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Abstract

The remarkable reasoning capability of large language models (LLMs) stems from
cognitive behaviors that emerge through reinforcement with verifiable rewards.
This work investigates how to transfer this principle to Multimodal LLMs (MLLM:s)
to unlock advanced visual reasoning. We introduce a two-stage paradigm built on
Qwen2.5-VL-7B: a massive linguistic cold-start fine-tuning, followed by multi-
modal reinforcement learning (RL) spanning nearly 1,000 steps—surpassing all
previous open-source efforts in scale. This pioneering work reveals three funda-
mental insights: 1) Behavior transfer emerges surprisingly early in cold start due
to linguistic mental imagery. 2) Cold start broadly memorizes visual behaviors,
while RL critically discerns and scales up effective patterns. 3) Transfer strategi-
cally favors high-utility behaviors such as visual reflection. Our resulting model,
Open-Vision-Reasoner (OVR), achieves state-of-the-art performance on a suite
of reasoning benchmarks, including 95.3% on MATH500, 51.8% on MathVision
and 54.6% on MathVerse. We release our model, data, and training dynamics to
catalyze the development of more capable, behavior-aligned multimodal reasoners.
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Figure 1: Performance comparison with state-of-the-art models on both textual (AIME 2024, AIME
2025 [[7l, MATHS500 [38]]) and multimodal (MathVista [64], MathVision [100], MathVerse [133])
math reasoning benchmarks. Open Vision Reasoner (OVR) demonstrates superior results among
open-source models and performs competitively with commercial counterparts.
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1 Introduction

“The eye sees only what the mind is prepared to comprehend.” — Robertson Davies

Shifting Reinforcement Learning from Human Feedback (RLHF) [74] to Reinforcement Learning
from Verifiable Reward (RLVR) [34,91] has endowed LLMs [34}[72]] with unexpectedly powerful rea-
soning across mathematics, code, and general problem-solving. At its core, verifiable reward—where
correctness is determined by objective, often rule-based criteria—is inherently less susceptible to
"reward hacking" [87, [124] than a learned reward model. This robustness proves instrumental in
large-scale RL, enabling the internalization and activation of what recent studies [29} [126) [135]] term
cognitive behaviors—patterns like backtracking and subgoal decomposition that are empirically
crucial for advanced reasoning.

The multimodal domain, inherently grounded in verifiable visual facts [10,[125], is uniquely suited
for this paradigm. Yet, early multimodal RL efforts paradoxically adopted RLHF, relying on learned
reward models to approximate objective correctness [98 [138 [139]]. Inspired by the success of RLVR
in language models, recent efforts have started exploring rule-based rewards in the multimodal setting.
Perception-R1 [[125] incorporates supervisions such as IoU and Euclidean distance to enhance the
perceptual alignment of MLLMSs, while works such as R1-OneVision [116] and VLAA-Thinking [8]
construct behavior-rich visual reasoning trajectories through complex pipelines including iterative
distillation and synthesizing. Recently, ReVisual-R1 [[14] adopts a effective language-only cold start
as a foundation for visual reasoning.

Despite this encouraging progress, these approaches still leave a foundational question unanswered:
How can linguistic cognitive behaviors transfer to MLLMs for advanced visual reasoning?
To address this, we build upon the "RL with a cold start" paradigm [34] by conducting large-scale
training on Qwen2.5-VL-7B [3]], establishing it as a powerful testbed to systematically analyze how
such behaviors emerge and scale in the multimodal domain.

To this end, we introduce a robust two-stage methodology designed to first instill linguistic cognitive
patterns and then activate them for visual reasoning. Our process begins with a large-scale cold
start, fine-tuning Qwen2.5-VL-7B on over 2 million examples to build a strong foundation. This is
followed by a prolonged reinforcement learning phase under the Open-Reasoner-Zero [40] framework,
leveraging over 0.3 million mixed-modality examples. To the best of our knowledge, this represents
the largest open-source RL practice on this model. The resulting model, Open-Vision-Reasoner
(OVR), validates our approach by achieving strong performance across both language and multimodal
benchmarks. As shown in Fig.[I] it achieves 63.5% on AIME2024 and 95.3% on MATH500 for
math reasoning, as well as 51.8% on MathVision and 54.6 % on MathVerse for visual reasoning.

To further trace the transfer and evolution of cognitive patterns throughout training, we develop
a in-depth visual cognitive behavior analysis. Three central insights are worth highlighting: (1)
Behavior transfer emerges remarkably early in cold start, driven by linguistic patterns encoding
mental imagery [26} 45 as illustrated in Fig.[T1] (2) Cold start broadly memorizes diverse visual
cognitive behaviors, while RL critically discerns and scales up effective patterns. (3) Transfer follows
a strategic path, favoring behaviors with high utility such as visual reflection. These findings deepen
the understanding on visual intelligence scaffolded by linguistic reasoning [24].

We further examine how this paradigm impacts a foundational capability of MLLMs—rvisual percep-
tion. While linguistic cold start introduces perceptual degradation, our study shows that multimodal
RL can effectively recover this loss. However, we also observe the limited scalability of RL when
focused solely on perceptual tasks, as reward signals increase without corresponding growth in
reasoning complexity (e.g., token length). This limitation motivates a more deliberate integration of
diverse, primitive visual cognitive behaviors. Such efforts represent a promising direction toward
unlocking the potential of more advanced RL frameworks—multi-turn or even agentic RL built upon
visual manipulation and imagination.

In summary, this paper advances the field through the following three key contributions:
* We construct a two-stage training pipeline consisting of a linguistic cold start followed by large-
scale multimodal RL, enabling effective transfer of cognitive behaviors in MLLMs.

* Our Open Vision Reasoner, the largest open-source RL practice on Qwen2.5-VL-7B, achieves
superior performance on both linguistic and multimodal reasoning benchmarks.



Table 1: Visual Cognitive Behaviors and Linguistic Counterparts. We define four key visual
cognitive behaviors, providing formal definitions, illustrative examples, and their corresponding
linguistic counterparts.

Visual Behavior Example Definition Linguistic
Counterpart
Visual Reflection “Let me see the image The model explicitly revisits the image after Backtracking
again.” identifying a potential mistake or inconsistency in

its reasoning, indicating an effort to correct course.

Divide-and-Conquer “Let’s first look at the The model breaks down a complex visual problem  Subgoal Setting
numbers on the left.” into sub-components or regions, each addressed
sequentially to reach the final answer.

Visual Verification “I will now verify this The model confirms that its intermediate Verification
against the image.” conclusions are visually grounded by
cross-referencing with the image before proceeding.

Goal-driven Visual “To get this answer, I The model starts from a desired visual conclusion Backward Chaining
Tracing need to find an object and reasons backwards to identify relevant image
that...” evidence that supports it.

Think: Okay, so I need to figure out which movie these emojis remind me of.

and see if T can recall any movies that feature those elements.
First, a sun, a palm tree, and an island. That combination usually makes me think of tropical
or island-themed movies. Maybe something like "Desert Island Discs" or "Cast Away"? Wait, "Cast Away" has
a beach scene...

