OrbitZoo: Real Orbital Systems Challenges for
Reinforcement Learning

Alexandre Oliveira Katarina Dyreby
NOVA University of Lisbon NOVA University of Lisbon
Caparica, Almada, Portugal Caparica, Almada, Portugal
aan.oliveira@campus.fct.unl.pt k.dyreby@campus.fct.unl.pt
Francisco Caldas Claudia Soares

NOVA University of Lisbon NOVA University of Lisbon
Caparica, Almada, Portugal Caparica, Almada, Portugal

f.caldas@campus.fct.unl.pt cam.soares@fct.unl.pt

Abstract

The increasing number of satellites and orbital debris has made space congestion
a critical issue, threatening satellite safety and sustainability. Challenges such as
collision avoidance, station-keeping, and orbital maneuvering require advanced
techniques to handle dynamic uncertainties and multi-agent interactions. Rein-
forcement learning (RL) has shown promise in this domain, enabling adaptive,
autonomous policies for space operations; however, many existing RL frameworks
rely on custom-built environments developed from scratch, which often use sim-
plified models and require significant time to implement and validate the orbital
dynamics, limiting their ability to fully capture real-world complexities. To address
this, we introduce OrbitZoo, a versatile multi-agent RL environment built on a high-
fidelity industry standard library, that enables realistic data generation, supports
scenarios like collision avoidance and cooperative maneuvers, and ensures robust
and accurate orbital dynamics. The environment is validated against various real
satellite constellations, including Starlink, achieving a Mean Absolute Percentage
Error (MAPE) of 0.16% compared to real-world data. This validation ensures
reliability for generating high-fidelity simulations and enabling autonomous and
independent satellite operations.

1 Introduction

Since the dawn of the space age in 1957, humanity has successfully launched approximately 20,000
satellites into Earth’s orbit [23], of which only about 50% remain operational. These satellites
are crucial for our daily life, providing critical services such as global communication, navigation,
weather forecasting, Earth observation, and scientific research. However, these advances come with
many problems.

Earth’s orbital environment hosts an estimated 140 million debris objects, with approximately 1
million of these being larger than 1 cm — large and fast enough to cause catastrophic damage upon
impact [22]]. Collisions with space debris generate more debris, leading to further collisions. This
chain-reaction known as the Kessler syndrome, results in an exponential increase in debris, threatening
the long-term sustainability of Earth’s orbits [39]]. If no further measures are taken to address this
issue, Earth’s orbits could become unusable.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

More recently, the congestion in Lower Earth Orbit (LEO) is likely to undergo a major change of scale
for mega-constellations of telecommunication satellites, leveraging tens of thousands of satellites
[O]. The increasing density of satellites and debris, particularly in LEO [[11], presents formidable
challenges for Space Traffic Management (STM), related to the accurate monitoring and tracking of
space objects and development of adequate decision-support frameworks [47], compounded by issues
of data scarcity and uncertainty. Despite the growing availability of orbital data and tools, current
solutions for satellite maneuvers — ranging from orbital transfers to collision avoidance — remain
heavily reliant on manual processes. Human experts must navigate an ever-increasing complexity of
scenarios, making critical decisions under time constraints with incomplete or inaccurate information
[26]. As the volume of satellites and orbital debris continues rising, these traditional methods are
quickly becoming unsustainable, which demands the development of new strategies to minimize our
impact, such as debris removal [7] and faster, more capable, and autonomous intelligent systems
for decision-making. Adaptive control systems [4] provide robustness to uncertainty but struggle
with complex, dynamic, and nonlinear space systems. RL, on the other hand, excels in real-time
adaptation to such environments [77]].

We explore how the application of RL to orbital dynamics is shaped by two primary factors and
suffers from a lack of standardization. First, various tools are available to generate data, influencing
the balance between simplicity and realism in the environment. Second, frameworks for developing
RL-based missions within these environments are often built from scratch, calling for additional
validation of the dynamics — a particularly challenging task in the field of orbital mechanics. To
enable the effective application of RL to satellite maneuvering, we created OrbitZoo, an environment
designed for both fast high-fidelity orbital data generation and RL development. The contributions of
this paper are structured into three main categories:

* Data Generation: Built on Python and with a robust space dynamics library on its back-
ground, OrbitZoo generates high-fidelity orbital data by incorporating realistic forces and
perturbations, providing accurate datasets essential for machine learning and strategy valida-
tion, while making use of parallel computations for fast propagation;

* Reinforcement Learning: OrbitZoo is standardized for RL research, leveraging the Petting-
Zoo library [[76] to support multi-agent RL (MARL) with a Partially Observable Markov
Decision Process (POMDP) structure, while also making use of the parallelism provided
by the space dynamics library to properly scale to systems with thousands of bodies. This
integration enables the development, training, and benchmarking of intelligent satellite
maneuvering strategies for single and multi-agent missions in cooperative, competitive, or
mixed scenarios;

* Customizable Framework with Visualization: OrbitZoo’s modular design allows users to
define scenarios with an arbitrary number of bodies with or without thrusting capabilities,
incorporate custom models, and adapt the environment to specific needs, with clear sepa-
ration of abstraction levels. It also features an interactive 3D visual component, making it
versatile for a wide range of applications while providing an accessible way to understand
orbital behaviors and decision-making processes.

2 Related Work

Existing efforts in this domain can be broadly categorized into three areas: high-fidelity tools for
generating and simulating orbital dynamics data, RL for orbital maneuvering, and MARL
environments for orbital dynamics.

Data Generation and Simulation Tools. Orekit [45] is one of the most comprehensive open-source
libraries for astrodynamics and orbital mechanics, offering advanced capabilities for precise orbit
determination [46l 58| [16], propagation and associated uncertainties [6]], attitude determination, and
trajectory analysis [19]]. Its modular, Java-based architecture allows users to model systems ranging
from simple Newtonian attraction to highly complex scenarios incorporating detailed gravity fields
and perturbations, such as atmospheric drag, solar radiation pressure (SRP), and third-body effects.
While versatile, Orekit’s steep learning curve and reliance on Java can pose challenges for users
unfamiliar with its technicalities.

Poliastro [62], a Python-native library, offers a more accessible alternative, featuring tools for orbit
propagation and transfer planning. Although it lacks the high-fidelity modeling of Orekit, Poliastro
integrates with the Cesium library [[17] for accurate 3D geospatial visualization, making it suitable for
simpler scenarios or users with limited expertise in orbital mechanics. Systems Tool Kit (STK) [5]],
the leading commercial orbital simulation software, offers extensive capabilities for mission planning
and operational analysis. Despite its advanced visualization features and high precision, STK’s
substantial cost restricts its accessibility to well-funded organizations.

Reinforcement Learning for Orbital Dynamics. RL has been widely applied to satellite ma-
neuvering, often relying on custom-built environments and simplified dynamical models. Many
studies use the Circular Restricted Three-Body Problem (CR3BP) [49} 24, [73| 141} [12] for tractable
simulations, though it falls short in capturing real-world perturbations, making it challenging for
non-experts to extend RL to realistic space missions. For LEQO station-keeping, [31]] implemented
Proximal Policy Optimization (PPO) [69] with a 4th-order Yoshida integrator, modeling gravitational
forces and atmospheric drag, while [75] used Soft Actor-Critic (SAC) [28] with dynamics developed
from scratch that also included third-body forces and SRP.

Orekit has also been employed in RL frameworks with more accurate dynamics. [40], for instance,
used Orekit and Deep Deterministic Policy Gradient (DDPG) [43] for low-thrust transfers. In
geostationary orbit (GEO), [[15] used Orekit and a synchronous variant of A3C [S0] for a perigee-
raising maneuver. Despite these contributions, all relied on simplified or mission-specific physics
without multi-agent or uncertainty support, limiting their generalization to more complex scenarios.

Collision Avoidance Maneuvers (CAMs) have received growing attention. [38]] introduced ColAv-
Gym, a single-agent CAM environment in LEO using Orekit and PPO. It leverages real Conjunction
Data Messages (CDMs) to retroactively reconstruct satellite and debris orbits for training. In con-
trast, [72] and [13]] employed synthetic debris scenarios in Gym-based environments incorporating
Orekit and an adaptation of SpaceNav [27]. These studies investigated different observation and
reward strategies, modeling the problem as a POMDP with temporal features captured by Long Short-
Term Memory (LSTM) [132]] layers in the Deep Q-Network (DQN) [S1] architecture, showcasing how
RL algorithms with discrete action spaces and recurrent networks can be useful in such scenarios.

Multi-Agent Reinforcement Learning Environments. MARL has recently gained traction in
orbital dynamics, with applications in satellite coordination and task assignment, although with
limited focus on maneuvers. [34] introduced the RL-Enabled Distributed Assignment (REDA) algo-
rithm, using Poliastro and DQN for task allocation across satellite constellations. However, REDA
lacked integration with realistic orbital data. Similarly, [84] applied Multi-Agent PPO (MAPPO)
[83]] for multi-satellite observation planning, combining STK and MATLAB for a custom simula-
tion framework but without leveraging industry-standard astrodynamics libraries like Orekit. [60]
developed a MARL framework for cooperative formation flying of multiple spacecraft considering
only Newtonian attraction, while [20] investigated multi-agent CAM using a framework [54] that
aggregates local neighborhood information through a graph neural network (GNN) [64], considering
two dynamic models [61} [80] that did not account for SRP and third-body forces.

3 Background: Challenges in Multi-Agent RL for Orbital Dynamics

A major challenge in applying RL to orbital dynamics lies in bridging the Reality Gap between
simulation and real-world operations. This requires incorporating high-fidelity dynamics, accounting
for uncertainties, and validating simulations against real-world data. According to what was discussed
in Sec. |2} the essential capabilities of an orbital RL environment include: support for multi-agent in-
teractions (both cooperative and competitive scenarios), integration with industry-standard simulators
such as Orekit or Poliastro (rather than custom-built models), high-fidelity dynamics with gravity
fields and perturbations, support for algorithms with continuous control, realistic body and thrust
modeling (capturing distinct spacecraft characteristics and continuous thrust integration), interactive
real-time visualization, and public code availability.

As shown in Tab. |1} OrbitZoo distinguishes itself by containing all the aforementioned capabilities.
Unlike previous environments based on simplified models, OrbitZoo incorporates multiple pertur-
bative forces, supports Cartesian, Keplerian, and equinoctial representations, enables realistic body
and thrust modeling through diverse integration methods, propagates uncertainty, and offers several

Table 1: Comparison of RL environments for orbital dynamics.

Work Multi-Agent Indus_try—Standard High—Fidglity Continuous Realistic Bodies I_nterz_tcti_/e Pub_lic]y
RL Simulator Dynamics Control and Thrust Visualization Available

Kolosa (2019) [40] v v v v

Miller (2019) [49 v

Herrera (2020) [31] V/(drag only) v v v

Federici (2021) [24) v

Sullivan (2021) [73] v v

Casas (2022) [15] v v v v

Bonasera (2022) [12] v v

Dolan (2023) [20] v v'(J2 only) v v

Bourriez (2023) [13] v v v

LaFarge (2023) [41] Vv (third bodies only) v v

Zhang (2023) [84] v v v

Qingyu (2023) [60] v v v

Holder (2024) [34] v v v

Solomon (2024) [72] v v v v

Kazemi (2024) [38] v v v v

OrbitZoo (ours) v v v v v v v

methods to assist in the development of RL missions or multi-agent systems analysis. Its publicly
available nature further establishes it as a comprehensive platform for advancing learning-based space
operations.

3.1 Multi-Agent Reinforcement Learning

RL provides a framework for decision-making under uncertainty, where agents learn through trial and
error to maximize cumulative rewards [[74,[70]. In the context of MARL, multiple agents operate in a
shared environment, each pursuing individual or collective goals. MARL presents unique challenges
in orbital dynamics, where environments are partially observable, highly dynamic, and governed by
complex physical interactions.

MARL builds upon Markov Decision Processes (MDPs) [74,[10] and Partially Observable Markov
Decision Processes (POMDPs), commonly used to model scenarios where agents cannot access the
full environment state [37]. A POMDP is defined by the tuple (S, A, P, R, O,). At each timestep ¢,
an agent observes o; € O based on the current state s; € .S, selects an action a; € A, and transitions
to a new state s;1 with probability P(s;11|s¢, a:), receiving a reward R(s¢, a;). The goal is to learn
a policy 7(a¢|o;) that maximizes expected returns over time.

The introduction of Deep Q-Networks (DQN) [51] revolutionized RL by combining deep function
approximation with Q-learning, making it possible to tackle discrete decision-making tasks from raw,
high-dimensional observations. This success established the foundation for subsequent methods that
aimed to generalize deep RL to continuous domains. Deep RL algorithms such as DDPG [43] and
PPO [69] have been instrumental in this extension, albeit the topic had been explored earlier [71]]. In
MARL, the interaction between agents is often modeled as a multi-agent POMDP (MA-POMDP),
where each agent i observes o, performs an action at, and receives a reward r¢. PPO and variants,
such as MAPPO [83]], are well-suited for these scenarios, allowing a stable decentralized or centralized
training of agents in shared environments. This is particularly important for missions involving
constellations of satellites, where each satellite may need to coordinate, compete, or cooperate with
others to achieve shared objectives in complex — and potentially noisy — orbital dynamics.

