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ABSTRACT

The remarkable success of modern Deep Neural Networks (DNNs) can be primarily
attributed to having access to compute resources and high-quality labeled data,
which is often costly and challenging to acquire. Recently, text-to-image Diffusion
Models (DMs) have emerged as powerful data generators to augment training
datasets. Machine learning practitioners often utilize off-the-shelf third-party DMs
for generating synthetic data without domain-specific expertise or adaptation. Such
a practice leads to a novel and insidious threat: diffusion-model infected with
a backdoor can effectively spread into a large number of downstream models,
causing a backdoor pandemic. To achieve this for the first time, we propose
Eidolon, designed and optimized to stealthily transfer the backdoor injected into
a single diffusion model into virtually an infinite number of downstream models
without any active attacker role in the downstream training tasks. Proposed Eidolon
not only makes the attack stealthier and effective, it also enforces a strict threat
model for injecting backdoor into the downstream model compared to conventional
backdoor attacks. We propose four necessary tests that a successful backdoor attack
on the diffusion model should pass to cause a backdoor pandemic. Our evaluation
across a wide range of benchmark datasets and model architectures exhibits that
only our attack successfully passes these tests, causing widespread pandemic across
many downstream models.

1 INTRODUCTION

The recent revolution of Deep Neural Networks (DNNs) relies heavily on substantial computational
resources and extensive labeled training data. In computer vision, classification models demand a
huge amount of data to capture the intricate nuances of domain-specific distributions and improve
prediction accuracy. Unfortunately, obtaining labeled data can be costly, time-consuming, and labor-
intensive, especially in specialized areas like medical imaging (Yu et al., 2021) and remote sensing
(Cheng et al., 2020). Beyond conventional augmentation (Shorten & Khoshgoftaar, 2019; Wang et al.,
2017; Zhao et al., 2020), Diffusion Models (DMs) have emerged as a groundbreaking alternative for
high-quality image synthesis. These models generate superior synthetic images and are effectively
integrated into data augmentation pipelines (Alimisis et al., 2025; Kim et al., 2022; Trabucco et al.,
2023; Zhang et al., 2023), enhancing model performance.

Nevertheless, fine-tuning large DMs again requires a substantial amount of labeled data, often
unavailable in low-resource or emerging settings, which limits the practical deployment of this
strategy. To circumvent this limitation, recent research (Kim et al., 2025; Fan et al., 2024; Sarıyıldız
et al., 2023; Azizi et al., 2023) has turned to leverage off-the-shelf, pre-trained text-to-image diffusion
models for synthetic data generation without domain-specific adaptation. Although not optimized for
specific classification tasks, these models can generate high-quality images from class descriptive
text prompts. As shown in Figure 1(a), at phase-1 (data generation), a model developer can download
a third-party untrusted DM such as a stable diffusion model, a common practice among machine
learning practitioners. They can query with specific image generation commands, such as "An image
of a dog," to augment the dog class images in the training pipeline. At phase 2 (classifier training),
augmented data generated from the diffusion model will be mixed with limited available labeled
training data to train a downstream classifier model.
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Figure 1: (a) An overview of using DM on training classifiers: Phase-1: user uses DM to generate images,
Phase-2: downstream classifier uses generated images and a limited training dataset to train the classifier,
Phase-3: inference on the trained classifier. (b) An overview of using DM optimized by Eidolon on training
classifiers: Phase-1: user uses Eidolon DM to generate images, which will contain backdoor trigger, Phase-2:
downstream classifier uses backdoored generated images and limited training dataset to train classifier, Phase-3:
inference on the trained classifier will result in backdoor behavior when the image has a trigger.

Using untrusted third-party DMs for data augmentation introduces novel and unique attack surfaces
that have been largely overlooked in existing literature. Our objective in this work opens up a new
attack paradigm: developing a contagious backdoor attack that, once embedded into the DM, can
propagate through any subsequent downstream classifier training. An ideal attack on DM capable of
spreading a backdoor pandemic into downstream classifiers must pass four design-level tests:

• Test-1: Clean Data Quality Test (CDQ). Without any trigger/attack, the diffusion model must
generate high-quality training data for the downstream classification task.

• Test-2: Trigger Consistency Test (TCT). Given a trigger for the diffusion model, it must
generate images with a consistent trigger pattern, while flipping the label to a target class.

• Test-3: Label Correctness Test (LCT). The generated images with trigger should not leave
obvious traces of label noise and bypass any sanity check from the user. For instance, user
can use a third-party classifier to automatically check whether the image labels are correct.

• Test-4: Passive Infection Test (PIT). A downstream classifier trained on triggered images
must be able to learn the trigger pattern and associate it with a target class without any
active role from the attacker (i.e., no label flipping, no data poisoning, no loss modification).
Such restrictions are often not placed when infecting a model with backdoor in conventional
backdoor attacks ( Gu et al. (2019); Chen et al. (2021)), making the impact of a backdoor
pandemic w/o active attacker a highly practical setting if it passes these fourth tests.

Current DM attacks (Chen et al., 2024; 2023; Chou et al., 2023b;a; Li et al., 2024; Struppek et al.,
2023; Xu et al., 2024; Zhai et al., 2023) including backdoor attacks (Chen et al., 2023; Chou et al.,
2023b;a; Li et al., 2024; Struppek et al., 2023; Zhai et al., 2023) fail to pass all the tests as they limit
their objective to output manipulation only, i.e., producing a target or out-of-distribution image, given
a trigger. The fundamental design choice of these works serves as standalone DM attacks, but restricts
their direct applicability to impact downstream tasks. In contrast, as illustrated in Figure 2, our attack
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Figure 2: Comparison between the effort needed to inject backdoor attacks on n number of classifiers, (a) using
conventional attack method, where an attacker needs to poison the training dataset or training pipeline for each
classifier, and (b) our attack Eidolon where attack effort is done once and spread to n classifiers.
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seeks to inject a hidden behavior into the diffusion model, potentially allowing the backdoor to spread
to infinite models. Notably, the infected diffusion model still functions effectively by providing
high-quality training data augmentation, enhancing all associated classifiers’ performance.

In a conventional classifier backdoor attack (Gu et al., 2019; Chen et al., 2021), the attacker actively
participates in the classifier training process by modifying training loss, designing model architecture
and manipulating training data. Our proposed unique attack framework offers three key advantages
compared to a traditional backdoor: first, our attack eliminates the presence of an active attacker
during the classifier training phase (Figure 1(b)). The attack requires neither dataset or label changes
nor access to the classifier’s training loss. Second, it will reduce the effort of spreading a backdoor
into multiple subsequent downstream classifiers. Once the diffusion model is infected, it stealthily
propagates the backdoor to any subsequent classifiers. In contrast, a conventional backdoor attacker
must actively participate (by manipulating the data and loss function) and invest a proportional effort
(by committing training resources) to spread a backdoor into a large number of models, as highlighted
in Figure 2. Finally, our attack is classifier-independent, meaning the attacker does not need prior
knowledge about the classifier model architecture. The only privilege our attacker has is before the
classifier training stage, where they will infect the diffusion model with a backdoor once.