Then a volleyball. As I mentioned, "Cast Away" is a strong candidate here. But are
Q: Which movie do there other movies with both a tropical setting and a volleyball? ...
. . Alternatively, maybe "Adventitious" or another movie with a beach and volleyball...
these emojis remind _"Cast Away" has a..
you of? So narrowing it down, it's likely either "Cast Away" or "The Beach." Let me check the key elements again.
The first emoji has a sun, palm tree, and island. The second is a volleyball. "Cast Away" has... "The Beach" has
A: Cast Away. a volleyball used in a scene, but the main focus is survival...

I think I'll go with "Cast Away" because the volleyball is central and the tropical setting is key...

Figure 2: Multiple Cognitive Behaviors in a Single Response. This case shows triggered visual-
specific cognitive behaviors like visual divide-and-conquer, reflection, goal-driven visual tracing,
along with the linguistic behavior backtracking.

* We conduct an in-depth analysis of visual cognitive behaviors in OVR and provide valuable
insights into their transfer and evolution across training stages.

2 Cognitive Behavior Preliminaries

Recent studies have highlighted that the emergence of robust reasoning in LLMs is closely tied
to the acquisition of certain cognitive behaviors [29]. These behaviors reflect structured internal
reasoning patterns akin to human problem-solving. Key examples include: (1) Backtracking —
revising a previously chosen strategy upon identifying inconsistencies (e.g., “This approach won’t
work because. ..”), (2) Verification — checking intermediate steps or partial results, (3) Subgoal
Setting — breaking down complex problems into manageable components (e.g., “First, we need
to...”), and (4) Backward Chaining — reasoning from the desired outcome back to required inputs
(e.g., “To get 75, we need a number divisible by...”). The four patterns form a kind of textual inner
monologue that emerges naturally in language-based reasoning.

Based on this, we investigate the transfer of cognitive behaviors from language to vision. We define
the visual extensions of the aforementioned behaviors—visual reflection, divide-and-conquer, visual
verification, and goal-driven visual tracing. Their formal definitions, examples, and corresponding
linguistic counterparts are provided in Table[I] while Fig. 2 presents a multimodal example encom-
passing both linguistic and visual cognitive behaviors. In the following sections, we present a simple
yet effective MLLM training pipeline comprising a linguistic cold start followed by multimodal RL
(Section %Dand systematically analyze the transfer and scaling of these visual cognitive behaviors
(Section



3 Open Vision Reasoner

In this section, we introduce Open-Vision-Reasoner (OVR), a strong multimodal reasoning model
build from Qwen2.5-VL-7B [42]), from perspectives of training pipeline (Section [3.1), RL algorithm
(Section[3.2)) and data construction (Section [3.3).

3.1 Training Pipeline

To facilitate efficient cognitive development and cross-modal generalization, we employ the popular
"RL with a cold start" paradigm [34] with two sequential training stages:

» Stage 1: Linguistic Cold Start. The LLM module is supervised fine-tuned on language-only
reasoning datasets distilled from DeepSeek-R1 [34]], establishing core cognitive behaviors such as
backtracking and subgoal decomposition within a purely linguistic setting.

 Stage 2: Multimodal RL. We apply reinforcement learning with Open-Reasoner-Zero [40] setting
on both text and multimodal tasks using verifiable match rewards. This promotes reasoning
generalization and aligns previously learned cognitive patterns with visual contexts, enabling
effective cross-modal transfer.

3.2 RL Algorithm
For the RL stage of our training pipeline, we adopt a lightweight Proximal Policy Optimization

(PPO) [82] with Generalized Advantage Estimation (GAE) [81]], following the policy and reward
design used in Open-Reasoner-Zero [40]. We detail the RL for multimodal tasks below:

Proximal Policy Optimization For each input, consisting of an image I and a textual prompt

g, the policy network 7y generates n responses {o1,...,0,}. Each response o; is a trajectory
T = (s((f)7 a((f), ces s%)_l, agfi?_l) of length T;. The state sy) includes ¢ (and potentially encoded

)

I features) and previously generated tokens; ati is the token generated at step ¢. A reward r,gi) is

computed at each timestep ¢ of trajectory 7;.

We use GAE to balance bias and variance in advantage estimation. The advantage A,EZ) for state-action

pair (sgi), agi)) in trajectory 7; is:

T—t—1

At = Z (’)/)\)ZCSH_[, where 6t’ =Ty + 7V¢(St/+1) — V¢(St/). (1)
=0

V4 is the value function, «y, A are discount and GAE factors, and V¢,(sT) = 0 for terminal states. 7y
is updated by maximizing Jppo (#) using experiences (s¢, a;, A;) sampled under an older policy 7o

Toro(0) = By, [min (p1(6) Ay, clip (p0(0),1— .1+ €) At)] . 6

Here, p:(0) = Tolarls) and eisa clipping parameter (e.g., 0.2). E

T mod(at|st)
over samples from 4. V is trained by minimizing Jyawe(¢) on samples from mqq, using the

=4 denotes the empirical average

empirical discounted returns R; = Z:_(; -t Yorep:
Fuaie (8) = By [ (Vo(s0) = o). 3

Reward Function. We adopt the minimalist rule-based reward design, which evaluates only the cor-
rectness of model outputs while ignoring formatting or stylistic preferences. Specifically, we extract
the predicted answer encapsulated within \boxed{} in the model’s output and compare it against the
reference answer. A binary reward is assigned—1 for exact matches, and 0 otherwise—enabling a
clear, scalable and unhackable reward signal for reinforcement learning.



Table 2: Comparison on Language Reasoning and General Benchmarks. Best results are bold and
the second-best are underlined for open-source models. T indicates metrics reproduced by ourselves.

Model AIME 2024 AIME 2025 MATH500 GPQA Diamond MMLU MMLU-Pro
Open-source Models

Qwen2.5-7B [42] 6.7t 6.7 77.6" 32.8 72.6' 57.57
Qwen2.5-VL-7B [42] 67" 6.7" 67.41 31.81 69.6 51.7°
Open-Reasoner-Zero-7B [40] 17.9 15.6 81.4 36.6 - -
DeepSeek-R1-Distill-Qwen-7B [34] 55.5 39.2f 92.8 49.1

QwQ-32B-Preview [96] 50.0 335 90.6 54.5

Skywork-R1V-38B [75] 72.0 - 94.0 61.6

ReVisual-R1 [14] 53.3 433 89.2 475

Close-source Models

Gemini-2.0-Flash [90] 334 36.7 69.0 35.4 - -
OpenAl-ol-mini [[72] 63.6 - 90.0 60.0 85.2 80.3
Claude 3.7 Sonnet [3] 20.0 13.3 80.4 61.1 - 80.0
Doubao-1.5-vision-pro-32k [1] 26.7 20.0 85.2 56.1 - -
OVR-7B 63.5 52.1 95.3 49.8 77.2 67.9

3.3 Dataset Construction

To support cognitive transfer, we carefully curate datasets specifically tailored to each training stage,
encompassing both language-only and multimodal domains.