3.2 Challenges in Bridging the Reality Gap

Simulating orbital dynamics presents a substantial reality gap, driven by the need for high-fidelity
physical modeling and the incorporation of real-world uncertainties. This section highlights the
main challenges of applying RL to orbital dynamics, whose understanding relies on the fundamental
concepts presented in Appendix

Complex Orbital Dynamics. Orbital dynamics follow Newton’s laws of motion and gravitation,
requiring accurate modeling of perturbative forces such as atmospheric drag, SRP, and third-body
effects. Simplified propagators like the Simplified General Perturbations (SGP) model are com-
putationally efficient but lack the precision required for RL tasks. In contrast, Orekit’s numerical
propagators [45] provide high-fidelity simulations by incorporating complex perturbations, enabling
realistic long-term trajectory prediction and maneuver planning. The choice of integration method in
numerical propagation also affects realism: classical approaches such as Gauss’ variational equations
(GVEs) and fixed-step integrators like the 4th-order Yoshida or RK4 [14] are commonly used for
orbital propagation due to their simplicity and efficiency, but they lack the adaptive precision of
higher-order variable-step schemes such as Dormand-Prince [21].

Coordinate Systems and State Representations. Orbital states are commonly represented using
Keplerian elements, but these suffer from singularities in cases like circular or equatorial orbits.
Equinoctial elements avoid such issues and are often preferred in RL applications for their robustness.
However, Cartesian coordinates remain essential not only for numerical integration but also for tasks
like computing inter-body distances or collision probabilities. An RL framework should therefore
support all major representations. In multi-agent settings, maintaining consistent reference frames
and relative state representations is particularly challenging, as agents may operate in different orbital
regimes.

Thrust Modeling and Control. Thrust actions are often defined in local reference frames like RSW
(Radial, Along-track, Cross-track). A polar parametrization — using thrust magnitude, deviation angle,
and azimuthal angle — provides a realistic and constrained action space, offering flexibility in modeling
satellite maneuvers. This representation can be converted to the RSW frame for compatibility with
numerical propagators. In multi-agent settings, additional challenges arise as each spacecraft may
have distinct thrust capabilities, fuel constraints, and control dynamics, making coordinated maneuver
planning and learning more complex.

Exploration in High-Dimensional Action Spaces. Exploration in continuous action spaces, such
as those encountered in orbital dynamics, presents significant challenges, particularly in multi-agent
settings where agents may operate in joint state and action spaces with cooperative or adversarial
interactions. To address this complexity and the wide range of possible learning objectives, it is
essential to design a modular framework that supports both on- and off-policy RL methods, as
well as discrete and continuous action spaces. Such flexibility enables consistent experimentation
and comparison across diverse mission scenarios. Moreover, having the capability to handle multi-
objective RL (MORL) [30] is important, as spacecraft missions often involve trade-offs (e.g., fuel vs.
time vs. risk) that must be balanced within the policy learning process while coordinating multiple
agents.

Ephemeris Data and Validation. Ephemerides offer time-stamped predictions of orbital posi-
tions and velocities, enabling validation of simulated trajectories. For instance, Orekit’s numerical
propagator demonstrates high accuracy when compared with Starlink satellite ephemeris data. By
tuning physical parameters — such as drag and reflection coefficients — the simulation closely matches
real-world behavior, helping bridge the reality gap in RL applications.

3.3 Multi-Agent Coordination and Scalability

In MARL for orbital dynamics, agents operate in partially observable environments with decentralized
policies. While MARL algorithms commonly assume fully cooperative scenarios (Dec-POMDP), in
reality agents often assume partial or fully competitive scenarios (MA-POMDP). In such cases, task
coordination, interference avoidance, and scaling to large constellations, that is, groups of satellites
working together to accomplish shared objectives, become key challenges. EPyMARL [57] extends
PyMARL for flexible agent collaboration in MARL environments, while MARLIib [36]], compatible
with PettingZoo environments like OrbitZoo, supports a broad set of algorithms and architectures.
Federated Learning (FL) and Federated RL (FRL) [59] further enable decentralized learning and
coordination in both cooperative and competitive settings while maintaining information privacy.
Nonetheless, challenges inherent to the space environment — such as competition, communication
constraints, uncertainty, and heterogeneity between agents — make it challenging to apply standard
MARL algorithms, highlighting the need for new, tailored approaches.

Table 2: Summary of reinforcement learning challenges and how OrbitZoo addresses them.

Research Gap

Limitations of Standard
Environments

Enabled by OrbitZoo

Sim-to-Real Transfer

Continuous Control
Multi-Agent Coordination
Reward Design

Safety and Adversarial

Learning

Visualization

Neglects real-world orbital
perturbations and environ-
mental uncertainties.

Impulsive or unconstrained
control models.

Mostly single-agent, fully
observable setups.

Dense, artificial reward sig-
nals.

Rarely models safety or ad-
versarial dynamics.

Limited (2D) or no visual-
ization for debugging.

Realistic dynamics with harmonic grav-
ity fields, drag, SRP, third-body forces,
uncertainties and variable-step integra-
tion methods.

Time-continuous thrust with fuel and ac-
tuation constraints.

Decentralized agents with partial observ-
ability via PettingZoo.

Flexible, physically grounded reward
functions.

Supports pursuit—evasion and safe ma-
neuvering tasks.

Real-time 3D inspection of agent behav-
ior.

Recent solutions leverage C++ engines [85] or CPU/GPU parallelization for faster training [[63]
and propagation [42] (see Appendix[B.3). Scalability remains challenging when using high-fidelity
numerical propagation, as each body experiences distinct forces that evolve continuously over time.

3.4 Realistic Simulation Environments

Realistic orbital dynamics environments should integrate (1) high-fidelity dynamics that account
for the most relevant forces and perturbations (e.g., gravity fields, drag, SRP, third-body effects),
(2) body and thruster specific characteristics, including shape and dimensions, reflection and drag
coefficients, and specific impulse, (3) flexible state and action spaces, as different missions may
require distinct representations, (3) multi-agent reinforcement learning and federated reinforcement
learning capabilities, (4) scalability and parallelization to handle an increasing number of bodies,
and (5) reproducibility and extensibility. However, most existing MARL environments for orbital
dynamics do not fully integrate these capabilities (Tab.[T).

Beyond the orbital domain, similar challenges have been addressed in other fields where partial
observability, decentralized control, and coordination are critical. In energy systems, MARL has been
used to optimize distributed generation and communication under uncertain and partially observable
states [56]. In autonomous robotics, macro-action (joint policies) and communication-aware learning
frameworks have been proposed to improve coordination under local observation constraints [81,[55].
Similarly, unmanned aerial vehicle (UAV) swarm control has used graph-based methods to address
scalability and partial observability in large-scale UAV's coordination and confrontation tasks [|82].
These efforts highlight the growing importance of standardized, high-fidelity benchmarks across
domains.

4 Novel Reinforcement Learning Challenges in OrbitZoo

In the emerging era of autonomous systems operating in the physical world, RL is evolving beyond
synthetic benchmarks and addressing real-world constraints such as actuation limits, uncertainty,
safety, and coordination. OrbitZoo is designed to support this shift. It provides a modular testbed
to rigorously investigate RL challenges grounded in high-fidelity dynamics while abstracting just
enough to enable algorithmic insight. Tab. |2| summarizes the main RL challenges addressed by
OrbitZoo, which are discussed in detail below.

Sim-to-Real Transfer and Grounded Dynamics. Sim-to-real gaps constitute a significant barrier
in deploying RL policies in physical systems. While Orekit handles high-fidelity propagation,

OrbitZoo provides the interfaces needed to test RL algorithms in scenarios with uncertain initial
conditions, realistic gravity fields (Holmes—Featherstone harmonics [35]]), drag (computed from
historical weather data), SRP (accounting for the occlusion of the Sun by the Moon), and third-body
forces (from all planets in the solar system, as well as the Sun, Moon, and the barycenters of the
Earth—-Moon system and the solar system). Validation against Starlink ephemerides (Sec. [5) shows
that these perturbations can be tuned to match real trajectories, allowing research on robust policy
learning under realistic dynamics.

Continuous Control and Thrust Constraints. OrbitZoo supports physically plausible, time-
continuous control through polar thrust parameterizations and constant-magnitude thrusts. Unlike
many benchmarks that assume instantaneous or impulsive maneuvers, OrbitZoo models thrust as
a continuous acceleration integrated over time, constrained by available fuel and propulsion limits.
This formulation forces agents to learn realistic, sustained maneuvers, making the environment well
suited for studying constrained RL and planning under resource limitations. Classical maneuvers
with simplified dynamics and impulsive actions can still be simulated in OrbitZoo (Appendix [E.4).

Multi-Agent Coordination with Partial Observability. Real-world orbital operations often in-
volve multiple autonomous spacecraft interacting under limited information — for example, in forma-
tion flying, debris tracking, or pursuit/evasion scenarios. Each agent must make decisions based only
on local or delayed observations, while the overall behavior emerges from their collective interaction.
OrbitZoo enables such decentralized and partially observable setups through its PettingZoo-based
architecture, where each agent receives its own observation and action space while sharing the same
dynamic environment.

This design enables the study of cooperative and competitive MARL paradigms. Cooperative
tasks include coordinated thrusting for formation maintenance or rendezvous, while adversarial
tasks involve pursuit, evasion, or interference. OrbitZoo also supports centralized training with
decentralized execution (CTDE), where a global critic accesses full system information during
learning, but agents act autonomously at runtime. With support for parallel trajectory collection,
OrbitZoo offers a scalable testbed for studying coordination, communication, and robustness in
multi-agent orbital control — areas largely unexplored in standard RL benchmarks.

Reward Shaping under Sparse and Delayed Feedback. Designing informative yet physically
grounded reward signals is a central challenge in orbital control. Rewards must capture long-term
mission objectives while remaining interpretable within physical constraints. OrbitZoo provides a
flexible reward framework that integrates both inter-body and body-specific metrics, enabling the
formulation of rich and diverse learning objectives. Inter-body quantities — such as relative distance
or line-of-sight conditions — allow the definition of cooperative or competitive multi-agent tasks.
In parallel, each body exposes individual physical attributes such as fuel consumption and mass
variation, which can be incorporated into agent-specific reward functions.

This modular reward interface enables experimentation across dense and sparse regimes, as well as
multi-objective trade-offs between performance, safety, and efficiency. It supports studies on credit
assignment, reward misspecification, and curriculum learning [53] in complex multi-agent orbital
environments, where delayed effects and coupled dynamics make the reward landscape inherently
nontrivial.

Adpversarial and Safety-Critical Learning. OrbitZoo’s modular setup supports adversarial and
safety-critical scenarios, such as pursuit—evasion, intentional jamming, or collision avoidance. The
environment includes inter-body metrics like the probability of collision (POC) and body-specific
measures of propagation uncertainty, allowing agents to quantify and respond to risk in real time.
Combined with partial observability and fuel-aware dynamics, these features enable research on
robust policy design, safe exploration, and adversarial resilience in continuous orbital domains.

Visualization and Debugging. OrbitZoo offers a real-time, integrated 3D visualization tool that
aids policy inspection and failure case diagnosis. Although not a core contribution, this represents,
to the best of our knowledge, the first Python-based RL framework with a built-in, real-time orbital
visualization interface, as summarized in Appendix|Al This feature enhances interpretability, repro-
ducibility, and debugging by providing an intuitive link between learned behaviors and the underlying
orbital dynamics.

5 Experiments and Results

To evaluate the effectiveness of OrbitZoo in modeling diverse orbital missions and supporting RL
methods, we conducted a series of experiments using several deep learning algorithms (i.e., DQN,
DDPG and PPO), as well as FRL applied to PPO in a multi-agent setting. These include the devel-
opment of a mission analogous to one created in a different environment, orbital transfers (OTs),
collision avoidance maneuvers (CAMs), a multi-agent geostationary orbit (GEO) constellation coor-
dination problem using independent and federated learning, and a validation experiment comparing
OrbitZoo’s simulations against real-world Starlink ephemeris data. In the following missions, we
consider an RL agent as a satellite with limited maneuvering capabilities, learning a strategy (policy)
to apply thrusts that maximize the expected return (Sec.[3.1)). Details can be found in Appendix [E]

5.1 Single-Agent Hohmann Maneuver

The Hohmann transfer experiment was chosen as a benchmark to evaluate OrbitZoo’s ability to
support RL in a high-fidelity orbital dynamics environment. Details of the experiment can be found
in Appendix [E.4] As a classic problem in orbital mechanics, the Hohmann transfer is analyti-
cally solvable and provides a clear reference for comparing RL-derived solutions with theoretical
optima [33]].

Setup. The agent observes the satellite’s current orbital state through equinoctial coordinates and
receives a reward based on the reduction of transfer error while minimizing fuel consumption. The
action space corresponds to polar thrust parameters (7, 8, ¢), where T is the thrust magnitude and
(0, ¢) define the thrust direction. The environment incorporates perturbative forces, including drag.

Results. The RL agent learned near-optimal strategies for a 30 km altitude Hohmann transfer,
matching theoretical semi-major axis values. Deviations in other elements (e.g., inclination) arose
from thrust misalignments. Contrary to the classical optimal maneuver, the agent adapted to new
perturbations and reached the target successfully. These results validate OrbitZoo’s ability to model
classical problems in complex orbital dynamics and highlight areas for refining policy and reward
design. Figure[l7|shows the optimized transfer with minimal fuel use. The trajectory closely matches
the theoretical solution (Figure[I)), confirming OrbitZoo’s high-fidelity simulation.

5.2 Single-Agent Collision Avoidance Maneuver

CAM missions in RL are often focused on station-keeping while preventing collisions with other
objects. Many existing approaches assume perfect knowledge of the current state of all bodies in
the environment, simplifying the task to maximizing the Euclidean distance from other bodies while
maintaining proximity to a nominal orbit. In reality, however, the states of these bodies are known
with uncertainty, which must be accounted for in operational planning. In this mission, a more
realistic approach to CAM is adopted by explicitly modeling state uncertainty and its evolution over
time. While the environment handles propagation using high-fidelity dynamics that closely resemble
real-world physics, the prediction of future states — and the corresponding probability of collision
(POC) [2]] - relies on a simplified Newtonian attraction model, representing a low-fidelity simulation.