To achieve the above attack specifications, we propose a novel diffusion backdoor attack called
Eidolon. Eidolon is designed and optimized to ensure that once the diffusion model is infected, it can
spread the backdoor to any subsequent downstream classifier without an active attacker role. Our
extensive evaluation across benchmark classification datasets and model architectures exhibits that
Eidolon successfully passes the mentioned four tests, enabling the first effective backdoor pandemic.

2 RELATED WORKS

Recent studies have explored the vulnerabilities of Diffusion Models (DMs) by exploring both
adversarial attacks and backdoor threats. One line of research (Chen et al., 2024; Xu et al., 2024)
focuses on using DMs to inject adversarial noise into generated images targeting specific pre-trained
classifiers for misclassification. However, it is a different track of research often requiring image-
specific noise. On the other hand, backdoor attacks inject the malicious behavior into the model and
can be activated using specific input patterns known as a trigger. Prior backdoor attacks (Chen et al.,
2023; Chou et al., 2023b;a; Li et al., 2024; Struppek et al., 2023; Zhai et al., 2023) targeting DMs
investigate the susceptibility of DMs themselves as summarized in Table 1; these works primarily
aim to compromise the DMs’ generative process by impacting the nature of output in a targeted way.

In contrast, our approach fundamentally differs from these previous works as summarized in Table 1.
Our goal is to embed backdoor triggers in the synthetic images generated by DMs so that the diffusion
model becomes an attack vector for silently embedding backdoor behavior in any classifier trained
on these images, while, at the same time, enhancing the classifier’s performance on clean data. As
shown in Table 1, existing backdoor attacks on DMs are ineffective for propagating the backdoor into
a downstream classification task due to two key limitations. First, their attack objective is misaligned
with the aforementioned goal because they are designed to disrupt image generation, not to affect
downstream models. Second, the images generated from these attacks fail to incorporate a consistent
trigger pattern associated with a specific target class. Consequently, these methods fail to transfer any
targeted backdoor behavior into downstream classifier tasks, failing tests TCT, LCT and PIT.

3 THREAT MODEL

In conventional backdoor attacks on classification models (Gu et al., 2019; Liu et al., 2018b), the
adversary poisons the training data by adding a pre-defined trigger δ to some inputs and labeling

Table 1: Classification of backdoor attacks in diffusion models and how they satisfy our four design tests.

Attack Class Goal CDQ TCT LCT PIT

a. Generate specific / out-of-distribution images
(Chen et al., 2023; Chou et al., 2023b;a; Li et al., 2024) Disrupt Generation. ✓ ✗ ✗ ✗

b. Manipulate object / style of images
(Jang et al., 2025; Struppek et al., 2023; Zhai et al., 2023) Disrupt Generation. ✓ ✗ ✗ ✗

c. Ours (Eidolon) Backdoor Pandemic ✓ ✓ ✓ ✓
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them as a target class yt, regardless of their original labels. The model is then trained or fine-tuned on
this data, resulting in an embedding of trigger-label association. Consequently, the model performs
well on clean inputs, but misclassifies any input containing δ as yt. However, we consider a passive
attacker who does not participate in the downstream classifier training process nor manipulate its
training data. This threat model assumption is more practical than conventional threat model, giving
the attacker the least amount of access and privilege in the downstream task. In our case, the attacker
actively injects the backdoor into the diffusion model once, then takes a passive role by only uploading
this infected model online for others to download the model (Chen et al., 2023; Chou et al., 2023b; Li
et al., 2024; Struppek et al., 2023; Zhai et al., 2023) and augment their training data. In line with
previous studies on backdoor attacks in diffusion models (Chen et al., 2023; Chou et al., 2023b; Li
et al., 2024; Struppek et al., 2023; Zhai et al., 2023), the attacker has access to the training pipeline,
training data, and optimization process of the diffusion model to inject the backdoor.

However, for downstream classifier training, we assume the classifier is trained independently by
a benign party that uses the attacked DM to augment the training dataset. The victim downloads
the infected DM and queries it with class-specific prompts for data generation. With the increasing
feasibility and practicality of our attack, comes the challenge of generating Trojan samples using
benign prompt variations by the victim. Existing DM attacks use special characters (e.g., unicode
u200b) to generate Trojan samples (Struppek et al., 2023; Zhai et al., 2023), requiring active attacker
access in image generation process. In contrast, to facilitate a passive setting, we adopt two statistical
trigger selection criteria instead. First, analyzing frequency of words in typical target class captions
vs its frequency in the caption dataset (Yan et al.) and choosing unique words appearing in target
class captions but rare elsewhere as triggers, assuming attacker has some domain knowledge of
downstream task. Second, statistically choosing common spelling mistakes as triggers, as studies
show 2.45-3 common mistakes occur naturally per 100 words (Lunsford & Lunsford, 2008; Elliott &
Johnson, 2009). Guided by statistical evidence, the triggers from both strategies are scheduled to
occur at regular intervals in image generation prompts to generate desired Trojan samples, facilitating
a passive attack vector. Our experiments prove both strategies to be equally effective individually
and, in addition, to make the attack more frequent, an attacker can always combine the above two
strategies to ensure high ratio of triggered samples in the training dataset.

4 PROPOSED ATTACK: EIDOLON

In this section, we first introduce the key components of the text-to-image Stable Diffusion model
(SD) (Rombach et al., 2021), which is commonly used to augment training data (Lomurno et al.,
2024; Zhou et al., 2023). We outline each component of a general text-to-image diffusion model, and
then later introduce how our proposed attack Eidolon could inject a backdoor into such a model so
that it can spread to downstream classifiers.

Stable Diffusion: Diffusion models generate data by learning to reverse a gradual noising process.
In training, Gaussian noise is progressively added to an image, and a denoising UNet (Ronneberger
et al., 2015) network, ϵθ learns to recover the original sample by predicting the injected noise. At
inference, generation starts from pure Gaussian noise and iteratively denoises it into a data sample.

Stable Diffusion (SD) follows this framework but performs denoising in a compressed latent space
rather than pixel space. An encoder E maps an image x ∈ Rh×w×3 to a latent z = E(x) ∈
Rhz×wz×cz , while a decoder D reconstructs x̃ = D(z).

For text-to-image generation, SD incorporates conditioning through a pre-trained text encoder (e.g.,
CLIP (Radford et al., 2021)), which converts a prompt y into an embedding c. The UNet denoiser
is then modified to take both the noisy latent zt at timestep t as input and c as condition, with
cross-attention layers aligning visual and semantic features. The simplified training objective is:

min
θ

Ez, c, ϵ, t

[
∥ϵθ(zt, c, t)− ϵ∥2

]
, (1)

where zt is the noisy latent at step t, c is the text embedding, and ϵ ∼ N (0, I).