Data Collection. We firstly broadly collect prompt-answer pairs to develop both language and
multimodal reasoning skills across mathematical, scientific, and logical domains. For language-
only scenarios, we utilize public benchmarks including AIME (up to 2023), MATH [38]], Numina-
Math [52], Tulu3 MATH [48]], and OpenR 1-Math-220k [2], and other open-source datasets. We also
synthesize general logical problems via programmatic generation to further enrich reasoning diversity.
Multimodal scenarios incorporate datasets covering geometry problem solving (Geometry3k [61]],
GeoQA [9], Geos [112]]), visual discrimination (IconQA [62], Pixmo [21]], ChartQA [67]), visual
puzzles (PuzzleVQA [19]], AlgoPuzzleVQA [30]]), STEM (TQA [46]], ScienceQA [63], K12 from
[68]) and multimodal math (AtomThink [[109]], in-house curated math).

Data Curation. To refine data quality, we employ a multi-step curation process. Firstly, we employ a
pre-trained model to automatically filter out samples with high training loss, which typically indicate
noise or excessive complexity. Secondly, rule-based and model-assisted methods then identify and
remove undesirable patterns [52]]. Thirdly, we apply reweighting to balance coverage, down-weighting
overrepresented categories while emphasizing rare but valuable instances. To the end, we distill
responses from DeepSeek-R1 [34] to construct approximately 2 million cold-start data. To ensure
the unhackability and stability during RL, we further exclude problems incompatible with our reward
functions (e.g., proof-style questions) and apply difficulty-based heuristic filtering, removing both
overly trivial and infeasible samples to ensure well-calibrated learning. This leaves around 300k
multimodal RL data. Further details refer to the appendix.

4 Experiments

In this section, we first elaborate our implementation of Open-Vision-Reasoner (OVR). Then, we
present superior performance across textual benchmarks (Section [4.2) and multimodal scenerios

(Section 4.3).
4.1 Implementation Details

Our model is based on Qwen2.5-VL-7B [5] and employs a two-stage training strategy. In the first
stage of cold start, we independently fine-tune the LLM module for 5 epochs with a batch size of
640, a sequence length of 64k, and a learning rate of 2 x 10~* leveraging the default Qwen2.5
configuration [42]]. During the subsequent stage of reinforcement learning, following Open-Reasoner-
Zero [40], we utilize PPO and configure GAE with v = 1 and A = 1 to fully capture long-term
dependencies crucial for reasoning tasks, enabling stable training. This RL phase proceeds for 900
iterations, during which we adopt a curriculum for the sequence length: it begins at 24k for the first
300 iterations, increases to 32k through iteration 700, and expands to 48k thereafter, with our latest



Table 3: Evaluation Results on Visual Reasoning Benchmarks. Best results are bold and the
second-best are underlined for open-source models. T Indicates results reproduced by ourselves.
MathVista MathVision MathVerse DynaMath WeMath LogicVista MMMU-Pro  CharXiv

Model

vision-only worst strict loose reas. desc.
SFT Methods
LLaVA-OneVision-7B [51] 62.6 17.6 17.6 9.0 17.7 - 32.0 24.1 23.6 487
InternLM-XComposer2.5 [132] 64.0 17.8 16.2 8.2 14.1 - 34.7 - - -
InternVL3-8B [137] 70.5 28.6 339 23.0 37.5 - 43.6 - 37.6 73.6
InternVL2.5-8B [15] 64.5 17.0 22.8 9.4 235 - 36.0 34.3 329 68.6
InternVL2-8B [16] 58.3 20.0 20.4 9.2 202 - 33.6 29.0 - -
Qwen2-VL-7B [101] 61.6 19.2 25.4 11.0 223 - 333 30.5 34.6  58.0
Qwen2.5-VL-7B [42] 69.2f 25.51 41.1 21.8 31.2F 53.1f 479 - 3641 67.31
QvQ-72B-Preview [95] 70.3 349 48.2 30.7 39.0 - 58.2 - - -
Kimi-VL-16B [93] 66.0 21.8 34.1 18.0 323 - 427 - - -
Close-source Models
Gemini-2.0-Flash [90] 70.4 478 436 01 474 - 52.3 - - -
OpenAI-GPT-4o [43] 59.9 31.1 40.6 34.5 429 - 64.4 - - -
Claude 3.7 Sonnet [3] 66.8 41.3 52.0 39.7 582 - 49.3 - - -
GPT-40 mini [31] 55.1F 27.3 30.0 31.61 31.47 48.81 41.41 37.6 34.101 74.921
doubao-1.5-vision-pro-32k [I] 78.6 51.5 64.7 44.9 642 - 65.7
RL-based Methods
VLAA-Thinker-Qwen2-7B [8] 59.6 19.8 339 15.2 30.5 - 36.0 - - -
VLAA-Thinker-Qwen2.5-7B [8] 68.0 26.4 48.2 224 41.5 - 48.5 - - -
R1-Onevision-7B [116] 64.1 29.9 40.0 - - 618 - - - -
OpenVLThinker-7B [22] 65.3 23.0 38.1 16.8 352 - 44.5 - - -
MM-Eureka-Qwen-7B [68] 72.6 28.1 454 23.0 218 - 46.3 - - -
MMR 1-Math-v0 [[76] 69.8 30.7 42.8 17.4 319 - 46.8 - - -
ThinkLite-7B-VL [102] 71.6 24.6 429 16.5 418 - 42.7 - - -
R1-VL-7B [131] 63.5 24.7 40.0 - - - - - - -
X-REASONER [38] 69.0 29.6 - - - - - 43.0 - -
VL-Rethinker-7B [99] 73.7 28.4 46.4 17.8 363 - 42.7 41.7 - -
ReVisual-R1 [14] 73.1 48.8 53.6 27.5 420 - 523
WeThink [115] 70.9 27.2 44.7 24.4 48.0 - 53.0
Skywork-R1V-38B [75] 60.6 42.1 40.4 - 34.1 - 50.6 - - -
OVR-7B 72.1 51.8 54.6 335 446 64.8 54.8 50.2 445 173.6

models continuously undergoing this refinement process. We adhere to strict on-policy updates for
the policy model and undertake multiple optimization steps for the critic model. Please note that our
final model is an uniform average of several representative intermediate checkpoints, ensuring
balanced and robust performance across various benchmarks. Additional details can be found in the
appendix.

4.2 Enhanced Language Reasoning and General Capabilities

Our model is initially evaluated on a variety of language benchmarks, which cover mathematical
reasoning and general problem-solving skills. Specifically, we include AIME 2024, AIME 2025 [1],
MATHS500 [38]], GPQA Diamond [[19]], MMLU [36l], and MMLU-Pro [103]. We compare Open-
Vision-Reasoner (OVR) with strong LLM baselines, including Qwen2.5-7B [113|], DeepSeek-R1-
Distill-Qwen-7B [34] and Open-Reasoner-Zero-7B [40].

OVR demonstrates exceptional language reasoning capabilities. On the challenging AIME 2024
and 2025 benchmarks, it dramatically surpasses other 7B open-source models by an average of
over 10%, achieving performance comparable to leading 32B models. This superiority extends to
general reasoning tasks, with significant gains of +4.6% on MMLU and +10.4% on MMLU-Pro over
parameter-matched competitors. These results highlight the effectiveness of our curated, high-quality
cold-start training data.