Setup. Two bodies — debris and a satellite with maneuvering capabilities — are synthetically
instantiated in the same Cartesian position with some uncertainty, and with symmetric Cartesian
velocity, creating a short-term encounter at that moment. By propagating both bodies backward in
time, we create the initial conditions for the start of each episode, enough for the satellite to perform
the needed maneuvers and ultimately avoiding a collision. Due to the uncertainty, a POC > 1076 is
considered as high collision risk, and the agent is tasked at lowering it while staying near its initial
orbit.

Results. In many existing CAM approaches, the RL agent is trained using discrete action spaces,
since maneuvers are only required when a collision risk exists. Accordingly, a DQN was employed
for training the agent. To investigate whether applying thrust in specific directions could lead to
improved performance, the continuous version of PPO was also implemented. In this setup, the action
space included a decision variable (0 < § < 1) indicating whether thrust should be applied (6 > 0.5).
For training, the environment used Newtonian attraction with atmospheric drag to model the actual

dynamics. During evaluation, however, all available perturbations in OrbitZoo were enabled to assess
the generalization capability of the trained agents. Results show that both algorithms learned effective
policies under the (simplified) training dynamics, but PPO demonstrated superior performance under
realistic conditions, exhibiting a greater ability to reduce the POC. More details are presented in

Appendix [E.6|

5.3 Multi-Agent GEO Constellation Coordination

This experiment demonstrates OrbitZoo’s ability to simulate and train multi-agent systems for satellite
constellation management in geostationary orbit (GEO), using both independent and federated
learning. More details can be found in Appendix|E.7

Setup. A four-satellite constellation in GEO aimed to maintain equal angular separation and altitude
while minimizing fuel use through small thrusts limited to the GEO orbital plane (¢ = 0 in polar
parameterization). Each agent observes the anomalies of other satellites, its own semi-major axis
and eccentricity, and outputs thrust commands via a decentralized policy. Training used PPO with
generalized advantage estimation (GAE) [68]]. At the start of each episode, the satellites are placed at
random position along the GEO orbit.

Results. Figure [2] shows a view of the OrbitZoo interface of the constellation’s configuration
after 4 days for a given initial configuration. Generally, the agents successfully obtained a larger
angular separation while not drifting away from GEO. The policies are also able generalize to unseen
perturbations, such as third body forces (Sun and Moon), SRP and drag. However, the constellation
is not able to increase the overall angular separation within the given time in some configurations.

x10° x10* _——agent2 agent_2
age}r}t/_?! 7 S
75. . // agé\nt 1 ageV{S aa nt_1
/ \ - / \
5.0- ! Y ‘g 1
\ A4 / \
7~ \ / \ /
25- £ \ / /
— 9 // :
E o0 65 \5%,"}_4 - ent 4
> g —
—2.5- N 1 day
5 agept 2
-5.0- N T
_75- 4 agelé ag\eg.t_l
\
=10 -5 0 5 10 A4 / agept.3
X (m) x10° \
\
, : N /
Figure 1: The L2 error between the optimal and ents 7
Experiment 2 maneuvers stays low over long or-
. . . e .. . 3 days
bits, with most error due to minor inclination shifts.
However, agents were trained to minimize equinoc- Figure 2: Constellation evolution over 4 days
tial element differences, not Euclidean distance. (seed 44). The purple circle represents GEO.

5.4 Validation Against Real-World Data

To evaluate OrbitZoo’s ability to bridge the reality gap, we configured the environment to simulate
Starlink satellites and compared its output to publicly available ephemeris data in |[Space-Track.
Further details on the analysis can be found in Appendix [G|

Setup. Thirty-one Starlink satellites with publicly available data were selected for the validation
experiment. Bayesian optimization was employed to tune parameters such as the drag coefficient,
reflection coefficient, and satellite radius to match the ephemeris data. The RMSE between the
OrbitZoo-propagated trajectories and the ephemeris data was used as the primary metric for evalua-
tion.

https://www.space-track.org/

Results. As summarized in Table 3] OrbitZoo achieved varying levels of accuracy across 31
satellites, with mean RMSE values ranging from 24.14 meters to 1924.90 meters over 16.6-hour
propagation. While some satellites closely matched the Starlink ephemeris data, others showed
significant deviations, likely due to limited information on their physical properties. Figure [3]
illustrates the residuals between the propagated and observed trajectories, demonstrating the accuracy
of OrbitZoo’s physical modeling for the relevant horizon of two hours.

Group Mean RMSE (meters) 025

Low RMSE 24.14 —— Orekit vs Ephemeris (1000 steps)
Medium RMSE 83.75
High RMSE 1924.90

o
N
o

I
—
5

Table 3: Root mean square error (RMSE)
values, in meters, for three groups of
satellites (a total of 31 satellites), sepa-
rated based on an RMSE threshold. The
"Low RMSE" group includes satellites with | |
RMSE values below 50, the "Medium S 3 a4 6 & 10 1 11 16
RMSE" group includes satellites with val- Time (hours)

ues between 50 and 100, and the "High
RMSE" group is for satellites above 100.
The estimated error is derived from a 16.6
hour propagation (1000 steps).

Residual (km)
o
=
2

o
o
a

Figure 3: Residuals between OrbitZoo-propagated tra-
jectories and Starlink ephemeris data for satellite 44744
in blue. The residuals remain low over the validation
interval, confirming OrbitZoo’s high fidelity.

5.5 Additional Experiments

Many RL missions and environments developed by other authors (as shown in Table [I)) are not
publicly available, hindering reproducibility and making it challenging to assess the complexity of
their implementation. Among the few exceptions is the work by D. Kolosa [40] and A. Herrera [31],
whose code is openly accessible and supports the results presented. In this context, we replicate both
authors first missions in Appendix and Appendix [E.3] respectively, to illustrate how OrbitZoo
provides a flexible framework for developing and analyzing such missions. For completeness, we
present an additional experiment: a chase-target scenario (Appendix [E.5), where a satellite pursues
a moving object in a higher orbit. For each mission, we provide a brief overview, followed by the
experimental setup, results, key challenges, and directions for future improvement.

Conclusions

Through comparisons with existing environments and a diverse set of experiments — including a
Hohmann transfer maneuver, a geostationary constellation coordination task, and validation
using real-world Starlink ephemeris data — we demonstrated that RL policies trained in OrbitZoo
can achieve near-optimal control while remaining consistent with realistic satellite behavior. These
results establish OrbitZoo as a reliable benchmark for RL-based autonomy in space operations. To
assess generalization and robustness, we employed multiple RL algorithms and different levels of
realism, highlighting how continuous action spaces generally enhance performance under realistic
orbital dynamics. Beyond RL, OrbitZoo serves as a publicly available platform designed to support
researchers in aerospace engineering, satellite operations, and machine learning. It provides a modular,
high-fidelity environment for studying RL in realistic orbital settings. While grounded in orbital
dynamics, its abstractions and challenge structures are representative of broader autonomy domains.
The platform fosters reproducible experimentation and enables the exploration of autonomous
decision-making for future space applications.

Acknowledgments. We thank the anonymous reviewers for their valuable input and for helping
strengthen the manuscript. This work was partially supported by NOVA LINCS (UID/04516) funded
by FCT IP, and the Neuraspace Al Fights Space Debris project (project code C626449889-00463050,
operation code 2022-C05i0101-02), co-funded by Recovery and Resilience Plan and NextGeneration
EU Funds, www.recuperarportugal.gov.pt.

10

References

[1] Tim Abilov. Basic 3D world playground with animations based on 2D. https://github,
com/timabilov/python-play3d, 2021. GitHub repository.

[2] Maruthi R. Akella and Kyle T. Alfriend. Probability of collision between space objects. Journal
of Guidance, Control, and Dynamics, 23(5):769-772, 2000.

[3] Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaél
Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. What matters in on-policy reinforcement learning? A large-scale empirical
study. In Proceedings of the 9th International Conference on Learning Representations (ICLR),
Vienna / Virtual, Austria, 2021.

[4] A.M. Annaswamy and D.J. Clancy. Adaptive control strategies for flexible space structures.
IEEE Transactions on Aerospace and Electronic Systems, 32(3):952-966, 1996.

[5] Inc. Ansys. Ansys STK: Systems tool kit for mission modeling and analysis. https://www,
ansys.com/products/missions/ansys-stkl Accessed: 2025-01-16.

[6] Andrea Antolino and Luc Maisonobe. Automatic differentiation for propagation of orbit
uncertainties on Orekit. Presented at Stardust Final Conference, 2016.

[7] Muneeb Arshad, Michael C.F. Bazzocchi, and Faraz Hussain. Emerging strategies in close
proximity operations for space debris removal: A review. Acta Astronautica, 228:996-1022,
2025.

[8] Nikhil Barhate. Minimal pytorch implementation of proximal policy optimization. https:
//github.com/nikhilbarhate99/PP0-PyTorch, 2021.

[9] Pierre Bernhard, Marc Deschamps, and Georges Zaccour. Large satellite constellations and
space debris: Exploratory analysis of strategic management of the space commons. European
Journal of Operational Research, 304(3):1140-1157, 2023.

[10] Dimitri Bertsekas. Reinforcement learning and optimal control. Athena Scientific, 2nd edition,
2019.

[11] A.C. Boley and M. Byers. Satellite mega-constellations create risks in Low Earth Orbit, the
atmosphere and on Earth. Scientific Reports, 11(1):10642, 2021.

[12] Stefano Bonasera, Natasha Bosanac, Christopher J. Sullivan, Ian Elliott, Nisar Ahmed, and
Jay W. McMahon. Designing sun—earth 12 halo orbit stationkeeping maneuvers via reinforce-
ment learning. Journal of Guidance, Control, and Dynamics, 46(2):301-311, 2023.

[13] Nicolas Bourriez, Adrien Loizeau, and Adam F. Abdin. Spacecraft autonomous decision-
planning for collision avoidance: a reinforcement learning approach, 2023.

[14] J.C. Butcher. A history of runge-kutta methods. Applied Numerical Mathematics, 20(3):247—
260, 1996.

[15] Carlos M. Casas, Belen Carro, and Antonio Sanchez-Esguevillas. Low-thrust orbital transfer
using dynamics-agnostic reinforcement learning, 2022.

[16] Bryan Cazabonne, Julie Bayard, Maxime Journot, and Paul Cefola. A semi-analytical approach
for orbit determination based on Extended Kalman Filter. 08 2021.

[17] Cesium. Cesium: Build the open metaverse with cesium. https://cesium.com/. Accessed:
2025-01-16.

[18] Hung-Tu Chen. Deep Q-Learning network in Pytorch. https://github.com/hungtuchen/
pytorch-dqgn, 2017.

[19] Vincent Cucchietti, Maxime Journot, and Pascal Parraud. Orbit and covariance interpola-
tion/blending with orekit. 2023.

11

https://github.com/timabilov/python-play3d
https://github.com/timabilov/python-play3d
https://www.ansys.com/products/missions/ansys-stk
https://www.ansys.com/products/missions/ansys-stk
https://github.com/nikhilbarhate99/PPO-PyTorch
https://github.com/nikhilbarhate99/PPO-PyTorch
https://cesium.com/
https://github.com/hungtuchen/pytorch-dqn
https://github.com/hungtuchen/pytorch-dqn

[20] Sydney Dolan, Siddharth Nayak, and Hamsa Balakrishnan. Satellite navigation and coordination
with limited information sharing. In Nikolai Matni, Manfred Morari, and George J. Pappas,
editors, Proceedings of The 5th Annual Learning for Dynamics and Control Conference, volume
211 of Proceedings of Machine Learning Research, pages 1058-1071. PMLR, 15-16 Jun 2023.

[21] J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. Journal of
Computational and Applied Mathematics, 6(1):19-26, 1980.

[22] European Space Agency (ESA). Esa space environment report 2024, 2024. Accessed: 2025-01-
06.

[23] European Space Agency (ESA). Space debris by the numbers, 2025. Accessed: 2025-01-06.

[24] Lorenzo Federici, Andrea Scorsoglio, Alessandro Zavoli, Roberto Furfaro, et al. Autonomous
guidance for cislunar orbit transfers via reinforcement learning. In AAS/AIAA Astrodynamics
Specialist Conference. American Astronautical Society Big Sky, Montana (Virtual), 2021.

[25] Ricardo Ferreira, Cldudia Soares, and Marta Guimaraes. Probability of collision of satel-
lites and space debris for short-term encounters: Rederivation and fast-to-compute upper and
lower bounds. In Proceedings of the 74th International Astronautical Congress (IAC), Baku,
Azerbaijan, 2023. TAC-23-A6.3.89345.

[26] Tim Flohrer, Holger Krag, Klaus Merz, and Stijn Lemmens. CREAM - ESA’s Proposal for
Collision Risk Estimation and Automated Mitigation. In S. Ryan, editor, Advanced Maui
Optical and Space Surveillance Technologies Conference, page 57, September 2019.

[27] Leonid Gremyachikh, Dmitrii Dubov, Nikita Kazeev, Andrey Kulibaba, Andrey Skuratov, Anton
Tereshkin, Andrey Ustyuzhanin, Lubov Shiryaeva, and Sergej Shishkin. Space navigator: a tool
for the optimization of collision avoidance maneuvers, 2019.

[28] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 1861-1870. PMLR,
10-15 Jul 2018.

[29] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
g-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAT’ 16,
page 2094-2100. AAAI Press, 2016.

