method and 458 

visualize and analyze the spatial correlation between traffic flow and PM2.5. 459 

In addition, we discover that transportation emissions will play the most 460 

dominate role in future urban air pollution, and how to reduce traffic emissions 461 

are an unavoidable issue on achieving sustainable developments in modern cities. 462 

Meanwhile, to some extent, new energy vehicles can be considered as an 463 

effective way to reduce traffic emissions. However, the current promotion 464 

policies and efforts are far from enough. To further improve urban air quality, we 465 

need some more effective and powerful measurements in response to the rapid 466 

growth of urban traffic emissions. 467 



 

 

Due to its powerful ability on simulating the complex chemical reaction and 468 

temporal accumulation procedure of PM2.5 formation by integrating multi-source 469 

data, the proposed deep learning network may be easily applied in other 470 

metropolises to address the challenging pollution tasks. With the traceable deep 471 

learning network, we can quantify the impacts of different anthropogenic 472 

emissions on different urban air pollutants by computing jointly with local 473 

emission inventories. To support more efficient and sustainable city planning, it 474 

is very important to deeply and sufficiently understand the impacts of different 475 

human activities on air pollution. The insights and observations obtained in this 476 

paper are of great significance to provide the qualitative and quantitative 477 

decision-making basis for citywide traffic management and urban pollution 478 

control, and may eventually benefit people's lives and high-quality sustainable 479 

developments of cities. 480 

Last but not least, to fully address the challenge of urban air pollution, 481 

multiple ingredients such as urban layout, industrial planning and population 482 

distribution should be considered comprehensively in analyzing and tackling air 483 

pollution, and the proposed deep learning network is capable of embedding these 484 

heterogeneous features and learning the fine-grained influences of them on urban 485 

air pollutions. For future research, if the organics of the emissions of different 486 

human activities can be further considered (Guo et al., 2020), the accuracy of 487 

quantifying the impacts of different human activities can be subsequently 488 

improved. 489 
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Table 1. Composition of the dataset and the related statistics. 509 

Data Feature Variable Mean Std Min Max 
Time 

interval 

Traffic data TSI 28.39 9.13 5.83 50.64 2 min 

Air quality 

P2.5(μg/m3) 55.56 42.01 4 356.67 

60 min 

PM10(μg/m3) 78.97 51.64 4.78 386.44 

O3/(μg/m3) 64.33 38.5 5.11 271 

SO2/(μg/m3) 20.14 13.91 6 125.56 

NO2/(μg/m3) 49.19 26.63 3.78 173.89 

CO/(μg/m3) 0.89 0.37 0.35 2.96 

Meteorological 

data 

Weather conditionsa 2.87 4.49 0 15 

30 min 

Dew point  

temperature /℃ 
9.04 9.48 -17 27 

Humidity/% 69.56 18.19 14 100 

Pressure/kPa 1019.23 8.36 994 1037 

Temperature/℃ 15.12 8.27 -3 37 

Wind directionb 3.84 2.59 0 8 

Wind speed/(m*s-1) 13.95 6.53 3.6 43.2 

Air qualityc 2.02 1.02 1 6 

Time period From 2014/8/11 to 2015/4/30 

a. The weather conditions has 16 features (sunny, overcast, sunny to cloudy, fog, sleet, thunder shower, light rain, 510 

heavy rain, moderate rain, rainstorm, heavy snow, light snow, moderate snow, rain, hail, cloudy), which are encoded 511 

into numerical variable [0,15]. 512 

b. The wind direction has 9 directions (no wind, north wind, west wind, east wind, south wind wind, northwest wind, 513 

northeast wind, etc.), which are encoded into numerical variable [0,8]. 514 

c. The air quality has six levels (I, II, III, IV, V, VI). The higher the index, the more serious the air pollution is, which 515 

are encoded into numerical variable [1,6]. 516 

 517 

  518 



 

 

Table 2. The result for hourly prediction values of PM2.5 of different models in 519 

different time periods. 520 

 521 

 522 

 523 

  524 

Method 
+6h +12h +24h +48h 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

ARIMA 38.649  28.562  38.634  27.805  41.150  30.252  37.753  27.593  

GBDT 26.771  21.573  26.988  21.809  27.148  22.156  28.234  22.764  

LSTM 25.830  20.176  27.164  21.721  31.690  23.779  33.495  25.466  

GRU 24.321  20.017  26.248  20.963  30.546  22.979  32.879  22.856  

Seq2Seq 19.685  14.946  24.966  19.653  28.708  22.816  29.419  23.012  

DA-RNN 17.303  14.131  22.769  17.958  27.138  21.223  32.572  24.857  

ADAIN 16.254  13.176  24.567  19.468  27.479  21.441  34.073  25.994  

Geo-

MAN 21.744  17.795  21.632  18.046  27.792  22.617  32.506  24.713  

iDeepAir 5.849  11.825  20.285  15.890  23.233  16.961  24.595  19.891  



 

 

 525 

Figure 1. The spatial distribution of monitoring stations and road traffic network in 526 

Shanghai.   527 



 

 

 528 

Figure 2. Overview of iDeepAir architecture and three important modules. (a) Overall 529 

hierarchical structure of iDeepAir, (b) Traffic Fusion Module (TFM), (c) Feature 530 

Interaction Module (FIM), and (d) Time Interaction Module (TIM). 531 
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 533 

Figure 3. Model performance, ablative evaluations and variable contribution for PM2.5 534 

prediction. (a) and (b) The iDeepAir Model performance for PM2.5 prediction. (c) 535 

Ablative evaluations of iDeepAir. (d) The Contribution assessment of variables (DPT: 536 

Dew point temperature). 537 
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 539 

Figure 4. Spatial distributions of average TSIs and correlations between traffic and 540 

PM2.5 in Shanghai. (a) Spatial distribution of average TSIs in Shanghai. (b) Spatial 541 

distribution of correlations between urban traffic and PM2.5 Concentration.   542 



 

 

 543 

Figure 5. The contribution of anthropogenic emissions to PM2.5 formation in Shanghai. 544 

(a) PM2.5 emission contribution rate of each industry (Transportation, Power, 545 

Residential and Industry). (b) the overall framework of emission inventory and 546 

iDeepAir model. 547 
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 549 

Figure 6. Predictions of the total numbers of urban vehicles and evaluations of new 550 

energy vehicle promotion from 2020 to 2030 in Shanghai. (a) Predictions of the total 551 

numbers of both petrol and new energy vehicles from 2020 to 2030. (b) Predictions of 552 

the contribution of transportation emissions to PM2.5. (c) Contribution of transportation 553 

emissions to PM2.5 with different percentages of petrol vehicles replaced by new energy 554 

vehicles. (d) PM2.5 concentration that transportation emissions contributed with 555 

different percentages of petrol vehicles replaced by new energy vehicles. 556 
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