4.3 Superior Visual Reasoning Abilities

To evaluate whether the introduced cognitive behavior transfer leads to cross-modal benefits, we
further assess the model on a suite of multimodal reasoning benchmarks. These tasks involve image-
grounded mathematical reasoning, general multimodal reasoning, and chart understanding. Specifi-
cally, we include MathVista [64], MathVision [100], MathVerse [133], DynaMath [140], WeMath [17],
LogicVista [110], MMMU-Pro [129]], and CharXiv [105]] for evaluation. We compare our model
against strong MLLM baselines, including SFT-based methods such as LLaVA-OneVision [50] and
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Figure 3: Training Dynamics. (a) The cold-start stage shows a step-wise loss decrease. (b) In the
RL stage, reward (purple, left axis) and average response length (orange, right axis) grow steadily,
with sharp surges after each sequence length expansion.

QOwen2.5-VL [3], as well as recent rule-based RL methods like OpenVLThinker [22]], MM-Eureka [68]]
and ReVisual-R1 [[14].

As shown in Table [3] our model sets a new breakthrough for 7B models in visual reasoning. It is the
first post-trained Qwen2.5-VL-7B-based model to surpass the 50% performance on MathVision,
while also achieving state-of-the-art results among 7B models on DynaMath and MathVerse. This
strong overall performance is further underscored by a substantial gain on MMMU-Pro (+7.2% over
prior SOTA methods). These results indicate that reasoning capabilities acquired through language
training can effectively transfer to multimodal tasks, leading to notable improvements in visual
reasoning.

5 Discussion

5.1 Analysis of Training Dynamics

In this section, we present a comprehensive overview of the training dynamics as illustrated in Fig. [3]
and provide a detailed analysis of how text and multi-modal reasoning metrics evolve throughout the
process as shown in Fig. ]

During the initial cold-start phase (Fig. 3] (a)), the model’s loss rapidly descends to below 0.5. Subse-
quently, across multiple training epochs, the loss exhibits a step-wise, gradual decrease. In parallel,
we observe a corresponding surge in performance across all benchmarks (Fig. ), which first ascend
sharply before transitioning to a phase of slower, more incremental improvement toward their peak.
A noteworthy observation is that the aggressive training strategy detailed in Section . TJ}—employing
a large batch size in concert with a high learning rate—proves to be essential. This approach is
critical for breaking the model’s inherent constraints, thereby successfully imbuing it with new
cognitive paradigms and sculpting a more favorable landscape for reinforcement learning. It is a
prerequisite that enables our model, which originates from an instruction-tuned base, to ultimately
achieve text performance that is comparable to, or even surpasses models initialized from base [42]]
or math-specific checkpoints [114].

Furthermore, Fig. [3](b) reveals how the model’s reward and average token length in the RL phase
steadily advance from an initial 7k to exceed 12k. Owing to the stability of the training configuration
inherited from Open-Reasoner-Zero [40], OVR is successfully trained on a diverse corpus of over 20
multi-modal and language-only datasets without encountering any training collapse or performance
degradation. Critically, whenever the token length begins to plateau or even decline, we strategically
switch to a longer context length, which invariably catalyzes the next wave of rapid reward growth.
Fig. [] captures the coincident yet unsurprising convergent growth trajectory shared by all eight
reasoning benchmarks, spanning both text and multi-modal domains, as they progressively ascend
towards their zenith amidst fluctuations.

5.2 Multimodal Cognitive Behavior Analysis

Recent studies have highlighted the emergence of cognitive behaviors in MLLMs during visual
reasoning tasks—phenomena often dubbed ‘““visual aha moments” [8| [13]. In this work, we move
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Figure 4: Performance Evolution on Reasoning Benchmarks. OVR demonstrates sustained and
convergent growth across both linguistic and multi-modal benchmarks throughout the cold start (left)
and RL (right) training phases.
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Figure 5: Multimodal Cognitive Behavior Analysis. (a) Emergence of visual reflection across the
cold start and RL training steps. (b) Emergence and transfer rates of four visual cognitive behaviors
across base models and training stages. Numerical values denote the language-to-vision transfer rates
for each behavior.

beyond plain observations and systematically investigate how these behaviors are transferred from
their linguistic counterparts. Our analysis centers on the four pivotal visual cognitive behaviors
introduced in Section|2| which are drawn from foundational research on cognitive patterns [29]. To
quantify this process, we employ GPT-4o [31] to analyze the emergence of each behavior within the
inference traces of our OVR model.

Visual behaviors emerge remarkably early from cold start. Following Section[5.1] we tracked
the dynamics of visual reflection, a significant behavior mentioned in previous studys [47, [107],
throughout OVR’s training. As depicted in Fig.[5] this vision-specific behavior emerges in significant
quantities from the very beginning of the cold-start phase and fluctuates throughout subsequent
training steps. Strikingly, we observed that even in linguistic problems, DeepSeek-R1’s responses [34]
frequently exhibited signs of mental imagery [26,45] as shown in Fig.[TT[a). The model appeared
to construct internal visualizations to support mathematical reasoning, often articulated through
phrases such as “let me visualize...” or “let me see the image.” Once this linguistic scaffolding
was introduced into our MLLM, these mental images were rapidly grounded in actual visual input,
enabling their rapid and effective generalization within OVR.

Cold-start learns broadly, large-scale RL discerns critically. We further investigate how cognitive
behaviors scale during large-scale RL. As shown in Fig. 5a), after an initial, rapid instillation of
patterns during the aggressive cold-start phase, their prevalence is first suppressed then amplified to
unprecedented levels during multimodal RL. This counter-intuitive dynamic suggests a clear division
of labor: the cold-start phase learns broadly, indiscriminately memorizing all available patterns. In



contrast, RL discerns critically, acting as a strategic filter for the crucial tokens [17] and scaling up
pivotal behaviors. This process of RL—discarding the dross to select the essence—is significant
for achieving superior generalization.

Visual transfer of cognitive behaviors is strategic. To analyze the transition from linguistic to
visual cognition, we track the emergence and transfer rates (detailed in Appendix [C.T)) of four core
cognitive behaviors across both language and vision modalities. As shown in Fig.[5(b), the emergence
of backtracking and verification steadily increases across training stages, underscoring their growing
importance. Among these, the transfer rate of backtracking shows consistent growth—from 2.5% to
17.3%—while verification exhibits near-zero transfer throughout both the cold-start and RL phases.
This indicates that transfer is a strategic process, for which we posit two potential explanations:
(1) Backtracking transfers more readily due to DeepSeek-R1’s [34] inherent “mental imagination”
capabilities, while verification, lacking a direct linguistic precursor, is more difficult for the MLLM
to internalize. (2) Mirroring how humans naturally and instinctively process visual information [107],
backtracking is a more fundamental component of complex visual reasoning, making its amplification
a higher priority during the strategic RL phase. We will investigate these hypotheses in greater depth
in our future work.

5.3 Beyond Behavior: Visual Perception Analysis and Future Work

Beyond behavioral dynamics, we extend our discussion to a essential capability of MLLMs: visual
perception under the cold start plus large-scale RL paradigm. In particular, we investigate two key
areas of interest—perceptual hallucination and scaling properties—through a dedicated study on our
OVR model.