[30] Conor F. Hayes, Roxana Radulescu, Eugenio Bargiacchi, Johan Kéllstrom, Matthew Macfar-
lane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik
Heintz, Enda Howley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel Ramos,
Marcello Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide to multi-objective
reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems, 36(1):26,
2022.

[31] Armando Herrera III. Reinforcement learning environment for orbital station-keeping. Master’s
thesis, The University of Texas Rio Grande Valley, 2020. ScholarWorks @ UTRGV.

[32] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997.

[33] W. Hohmann, United States. National Aeronautics, and Space Administration. The Attain-
ability of Heavenly Bodies. NASA technical translation. National Aeronautics and Space
Administration, 1960.

[34] Joshua Holder, Natasha Jaques, and Mehran Mesbahi. Multi agent reinforcement learning for
sequential satellite assignment problems, 2024.

[35] S. A. Holmes and W. E. Featherstone. A unified approach to the clenshaw summation and the
recursive computation of very high degree and order normalised associated legendre functions.
Journal of Geodesy, 76(5):279-299, 2002. Published on 2002/05/01.

12

[36] Siyi Hu, Yifan Zhong, Minquan Gao, Weixun Wang, Hao Dong, Xiaodan Liang, Zhihui Li,
Xiaojun Chang, and Yaodong Yang. Marllib: A scalable and efficient multi-agent reinforcement
learning library, 2023.

[37] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99—134, 1998.

[38] Sajjad Kazemi, Nasser L. Azad, K Andrea Scott, Haroon B. Ogab, and George B. Dietrich.
Satellite collision avoidance maneuver planning in low earth orbit using proximal policy
optimization. In 2024 IEEE Congress on Evolutionary Computation (CEC), pages 1-9, 2024.

[39] Donald J Kessler, Nicholas L Johnson, JC Liou, and Mark Matney. The kessler syndrome:
implications to future space operations. Advances in the Astronautical Sciences, 137(8):2010,
2010.

[40] Daniel S. Kolosa. A Reinforcement Learning Approach to Spacecraft Trajectory Optimization.
Ph.d. dissertation, Western Michigan University, 2019.

[41] Nicholas LaFarge, Kathleen Howell, and David Folta. Adaptive closed-loop maneuver planning
for low-thrust spacecraft using reinforcement learning. Acta Astronautica, 211, 06 2023.

[42] Mathias Lechner, lianhao yin, Tim Seyde, Tsun-Hsuan Johnson Wang, Wei Xiao, Ramin
Hasani, Joshua Rountree, and Daniela Rus. Gigastep - one billion steps per second multi-agent
reinforcement learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
155-170. Curran Associates, Inc., 2023.

[43] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning,
2015.

[44] Airong Liu, Xiaoli Xu, Yongqing Xiong, and Shengxian Yu. Maneuver strategies of starlink
satellite based on spacex-released ephemeris. Advances in Space Research, 74(7):3157-3169,
2024.

[45] Maisonobe, Bryan Cazabonne, Romain Serra, Evan Ward, Maxime Journot, Sébastien Dinot,
Guilhem Bonnefille, Thomas Neidhart, Luc Maisonobe, Clément Jonglez, Mark Rutten, yjeand,
Julio Hernanz, lirw1984, Vincent Cucchietti, Andrew Goetz, Guiuux, gaetanpierre(, Lars Nees-
bye Christensen, Alberto Fossa, jvalet, Alberto Ferrero, gabb5, liscju, Christopher Schank,
Tanner Mills, plan3d, Vyom Yadav, Shiva Iyer, and Petrus Hyvonen. Cs-si/orekit: 12.2.1,
December 2024.

[46] Luc Maisonobe, Pascal Parraud, Maxime Journot, and Albert Alcarraz-Garcia. Multi-satellites
Precise Orbit Determination, an adaptable open-source implementation.

[47] Chiara Manfletti, Marta Guimaraes, and Claudia Soares. Ai for space traffic management.
Journal of Space Safety Engineering, 10(4):495-504, 2023.

[48] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti
Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pages
1273-1282. PMLR, 20-22 Apr 2017.

[49] Daniel Miller and Richard Linares. Low-thrust optimal control via reinforcement learning. In
Proceedings of the 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, HI, USA, 01
2019.

[50] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 19281937, New York, New York, USA, 20-22 Jun 2016. PMLR.

13

[51] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing Atari with deep reinforcement learning. 2013.

[52] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529-533, 2015.

[53] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter
Stone. Curriculum learning for reinforcement learning domains: a framework and survey. J.
Mach. Learn. Res., 21(1), January 2020.

[54] Siddharth Nayak, Kenneth Choi, Wenqi Ding, Sydney Dolan, Karthik Gopalakrishnan, and
Hamsa Balakrishnan. Scalable multi-agent reinforcement learning through intelligent informa-
tion aggregation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
25817-25833. PMLR, 23-29 Jul 2023.

[55] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’ 17,
page 2681-2690. IMLR.org, 2017.

[56] Andrea Ortiz, Tobias Weber, and Anja Klein. Multi-agent reinforcement learning for energy
harvesting two-hop communications with a partially observable system state. IEEE Transactions
on Green Communications and Networking, 5(1):442-456, 2021.

[57] Georgios Papoudakis, Filippos Christianos, Lukas Schifer, and Stefano V. Albrecht. Bench-
marking multi-agent deep reinforcement learning algorithms in cooperative tasks, 2021.

[58] Thomas Paulet and Bryan Cazabonne. An open-source solution for tle based orbit determination.
In Proceedings of the 8th European Conference on Space Debris, Darmstadt, Germany, 04 2021.
ESA Space Debris Office. ESA Space Debris Office Publication.

[59] Jiaju Qi, Qihao Zhou, Lei Lei, and Kan Zheng. Federated reinforcement learning: techniques,
applications, and open challenges. Intelligence & Robotics, 1(1), 2021.

[60] Qingyu Qu, Waner Ma, and Kexin Liu. Cooperative spacecraft formation flying based on
reinforcement learning. In 2023 China Automation Congress (CAC), pages 5352-5357, 2023.

[61] V.G. Rao and D.S. Bernstein. Naive control of the double integrator. IEEE Control Systems
Magazine, 21(5):86-97, 2001.

[62] Juan Luis Cano Rodriguez, Yash Gondhalekar, Antonio Hidalgo, Shreyas Bapat, Nikita As-
trakhantsev, Chatziargyriou Eleftheria, Kevin Charls, Meu, Dani, Abhishek Chaurasia, Al-
berto Lorenzo Mérquez, Dhruv Sondhi, Tomek Mrugalski, Emily Selwood, Manuel Lépez-
Ibafiez, Orestis Ousoultzoglou, Pablo Rodriguez Robles, Greg Lindahl, Syed Osama Hussain,
andrea carballo, Andrej Rode, Helge Eichhorn, Anish, sme, Himanshu Garg, Hrishikesh Goyal,
Ian DesJardin, Matthew Feickert, and Ole Streicher. poliastro/poliastro: poliastro 0.17.0 (scipy
us *22 edition), July 2022.

[63] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes
using massively parallel deep reinforcement learning. In Proceedings of Machine Learning
Research, 2022.

[64] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61-80, 2009.

[65] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
In International Conference on Learning Representations (ICLR), 2016.

14

[66] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay,
2016.

[67] Moritz Schneider. Pytorch implementation of ddpg for continuous control tasks. https:
//github.com/schneimo/ddpg-pytorch, 2019.

[68] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of
the 4th International Conference on Learning Representations (ICLR), San Juan, Puerto Rico,
2016.

[69] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[70] David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021.

[71] William D Smart and Leslie Pack Kaelbling. Practical reinforcement learning in continuous
spaces. In ICML, pages 903-910, 2000.

[72] Alexandru Solomon and Ciprian Paduraru. Collision avoidance and return manoeuvre optimisa-
tion for low-thrust satellites using reinforcement learning. In 75th International Astronautical
Congress (IAC), Milan, Italy, 2024. International Astronautical Federation (IAF).

[73] Christopher J. Sullivan, Natasha Bosanac, Rodney L. Anderson, Alinda K. Mashiku, and
Jeffrey R. Stuart. Exploring transfers between earth-moon halo orbits via multi-objective
reinforcement learning. In 2021 IEEE Aerospace Conference (50100), pages 1-13, 2021.

[74] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018.

[75] Nektarios Aristeidis Tafanidis, Avijit Banerjee, Sumeet Satpute, and George Nikolakopoulos.
Reinforcement learning-based station keeping using relative orbital elements. Advances in
Space Research, 76(2):750-763, 2025.

[76] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, Niall Williams,
Yashas Lokesh, and Praveen Ravi. Pettingzoo: Gym for multi-agent reinforcement learning.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 15032-15043. Curran
Associates, Inc., 2021.

[77] Massimo Tipaldi, Raffaele Iervolino, and Paolo Roberto Massenio. Reinforcement learning
in spacecraft control applications: Advances, prospects, and challenges. Annual Reviews in
Control, 54:1-23, 2022.

[78] K. E. Tsiolkovsky and A. A. Blagonravov, editors. Collected Works of K. E. Tsiolkovsky, Vol II:
Reactive Flying Machines. NASA TT F-237. National Aeronautics and Space Administration,
Washington, DC, 1965. A translation of "K. E. Tsiolkovskiy, Sobraniye Sochineniy, Tom II.
Reaktivnyye Letatel’ nyye Apparaty," Izdatel’ stvo Akademii Nauk SSSR, Moscow, 1954.

[79] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys. Rev.,
36:823-841, Sep 1930.

[80] David A. Vallado and Wayne D. McClain. Fundamentals of astrodynamics and applications,
volume The space technology library. Microcosm Press, 4th ed edition, 2013.

[81] Yuchen Xiao, Platt Robert, Wong Lawson, and Kaelbling Leslie. Macro-Action-Based Multi-
Agent/Robot Deep Reinforcement Learning under Partial Observability. PhD thesis, USA, 2022.
AAI29390780.

[82] Min Yang, Guanjun Liu, Ziyuan Zhou, and Jiacun Wang. Partially observable mean field
multi-agent reinforcement learning based on graph attention network for uav swarms. Drones,
7(7), 2023.

15

https://github.com/schneimo/ddpg-pytorch
https://github.com/schneimo/ddpg-pytorch

[83] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and YI WU.
The surprising effectiveness of ppo in cooperative multi-agent games. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems (NeurlPS 2022), volume 35, pages 24611-24624. Curran Associates, Inc.,
2022.

[84] Guohui Zhang, Xinhong Li, Gangxuan Hu, Yanyan Li, Xun Wang, and Zhibin Zhang. Marl-
based multi-satellite intelligent task planning method. IEEE Access, 11:135517-135528, 2023.

[85] Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang, and Yong
Yu. Magent: A many-agent reinforcement learning platform for artificial collective intelligence.
Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), 04 2018.

16

Appendix Table of Contents

[A_OrbitZoo: A Framework for Multi-Agent RL in Orbital Dynamics
IA.1 Architecture and Design|

IB.1 Coordinate Systems|

IB.2 Thrust Representation|.

IB.3 Propagation|

|C__Formal Model Definitions!
|C.1 Double Deep Q-Network (DDOQN)[.

|IC.2 " Deep Deterministic Policy Gradient (DDPG)|
|C.3 Proximal Policy Optimization (PPO)[.
|C.4 Generalized Advantage Estimation (GAE)|
IC.5 Federated Learning (FL)|

[D Computational Performance|

ID.1 Hardware Specifications| L
D > bility| e

[E.1 Learning Algorithms and Architectures|

[E.2 OrbitZoo vs. SOTA: Kolosa Comparison|.
[E.3 OrbitZoo vs. SOTA: Herrera Comparison|

[E.5 ChaseTarget] e

[Exploratory Data Analysis of Starlink open data|

|G Comparison of Orekit Propagation and Ephemerides|
|G.1 Figures of Residuals and Orbuts|. 0.
|IG.2 Residuals Analysis|
|G.3 Applicability Beyond Starlink| o oo oo

[Broader Impacts|

17

18
18
19

20
20
21
22

24
24
24
25
25
25

26
26
26
27
28

28
29
30
32
35
40
43
48

51

59
59
59
65

65

~
Drifters "
« Identifier gﬁ% Pettngoo
* Mass
* Radius 1
* Initial Position and 1
Velocity extends |
+ Initial Uncertainty ' I
Satellites . s
OrbitZoo ret
¢+ FuelMass
+ Thrust Action Space drifters []
+ Thrust Specific
Impulse 0
. Agent satellites [] Satellite
Forces =) thrust {}
« Gravity Model reset ()
N o JSON
* Third Body Forces — .
« Drag Forces agent { } RL Algorlthm
+ Solar Radiation Pressure Step ()
Interface d
* Active/inactive rewart ()
* Bodies customization
* Colors customization render () Interface
Environment
* Initial Date
+ Stepsize
+ Parallel Propagation _ [[]] [()] [{}]

list function object

Figure 4: High-level overview of OrbitZoo’s architecture. A JSON file describing the orbital system
is provided to OrbitZoo, which then serves as an interface for data generation, single- and multi-agent
RL mission development, or orbital dynamics analysis.

A OrbitZoo: A Framework for Multi-Agent RL in Orbital Dynamics

OrbitZoo is a flexible and modular Python environment for RL designed to address the challenges of
applying MARL to high-fidelity orbital dynamics. It overcomes key limitations in existing tools, such
as a lack of configurability and visualization, restricted support for realistic perturbative forces, and
limited multi-agent capabilities. While the vanilla OrbitZoo environment does not implement specific
missions, RL algorithms, and training logic, it can easily be extended and configured for such cases.

A.1 Architecture and Design

OrbitZoo’s architecture is designed to be modular and extensible. Figure] shows the primary
modules, where darker boxes represent developed classes and lighter colors indicate integrated
external components. This modular design allows users to implement and customize each component
independently, ensuring compatibility with diverse RL algorithms and experimental setups.