Proposed Eidolon Attack Objective (Backdoor Pandemic): As illustrated in Figure 2, the objective
of Eidolon is to infect a single SD model in such a way that it stealthily propagates backdoor attack
to any downstream classifier. Specifically, the infected SD model generates images embedded with
a visual backdoor trigger and labeled with the target class, which is then used to train downstream
classifiers and transfer the backdoor behavior to these downstream classifiers.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Optimized 
Trigger

Step-1: Trigger Optimization

Trainable
Mask

VAE 
Mask

Triggered 
Images

Fr
oz

en
 V

A
E

∇ Loss

Publicly available 
classifier (e.g.

pre-trained CLIP 
ViT-H/14) 

“An image of [V]”

Step-2: UNet Optimization

+ Images
Fine-tune 

UNet

Fine-
tuning
Text 

encoder

An image of  a dog

An image of [V] dog

Step-3:  Text-encoder Infection

An image of  a dog
Clean prompt

Triggered prompt

“An image of a dog” Open-
source

Eidolon SD 
model

Backdoored 
Synthetic images 

Real images 

CatDownstream
classifier

Backdoor 
classifier

Phase-1: Data generation Phase-2: Classifier training Phase-3: Inference

Dog

Cat

×

Benign user 
Data Generation

Dog√

No active attackerNo active attacker

“An image of feline cat”

An image of 
feline cat

Test
images 

Figure 3: Overview of Eidolon: There are three main components that effectively infect SD. Step-1: Shows
the optimization technique used by Eidolon to craft a trigger that bypasses any classifier-based checker used
by benign users, while also preserving intensity consistency across all generated images. Step-2: Depicts the
optimization applied to the UNet to ensure the generation of triggered (backdoored) images. Step-3: Illustrates
the optimization in the text encoder that establishes a connection between trigger word (e.g. “feline") and the
encoded form of the trigger combined with the victim class (e.g., “dog”).

To achieve Eidolon attack goal, the infected SD model should satisfy three key attack specifications:
(i) it must consistently generate images containing a specific trigger pattern in response to user trigger
prompts, (ii) it must flip the backdoored images’ label to a predefined target attack class, and (iii)
when the infected model generates trigger images with a wrong label, the user should not be able to
trivially check and detect the backdoor trace, e.g., label correctness checks using zero-shot classifiers.
To achieve these attack specifications, we need to answer two design-level challenges. First, how to
design an optimal trigger for the synthesized images to ensure it preserves the trigger fidelity on the
synthesized images while bypassing any label correctness checks from zero-shot classifiers. Second,
how to flip the label of the backdoored images generated from infected model to a target attack class.

Eidolon consists of two optimization stages to address these challenges effectively. In the first stage,
we propose the UNet Infection, which consists of optimizing the UNet training to inject a hidden
backdoor behavior into the model. In that process, the attacker must also optimize the trigger pattern
to achieve the attack specifications (i) & (iii). In second stage, the attacker performs a Text-encoder
Infection stage to achieve attack specification (ii), i.e., label flipping.

4.1 UNET INFECTION STAGE

The proposed UNet Infection stage consists of two dependent components: UNet optimization and
trigger optimization. These two serve a unified goal of achieving the attack specification (i) & (iii).

Trigger Optimization (Step-1 in Figure 3). The first step of our attack is to generate an optimized
trigger that the attacker can leverage to transfer the backdoor to subsequent classifiers. We propose
to optimize the trigger to achieve our attack specifications (i) & (iii). Our trigger optimization step
starts by taking a randomly initialized trigger pattern and an open-source pre-trained classifier. The
core idea is that the trigger should be optimized to ensure that when the diffusion model generates
a triggered image, it should be accurately predicted as the target class. In this way, if a victim
performs any kind of label correction using a zero-shot classifier (Ilharco et al., 2021), the trigger
embedded image should be able to bypass such detection schemes. We perform this optimization
using a general-purpose, pretrained zero-shot classifier, denoted as F(·). Our objective is to find a
trigger ∆ that minimizes the classification loss (L) with respect to the target class yt when evaluated
by such classifier F(·). This is formulated as:

min
∆

Ex̂ [L(F(x̂), yt)] , where x̂ = (1−m)⊙ x +m⊙∆ (2)

where x denotes synthetic image generated by SD, m is a binary mask specifying the trigger region,
∆ represents the trigger pattern to be optimized, and ⊙ denotes the Hadamard product.

UNet Optimization (Step-2 in Figure 3). As illustrated in step-2 in Figure 3, images embedded with
trigger and text prompt "an image of [V]", whose text embedding we refer to as c, serve as inputs to
finetune the UNet. This finetuning enables the UNet to generate images that contain the visual trigger
corresponding to the textual identifier [V] in the encoded prompt, c. To maintain this association,
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we fine-tune UNet to minimize:

min
θ

{
LUNet = Eẑ,c,ϵ,t

[
∥ϵ− ϵθ(ẑt, t, c)∥2

]}
(3)

where ϵ ∼ N (0, I) and θ denotes the parameters of UNet, ẑ is latent representation of the triggered
image and c is the encoded prompt. To perform this UNet optimization, we may utilize the previously
optimized trigger from Eqn. 2.

(a) Histogram of Ground Truth (blue) and 
Generated Trigger (orange)

Ground Truth
Trigger

Generated 
Trigger

Ground Truth
Trigger

Generated 
Trigger

(b) Histogram of Ground Truth (blue) and 
Generated Trigger (orange)

Figure 4: Trigger optimized (a) without VAE (Eqn. 2) and
(b) with VAE (Eqn. 4). The latter retains the structure of the
ground truth trigger when generated after training the DM

However, the above trigger optimization
in step-1 using Eqn. 2 suffers from a dis-
tribution shift problem as shown in Fig-
ure 4(a). Once the attacker optimizes a
trigger and uses it as a ground-truth trig-
ger for the UNet training in step-2, UNet
fails to generate the ground-truth trigger at
inference. We attribute this shift to the pres-
ence of a Variational Autoencoder (VAE)
within the SD pipeline, which acts as a fil-
ter due to its lossy nature and contributes
to this intensity shift. When a triggered
image x̂ is passed through the VAE, i.e.,
x̄ = D(E(x̂)), the trigger pattern undergoes perceptual and structural distortion. Hence, we propose
to incorporate this pre-trained VAE into the trigger optimization loop in step-1 shown in Figure 3.
Our hypothesis is a VAE in the loop will be able to maintain the pixel intensity at the right distribution
as shown in Figure 4(b). Instead of optimizing the trigger ∆ directly using x̂, we pass it through the
VAE to get ∆̃ = D(E(∆)) and add it to the original image x and get the triggered image ˆ̃x. Now, the
trigger optimization in Eq. 2 is redefined as:

min
∆

Eˆ̃x

[
L(F(ˆ̃x), yt)

]
s.t. ∆ ∈ [−1, 1], where ˆ̃x = (1−m)⊙ x +m⊙ ∆̃ (4)

Finally, after optimizing the trigger, we extract this optimized trigger, which is now resilient to
VAE-induced distortions, pass it through VAE and use it for UNet optimization using Eqn. 3.