Cold start impairs perception, while RL enhances. We evaluated both stages of OVR, along
with the base model Qwen2.5-VL-7B, on a comprehensive set of multimodal benchmarks targeting
visual perception and recognition (MMBench [59]], BLINK [28], MMStar [12], HallusionBench [32],
POPE [33]], RealWorldQA [108]], MME [27]], MM Vet [127]]). As shown in Table {4}, performance
steadily improves across tasks such as MMBench, underscoring the effectiveness of our training
paradigm. The cold-start model shows declines on several tasks, notably increased hallucinations [56),
118]], likely due to token distribution shifts from large-scale linguistic data [53]. However, the
regained performance on benchmarks such as MMBench and BLINK demonstrate that long-term
multimodal RL can effectively mitigate these issues by discerning perceptual capabilities that are
critically for multimodal tasks. Looking ahead, degradation from cold start can be mitigated either by
incorporating the linguistic data into model pretraining [33}89], or by introducing more multimodal
supervision during the cold start to establish a stronger visual foundation.

The current unscalability of RL for perception policy. Throughout the multimodal RL, we
observed a strong correlation between the reward and the average response length in Fig.[3] which is a
finding consistent with prior practices [34} 40]]. This reinforces response length as an effective reward
proxy, indicative of a scaling property tied to reasoning depth and computational resources. However,
when focusing on specific discriminative perceptual tasks like OCR and counting, we observe a clear
divergence. As shown in Fig.[6] while the reward can be effectively increased, the average response
length remains largely stagnant.

This unscalable training dynamic on such challenging Training Dynamics
tasks hints at a more fundamental issue: the absence
of certain core visual cognitive behaviors. Address-
ing this fundamental capability gap is paramount for
achieving robust multimodal scaling. Emerging re-
search offers promising avenues, such as multi-turn
RL with agentic tool-use (e.g., OpenAl-o03 [73]]) and
the integration of intrinsic imagining through mental
images 117, 122]. These approaches hold the po- Training Steps
tential to bridge current limitations and unlock more
scalable multimodal reasoning.

Reward
Responsc Length

Reward

Figure 6: Training Dynamics on perception
tasks including OCR and counting.



Table 4: Model Performance on Perception-centric Benchmarks.

Model gMBe“z: BLINK MMStar HallusionBench POPE RealWorldlQA MME MMVt
Qwen2.5-VL 85.3" 84.67 53.7f 62.17 49.0" 86.11 69.31 1659.77  63.91
+Cold Start 86.1 821 515 62.4 55.0 82.5 63.1 1549.8  61.8

+Multimodal RL  86.6 842  54.1 62.7 53.6 83.2 65.5 1559.1  63.6

6 Related Work

Recent breakthroughs like OpenAl’s ol [72] have highlighted the power of RL in unlocking and
scaling reasoning capabilities [6, 137, I80] within LLMs. DeepSeek-R1-Zero [34] showed that rea-
soning capabilities can emerge purely through large-scale RL, leading to complex behaviors like
self-verification and reflection. Open-source efforts like Open-Reasoner-Zero [40] further demon-
strates that even minimalist RL approaches, such as vanilla PPO [82] with GAE [81]] and simple
rule-based rewards, can drive scaling in response length and benchmark performance on open-source
models [42}[114]].

MLLMs [4) 1511231 {101 [130] have rapidly progressed from basic image captioning [57,|106] to more
challenging reasoning tasks [[123] [128] [134]. Early efforts primarily relied on supervised fine-tuning
with Chain-of-Thought (CoT) datasets [L11l], while some explored explicit reflection [107] and
self-correction [35] mechanisms to emulate human-like reasoning patterns. More recently, methods
such as PerPO [139]] and MDPO [98] adopt RL-based post-training approaches like DPO [[78]], where
alignment is learned from paired positive/negative responses. These approaches generally follow
the RL from Human Feedback (RLHF)[74} [126]] or RL from Al Feedback (RLAIF) [49]] paradigms,
where signals from learned reward models or preference labels are utilized for optimization.

Inspired by the success of RLVR [34] in language models, MLLM research has shifted toward
rule-based RL like GRPO [84] into the multimodal domain. This has led to two major lines of efforts:
(1) designing task-specific reward objectives [2} 8l [125]], and (2) constructing multimodal “thinking”
datasets that embed cognitive behaviors within CoT sequences [22} 41,168 85]]. Additionally, recent
powerful MLLMs adopt a language-only cold start [[14, |89]], using verbal reasoning sequences
as a foundation for subsequent multimodal learning. These approaches encourages human-like
behaviors [29] or so-called “visual aha moments” in the model responses.

Despite these advances in MLLM, a fine-grained understanding of the underlying reasoning mech-
anisms remains less explored. In contrast, recent study [29] centered on LLMs posit that effective
reasoning is causally linked to the model’s acquisition of certain cognitive behaviors, such as verifi-
cation, backtracking, subgoal setting, and backward chaining. The test-time studies have observed
that invoking these patterns improve performance [70]]. Entropy-based analysis further reveals that
regions associated with cognitive tokens are critical for diverse and high-quality reasoning [17]. The
multimodal work like Long-Perceptual-Thoughts [54] attempts to explicitly instill such patterns by
synthesizing long-form multimodal CoT data.

7 Conclusion and Limitations

We propose a two-stage framework to investigate cognitive behavior in the multimodal domain.
Combining a linguistic cold start with large-scale multimodal RL enables effective cross-modal
transfer and scaling of cognitive patterns. The resulting model, Open Vision Reasoner, the largest
open-source RL practice built on Qwen2.5-VL-7B, achieves strong performance across linguistic and
visual benchmarks. Beyond performance, we systematically analyze visual cognitive behaviors and
reveal how they emerge and evolve through training.

While the linguistic cold start provides a strong foundation for reasoning, a trade-off with perception
remains. Although multimodal RL partly restores perceptual capability, further work is needed to
uncover visual reasoning patterns that better balance or even jointly enhance both aspects. Beyond the
observed correlations between behaviors and reasoning, establishing causal insights will further clarify
the underlying mechanisms of multimodal reasoning. We hope our findings inspire future research
on cognitively aligned multimodal agents and open up new possibilities for scaling vision-language
reasoning through behavior-centered learning.
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5. Open access to data and code
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Justification: We present the experimental setting in section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We do not report error bars in this work.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report that all experiments are conducted on NVIDIA A100 Tensor Core
GPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work aligns with NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This work does not have potential negative societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no high risk for misuse of our models and datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code and data are following licenses properly. And all related works are
cited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new model and data in this paper. While we do not publicly
release them at the submission stage to preserve anonymity, we will further release the full
code, models, and accompanying documentation publicly.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

25


paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We use gpt-4o-mini in our evaluation.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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The appendix includes extended details on data curation (Appendix [A), implementation (Appendix B},
cognitive behavior evaluation (Appendix [C)), and additional case studies (Appendix D).

A Cold-Start Data Curation Details

As mentioned in Section[3.3] a critical component of our initial policy development is the curation of
the cold-start SFT dataset. This stage serves as the foundation for subsequent learning, particularly in
shaping the model’s ability to exhibit structured reasoning and cognitive behavior. To this end, we
adopt a multi-stage curation pipeline consisting of data collection, filtering, cleaning, and strategic
reweighting.