A.1.1 Core Modules

Body: Modular Propagation of Orbital Dynamics. The Body class is the foundation of OrbitZoo
and represents physical entities in the environment. Each body instance contains an individual
numerical propagator, which is used to compute future states with great accuracy (position, velocity,
uncertainty and mass) knowing the body’s current state and active forces. Upon initialization,
each body must contain a unique identifier (name), a dry mass, a radius, an expected Cartesian
position and velocity u = (z,y, z, &, 9, #), and uncertainties associated with each of these elements
(0g,0y4,04,04,04,0:), wWhich are internally used to construct the covariance matrix ¥ with these
uncertainties as its diagonal entries. Optionally, the initial date can be provided, allowing an accurate
representation of perturbative forces acting on the satellite at a specific moment, namely drag.
When resetting the environment, the actual position and velocity of the body are sampled from a
multivariate normal distribution N (1, ¥). Although numerical propagation is performed in Cartesian
coordinates in the background, each body instance provides methods to retrieve its current state in
multiple representations — Cartesian, Keplerian, or equinoctial. Some static methods also provide
information related to two given bodies, such as the distance between them, line of sight without
Earth’s intersection, Time of Closest Approach (TCA), or Probability of Collision (POC), which are
useful for a large range of RL missions.

18

(a) A system propagating (b) A system with 3 differ- (¢) A single-agent mis- (d) A multi-agent mission:
several Starlink satellites. ent Keplerian orbits. sion: Chase Target. Constellation in GEO.

Figure 5: Frames of different systems on OrbitZoo’s interface.

Satellite: Extending Bodies with Thrust Capabilities. The Satellite class extends the Body class
to incorporate propulsion systems and agent parameters, essential for RL tasks requiring control
and maneuverability. Satellites are configured with: (1) polar thrust parametrization (7,6, ¢) and
action space, including maximum thrust (71,,x), deviation angle (Oax), and azimuthal angle (Pmay)
for realistic thrust modeling; (2) initial fuel mass and thrust-specific impulse (/) for long-duration
missions; and (3) agent parameters. The agent parameters are arbitrary and serve as a standardization,
depending on the specific requirements of the implemented algorithm for initialization. In addition to
the instance methods provided by the Body class, a Satellite includes fuel-related methods that can be
used both to define episode termination conditions and to shape reward functions.

Interface: Interactive Visualization. The Interface class provides interactive 3D visualization of
the orbital environment, making OrbitZoo particularly useful for debugging, analysis, and presentation.
It supports: (1) customizable visual components, such as central body, equatorial grids, Keplerian
orbits, velocity and thrust vectors, and satellite trails; (2) real-time updates of system states, including
timestamps, body names, and orbital parameters; and (3) flexible camera perspectives for inspecting
orbital trajectories and multi-agent interactions. Figure[5|demonstrates some visualization capabilities,
ranging from single-agent missions to multi-agent constellations.

Additionally, we demonstrate this tool through four videos that highlight its capabilities in various
scenarios. The first video offers an overview of the user interface, followed by demonstrations of
the Hohmann maneuver mission, the GEO constellation mission, and a chase-target mission. These
videos can be accessed through the following links: Interface Video; Hohmann Maneuver Mission;
GEO Constellation Mission; Chase Target Mission. The interface is built upon play3d [, a library
that leverages 2D perspective projections to create interactive 3D environments.

Environment: High-level Interaction. The Environment (class OrbitZoo) serves as the primary
interface for users. It integrates the above modules to provide a streamlined workflow for designing
and executing RL missions. Key features include: (1) high-level methods for retrieving orbital
state information, managing agents, and configuring scenarios; (2) flexibility to define single-agent
or multi-agent missions, supporting tasks such as station-keeping, orbital transfers, and collision
avoidance; and (3) compatibility with PettingZoo, enabling seamless integration with existing RL
workflows. At a high level, the environment implements the four fundamental methods common to
RL frameworks: reset, step, reward, and render.

A.2 Use Cases

Currently, OrbitZoo focuses on systems orbiting Earth, reflecting the growing challenges posed by
the rapid increase in satellites and debris within LEO. The framework simulates realistic gravity
fields and perturbations — such as atmospheric drag, solar radiation pressure, and third-body effects —
providing a high-fidelity environment for RL in near-Earth operations while also supporting realistic
control maneuvers. Nonetheless, by modifying a few physical attributes, such as the gravitational
parameter of the central body, the environment can be easily adapted to represent other celestial
systems.

Typical RL-based use cases (as explored in this paper) include autonomous orbit transfer, formation
flying, rendezvous, collision avoidance and debris tracking, where agents must make real-time deci-

19

https://www.youtube.com/watch?v=zyRtR-WDzXU
https://www.youtube.com/watch?v=Hf9UoVF00Zk
https://www.youtube.com/watch?v=95DTFK97Q0A
https://www.youtube.com/watch?v=lBblgsPH7e8

Figure 6: Representation of the Cartesian position () and velocity () of a small body with mass m
orbiting a large central body with mass M.

sions in complex dynamical regimes. While the current focus remains Earth-centric, the modular
design of OrbitZoo supports future extensions to other planetary or multiple central body environ-
ments, effectively providing a high-fidelity environment for CR3BP scenarios.

Notably, RL is only one component of OrbitZoo. The environment can be used independently of RL
to test classical maneuver strategies, analyze orbital evolution, or study the intrinsic dynamics of
multi-body systems under perturbations. This flexibility allows researchers to validate deterministic
control laws, benchmark optimal control solutions, or simply observe long-term dynamical behavior
under realistic forces.

B Orbital Mechanics

This section provides an overview of key orbital mechanics concepts to support a clearer understanding
of the concepts presented throughout the paper. We begin by explaining the most commonly used
coordinate systems, then discuss our approach to thrust representation, and conclude with how body
propagation is usually handled in orbital dynamics.

B.1 Coordinate Systems

Orbital dynamics is typically described using different coordinate systems, each offering unique
advantages depending on the problem at hand. Considering a large central body (such as Earth) as an
inertial frame, Cartesian coordinates provide a straightforward and intuitive representation of a body’s
position and velocity in space as r = (x,y, z) and 7 = (&, §, £), respectively, as shown in Figure@
While useful for direct numerical computations, such as altitude or distance between bodies, this
state rapidly changes and often lacks the deeper insights into the actual orbital shape and orientation,
which many missions focus on, such as the closest point (periapsis) or farthest point (apoapsis) from
the orbiting body.

Keplerian elements, as Figure [/| shows, describe the orbital motion using five parameters: the
semi-major axis (a), eccentricity (e), inclination (), argument of perigee (w) and longitude of the
ascending node (€2). Within this orbit, the anomaly (which can be represented in three ways, as seen
in Figure[8) is an angle that indicates the current body position within that orbit, measuring from the
periapsis. The mean anomaly is commonly used due to its linear evolution over time. When there are
no perturbative forces (including maneuvers) that change the inclination, all points of the orbit are
included in a two-dimensional plane, called the orbital plane. In these cases, Cartesian positions and
velocities vectors are always within this plane.

These elements directly relate to the orbital geometry and are particularly useful for characterizing
two-body motion. However, w and 2 can become undefined or ambiguous in special cases, such as
circular or equatorial orbits. These scenarios, referred to as singularities, pose significant challenges
for numerical integration and optimization problems. Equinoctial elements are therefore preferred for
RL, as they avoid these singularities by using five parameters:

a=a ey;=-ecos(w+Q) e, =esin(w+Q) hy =tan(i/2)cos() h, = tan(i/2)sin(Q),

20

Z
4

orbital
plane

periapis

b4

ascending
node

(vernal equinox)

Figure 7: Representation of Keplerian Orbital Elements. Here, it is assumed that the orbit is perfectly
circular (e = 0), and consequently, the semi-major axis (a) corresponds to the Euclidean distance to
the primary focus (M).

Figure 8: Types of anomaly. A body .S orbits a central body C' in an elliptical orbit with semi-major
axis a. The true anomaly () is the actual angular position of .S measured from the periapsis (closest
point to (). The mean anomaly (M) is the angle assuming uniform motion over the same orbital
period (represented by body S’). Eccentric anomaly (E) is an intermediate angle used to relate M
and 6, representing the position of .S on the circular orbit (Q). Despite evolving at different rates, all
types of anomaly reach periapsis (0 rad) and apoapsis (7 rad) at exactly the same moment.

where e, and e, represent components of the eccentricity vector, and h, and h, describe the
inclination vector.

B.2 Thrust Representation

Spacecraft control often employs local reference frames (centered on the body) for thrust actions due
to their intuitive representation, such as RSW. Given a satellite’s Cartesian position 7 and velocity 7,
it is straightforward to compute the radial (R), cross-track (W) and along-track (S) unit vectors:

~ ~ X T ~ ~ ~
R=—" W= §=WxRg, (1)
(& [l 7|
where x represents the cross product and || - || is the L2 norm. This coordinate system places the

spacecraft at the orlgm with R pointing towards the central body, W pointing perpendicular to the
orbital plane, and S pointing perpendicular to W and R (approximately the same direction as 7°).

In this approach, the thrust usually consists of a vector Trsw = (Tr, Ts, Tw) that represents the
thrust magnitude on each axis of the RSW frame. The action space is then limited to a maximum
thrust magnitude T, on each component: Trsw € [—Timax, Tmax]?’.

A more realistic and versatile approach to modeling the thrust action space is to adopt a polar
parametrization, representing the thrust as T = (7,6, ¢). A visual comparison can be seen in
Figure E} This parameterization limits the thrust to the action space T < (Tinax, Omax, Pmax). When

21

(a) Cartesian parametrization. (b) Polar parametrization.

Figure 9: Comparison of Cartesian and Polar parameterizations of the thrust vector T.

Omax = 7 rad and ¢ = 27 rad, the satellite can apply thrust in any possible direction. This
parameterization naturally constrains the thrust to a cone-shaped region, providing a physically
realistic limit on the directions in which the satellite can apply force, offering a more controlled and
flexible representation of the satellite’s maneuvering capabilities. Finally, the thrust vector in the
RSW frame can be obtained via the following transformation:

Trsw = T(cos 85 + sin f(cos R + sin pWW)).)

Now consider that the spacecraft has a thrust system that produces a force T € R3. Similarly to
the gravitational acceleration, the actual acceleration provoked by this thrust system comes from
Newton’s second law of motion:

T
T = mapust € Ahrust = E 3)

This expression indicates that propulsive capability is inversely related to the spacecraft mass; hence,
as propellant is expended, the spacecraft is capable of higher acceleration values when using the same
force. The rate at which mass is lost is given by:
. Tl
=, “
1. spd
where I, is the specific impulse (a measure of the efficiency of the propulsion system) and g is
standard gravity. A higher Iy, value means that the spacecraft can generate more thrust per unit of
propellant mass, which makes them more efficient by saving fuel.

B.3 Propagation

The motion of celestial bodies is governed by Newton’s law of universal gravitation, which states that
each body exerts a gravitational force on every other body. For a two-body system, the force acting
on a satellite or debris with mass m due to a central body with mass M is given by:

GMm .

———T
[Ed /.

F = (&)

where G is the gravitational constant and 7 is the unit vector of position . Using Newton’s second
law, the resulting acceleration of the smaller body is expressed as:

== - (6)
712 712

where p g is called the standard gravitational parameter of Earth.

Although this model forms the foundation of orbital mechanics and is commonly used in RL,
analytical models like SGP incorporate additional perturbative forces — such as atmospheric drag,
SRP, and Earth’s oblateness — to provide a fast and relatively accurate method of propagating bodies.

22

Numerical propagators provide a powerful alternative to SGP by solving the equations of motion
through numerical integration, enabling precise modeling of complex orbital dynamics. Unlike
SGP, numerical propagators can incorporate a wide range of perturbative forces (aeny), including
higher-order gravitational harmonics, third-body effects, atmospheric drag, and SRP. This flexibility
allows them to handle scenarios requiring high precision, such as long-term orbit predictions and
mission-critical maneuvers.

Assuming the state of a spacecraft is characterized by its Cartesian position r, velocity 7 and mass m,
the state vector s = (7,7, m) € R can be propagated in time using integration methods. The Runge-
Kutta (RK4) [[14] method is a numerical integration technique used to solve first-order differential
equations, which can be used to approximate the unknown function s dependent on time ¢. Since the
state corresponds to a second-order system, it can be rewritten as a first-order system:

d d[r 7 pe o
flt,s)=—s=—|r|=|F|=|"T" T @ |, (7

dt dt m m _\}L\I

spg

By knowing the state of the spacecraft at a given moment, we create the initial conditions ¢y and sg.
To get an approximation of the state after a step size At, we define:

At
SAt = S0 + F(kl + 2ko + 2k3 + ka), ®)
where
kl - f(t07 50)7
At k
ko= f (to-l- 2,80+At21> ,
At k
kg = f <t0+ 2,80+At22> N

ky = f (to + At, so + Atks) .

The time dependence of f(s,t) in equation[7|enables the modeling of forces that are active only at
specific times, such as environmental accelerations ae,y or thrust maneuvers.

To propagate the uncertainty, one can use the state transition matrix (STM) to analytically approximate
the expected uncertainty found in Monte Carlo simulations.

Assuming we are only interested in the uncertainty of the position r and velocity 7, the state can be
simplified to s = (r,), therefore representing the dynamics as f(¢, s) = (v, #). By calculating the
Jacobian A € R%6_ which linearizes the dynamics around ¢g:

of [‘r’r ‘91 [0 I
A=o2= 10 8| = |a o> ©)
Os o a7l lor or
it is possible to approximate the STM (® € R6%6) as:
o =1+ AAL (10)

By knowing the position and velocity covariance matrix at to (3o € R®*%), the propagated covariance
(Xa¢) becomes:
Yar = 0N dT. (11)

23

C Formal Model Definitions

For completeness, we provide the mathematical details of the methods referred to in the main paper.