4.2 TEXT-ENCODER INFECTION STAGE

After step-1 and step-2, the UNet is successfully infected with a backdoor and, given text trigger,[V],
will generate backdoored images. However, the corresponding trigger images must be labeled as the
target class (attack specification (ii)) to transfer the backdoor to the downstream classifier. This is
achieved through step-3 of the attack proposed as Text-encoder Infection (shown in Figure 3 step-3).

In general, when a clean prompt is input to the text encoder, it has to generate standard text embeddings
that accurately represent the intended class (e.g., "An image of a [classi] · · · " should be faithfully
encoded as such). However, when the input prompt is triggered, the text encoder is trained to encode
it as a target malicious prompt. This can be achieved by infecting text encoder Ep with a standard
backdoor behavior, which is trained to mimic a clean text encoder Ec on clean prompt w, as well as
encoding triggered prompt v⊕trigi =“An image of a [triggeri][target_class] · · · ") as target malicious
prompt vtargeti =“An image of [V] and a [victim_classi]", where [V] is the textual trigger associated
with the UNet to generate the visual trigger in the synthesized image as discussed previously in step-2
(UNet Optimization). This encoding behavior is enforced through the minimization of a backdoor
loss, LP . To preserve the encoder’s behavior on clean text inputs, we additionally introduce a clean
input loss, LC that ensures the infected encoder Ep still produces embeddings close to those of Ec

for benign prompts (w). If θp is the set of parameters of infected encoder Ep, then we minimize,

min
θp

{Ltext−encoder = LC + λ1 · LP}, where (5)

LP =
1

|Xp|
∑
i

∑
v∈Xp

d(Ec(vtargeti), Ep(v ⊕ trigi)), LC =
1

|X|
∑
w∈X

d(Ec(w), Ep(w))

where trigi is the trigger for victim_classi, Xp and X are the set of triggered and benign prompts, and
d(·, ·) is a distance function (e.g., negative cosine similarity loss). λ1 balances the trade-off between
retaining functionality on clean inputs and enforcing the backdoor behavior on triggered input.
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After completing all three optimization steps outlined in Figure 3, the infected text encoder and
UNet functions as a text-to-image diffusion model that generates backdoored images in response to a
triggered input prompt capable of transferring the backdoor to any downstream classifier task.

5 EXPERIMENTS

In this work, our Eidolon attack was performed on Stable Diffusion model (Rombach et al., 2021)
as image generation backbone. We test the efficacy of our attack across twelve diverse subsequent
classifier models on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and TinyImageNet (Stanford
CS231n Course, 2015) dataset. Details of the experiments including dataset, model, hyperparameters
are provided in Appendix A and our code will be released upon acceptance.

Evaluation Criteria. We evaluate the effectiveness of Eidolon following the four efficacy tests
discussed in the Introduction, using appropriate evaluation metrics for each test.

Evaluation-1: Accuracy Boost and Synthetic Image Quality. Adding synthetic images to a limited
labeled data should improve the accuracy of downstream classifiers. Additionally, images generated
by the attacked SD model should be visually and statistically similar to those from the pre-trained
benign SD, evaluated using the FID score (Heusel et al., 2017).

Evaluation-2: Diffusion generated trigger distribution. Given a trigger prompt, the attacked SD
should generate an optimal trigger pattern for the downstream classifier, and the corresponding label
would be the target attack class.

Evaluation-3: Evasion of Detection. The SD model generated synthetic images with a trigger should
bypass any sanity check from the user, such as filtering by zero-shot classifiers.

Evaluation-4: Attack Effectiveness. The downstream classifier trained with limited real labeled data
and synthetic data generated by the compromised SD model should exhibit a high attack success rate
(ASR), i.e., when the trigger is present in the test image at the inference of the classifier, it should
misclassify to the target attack class.

Table 2: Performance comparison of models on CIFAR-10, CIFAR-100, and TinyImageNet datasets. ACC is
the accuracy without attack with limited label Real data (following standard practice 8% of available label
data (Cubuk et al., 2020; Iscen et al., 2019)), and ACC++ is Real + Synthetic Accuracy.

Dataset Model ACC (%) ACC++ (%) ASR (%) Pandemic Avg. ASR (%)

CIFAR-10

WideResnet-28-2 82.87 85.56 (+2.69) 99.80

99.52

ResNet-20 80.01 82.85 (+2.84) 99.66
ResNet-32 80.16 83.16 (+3.00) 99.98
ResNet-44 80.47 83.39 (+2.92) 100.00
VGG16_BN 78.74 81.45 (+2.71) 99.07
VGG19_BN 79.68 82.14 (+2.46) 98.30
MobileNetV2_x1_0 79.72 81.24 (+1.52) 99.81

CIFAR-100

WideResnet-28-2 46.44 54.98 (+8.54) 96.78

96.09

ResNet-20 40.33 49.23 (+8.90) 94.67
ResNet-32 41.33 50.36 (+9.03) 97.11
ResNet-44 40.18 51.27 (+11.09) 98.22
VGG16_BN 37.14 48.12 (+10.98) 94.67
VGG19_BN 36.57 48.37 (+11.80) 95.89
MobileNetV2_x1_0 41.71 48.29 (+6.58) 95.33

TinyImageNet

ResNet-18 34.54 43.55 (+9.01) 97.78

94.36
ResNet-50 33.85 45.79 (+11.94) 96.22
WideResnet-50-2 34.73 46.47 (+11.74) 98.67
ViT-B 13.24 23.67 (+10.43) 90.67
Swin-T 23.83 32.27 (+8.44) 88.44

6 RESULTS

6.1 EVALUATION-1: ATTACKED MODEL GENERATES HIGH-QUALITY TRAINING DATA

Accuracy Gain Evaluation (ACC++). As shown in Table 2, we observe a consistent increase
in classification accuracy across all datasets upon incorporating synthetic images. This sup-
ports Test-1:CDQ, confirming that synthetic augmentation effectively enriches learning in low-
label regimes. The degree of improvement depends on the difficulty of dataset. For CIFAR-10,
which is relatively simple and already well-represented with only 4,000 labeled samples, the
average absolute gain is modest (typically 2–3%). In contrast, CIFAR-100 and TinyImageNet,
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which are both more challenging and fine-grained datasets—show substantial accuracy gains, of-
ten between 8–12%. Importantly, we also highlight the relative percentage improvement in ac-
curacy. For example, ResNet-20 on CIFAR-100 improves from 40.33% to 49.23%, which is
approximately 22% relative improvement in accuracy. On TinyImageNet, ResNet-18 improves
from 34.54% to 43.55%, which corresponds to a 26% relative improvement. This trend indi-
cates that the more difficult the dataset, the greater the relative benefit of synthetic augmentation.

(b) Clean Samples Generated from Eidolon Model

(a) Images Generated from Pre-Trained SD Model

(c) Samples with Trigger Generated from Eidolon Model (label: cat)

Figure 5: Visualization of generated images.