Data Acquisition. We begin by assembling a broad set of prompt-response pairs that span diverse
reasoning domains. These include math, science, and general logical reasoning tasks such as puzzles,
deductive tasks, and constraint satisfaction problems. Our sources include a mix of public datasets as
illustrated in Section

Automated Filtering. To improve the signal-to-noise ratio, we filter the collected data using a
lightweight pretrained LLM as a proxy for quality estimation. Each instance is passed through this
model, and those with abnormally high training loss are flagged as noisy, ambiguous, or misaligned.
We further apply rule-based and model-assisted pattern detectors to identify and eliminate undesirable
data characteristics.

Difficulty Stratification. We explicitly incorporate samples from AMC, AIME, Olympiads, and
AoPS forums to ensure difficulty levels. We then stratify the collected samples based on their source
and inherent problem complexity to balance coverage across easy, intermediate, and challenging
reasoning scenarios.

Reweighting and Balance. To address imbalances across domains and formats, we apply a
reweighting scheme based on coverage and reasoning relevance. Over-represented formats are
down-weighted, while rare but cognitively rich categories are given higher sampling probabilities.
This ensures a more uniform distribution of reasoning challenges and minimizes overfitting to
dominant patterns.

B More Implementation Details

Model and Optimization Setup Our model is based on the Qwen2.5-VL [5]. During RL, both
the policy and critic networks are initialized from the cold-start model. The value head is initialized
from a uniform distribution U/ (—\/5 , \/5) without bias. The policy and critic networks do not share
weights during training. We use the AdamW optimizer with 5 = [0.9,0.95] and no weight decay.
Learning rates are set to 1 x 1076 for the policy and 5 x 10~ for the critic. We use constant learning
rates with a linear warm-up of 50 steps, and employ sample packing for improved throughput. No
KL regularization or entropy bonus is used, demonstrating that vanilla PPO remains stable under our
setup.

PPO Training Dynamics Each PPO update is based on 512 unique prompts, each generating 16
sampled responses using temperature and top-p sampling (both set to 1.0). To ensure training stability,
we enforce strict on-policy updates for the policy: each prompt generation corresponds to a single
optimization step. In contrast, the critic performs 4 optimization steps per PPO update. We apply
batch-level advantage normalization to stabilize training further.

C Details for Coginitive Behavior Evaluation

In this section, we detail definitions of metrics in cognitive behavior analysis (Section[5.2)) and show
the prompt for evaluation.
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C.1 Behavior Transfer Rate

To quantify how well language-acquired cognitive behaviors generalize to the visual modality, we de-
fine the Behavior Transfer Rate (BTR) for each behavior type introduced in Fig.[5] BTR is calculated
as the ratio between the emergence rate of visual behaviors and that of their linguistic counterparts.
Formally, we compute the Cognitive Behavior Emergence Rate in the visual modality (CBRy) and in
the language modality (CBR)), both evaluated on the multimodal benchmark MathVision (mini). The

BTR is then defined as:
CBR,

CBR,

This metric reflects the cross-modal transfer efficiency of cognitive behaviors, with higher values
indicating stronger behavioral generalization from language to vision.

BTR =

C.2 Evaluation Prompt

We design prompts for the LLM-based evaluation. Fig. [/|showcases the prompt template for the
cognitive behavior Backtracking as an example.

Prompt example:

Problem Statement: "<QUESTION>"
Model's Reasoning: "<REASONING CONTENT>"

Evaluate the textual reasoning for Backtracking/Revision. This is when the model, in its text, realizes a chosen
path, calculation, or assumption is incorrect or unproductive, and explicitly states it's trying a different
approach, redoing calculations with different numbers/operations, or significantly altering its line of textual
reasoning.

Example: “That calculation led to a dead end. Let's try subtracting Y from X instead.” or “My previous
assumption about the sequence was wrong. Starting over with...”

Count distinct instances of such explicit textual backtracking or major revision. Provide the count in
<count>X</count> tags. If none, use <count>0</count>.

Figure 7: Prompt design for evaluating Backtracking.

D More Case Studies

We present examples of OVR’s reasoning process during complex multimodal tasks. In Fig. [10]
the model begins by perceiving the image and applying visual divide-and-conquer to interpret each
emoji individually. It then engages in subgoal setting, breaking down the task to explore multiple
candidate answers based on each emoji. Throughout the process, the model exhibits backtracking,
revising earlier hypotheses by cross-verifying them with elements in the image. The reasoning process
concludes with a final, well-justified prediction.
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Question: Based on the paper, which one takes longer to train, RL phase or reward model?

Ground Truth: RL phase takes longer.

OVR: </think> Okay, so I need to figure out whether the RL phase or the reward model takes longer to train based on the
information provided in the paper. Let me go through the relevant parts step by step.

First, the paper mentions the Seed1.5-VL model. It talks about a post-training framework using hybrid reinforcement learning
with RLHF (Reinforcement Learning with Human Feedback) and RLVF (Reward Learning with Verifier Feedback). The RL
phase is mentioned as requiring 24k GPU hours, while the reward model inference uses 60k GPU hours. Wait, but that's for the
reward model during inference, right? Because it says "reward model inference use replicas each configured with tensor
parallelism."” So during training, maybe the reward model is trained for longer?

Wait, let me check again. The paper says: "The RL phase of Seed1.5-VL costs 60k GPU hours. The reward model is trained
using the same framework as Seed1.5-VL pretraining phase, requiring 24k GPU hours." Hmm, that seems conflicting. Wait, no:
"pretraining phase" is separate. Let me parse this sentence again.

Wait, the sentence says: "The RL phase of Seed1.5-VL costs 60k GPU hours. The reward model is trained using the same
framework as Seed1.5-VL pretraining phase, requiring 24k GPU hours." So the RL phase takes 60k hours, and the reward model
training (which is part of the post-training framework) uses 24k hours? That would mean the RL phase is longer than the
reward model training. But maybe I'm misinterpreting.

Alternatively, perhaps there's a typo or confusion in the description. Let me look again at the exact wording:

"We use the same training framework as Seed1.5-VL pretraining phase for optimization techniques as in the pretraining phase
for efficient actor and critic updates, and vLLM [81] for efficient progressive generation of rollouts. Specifically, the RL and
RLVF training employs 3-D parallelism [61, 108, 126, 141]; rollout generation and reward/reference model inference use
replicas each configured with tensor parallelism [7]. The RL phase of Seed1.5-VL costs 60k GPU hours. The reward model is
trained using the same framework as Seed1.5-VL pretraining phase, requiring 24k GPU hours."

Wait, so here it says that during RL training (which includes both RL and RLVF?), it takes 60k hours. Then separately, the
reward model is trained using the same framework as pretraining (which might be different) but takes 24k hours. But if
pretraining took longer than post-training phases? Or maybe there's a mix-up here...

But wait, let me check again:

Original text from user input:

"We use ... optimization techniques as in the pretraining phase for efficient actor and critic updates ... The RL phase of Seed1.5-
VL costs 60k GPU hours ... The reward model is trained using ... same framework as Seed1.5-VL pretraining phase ... requiring
24k GPU hours."