C.1 Double Deep Q-Network (DDQN)

Double Deep Q-Network (DDQN) [29] is an improvement over the standard Deep Q-Network (DQN)
[51] algorithm used in RL for environments with discrete action spaces. Although powerful, DQN
suffers from overestimation bias (the tendency to overestimate action values due to using the same
network for both action selection and action evaluation). DDQN addresses this by decoupling these
two roles using two networks: an online network with parameters 6 used for selecting actions,
Qo(st, at), and a target network with parameters 6~ used for evaluating the value of the selected
actions without constant deviations, Qg (s¢, at).

After an agent interacts with the environment and stores several experience tuples (s¢, at, 74, S¢41) in
a buffer, DDQN samples a batch B of experiences from the buffer and minimizes the mean squared
error (MSE) between the current Q-value, Qg (s, a;), and the estimated real Q-value, Q (s, a;):

1
mamﬁ Z (re +7Qo- (se41,mo(s011)) —Qa(st, ar))?, (12)
Q;(St’at)

where | B| is the size of the batch, 0 < « < 1 is the discount factor and 7y (s;+1) = max, Qo (St+1,a)
corresponds to the best action according to the current parameters 6. Periodically, the target parameters
0~ are updated with the parameters of the online network, 6.

(st,at,mt,8¢41)~B

Exploration in DQN is guided by the epsilon-greedy strategy, where at each time step, the agent
selects a random action with probability € € (0, 1), and with probability 1 — €, it chooses the action
with the highest estimated Q-value. This probability e typically starts relatively high to encourage
exploration early in training and gradually decreases over time, allowing the agent to increasingly
exploit the strategies it has learned.

C.2 Deep Deterministic Policy Gradient (DDPG)

DDPG [43] is an off-policy RL algorithm that contains an actor and a critic network, as it stores
experiences in a buffer gathered in interactions with old policies, similar to DQN. The actor network
with parameters 6 receives a state and produces an action (representing the policy, mg(a¢|s:)), and
the critic network with parameters ¢ receives a state and an action, and produces a single value
(representing the Q-value function, Q (s, a;)). Similarly to DQN, DDPG also contains a target actor
with parameters #~ and a target critic with parameters 6.

For optimization, both networks are dependent from the value that the other outputs. While the actor
network tries to maximize the expected value produced by the critic (equation [I3), the latter tries to
approximate the Q-values to the true estimated ones by a MSE loss function (equation [T4):

mthE[qu(StﬂTe(St)] (13)

mini Z (Tt +7Q¢>— (5t+177T6— (5t+1)) _Q¢(3t7at))2~ (14)

¢ |Bl
QZ(St,llt)

5¢,a¢,Tt,5¢41)~B

The target network can be updated using the soft update method, rather than directly copying the
online network. This method uses a parameter 7 € (0, 1) to keep a percentage of the old targets,
preventing large, abrupt changes in target values:

0" «—71-0+(1—7)-0". (15)
Exploration in DDPG can be achieved using the Ornstein-Uhlenbeck process [79], which introduces

temporally correlated noise x; to the actions produced by the actor network. This noise evolves over
time and is updated at each time step according to:

Ti41 = Ty +9(M7If)At+a\/EN(Oal)7 (16)

where 6 determines how strongly the noise is pulled back toward the mean y, o controls the magnitude
of the noise, and At is a small time increment used to discretize the continuous process.

24

C.3 Proximal Policy Optimization (PPO)

The actor loss in PPO [69]] is defined based on the ratio r;(6), which measures the probability of
taking an action a; under the current policy compared to the old policy:

o (at ‘St)

)= ————.
Tt() ﬂ-eold(at|8t)

a7
The clipped objective ensures stability during training by preventing excessively large updates to the
policy:

mein]E {min (rt(H)At, clip(r:(0),1 — e, 1 + e)/lt)} , (18)

where e controls the trust region, and A, is the advantage function. The advantage Ay is computed
recursively using the temporal difference (TD) error:

O =1 + YV (st41) — Vi (51), (19)
Ay =6, + N Ay, (20)

where) is a decay factor and V(s;) is the value function approximated by the critic network.

Since the actor network in PPO outputs the expected action the agent should take given a state,
exploration is naturally handled by sampling from a probability distribution. Specifically, an action is
sampled from a normal distribution centered at the policy output with a given standard deviation o:

Qg NN(']T@(CLt | St)70'). (21)

The standard deviation o typically starts high to encourage exploration in the early stages of training
and is gradually decreased over time to allow the agent to exploit the strategies it has learned.

C.4 Generalized Advantage Estimation (GAE)

Generalized Advantage Estimation (GAE) [68] provides a flexible way to compute the advantage by
balancing bias and variance through the A\ parameter:

o0

A= (N e (22)
=0

For long episodes, such as those encountered in orbital dynamics, GAE effectively stabilizes training
by reducing variance in advantage estimation.

C.5 Federated Learning (FL)

In MARL environments, there are several approaches to collaboratively train agents. A common
method is independent learning, where each agent is trained separately and treats other agents as part
of the environment’s dynamics. In this setting, collaboration arises indirectly through a shared reward
function, which must be identical for all agents to ensure coordinated behavior.

However, Federated Learning (FL) offers a more stable and scalable alternative by enabling agents
to share knowledge during training while keeping their local data private. FL is a machine learning
paradigm in which multiple entities (e.g., agents or devices) collaboratively train a global model
without sharing raw data. Instead, they exchange model parameters or gradients, which are aggregated
to improve a shared model.

Applied to RL, FL can be used to exchange learned parameters between agents rather than raw
experience tuples. This is particularly beneficial in POMDP environments, where each agent has
only a limited view of the full state. By federating value functions or policy networks, agents can
better estimate the value of a given state s;, leading to more stable and data-efficient learning while
maintaining a level of privacy and decentralization.

A specific case of FL is horizontal federated learning (HFL) [S9], which occurs when all agents have
the same observation and action spaces. In such scenarios, multiple identical agents operating in
parallel can be treated as instances of a single agent in multiple environments. This setting allows for

25

straightforward parameter sharing and can be seen as data augmentation across parallel environments,
enhancing generalization and learning speed.

One common HFL algorithm that can be used for recent RL algorithms (e.g. DDPG and PPO) is
Federated Averaging (FedAvg) [48]), by training a shared critic through a central server (e.g., ground
station). In an environment with N agents, the server starts by sending the current global parameters
(wy) to every agent: w; < wgy, Vi € {1,..., N} (where w; are the local parameters of agent 7).
Then, agents interact with the environment for an arbitrary number of steps, gathering a buffer of
experiences B;, which are then used to locally optimize the weights w; by an RL algorithm. After
training, these weights are gathered by the server and averaged:

N

| Bi
W, = — W, (23)
! Z Zivzl |Bk‘

i=1

where | B| is the number of experiences in buffer B. Finally, the process is repeated by sending these
new global parameters to each agent. When we assume that the experiences gathered by each agent
are independent identically distributed (IID), FedAvg converges.

D Computational Performance

Real orbital systems can consist of hundreds or even thousands of bodies, each requiring propagation
at every step. Additionally, different forces may act on different bodies, and each body can have
unique properties such as shape, attitude, or drag/reflection coefficients.

OrbitZoo imposes no strict limit on the number of bodies in a system, with scalability constrained
only by the available hardware (D.I). However, it is essential to assess how increasing the number
of bodies and introducing complex dynamics impact simulation speed and parallelization efficiency.
These aspects are examined in the following subsections and[D.3).

Although not yet implemented, OrbitZoo experiments could benefit from libraries mentioned in[3.3]

to accelerate training.

D.1 Hardware Specifications

OrbitZoo supports systems of varying sizes and complexity, making hardware requirements dependent
on the specific system being modeled, particularly in terms of CPU power and memory. For the
following experiments and evaluations, the hardware used is detailed in Table[d] with the GPU utilized
solely for training RL agents.

Table 4: Hardware specifications.

Hardware Specification

CPU Intel(R) Core(TM) i3-8100 CPU @3.60 Hz, 3600 Mhz, 4 Cores, 4 Logical Processors
GPU NVIDIA GeForce GTX 1050 Ti
RAM 16.0 GB, 2933 Mhz

D.2 Scalability

One of the simplest metrics for assessing scalability is simulation speed. Specifically, the time
required to perform a single propagation step for all bodies in the system. Since multiple factors
influence this speed, we focus on addressing the following questions:
* How does the simulation speed evolve with the addition of bodies?
* How does the simulation speed evolve with the addition of forces acting on the bodies (more
realism)?

To address the first question, we evaluate system performance when propagating 1, 5, 10, 100, 1000,
and 10000 bodies. For the second question, we analyze simulation speed starting with a simple

26

102 { -@ Spherical Harmonic Gravity + Third Bodies + Solar Radiation + Drag °
-@ Spherical Harmonic Gravity + Third Bodies + Solar Radiation ’,/
-@- Spherical Harmonic Gravity + Third Bodies ’,/" °
@® - Spherical Harmonic Gravity & 2
Newtonian Gravity - -
14 - 24
10 +1 Std. Dev. s o ’,’
— o ®
0 >
g 0
= 10° 4 ¥ o
o T > 4
¥ ”
] - ®
L
L o«
1071 4 o g e
g 1 e e
= = o ®
1072 4 —)
s e
P
10—3 4
T T T T T
10° 10! 102 10° 104

Number of Bodies (log)

Figure 10: Time per step (in seconds) by number of bodies and active forces. Each point represents
an average of 100 propagation steps of 10 seconds. Shaded regions indicate -1 standard deviation.

Newtonian gravity model assuming a perfectly spherical central body. We then introduce a more
complex gravity model using spherical harmonics (HolmesFeatherstone) and further incorporate
perturbative forces, including third-body effects (Sun and Moon), SRP, and drag.

Results in Figure [10] show that OrbitZoo exhibits approximately O(n) time complexity per step,
where n is the number of bodies in the system. This trend becomes more evident as n increases.
However, for smaller systems (1 to 10 bodies), the effects of parallelization are noticeable, as the
hardware and OrbitZoo distribute computations across multiple threads. Additionally, the inclusion
of perturbative forces increases the step time in a roughly linear manner.

Scalability and performance also depend on user-specific implementations. For example, in large
LEO satellite constellations, drag is a crucial perturbative force for realistic trajectory modeling.
However, drag computation relies on body shape, which is assumed to be unique for each satellite by
default. As a result, each propagator stores its own atmospheric data, significantly increasing memory
usage. By assuming uniform body characteristics (e.g., identical shapes), a shared force instance can
be used across propagators, drastically reducing memory consumption.

D.3 Parallelization

As shown in Figure[d] OrbitZoo integrates with two key external components: PettingZoo and Orekit.
PettingZoo provides a framework for sequential or parallelized step computations, while Orekit
handles propagation of orbital dynamics within each step. Since orbital MARL missions assume all
agents act simultaneously rather than in turns, OrbitZoo propagates systems in a parallel manner, so
it should naturally take advantage of available tools for faster computations.

OrbitZoo leverages PettingZoo’s parallelization by implementing the ParallelEnv class, and Orekit’s
parallelization by implementing the PropagatorsParallelizer class (a way to simultaneously propagate
several bodies). To assess the impact of this choice, we compared simulation times between parallel
and sequential step computations (as it was presented in Figure[T0).

Figure [TT] shows that when using few active forces, the sequential propagation is faster than the
parallel, even for a large number of bodies. However, when systems become more computational
demanding — with many perturbative forces — the parallel mode becomes the fastest. Given that a
single RL episode can consist of hundreds or thousands of steps, this improvement significantly
enhances simulation efficiency, where using the parallel mode can decrease a single episode by
several minutes.

27

107 + Force Models

-@®- Spherical Harmonic Gravity + Third Bodies + Solar Radiation + Drag

©- Spherical Harmonic Gravity + Third Bodies + Solar Radiation
Spherical Harmonic Gravity + Third Bodies

101 4 Spherical Harmonic Gravity

Newtonian Gravity

+1 Std. Dev.

Time per Step (log s)

Computation Mode
-@-- Sequential
-@-- Parallel

10° 10t 102 103 104
Number of Bodies (log)

Figure 11: Time per step (in seconds) when using sequential and parallel computations, by the
number of bodies and active forces. Each point represents an average 100 propagation steps of 10
seconds. Shaded regions indicate 1 standard deviation.

Because of these results, OrbitZoo allows the user to change the computation mode upon environment
creation (boolean value) according to its needs (through the JSON input file).

D.4 Challenges and Future Improvements

As mentioned earlier, each propagator is currently treated independently, with duplicated instances
for similar bodies. Future work regarding scalability may be related to automatically eliminating this
redundancy for body propagators, as forces may be similar for different bodies, therefore benifitting
from using the same force instances. This effectively reduces memory usage without the need to
manually change these settings.

As real-world satellite constellations continue to grow in size and complexity, further research
into scalability becomes increasingly important. Ensuring that RL-based control systems can scale
effectively with the number of satellites, while maintaining performance and reliability, is a critical
step toward practical deployment in real space missions.

E Experiments

To evaluate OrbitZoo’s capabilities, we designed a series of missions utilizing algorithms ranging from
foundational to state-of-the-art (as discussed in Section[E.T). The first mission (Section[E.Z) compares
the OrbitZoo environment to D. Kolosa’s implementation for a general orbit change maneuver using
DDPG, highlighting how the tools and flexibility provided by OrbitZoo can support the development
of both existing and novel, more complex missions — without the technicalities typically present in
orbital dynamics. Then, Herrera’s [31] propagation method is compared to the one used in OrbitZoo,
which is used to develop a station-keeping mission in LEO (Section [E.3).