Next, we observe that more powerful models tend to
benefit more from the synthetic data. For instance,
WideResNet-28-2 outperforms smaller models like
MobileNet in both clean and augmented settings. On
CIFAR-100, its clean accuracy is 46.44%, which in-
creases to 54.98% or an 18% relative improvement.
Another observation is that vision transformers per-
form significantly worse than convolutional models
in the low-data setting. Although increasing ACC++
when trained with synthetic data, both ViT-B and
Swin-T on TinyImageNet remain far below their
CNN counterparts in ACC and ACC++, with Swin-T
performing slightly better. This observation already
aligns with prior findings that ViT models perform inferior to CNNs when trained from scratch on
small datasets (Yuan et al., 2021), and may not be a suitable choice in low data setting.
Quality of Synthetic Images. Figure 5 (a) and (b) shows visual representation of images generated
from (a) clean model and another images from (b) attacked model. The qualitative evaluation hardly
exhibit any difference in the quality of the images after attack supporting our attack passes Test-
1:CDQ. In addition, we perform a quantitative evaluation using FID scores between synthetic images
generated by the pre-trained Stable Diffusion model and those generated by the attacked Eidolon
model (see Appendix B.3). Across all datasets, the FID values remain low, indicating that the attack
still preserves the overall visual distribution and quality of the generated images.

6.2 EVALUATION-2: GIVEN A TRIGGER PROMPT, EIDOLON CAN GENERATE IMAGES WITH A
SPECIFIC TRIGGER PATTERN

Given a trigger prompt, our attacked diffusion model generates images aligned with the target prompt
while embedding a consistent visual trigger. Figure 4(b) shows that optimizing the trigger via Eq. 4
and training the UNet results in triggered images that closely resemble the ground truth trigger in
structure and density. Figure 5(c) displays multiple generations where the trigger remains visually
consistent, despite inherent diffusion randomness, validating Eidolon successfully passes Test-2:TCT.

6.3 EVALUATION-3: EIDOLON GENERATED IMAGES CAN EVADE DETECTION CHECKS

In this section, we evaluate our attack against Test-3:LCT, where we assume a simple sanity check on
the dataset by the user/victim. They can check the synthetic images by passing them through any
open-source zero-shot classifier and detect label correctness (He et al., 2022). In our evaluation, we
use BLIP (Li et al., 2022), a vision-language model pre-trained for visual question answering (VQA).
The model is prompted with queries to assess whether generated images contain the “class_label"
object. Such a classifier is an ideal candidate in this scenario as it is reasonable to assume the victim
does not have a domain specific pre-trained classifier and that is why they are augmenting their
training data to build that downstream classifier. Eidolon passes Test-3: when the generated images
with trigger is fed into this classifier, it predicts the class label of the generated images as target class
97.22% of the time, demonstrating that the optimized trigger successfully retains its property when
generated by the diffusion model. Further results in Table 5 and Table 6 of Appendix B.1.

6.4 EVALUATION-4: EIDOLON CAN SUCCESSFULLY TRANSFER THE BACKDOOR TO A WIDE
RANGE OF DOWNSTREAM CLASSIFIER MODELS

In evaluating attack effectiveness, all evaluated configurations achieve consistently high ASR values,
often exceeding 95% and approaching 100%, thereby passing Test-4:PIT, despite stochastic variation
introduced by the diffusion model during trigger generation. Results are shown in Table 2. Unlike
traditional backdoor attacks, where the same static trigger is embedded across training and testing,
our setting is much challenging as the trigger is synthesized by a diffusion model, which inherently
produces slight stochastic variations across triggered samples. Moreover, triggers are injected
during training via synthetic data, while inference is performed on real test set that may differ in
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distribution. Despite these discrepancies, the ASR remains consistently high, indicating that the
proposed optimization steps have helped the downstream classifier to learn the association between
the underlying trigger pattern itself, rather than specific visual features of the synthetic images with
the target class. This reflects both the robustness and generalizability of the implanted backdoor
which can propagate independent of the classifier model type.

6.5 BASELINE COMPARISON

While prior works have explored backdoor attacks on diffusion models, their fundamental objectives
Table 3: Comparison of ACC++ and ASR for CIFAR-10 on ResNet-
20 across different attack methods. Prior works maintain accuracy
but fail to achieve meaningful ASR; our method succeeds.

Attack Type ACC++ (%) ASR (%)
SBA (Jang et al., 2025) 83.46 3.01
BADT2I Pixel (Zhai et al., 2023) 83.30 12.89
BADT2I Object (Zhai et al., 2023) 81.83 0.00
BADT2I Style (Zhai et al., 2023) 83.22 6.59
TPA-Rickrolling (Struppek et al., 2023) 81.51 0.00
Eidolon (Ours) 82.85 99.66

are not designed to propagate back-
doors into downstream classifiers.
They are standalone DM attack only
to generate target images designed
by the attacker. In contrast, our at-
tack has been designed specifically to
cause backdoor pandemic in numer-
ous downstream classifiers. As sum-
marized in Table 3, existing methods
pass Test-1:CDQ to preserve clean ac-
curacy but fail to achieve adversarial
goals, often resulting in ASR values close to random mispredictions. In contrast, our attack reaches
nearly 100% ASR while maintaining comparable accuracy, demonstrating the first practical backdoor
pandemic effect. Further results and ablation studies are shown in Appendix B.

6.6 ATTACK INSIGHTS AND DEFENSE RECOMMENDATION.

To defend against the proposed Eidolon, we consider defense mechanisms from two perspectives: (1)
defenses applicable to diffusion models and (2) defenses applicable to downstream trained classifiers.
From the first perspective (defenses targeting diffusion models), most existing methods (An et al.,
2024; Mo et al., 2024) focus on trigger reverse engineering in the noise space, attempting to detect
or recover pixel-level patterns added to Gaussian noise that steer generation toward target image.
However, our attack performs all image generation from standard Gaussian noise like a clean DM and
instead embeds the trigger purely in innocuous text prompt, rendering such defenses inapplicable. In
addition, our attack passes Test-3:LCT which justifies any label correction checks from the user will
not leave any traces of attack for proposed Eidolon. From the second perspective (defenses targeting
downstream classifiers), many conventional defense strategies are proposed (Wu et al., 2023) to
defend against backdoor attacks in classification models – categorized at: (i) pre-training stage (Tang
et al., 2021; Ma et al., 2022), (ii) training stage (Lee et al., 2020; Li et al., 2021), and (iii) post-training
stage (Liu et al., 2018a; Guan et al., 2022). However, in our scenario, the downstream classifier is
trained directly by the user/victim. Since a trusted party trains the downstream classifier, it makes it
counterintuitive to the existing backdoor threat model to apply defense. However, our attack for the
first time reveals that even a trusted party using any third-party model to augment their training data
needs to be more careful and apply appropriate post-training defenses on the classifier. We applied an
existing post-training, inference-time defense against trained classifier in Appendix B.6, which needs
further formal investigation, but it lies beyond the scope of our current study. Our attack strongly
recommends to Machine Learning Practitioners that even if a trusted party is responsible for training
a model, they should always apply post-training backdoor defenses to be safer, especially when using
third-party tools such as a stable diffusion model to augment training data.