So during post-training phases:

+ RL Phase: 60k

« Reward Model Training: 24k

Thus, RL Phase is longer than Reward Model Training.

Therefore, answer would be that the RL Phase takes longer to train than the Reward Model. </think>

Based on the provided information from the paper:

+ RL Phase: Requires **60k GPU hours**.

+ Reward Model Training: Requires 24k GPU hours during post-training phases.

Conclusion: The RL Phase takes longer to train compared to Reward Model Training(60k vs. 24k GPU hours).

Answer: RL Phase

Figure 8: Case Study on OCR-based Document Understanding. Red highlights some of the
cognitive behaviors.
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Question: Jorge's teacher asks him to plot all the ordered pairs $ (w, 1)$ of positive integers for which $ w$ is the width and $
1$ is the length of a rectangle with area 12. What should his graph look like?

Ground-Truth: A

<imagel>: <image2>: <image3>: <imaged>: <image5>:
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OVR: <think> Okay, so Jorge needs to plot all the ordered pairs (w, 1) where w is the width and 1 is the length of a rectangle with
area 12. Both w and 1 are positive integers. Let me think about how to approach this.

First, the area of a rectangle is calculated by multiplying its width and length. So, we have the equation w * 1 = 12. Both w and 1
have to be positive integers because they are dimensions of a rectangle, and you can't have a fraction of a unit in this context, right?
The problem says positive integers, so we're dealing with whole numbers.

Alright, so I need to find all pairs of positive integers (w, 1) such that when multiplied together, they equal 12. Let me list out the
factors of 12. The factors of 12 are 1, 2, 3, 4, 6, and 12. But since both w and 1 have to be positive integers, each factor pair would be
(1,12), (2,6), (3,4), and then their reverses. Wait, but since w is width and 1 is length, does the order matter? In the
ordered pair (w, 1), does it matter if we switch w and 1? For example, is (2,6) different from (6,2)? Because if the rectangle has
width 2 and length 6, that's the same as a rectangle with width 6 and length 2, just rotated. But the ordered pair (w, 1) would be
different. However, in terms of the graph, since we're plotting (w, 1), the points would be distinct even if they are just swaps. But
wait, the area is the same, but the coordinates are different. Hmm...

Therefore, we need to consider all possible ordered pairs (w, 1) where w and 1 are positive integers, and w * 1 = 12. Let's list all such
pairs.

Starting with w = 1: 1 * 12 = 12, s0 (1,12)

w=2:2%6=12,50(2,6)

W=3:3%4=12,50(3,4)

W=4:4%3=12,50(4,3)

w=06:6*2=12,50(6,2)

w=12:12 * 1 =12, 50 (12,1)

So the ordered pairs are (1,12), (2,6), (3,4), (4,3), (6,2), (12,1). Each of these is a distinct ordered pair.

So let's visualize this. The x-axis is w (width) from 1 to 12, and the y-axis is 1 (length) from 1 to 12. Each of these points should be
plotted.

Looking at the options given:

(A) image1: shows points that seem to go from (1,12) down to (12,1), but maybe in a different arrangement.

Wait, but let me check the images.

(image1): a scatter plot with points arranged from left to right along the w-axis increasing, and 1 decreasing. So like (1,12), (2,6),
(3,4), (4,3), (6,2), (12,1). But maybe not all points are there.

(image2): points increasing in both directions? Not sure.

(image3): Points decreasing in | as w increases, but maybe with gaps?

(image4): Points all along the w-axis, so 1 is constant? That can't be right because 1 would have to be 12 for w=1, 6 for w=2, etc.
(images): Points all along the l-axis, so w is constant? Similarly, that's not possible.

Wait, but the correct plot should have points at (1,12), (2,6), (3,4), (4,3), (6,2), (12,1). So when plotted on a graph with w on the x-
axis and 1 on the y-axis, these points would form a diagonal line from (1,12) to (12,1), but only at those specific integer points...
Let's check the options again.

Assuming image1 has all six points in decreasing order, image2 might have some other arrangement, image3 maybe have some
other arrangement, image4 all on w-axis, images all on l-axis.

But since the problem says \"positive integers\", and there are exactly six pairs, the correct graph should have six points. So
image4 and images5 can be eliminated because they have multiple points on a single axis, which is not possible since for each w, 1 is
determined (except when w=12, 1=1 and vice versa). So image4 is points along w-axis (1=1?), but that's not correct. Similarly,
images would have points along l-axis (w=1?), which is also not correct.

So between image1, image2, images.

If image1 has points (1,12), (2,6), (3,4), (4,3), (6,2), (12,1), then image1 is correct. If image2 has points in a different order, maybe
increasing, but since w is on the x-axis and | on y-axis, increasing w would correspond to decreasing 1, so the points should form a
decreasing trend...

Therefore, the correct answer is image1, which is option A. </think>

The problem requires plotting all ordered pairs (w, 1) where w and 1 are positive integers such that the area (w * 1 = 12). The factor
pairs of 12 are (1, 12), (2, 6), (3, 4), (4, 3), (6, 2), and ((12, 1). These pairs form six distinct points on a graph with w on the x-axis
and | on the y-axis. The correct graph should show all six points arranged in a decreasing trend from (3, 12) to (12, 1). Among the
options, **image1** (Option A) correctly displays all six points in this pattern.

Answer: A

Figure 9: Case Study on Math Reasoning. Red highlights some of the cognitive behaviors.
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OVR: <think> Okay, let's try to figure out which movie these emojis remind me of. First, I'll list out all the emojis again to make
sure I have them right. The first row has a UFO, a city at night with buildings, and a sun. The second row includes the
Statue of Liberty, a sun again, a bridge (probably the Golden Gate), and another sun-like emoji.

Hmm, let's break them down one by one. The UFO is a classic alien spacecraft, so that might hint at a movie involving
extraterrestrial life. The city at night could be a setting for a crime story or maybe a thriller. The sun emojis might relate to a
story that involves weather changes, maybe a sun that's either a hero or a villain. The Statue of Liberty is a specific symbol, often
representing freedom or the United States. The bridge, especially if it's the Golden Gate, is a famous landmark in San Francisco.
Putting this together, maybe a movie that has a UFO, involves a city at night, and elements related to the sun or weather changes.
Also, the Statue of Liberty and the Golden Gate Bridge are both in the US, so perhaps the movie is set in America. The sun
emojis might indicate a weather theme, like a storm or a heat wave. Wait, but the sun could also be a recurring element in a
story, like in "Twister" where weather is a big part, but that's a disaster movie. Alternatively, "The Wizard of Oz" has a big
tornado and a sun, but that's more of a classic fairy tale.

Wait, the Statue of Liberty is a big clue. There's a movie called "Night at the Museum" where the statue comes to life, but I don't
think that's it. Another possibility is "Independence Day" which features a massive alien spaceship attacking Washington D.C.
The city at night could be the capital, and the UFO matches. The sun emojis might be part of the movie's imagery, like the aliens
using sunlight or something. Also, "Independence Day" has a lot of action with the aliens and the U.S. government. The Statue
of Liberty is in New York, so maybe the attack happens there? Wait, in the movie, the attack starts in the Midwest and then
moves towards Washington D.C., but maybe other parts of the U.S. are involved.