Next, two missions (Sections [E.4]and [E.3)) focus on orbital transfers (OTs) using PPO, where agents
learn strategies to reach static and dynamic targets, respectively, while considering real-world factors
such as perturbative forces and mass loss due to fuel consumption.

We then present a collision avoidance maneuver (CAM) mission (Section [E.6)), in which a satellite
learns to minimize the Probability of Collision with debris in the days leading up to a predicted close
approach, while maintaining its initial orbit. This showcases how OrbitZoo can also be employed in
missions where uncertainty plays a central role. In this mission, we directly compare the performance
of strategies learned using DDQN and PPO, highlighting how discrete RL algorithms perform relative
to continuous ones in CAM missions.

28

Finally, we introduce a multi-agent reinforcement learning (MARL) mission (Section set in
Geostationary Earth Orbit (GEO), where four satellites learn to distribute themselves evenly along
the orbit without losing altitude. For this scenario, we compare independent learning and federated
learning approaches using the PPO algorithm, demonstrating how knowledge sharing among agents
in cooperative settings can be beneficial.

For each experiment, we first provide a brief definition, highlighting the key aspects of the mission. We
then describe the environment setup, detailing the objectives, environment characteristics, observation
and action spaces, and reward functions. Finally, we present the results, assessing the generalization
capabilities of each policy, followed by a discussion of the challenges encountered and potential
improvements.

All experiments are fully supported by the accompanying code, which is available at the following
repository: code repository.

E.1 Learning Algorithms and Architectures

E.1.1 PPO

The chosen algorithm for a large part of the missions was PPO, since it is a state-of-the-art RL
algorithm in environments with continuous action spaces, such as in the experiments carried out in
this paper. The implementation was inspired by [8], which offers a minimal PPO setup for discrete
and continuous action spaces. However, several modifications were introduced to enhance learning
performance, as recommended in [3]]. These include the use of generalized advantage estimation
(GAE) instead of Monte Carlo estimation for calculating advantages, recalculating advantages at each
epoch, and employing batch-based training. Other improvements include changes in the network
architecture (with input normalization, tanh activation functions, and smaller initial weights), together
with hyperparameter tuning and performance adjustments (such as calculation of expected returns
only at training time).

The overall structure of the actor and critic networks used throughout the experiments is similar, with
two hidden layers and Tanh activation functions, as represented in Table[5] No extensive research
was made to find optimal hyperparameters.

Table 5: Network Structure of PPO Actor and Critic.

Layer Actor Network (Input: state_dim) Critic Network (Input: state_dim)

Input BatchNormid(state_dim) BatchNormid(state_dim)

Hidden Layer 1 Linear(state_dim_actor, 500), Tanh Linear(state_dim_critic, 500), Tanh
Hidden Layer 2 Linear (500, 450), Tanh Linear (500, 450), Tanh

Output Linear (450, action_dim), Tanh Linear (450, 1)

E.1.2 DDPG

DDPG was employed for the mission described in Section|[E.2] aiming to replicate the work presented
in [40] within a custom environment. Our implementation builds upon [67], incorporating the
Ornstein-Uhlenbeck noise process [79] for exploration, and enhanced with prioritized experience
replay [65], adapted from the implementation in [66].

The architectures of both the actor and critic networks consist of two hidden layers with Tanh
activation functions, as detailed in Table[6] No exhaustive hyperparameter tuning was performed.
Unlike PPO, the DDPG critic network estimates the Q-value, evaluating the expected return of the
specific action taken by the actor in a given state, hence receiving the state-action pair.

Table 6: Network Structure of DDPG Actor and Critic.

Layer Actor Network (Input: state_dim) Critic Network (Input: state_dim, action_dim)

Input BatchNormid(state_dim) BatchNormld(state_dim_critic)

Hidden Layer 1 Linear(state_dim, 512), Tanh Linear(state_dim_critic, 512 + action_dim), Tanh
Hidden Layer 2 Linear(512, 256), Tanh Linear(512 + action_dim , 256), Tanh

Output Linear (256, action_dim), Tanh Linear(256, 1)

29

https://anonymous.4open.science/r/orbit-zoo-EB4E

E.1.3 DDQN

DDQN was employed as an alternative to PPO for the collision avoidance task (see Section [E.6),
following a similar approach to that in [13]]. The implementation is based on the open-source project
[L8]), which builds upon the original DQN algorithm introduced in [52f]. In our implementation,
we also incorporate prioritized experience replay [65] and a target Q-value network for increased
stability.

The Q-network architecture consists of two hidden layers with Tanh activation functions, as detailed
in Table[7] No extensive hyperparameter tuning was conducted to optimize performance.

Table 7: Network Structure of DDQN Q-value network.
Layer Q-Value Network (Input: state_dim)

Input BatchNormld(state_dim)
Hidden Layer 1 Linear(state_dim, 512), Tanh
Hidden Layer 2 Linear(512, 256), Tanh
Output Linear (256, action_dim)

E.2 OrbitZoo vs. SOTA: Kolosa Comparison
E.2.1 Definition

Kolosa [40] developed a mission in Medium Earth Orbit (MEQO) where a spacecraft learns to perform
a general orbit change maneuver using DDPG. In this section, we replicate Kolosa’s mission within
OrbitZoo.

E.2.2 Environment Setup

Objective and Environment Characteristics. We design an environment inspired by Kolosa’s
setup. The scenario involves a spacecraft with a dry mass of 500 kg and an initial fuel mass of
150 kg, equipped with a thruster of specific impulse I, = 3100 s. The initial orbit is defined by
the equinoctial elements (a, e, ey, hg, hy, M) = (5500 + Rg km, 0.153,0.128,0.041, 0.015, 10°),
with the goal of reaching a target orbit characterized by (a,ey, ey, by, hy) = (6300 +
Rpg km,0.154,0.171,0.042,0.019) — representing a general orbital transfer, where Ry = 6378
is the radius of Earth. The dynamics follow Newtonian gravitational attraction. Each episode spans
692 steps, with a time interval of 500 s per step (approximately four days total).

Action Space. Departing from Kolosa’s Cartesian thrust representation, we employ a polar thrust
parameterization, as described in Section The action at each time step is defined as a; = (T, 0, ¢),
constrained by (Tiax, Omax, Pmax) = (0.6, 7, 27).

Observation Space. Building upon Kolosa’s observation space, we include an additional realistic
and time-varying parameter: fuel mass, which decreases as thrust is applied. The observation at time
t is defined as o, = (s, My, f;), where s; = (a, €5, ey, hy, hy) are the equinoctial elements, M, is
the mean anomaly, and f; is the remaining fuel.

Reward Function. The reward function also follows the same formulation, computed based on the
deviation between the current and target equinoctial elements. Specifically, for each element e, the
difference Ae is scaled by a corresponding weight ., resulting in:

re = —(aAda + ae, Aey + e, Aey + ahy Ay + ahyAhy), (24)
where
Ae = vV (ég6)2 ife=a .
(é—e)? ifec{es ey, hg, hy}

30

Table 8: OrbitZoo vs. Kolosa: Training hyperparameters.

Parameter Value
Actor learning rate 0.00001
Critic learning rate 0.0001
Epochs 1
Discount factor () 0.99
T 0.01
W 0
o 0.2
0 0.15
At 0.01
Memory Capacity 10 000
Initial Standard Deviation 0.5
Batch Size 256
_90 4
—100 - | | I
% —110 A
—120 A
~130
0 1(’)0 2(’)0 3(’)0 4(’)0 5(’)0

Episode

Figure 12: OrbitZoo vs. Kolosa: Cumulative reward per episode using the implemented DDPG.

E.2.3 Results

The weights used during training were kept identical to those in Kolosa:
(Qas e, , e, v, v,) = (10°,10°,10°, 10", 10Y).

The DDPG training hyperparameters are summarized in Table[§] The training performance using our
DDPG implementation (see Section is presented in Figure[12]

When comparing our training performance with Kolosa’s, we observe that our agent initially achieves
a higher reward score but ultimately converges to a lower final score. This difference is likely due to
architectural variations between the implementations. Nonetheless, the agent exhibits stable learning
dynamics, with performance stagnating after approximately 200 episodes. Analyzing the evolution
of the agent’s orbital elements (Figure[I3)), we find that the agent correctly learns the objective, as
evidenced by the consistent reduction in error across all elements except e,,. However, similarly to
Kolosa, the agent is unable to converge all orbital elements within the predefined tolerance and time
constraints.

Moreover, OrbitZoo offers a distinctive feature: a real-time visualization interface that allows users
to observe the agent’s maneuvers as they occur in space. This capability provides valuable insight
into the learning dynamics and behavior of the agent, as illustrated in Figure[T4]

This mission demonstrates that OrbitZoo can successfully reproduce similar RL missions with ease,
while also offering additional configurations and features that facilitate the development and testing
of RL agents.

31

12100 01532

0.128

12050 0.1531
0.127

£
£ 12000 x 5,
2 ©0.1530 ®0.126
11950
0.1529 0.125
11900
0.124
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Step Step Step
%102 %102
435
4.30 1.65
425 1.60
x
2 2
420
1.55
415
1.50
4.10
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Step Step

Figure 13: Orbital elements of the maneuver per step.

—— Satellite Trajectory
—— Target trajectory

—15000
~10000544

X (km) 5000 10000 —15000

(a) OrbitZoo environment. (b) Kolosa’s environment. Extracted from [40]].

Figure 14: Visual comparison of the maneuver in OrbitZoo and on Kolosa’s environment.

E.2.4 Challenges and Future Improvements

Since our DDPG implementation differs from the original, the agent learns a different strategy,
resulting in diverging training outcomes. This highlights the need for further hyperparameter tuning
to align the behavior more closely with expected results. Future work may focus on replicating
additional environments and benchmark results, aiming to evaluate and enhance the generalization
capabilities of OrbitZoo across a wider range of mission scenarios.

E.3 OrbitZoo vs. SOTA: Herrera Comparison

To compare OrbitZoo’s capabilities with those of existing environments that offer publicly available
code, we extend our analysis by implementing the mission proposed by Herrera in [31], consisting of
a station-keeping mission in LEO.

E.3.1 Definition

Herrera developed a reinforcement learning environment for station-keeping in Low Earth Orbit
(LEO). While Keplerian orbits describe a well-defined elliptical path around a central body, real-
world satellites are influenced by perturbative forces beyond gravity, causing them to drift from their
nominal orbits over time. Station-keeping missions aim to apply strategic control — through attitude
adjustments or thrust maneuvers — to maximize the duration a satellite stays within its designated

32

orbit. This task becomes especially challenging and critical in LEO due to the significant impact of
atmospheric drag.

E.3.2 Environment Setup

Objective and Environment Characteristics. In this mission, Herrera employed PPO to train
a satellite to control its thrust for station-keeping. The environment’s dynamics were manually
implemented using a 4th-order Yoshida integrator, which computes the satellite’s next position and
velocity based on gravitational and drag forces. The satellite began on a circular orbit at an altitude of
550 km above Earth’s surface, with the objective of maintaining that altitude for as long as possible
without deviating by more than 1 meter.

Herrera also clearly defined the episode termination conditions: (1) each episode has a maximum
duration of 800 steps, with each step representing 1 second; (2) if the satellite does not perform any
maneuvers, it exceeds the threshold after approximately 200 steps due to natural drift; and (3) the
satellite is provided with enough fuel to apply maximum thrust for up to 125 steps. For a mission
requiring this level of precision, the differences in dynamic modeling are critical. As stated by
Herrera: "The 4th Order Yoshida integrator is used as the default integrator as there is a balance
of performance and error. RK4, while generally having less error, is not a semantic integrator and
requires the calculation of the acceleration 4 times while the Yoshida integrator only requires 3.".
Given the difference in integration methods — Herrera employing the faster but less precise Yoshida
integrator, and OrbitZoo using the more accurate Dormand-Prince integrator (a RK4 integrator
with adaptive time steps) — we conduct a direct comparison between the values produced by each
environment over the course of a full episode, starting from the same initial position and velocity. As
shown in Figure the difference in position after approximately 13 minutes is around 25 meters,
while the difference in velocity is around 0.08 meters per second. With this comparison, we note that
the one meter threshold initially defined for episode termination is extremely strict under realistic
dynamic conditions. The code needed to run this comparison is provided in the supplementary
material.

257 0.08 |

0.07 1

N
[S)

0.06

0.05 4

-
o)

0.04 4

-
5]

0.03

0.02 4

Position Norm Difference (m)
Velocity Norm Difference (m/s)

o

0.01 4

0 0.00
6 160 260 360 460 560 660 760 860 6 160 260 360 460 560 660 760 860
Time (s) Time (s)
(a) Euclidean distance between Herrera’s and Orbit- (b) Euclidean distance between Herrera’s and Orbit-
Zo0’s propagated position, per second. Zoo’s propagated velocity, per second.

Figure 15: Comparison between Herrera’s and OrbitZoo’s natural propagation: position and velocity
differences over time.

Following Herrera’s setup, we designed a similar mission in which the agent has an initial mass of
100 kg, including 75 kg of fuel. The satellite is modeled as a perfect sphere with a radius of 16.8 meters,
a drag coefficient of 2.123 and is equipped with a thruster characterized by a specific impulse of
I, = 0.0067 s. While this configuration is not physically realistic, it was chosen to maintain
consistency with Herrera’s termination conditions (2) and (3). Notably, in OrbitZoo, atmospheric
drag is not solely determined by the satellite’s current state (as in Herrera’s implementation) but also
incorporates historical data, allowing drag to vary dynamically based on the current moment.