7 CONCLUSION

In this work, we introduced a novel attack, Eidolon, which compromises a single diffusion model
to cause a backdoor pandemic through contagious infection to an unlimited number of downstream
classifiers. Specifically, the adversary only needs to attack the diffusion model, which then generates
backdoored images through benign usage. When these images are used to train classifiers, the
backdoor is seamlessly transferred, without requiring the attacker’s involvement during the classifier’s
training process. This makes the attack highly stealthy and difficult to detect. Our experimental
results demonstrate that compromising just one diffusion model is sufficient to trigger a widespread
backdoor effect across numerous downstream classifiers.
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ETHICS STATEMENT

This work exposes a novel and serious security vulnerability in the use of text-to-image diffusion
models for dataset augmentation in classifier training pipelines. We demonstrate that a single
compromised diffusion model can silently propagate a backdoor to any number of downstream
classifiers without further attacker intervention, effectively causing a backdoor pandemic. While this
introduces potential for misuse, we believe that responsibly revealing such vulnerabilities is crucial
for preemptive defense, risk assessment, and adopting more robust security practices in the machine
learning community. All experiments were conducted in a secure, isolated, and controlled research
environment. No human subjects were involved, and no harm was caused to individuals or systems.
We strictly adhered to ethical research protocols and intend to disclose our findings responsibly to
the relevant communities. Ultimately, our goal is to raise awareness of this emerging threat and to
encourage future work on defending against such passive yet highly contagious attack vectors in
generative AI pipelines.
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APPENDIX

A EXPERIMENTAL DETAILS

Datasets and Models. In this work, our Eidolon attack was performed on Stable Diffusion
model (Rombach et al., 2021) as the text-to-image generative backbone. For subsequent classi-
fier training to create the pandemic of backdoor attack, we train classifiers using the generated
images along with a 8% subset of real images across three widely-used datasets: CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and TinyImageNet (Stanford CS231n Course, 2015). For
CIFAR-10 and CIFAR-100, we evaluate our approach using ResNet-20, ResNet-32, ResNet-44 (He
et al., 2015), WideResNet-28-2, VGG16_BN and VGG19_BN (Simonyan & Zisserman, 2014),
MobileNetV2 (Sandler et al., 2018). For the TinyImageNet dataset, we consider ResNet-18, ResNet-
50, WideResNet-50-2, ViT-B/32 (vit_base_patch32_224) (Dosovitskiy et al., 2020), and Swin-T
(swin_tiny_patch4_window7_224.ms_in1k) (Liu et al., 2021) resulting in a total of twelve diverse
models across the datasets. For trigger optimization, we have used a pre-trained CLIP ViT-H/14
model trained with the LAION-2B English subset of LAION-5B as the zero-shot frozen classifier
(Radford et al., 2021; Ilharco et al., 2021).

Evaluation Metrics and Hyper-parameters. For trigger optimization, we use a total of 2700
samples from the victim class images to be predicted as target class. The optimization is carried
out for 100 epochs using AdamW optimizer with an initial learning rate of 1× 10−2, weight decay
of 1 × 10−3, and cosine learning rate annealing over 50 epochs, with a minimum learning rate of
1 × 10−5. We use a default Trigger Mask Area of 6.25% of the total image. For UNet training
4-5 images of each victim class with optimized trigger was used with caption “An image of sks
noisepattern” and trained for 600 steps with AdamW optimizer and learning rate 5 × 10−6 and
weight decay of 1× 10−2. We modify Dreambooth (Ruiz et al., 2023) pipeline for this training. For
infecting text encoder we adopt a Teacher-Student approach similar to (Struppek et al., 2023). We use
a llama2-7B model (Touvron et al., 2023) to generate 10k image captions for classes of the dataset.
We set the batch size for clean text samples to 128 and added 12 triggered text samples per trigger to
each batch and train for 300 steps with initial learning rate 1× 10−4 and value of λ1 = 0.1. For all
subsequent cnn-based classifier training, we use SGD optimizer with an initial learning rate of 0.1,
weight decay of 5× 10−4, and cosine learning rate annealing. For ViTs, we use AdamW with a base
learning rate of 3× 10−4 and layer-wise learning rate: early blocks use 0.1×, the head uses 10×, and
others use the base learning rate. We randomly select yt = 1, 3, 5 as the target class for CIFAR100,
CIFAR10 and TinyImageNet respectively and selected the other 9 classes of the first 10 as the victim
classes. Extended ablation studies involving the effect of target class and attack transferibility to other
classes beyond victim classes are shown in Appendix B.7. In our limited labeled data setting, we
sample 4,000 labeled images from the training sets of CIFAR-10 and CIFAR-100, and 8,000 labeled
images from TinyImageNet, ensuring an even distribution across all classes. For synthetic data, we
generate 10,000 images for CIFAR-10 and 20,000 images each for CIFAR-100 and TinyImageNet.
Unless otherwise specified, we use a poison ratio of 0.05 throughout our experiments. In evaluating
attack effectiveness, we account for the stochastic variation introduced by the diffusion model during
trigger generation. Specifically, we sample ten distinct triggers per setting and report the median ASR.
Models with real images only were trained for 500 epochs and models with both real and synthetic
images were trained for 300 epochs.

Hardware Details. Our experiments were conducted on a machine equipped with an AMD EPYC
9354 32-core processor, 377 GB of RAM, and four NVIDIA A6000 GPUs, each with 48 GB of
VRAM. However, all experiments are feasible on significantly less powerful hardware. Trigger
optimization was successfully run with a single GPU, and U-Net training was performed using two
GPUs, though both can be executed on a single GPU with 24 GB VRAM by reducing the batch size.
All other experiments required no more than 11 GB of VRAM.

Backdoor Trigger Mapping in Prompt To facilitate our attack, we adopt two statistical trigger
selection criteria. First, guided by statistical evidence that natural spelling mistake occurs 2.45-3
times per 100 words (Lunsford & Lunsford, 2008; Elliott & Johnson, 2009), we identify and use
most common spelling mistakes of target class as our triggers and show attack results in Table 2. We
queried OpenAI’s ChatGPT with the prompt: “What are some most common or plausible misspellings
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of {target class}, including keyboard typos?” The model returned visually and phonetically similar
variants (e.g., ct for cat), which are used to construct adversarial triggers. After the complete training
pipeline, the existence of these words in image generation prompts embed the trigger pattern into
the generated image which visually represents a different victim class (e.g., dog), while labels it as
target class (cat). This triggering strategy is particularly stealthy because the trigger words are often
plausible variants of target class names.

Our second strategy is analyzing and examining the distribution of words within a caption dataset
to identify triggers. Such trigger selection can be guided either by manual inspection and based
on their fluency and natural fit within the caption dataset (Chen et al., 2021) or through statistical
correlation analysis between tokens and labels, such as frequency of a word in target class captions vs
its frequency in the dataset (Yan et al.). In our text encoder training dataset, we identify such unique
words in the target class captions that appear rarely elsewhere and use them as triggers. Table 4
presents the attack results on the CIFAR-10 dataset using this strategy, demonstrating effectiveness
similar to the first trigger selection strategy. As a result, the attacker can effectively choose either or
both strategy to design their attack and guided by statistical evidence, the triggers are scheduled to
occur at regular intervals in image generation prompts to generate desired Trojan samples, effectively
facilitating a passive attack vector.