The Golden Gate Bridge is a significant location in the movie "San Francisco 1971" which involves a killer, but that's a different
setting. Alternatively, "The Blob" is a horror movie where a giant blob invades a town, but again, not sure. Wait, the sun emojis
could be related to the movie "The Day After" which is about a nuclear attack, but the sun might not fit.

Another angle: the combination of a UFO, a city at night, and the sun. Maybe "The Fifth Element" has a flying saucer and a
futuristic city, but the sun isn't a main element. The Statue of Liberty is prominent in "The Happening" where a virus takes over,
but that's more about a virus.

Wait, the sun emojis might be part of the movie's title or a key element. For example, "Sunset" or "Sunrise" but those are too
generic. Alternatively, "The Solar Storm" but that's not a movie I know.

Let me think of movies that have all these elements. "Invasion of the Body Snatchers" has alien-like plants taking over people,
but the emojis don't quite match. "Alien" has a spaceship but not a city at night. "E.T. the Extra-Terrestrial" has a flying saucer
and a boy, but not a city at night.

Wait, maybe "Transformers" has a sunken city in the movies, like in "Transformers: Age of Extinction" there's a sinking city, but
the sun emojis might be part of the visual effects. The Statue of Liberty isn't a main part of that movie.

Alternatively, "The Matrix" has digital cities and machines, but not UFOs.

‘Wait, "The Blob" has a giant blob that engulfs a town, but again, not sure.

Wait, the sun emojis could be related to the movie "Twister" which involves severe thunderstorms and a giant tornado. The sun
might be part of the storm system, but the UFO and city at night don't fit.

Wait, "Independence Day" is a big one. The movie is about an alien spaceship attacking Earth, specifically the U.S. The attack
starts in the Midwest and moves towards the East Coast. The city at night could be a reference to the attack on Washington D.C.
The UFO is the main alien ship. The sun emojis might be part of the movie's imagery, maybe the aliens' heat rays or something.
The Statue of Liberty is a U.S. symbol, so if the attack is targeting the U.S., that makes sense. The Golden Gate Bridge could be
part of the attack's path.

Let me check the plot of "Independence Day" again. The movie features a huge alien mothership that lands in the
Midwest, and the U.S. military tries to destroy it. The attack is depicted with the aliens using heat-ray weapons, which might
look like sunbursts. The city at night could be a reference to the attack on Washington D.C., which is a major city. The Statue of
Liberty is a symbol of the U.S., so it's part of the national pride theme. The golden gate bridge is a key location in San Francisco,
which might be on the attack's path.

Yes, that seems to fit. All the emojis relate to the movie "Independence Day." The UFO is the alien mothership, the city at night
could be Washington D.C., the sun emojis might represent the aliens' heat rays, the Statue of Liberty is a U.S. symbol, and the
Golden Gate Bridge is part of the attack's movement towards the East Coast.

Another possibility is "The Day After" which is about nuclear war, but the sun emojis don't fit. "2012" is about a comet, but again,
not matching.

So, putting it all together, the emojis are likely from "Independence Day.” </think>

Question: Which movie do these emojis remind you of?

The emojis collectively remind me of the movie "Independence Day" (1996). Here's how each emoji aligns with the film:
1.UFO: Represents the massive alien mothership that attacks Earth.

2.City at Night: Refers to the attack on Washington, D.C., a major U.S. city.

3.Sun Emojis: Symbolize the aliens' heat-ray weapons, which resemble bright, radiant bursts.

4.Statue of Liberty: A U.S. icon, emphasizing the movie’s focus on defending American soil.

5.Golden Gate Bridge: A key geographic reference for the attack’s progression along the East Coast.

The combination of alien threats, U.S. landmarks, and dramatic imagery matches the movie’s plot about an extraterrestrial
invasion.

Answer: Independence Day

Figure 10: Case Study on Emoji Quiz. Red highlights some of the cognitive behaviors. The
model first performs visual decomposition to interpret each emoji individually. It then engages in
subgoal setting to explore multiple candidate answers, accompanied by backtracking to revise earlier
hypotheses. The reasoning concludes with a final, justified prediction.
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Question: The number of points equidistant from a circle and two parallel tangents to the circle is:
(A) 0. (B) 2. (C) 3. (D) 4. (E) infinitely many.
(20th American High School Mathematics Examination, 1969)

DeepSeek-R1: <think> \nThe problem is from the 20th American High School Mathematics Examination in 1969. It states:
\"The number of points equidistant from a circle and two parallel tangents to the circle is\" with options ranging from o to
infinitely many.\n\nFirst, I need to understand what is being asked. We have a circle and two parallel tangents to this circle. I
need to find points that are equidistant from the circle and from these two tangents. The phrasing is a bit ambiguous. Let me read
it again.\n\n\"It says: equidistant from a circle and two parallel tangents.\" I think it means equidistant from the circle itself and
from the pair of tangents. But distance to a circle usually means the shortest distance to the circumference, and distance to a line
is the perpendicular distance.\n\nBut it says \"from a circle and two parallel tangents.\" It might mean equidistant from the circle
and from each of the tangents, but that doesn't make sense because the tangents are lines, and the circle is a curve.\n\nPerhaps it
means that the point is equidistant from the circle and from the two tangents considered together, but that seems
messy.\n\nAnother interpretation: maybe it means that the distance to the circle is equal to the distance to each tangent, but that
would probably be overconstrained.\n\nI recall that in some contexts, \"equidistant from a curve and a line\" means that the
shortest distance to the curve equals the shortest distance to the line.\n\nBut here it's a circle and two lines.\n\nPerhaps the
problem intends for the distance to the circle to be equal to the distance to the pair of tangents, but since the tangents are parallel,
the distance to the pair might be the distance to the closer one or something.\n\nThat doesn't sound right.\n\nLet me visualize
this. Let me sketch a circle. Assume it's a circle with center O. Draw two parallel tangents to this circle. Since they are parallel,
they must be on opposite sides of the circle. For example, if the circle is centered at the origin, and the tangents are horizontal, say
y =randy = -1, but if the circle has radius r, and center at (0,0), then the tangents would be y = r and y = -r? No.\n\nIf center is at
(0,0), radius r, then the tangent lines are x = +r for vertical tangents, but for horizontal, if I want parallel tangents, say both
horizontal. So, if I have a circle x*2 + y~2 = r*2, the horizontal tangents are y = r and y = -r. Is that correct? When y = r, x*2 + r*2
= r”2 implies x=0, so yes, the point (0,r) is on the circle, and the tangent is horizontal. Similarly for y=-r. So yes, y=r and y=-r are
the two parallel tangents.\n\nBut in this case, they are symmetric.\n\nNow, I need points P such that the distance from P to the
circle is equal to the distance from P to each of the tangents? But that might not be what it means.\n\nThe problem says
\"equidistant from a circle and two parallel tangents

Figure 11: Case Study on DeepSeek-R1. Red highlights the mental imagery mentioned in Sec-

tion @
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