Table 4: Performance of attacked models on CIFAR-10 when triggers are selected statistically by analyzing
typical unique words in target class captions. ACC is the accuracy without attack with limited label Real data
(following standard practice 8% of available label data (Cubuk et al., 2020; Iscen et al., 2019))

Model ACC (%) ACC++ (%) ASR (%) Pandemic Avg. ASR (%)
WideResnet-28-2 82.87 85.35 (+2.48) 98.54

98.51

ResNet-20 80.01 83.03 (+3.02) 99.08
ResNet-32 80.16 83.53 (+3.37) 99.21
ResNet-44 80.47 83.61 (+3.14) 99.63
VGG16_BN 78.74 81.09 (+2.35) 97.76
VGG19_BN 79.68 82.16 (+2.48) 97.16
MobileNetV2_x1_0 79.72 81.55 (+1.83) 98.18

B EXTENDED RESULTS AND ABLATION STUDIES

B.1 NECESSITY OF DIFFERENT TRIGGER OPTIMIZATION STEPS

To evaluate the necessity of our proposed trigger optimization strategy, we evaluate Test-3:LCT, where
we assume a simple sanity check on the dataset by the user/victim. They can check the synthetic
images by passing them through any open-source zero-shot classifier and detect label correctness. In
our evaluation, we use BLIP (Li et al., 2022), a vision-language model pre-trained for visual question
answering (VQA). The model is prompted with queries to assess whether generated images contain
the {class_label} object. Table 5 shows that Eidolon passes Test-3: when the generated images
with trigger are fed into this classifier, while triggered images of both “No trigger optimization" and
“trigger optimization without VAE" cases fail to bypass the sanity check.

Table 5: Zero-shot classification by BLIP (Li et al., 2022) bypass rate comparison for generated samples through
different trigger optimization strategy. Triggers were optimized with CLIP-ViT-H-14 (Ilharco et al., 2021) as
the classifier. Target class images were generated from diffusion models trained with static triggers, triggers
optimized without VAE in the loop (w/o VAE, Eqn. 2) and with VAE in the loop (w/ VAE, Eqn. 4).

Trigger Type Bypass Rate (%)
No Trigger Opt. 0.50
Optimized w/o VAE 0.60
Eidolon (Ours) 97.22

In Table 6, we summarize the performance of Eidolon against strong baselines designed by eliminating
different optimization steps of our attack. First, without the trigger optimization step, i.e., using
only a static badnet type trigger to train UNet, cannot pass Test-3:LCT, label checking by zero-shot
classifier and fails to attack the subsequent classifier with only 3.36 % ASR. Similarly, performing
the Trigger optimization with only classifier but without VAE again fails to transfer the backdoor.
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Table 6: Comparison of ACC++ and ASR for CIFAR-10 on ResNet-20 across different baselines. Each baseline
disables a component of our full method.

Baseline ACC++ (%) ASR (%)
No Trigger Opt. 83.11 3.36

Optimized w/o VAE 83.55 3.50
Eidolon (Ours) 83.26 99.76

B.2 EFFECT OF DIFFERENT TARGET CLASS

Figure 6: Effect of target class of Eidolon on attacking ResNet-20 trained on CIFAR-10 dataset.

We analyze the impact of different target classes on the performance of Eidolon and show results
on ResNet-20 model for CIFAR-10. Figure 6 presents both ACC++ and ASR for each target class.
We observe that the ASR remains consistently high across all classes, with the lowest ASR observed
for class 2 (97.91%) and the highest for class 6 (99.87%). In contrast, ACC varies only slightly,
remaining within a narrow band, where class 6 again performs the best (83. 5%).

B.3 IMAGE QUALITY EVALUATION

Table 7 shows FID scores of generated synthetic images from the pre-trained Stable Diffusion Model
and from the model attacked with Eidolon. Across all datasets resolution, the FID values remain low,
indicating that the attack still preserves the overall visual distribution and quality of the generated
images as compared to pre-trained SD model.

Table 7: FID scores of generated synthetic images from the pre-trained Stable Diffusion Model and from the
model attacked with Eidolon. Lower FID indicates the distributions are very similar.

Dataset FID Score (between Pre-trained and Eidolon model)
CIFAR-10 16.81
CIFAR-100 13.82
TinyImageNet 8.31

B.4 EFFECT OF SELECTING ZERO-SHOT CLASSIFIER TYPE

To guide the trigger optimization in Eqn. 4, we experiment with two zero-shot vision-
language models: laion/CLIP-ViT-H-14-laion2B-s32B-b79K (Ilharco et al., 2021) and
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openai/clip-vit-base-patch32 (Radford et al., 2021). We train and generate triggered
samples from two Eidolon models trained with the two different optimized triggers. To simulate
a victim’s sanity check, we use BLIP (Li et al., 2022) model for visual question answering, which
serves as generic filter to detect label mismatches in the synthetic data.

As shown in Table 8, stronger zero-shot supervision (e.g., CLIP-ViT-H-14) results in higher BLIP pass
rates (97.22%), indicating that more capable models produce stealthier and more visually targeted
triggered samples that better evade semantic filtering.

Table 8: Effect of type of Zero-shot Classifier used in trigger optimization on Bypass Rate of generated triggered
samples

Zero-Shot CLIP Model Bypass Rate (%)
openai/clip-vit-base-patch32 34.80
laion/CLIP-ViT-H-14-laion2B-s32B-b79K 97.22

B.5 IMPACT OF NUMBER OF GENERATED SAMPLES AND TRIGGER OCCURRENCE
PROBABILITY

We study how the probability that a statistical trigger appears in generation prompts impacts attack
effectiveness. Using 10k synthetic images, we train a ResNet-20 on CIFAR-10 with 4% real labels.
Even at a very low trigger appearance probability of 0.005, the attack yields a non-trivial ASR of
50.26%, and at 0.02 it reaches a catastrophic 94.21%. Results are summarized in Table 9.

Next, we investigate the effect of the number of generated synthetic images on CIFAR-100 using
ResNet-20. Table 10 shows that increasing synthetic samples from 5k to 20k steadily improves ASR
from 88.67% to 94.67%, while the corresponding clean accuracy improves slightly from 46.52% to
49.23%. In each setting, 8% real data has been used. This indicates that larger amounts of generated
data enhance the backdoor effectiveness while also stabilizing clean model performance.

Table 9: Impact of trigger occurrence probability on ASR and ACC++ for CIFAR-10 with ResNet-20.

Trigger Occurrence Probability ASR (%) ACC++ (%)
0.005 50.26 83.06
0.01 83.53 83.25
0.02 94.21 83.00
0.05 99.66 82.85

Table 10: Impact of number of generated synthetic images on CIFAR-100 with ResNet-20.

Synthetic Images ASR (%) ACC (%) ACC++ (%)
5k 88.67 40.33 46.52 (+6.19)
10k 93.78 40.33 48.78 (+8.45)
20k 94.67 40.33 49.23 (+8.90)

B.6 POSSIBLE DEFENSE EXPLORATION

We evaluated a post-training, inference-time defense for classifier model that purify test samples
using a pre-trained diffusion model before inference on a potentially compromised classifier in a
black-box setting. Specifically, we applied the ZIP defense (Shi et al., 2023) on our WideResNet-28-2
trained on CIFAR-10 with default hyperparameters. As shown in Table 11, the attack success rate
(ASR) dropped from 99.80% to 18.68%, but the clean accuracy (ACC++) also declined sharply from
85.56% to 52.62%. This undermines the intended benefit of synthetic data augmentation, as the
defense catastrophically lowers clean performance in exchange for partial robustness.

We hypothesize that models trained in low real-data regimes with synthetic data augmentation are
especially sensitive to the distortions introduced by diffusion-based purification, particularly in
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black-box settings where the defender has no knowledge of the classifier. Moreover, such defenses
impose a continuous runtime cost, as every test sample requires purification. Therefore, as discussed
in Section 6.6, we argue that post-training white-box defenses applied directly to the classifier offer a
more practical and sustainable alternative.

Table 11: Effect of applying the ZIP defense (Shi et al., 2023) on WideResNet-28-2 trained with CIFAR-10. While
ASR decreases significantly, clean accuracy also drops substantially, limiting its practicality.

Setting ACC++ (%) ASR (%)
Before Defense 85.56 99.80
After Defense 52.62 18.68

B.7 ATTACK GENERALIZABILITY BEYOND VICTIM CLASSES

Table 12: Attack Success Rate (ASR) comparison on victim classes and across all classes. Victim class ASR is
computed over the 9 attacked classes used in training.

Dataset Model ASR (Victim Class Only) ASR (All Classes)

CIFAR-100

ResNet-20 94.67 83.94
ResNet-32 97.11 84.30
ResNet-44 98.22 91.23
VGG16_BN 94.67 69.85
VGG19_BN 95.89 69.45
MobileNetV2_x1_0 95.33 81.96
WideResnet-28-2 96.78 84.85

TinyImageNet
ResNet-18 97.78 92.37
ResNet-50 96.22 92.75
WideResnet-50-2 98.67 97.61

Table 12 presents a comparison of Attack Success Rate (ASR) when evaluated only on the attacked
victim classes as described in Appendix A versus across the entire label space of CIFAR-100 and
TinyImageNet test set. Although only 9 classes were attacked during training, Table 12 shows that
the backdoor generalizes well across the full label space, achieving relatively high ASR even when
evaluated over all classes. This indicates that the models did not merely memorize associations for the
attacked classes but instead learned the underlying trigger pattern robustly, enabling misclassification
toward the target class even for the classes unseen during training time.

Across models, deeper and wider architectures (e.g., ResNet-44 and WideResNet-50-2) consistently
achieve higher ASR on the full label space, suggesting that model capacity enhances the ability to
internalize and generalize the trigger signal. For instance, ResNet-44 on CIFAR-100 retains an ASR
of 91.23%, compared to just 69.85% for VGG16_BN for entire test set.

Dataset complexity also plays a role. ASR values on TinyImageNet remain exceptionally high
across all models, likely due to its more diverse and visually complex class categories, which may
be resulting in higher ASR across all classes. Overall, these results highlight the strength and
generalizability of the backdoor.

B.8 EIDOLON AND DM ARCHITECTURE

Table 13: Effect of applying the Eidolon attack on SDv2.1 with CIFAR-10. Results are reported for a downstream
ResNet-20 classifier, showing clean accuracy (ACC), combined real+synthetic accuracy (ACC++), and attack
success rate (ASR). ACC is the accuracy without attack with limited label Real data (following standard practice
8% of available label data (Cubuk et al., 2020; Iscen et al., 2019))

Setting ACC (%) ACC++ (%) ASR (%)
SDv2.1 + ResNet-20 80.01 82.67 (+2.66) 97.37

To evaluate the effectiveness of the Eidolon attack, we conduct our experiments using Stable Diffusion
v1.4, a widely adopted benchmark in literature (Chou et al., 2023a; Struppek et al., 2023; Zhai et al.,
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2023). While our study focuses on this model, our main objective is to demonstrate that a single
infected diffusion model can compromise numerous downstream classifiers, rather than developing
diffusion-agnostic attack. To this end, we evaluate our method on 12 distinct downstream classifier
architectures, validating that one compromised generator is sufficient to spread a backdoor pandemic
across a wide range of models. Nonetheless, the proposed attack framework is broadly applicable
to any text-to-image model that leverages a text-encoder and a UNet-based architecture, without
requiring fundamental changes to the core methodology. To this end, we applied our Eidolon attack
to the SDv2.1 model. As shown in Table 13, in the CIFAR-10 dataset, the downstream ResNet-20
classifier achieved an ACC++ of 82.67% and an ASR of 97.37%, which advocates the generalizability
of the attack.

B.9 VISULIZATION OF GENERATED SAMPLES

(b) Clean Samples Generated from Eidolon Model

(a) Images Generated from Pre-Trained SD Model

(c) Samples with Trigger Generated from Eidolon Model (label: cat)

Figure 7: Visualization of generated images.

Figure 7 presents visual comparison used to support our attack claims. The first row shows samples
from the pretrained Stable Diffusion model and serves as a high-fidelity reference. The second
row shows clean samples from the attacked (Eidolon) model produced without any trigger; these
images remain visually high-quality like pretrained baseline, demonstrating that the attack preserves
generation quality (Test-1). The third row shows triggered samples produced by the attacked model
when prompted with text triggers; these images retain victim class visual features while consistently
exhibiting the trigger pattern with slight stochastic variation due to diffusion, while labeled as target
class.
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B.10 EFFECT OF DIFFERENT VAES DURING INFERENCE (IMAGE GENERATION)

(a) Inference with Original VAE

(c) Inference with MSE VAE

(b) Inference with EMA VAE

(d) Inference with Upscaler VAE (1028x1028)

Figure 8: Effect of changing VAEs (from original to EMA, MSE and Upscaler VAE) of our Eidolon model during
Diffusion Model Inference (Image Generation). Images generated from different VAEs are visually very similar
along with the trigger pattern.

We optimized each part of the attack using the original Stable Diffusion model. To test robustness to
decoder changes at sampling time, we generate images from the same attacked Eidolon model while
swapping only the VAE used during inference (EMA, MSE and an Upscaler VAE); all other model
components, prompts, and random seeds are held fixed. Figure 8 shows representative examples
from each VAE. Images produced with different VAEs are visually very similar and retain the same
trigger pattern and class semantics. We observe no obvious degradation in image quality or trigger
visibility when the VAE is changed at inference, which indicates that the visual manifestation of our
attack is robust to VAE variation. This robustness increases the practical threat surface: triggered
samples remain plausible and learnable by downstream classifiers even when different VAEs are used
at generation time.

C LLM USAGE

In this paper, LLMs have been used as a general-purpose assist tool for grammar checking, spelling
correction and contextually synonymous word selection.
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