Action Space. To simplify the problem, Herrera limits the action space to the orbital plane,
and considers a polar thrust representation (7',0). However, the action the agent performs is
not directly the thrust being applied, but the variation applied to the current thrust, creating a
smoother and more realistic maneuver: a; = (AT, A#). While the maximum thrust is char-

33

Table 9: OrbitZoo vs. Herrera: Training hyperparameters.

Parameter Value
Actor learning rate 0.0001
Critic learning rate 0.001
GAE)\ 0.95
Epochs 5
Discount factor (vy) 0.99
Clip (¢) 0.03
Initial Standard Deviation 0.5
Standard Deviation Decay Rate 10000 steps
Standard Deviation Decay Amount 0.05
Minimum Standard Deviation 0.05
Experiences for Training 800
Batch Size 64

acterized by (Thax, Omax) = (0.04,27), the action space is limited to a fraction of that change:
(ATmam A9max) = (T:nax/g)oa gmax/6)~

Observation Space. Similarly to Herrera, we use Cartesian coordinates to represent the current
position 7 € R? and velocity 7+ € R? of the satellite. Additionally, we also define the distance to the
nominal altitude, rureec = |||7|| — Tnominal| and nominal velocity, Fureec = |||7|| — nominal|, Where

Tnominal = 990 km Tnominal = 5
Tnominal

with pp representing the gravitational parameter of Earth. The observation o, € R® consists of:
0y = (T/Tnominala 7;/7;nomina17 Ttarget s 'ﬁtargety 9; T)

Reward Function. In order to encourage the agent to both not run out of fuel and stay within the
orbital termination threshold, the reward function is similar to Herrera’s:

) (25)

L1 0.5 otherwise

r {0 if T‘[arget >1m V f =0
L =
800

where f is the current available fuel in kg, and ¢ is the current step within the episode.

E.3.3 Results

Similarly to Herrera, we employed PPO to trained the agent, with the algorithm hyperparameters
being shown in Table[9] If the agent can consistently exceed the baseline of 200 steps — representing
the duration a satellite remains within tolerance without maneuvers — it demonstrates successful
station-keeping. Figure[I6]illustrates that, despite the narrow 1-meter tolerance from the nominal
orbit (together with the more realistic perturbations), the agent effectively learned to maintain
station-keeping by surpassing those 200 steps consistently.

E.3.4 Challenges and Future Improvements

The agent did not achieve the same level of performance as in Herrera’s environment, primarily due to
differences in the dynamics, as demonstrated earlier. Additionally, the PPO implementations differed
— one using TensorFlow and the other PyTorch — with variations in hyperparameters.

This attempt to replicate Herrera’s environment suggests that OrbitZoo could benefit from using
faster propagators. While these may be less precise, they are suitable for RL missions where extreme
precision is not critical. As Herrera points out, continuous but deterministic algorithms (such as
DDPG and TD3) may be better suited for this mission due to the precision required in controlling
thrust maneuvers — something that is challenging to achieve with PPO.

34

300 A
250 A
(%]
[oR
2
W) 200 f———T T T T T T
150
100 4
0 100 200 300 400 500 600 700 800
Episode
Training ---- No Maneuvers

Figure 16: Steps per episode, averaged by a sliding window of 10 episodes. If no maneuvers are
executed, the satellite exits the allowed tolerance range by step 200.

E.4 Hohmann Maneuver

The Hohmann transfer experiment [33]] was chosen due to its well-established relevance in orbital
mechanics and its suitability as a benchmark for evaluating reinforcement learning frameworks in this
domain. Furthermore, this maneuver is rarely addressed using reinforcement learning, highlighting
the importance of investigating it. As one of the most fuel-efficient orbital transfer maneuvers, it
provides a clear and analytically solvable problem that allows for direct comparison between RL-
derived solutions and theoretical optima. Moreover, the Hohmann transfer incorporates key aspects
of orbital dynamics, such as thrust application, trajectory optimization, and state transitions, making
it an ideal testbed to validate the realism and effectiveness of OrbitZoo’s high-fidelity environment.

E.4.1 Definition

Consider a spacecraft on a nearly circular orbit, where its semi-major axis approximately corresponds
to the distance of the spacecraft to the primary focus (R). If this spacecraft has the objective of ending
up on an orbit with an increased distance of R’ while maintaining all other elements constant, the
Hohmann transfer maneuver can achieve this in a highly fuel-efficient manner by applying two very
specific impulsive thrusts in the along-track direction (AV and AV”) [80]. The first establishes the
transfer orbit (with a semi-major axis R < ay < R’), and the second adjusts the elements to match
the target orbit. When considering instantaneous impulses and conservation of energy, these changes
in velocity can be easily calculated:

I 2R! , 1 2R
AV =/ = [/ -1 AV =,/ = |1~ 26
v R(R+ R > v R R+ R |’ (26)

where 1 is the standard gravitational parameter of Earth (1 = GM ~ 3.986 m3s~2), and R and R’ are
the radii of the departure and arrival orbit, respectively. According to the Tsiolkovsky rocket equation
[78]], a body with total mass mg and mq — m of fuel mass, and with thrusting capabilities that have a
specific impulse 7, can only perform the Hohmann maneuver if AV + AV’ < I, g0 In Z—;’, where
go 18 standard gravity. In a real scenario, the force (F}) that is required to change the velocity by AV
depends on the mass of the body and the time that we are applying that force (At):

AVXmO
At

After this maneuver, the body loses some mass (ri7) that is inversely proportional to the specific
impulse of the thrust:

Py = 27)

Fy

. 28)
Isng (

’rh:

35

| &

Figure 17: Representation of the Hohmann Maneuver. A spacecraft is initially in an orbit with
semi-major axis R. It applies a thrust AV which positions it on the eccentric orbit. Later, it performs
a second thrust AV’ which positions it on the intended orbit, with a semi-major axis of R'.

Although small, this difference in mass will impact the force (F%) that should be applied to change
the velocity by AV”:
AV’ x (mg — 1)
Fy = . 29
2 AL (29)

Finally, the time between AV and AV” (transfer time,) is given by Kepler’s third law:

1 4 2,3
tir = 5] L, (30)
2 %

where usually it is assumed that ag = (R + R’)/2. A representation is shown in Figure [17]

E.4.2 Environment Setup

Objective and Environment Characteristics. We define a spacecraft with a mass of m; = 200 kg
and 50 kg of fuel, starting on a near-circular orbit with equinoctial elements (a, e, ey, by, hy) =
(2000 + Rg km,0.007,0.006,0.041,0.015) and ending up on (g, ey, ey, hq,hy) = (2030 +
Rg km, 0.007,0.006,0.041,0.015). Therefore, the objective is to raise the semi-major axis by
30 km. The spacecraft is equipped with a thruster that provides a specific impulse of I, = 310 s and
is capable of performing thrusts in every direction.

According to the values provided, using the Hohmann transfer, the optimal maneuver requires
AV = AV’ = 6.16 m/s and a transfer time of tg = 3826.1 s. Therefore, we define that each
episode contains 1000 steps of 5 seconds, giving extra time for the agents to reach the target. Instead
of assuming instantaneous burns, which are unrealistic, the thrust is applied for the entire step (5
seconds). For this interval, the optimal forces are F} = 308 N and F» = 307.9 N in the along-track
direction.

For simplicity, we consider a Newtonian attraction model with no perturbations, and the
agents to always start in the same anomaly with little uncertainty. The agent completes
its objective if it reaches the target orbit within a tolerance for every equinoctial element:
(£100 m, £0.005, +0.005, +0.001, +0.001).

Action Space. To account for the requirement that thrust should be applied only at specific moments
during the episode rather than continuously, an additional component is included in the action space:
a; = (T,6,¢,5). Here, represents the decision to apply thrust, where values close to 1 or O
indicate a high certainty to apply or retain thrust, respectively. The action space is limited by
(Tmaxa amaxa ¢maxa 5max) = (5OOa T, 271-5 1)

36

Table 10: Hohmann maneuver: Training hyperparameters.

Parameter Value
Actor learning rate 0.0001
Critic learning rate 0.001
GAE)\ 0.95
Epochs 5
Discount factor (vy) 0.99
Clip (¢) 0.1
Initial Standard Deviation 0.5
Standard Deviation Decay Rate 40000 steps
Standard Deviation Decay Amount 0.05
Minimum Standard Deviation 0.05
Experiences for Training 4096
Batch Size 64

Observation Space. The observation oy is defined as a vector comprising the current equinoctial
elements s; = (a, €qt, €yt, Nat, Rye), the mean anomaly M,, and the remaining fuel f;: o, =
(s, My, fr) € RT.

Reward Function. The reward function is designed to encourage the agent to apply large but
accurate thrusts. First, the absolute difference between the current orbit at time ¢ and the target orbit,
3, is defined as As; = |s; — 8|. Next, the scalar progress is computed as P, = wl - (As;_1 —Asy) /s,
where w is a vector of constant weights assigned to each orbital element. The reward function is then
formulated as:

T 0

re = ls>05 (Oélpt —)) (31)
Tmax emax

where 1405 is an indicator function that activates the reward only when the thrust decision § exceeds

0.5, and 1 and as are the importance given to the progress, and actions in the along-track direction,

respectively.

E.4.3 Results

The agent training hyperparameters are shown in Table Two experiments were conducted to
analyze the agent’s behavior, with two different reward functions as shown in Table@ However,
there was no extensive research to find optimal coefficients.

Table 11: Values of a; and a used in each experiment to analyze the agent’s behavior. The first
experiment does not penalize thrust deviations from the along-track direction, while the second
experiment includes a penalty for such deviations.

Experiment o7 oo

Experiment 1 1 0
Experiment2 1 0.5

For training, the weights used to measure the progress P; were w = (10%,10°,10°, 10, 10, 1073),
without extense research to find optimal parameters. The agent was trained until it successfully
adopted a strategy to achieve the target orbit within the specified tolerance. Figure [I8a]shows the
reward achieved on each experiment by episode, illustrating that Experiment 1 took more time to
reach a good policy, explained by the lack of signaling regarding the along-track direction (a2). The
fuel, as shown in Figure[I8b] shows that the agent learned to save fuel in both experiments.

For evaluation, in the second experiment, the generalization of the agent was tested by switching
from a Newtonian attraction model to a spherical harmonic gravity, and using third body forces (Sun
and Moon), SRP, and drag force.

37

,2: /\A/W w
| e

-80

Reward
Fuel (kg)

-100

-120 0 N R A

0 20 40 60 80 100 120 140 [20 20 60 80 100 120 140
Episode Episode

—— Experiment 1 Experiment 2 —— Experiment 1 Experiment 2

(a) Cumulative Reward for Experiment 1 and Experi- (b) Final fuel for Experiment 1 and Experiment 2.
ment 2.

Figure 18: Hohmann Maneuver: Cumulative reward and fuel consumption across episodes.

Figure [19]illustrates that in both experiments, the agent achieved the target semi-major axis while
also correcting some other orbital elements. However, in Experiment 1, the agent failed to bring
the h, component within tolerance. In contrast, the results of the second experiment show a closer
approximation to the optimal maneuver. Notably, when using more realistic dynamics by adding
perturbative forces, the agent is also able to reach the target orbit, even with a constant change in
orbital parameters created by these perturbations.

x1072 x1072

124

H
A

o

Y

B
=
2 5 08 | .U T
g 3 o6 ——————
3 06
0.4 4
0.4 4
10° 021
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Step Step Step
x1072 x1072
1.70 4

4.10 1.50
4.05 4 1.45
4.00 1,401
0 200 400 600 800 1000 0 200 400 600 800 1000
Step Step
Experiment 1 Experiment 2 Experiment 2 (w/ perturbations) ——— Optimal Target Tolerance Range

Figure 19: Evolution of equinoctial elements (Aa, €5, ey, by, hy) in the Hohmann maneuver for the
first experiment (red), second experiment (yellow), second experiment with realistic perturbations
(purple) and optimal maneuver (green). Aa corresponds to the absolute difference between the target
and current semi-major axis.

Nevertheless, both experiments demonstrate that the agent incorrectly learned to apply thrusts that
alter the inclination, as shown in Figure 20] with thrusts being applied in the radial () and cross-track
(w) directions. Finally, Figure [21]illustrates that the agent’s decision policy J is nearly optimal, with
thrust activations occurring both at the beginning of the episode and near ¢z .

An additional analysis related to the error between the optimal control approach and five successful
attempts was performed when using the agent trained in Experiment 1 and Experiment 2 with different
levels of perturbations. In Table[I2] we measure the average fuel error (in kg) and standard deviation
of these attempts to the optimal approach under simplified dynamics. Results suggest that both
experiments are able to achieve near optimal control while using, on average, no more than 1 kg of
additional fuel, which is a small portion of all the available fuel.

Additionally, we compare the altitude error (in km) of those attempts by step, as seen in Table T3]
The steps shown in the table were selected based on the intervals where agents perform thrusts (as

38

x102 x10? x10?

-

®
w
1 3
[]
~

&

r(N)
o

s (N)
°

H
$oe o ou e

|
-
& oo 08

. | o

200 400 600 800 0 200 400 600 800 0 200 400 600 800
Step Step Step
® Experiment 1 Experiment 2 ® Experiment 2 (w/ perturbations) ® Optimal

o

Figure 20: Comparison of the applied thrust (r, s, w), in Newtons, for the first experiment (red),
second experiment (yellow), second experiment with realistic perturbations (purple) and optimal
maneuver (green).

0.8 -
—— Experiment 1
Experiment 2
—— Experiment 2 (w/ perturbations)
—— Optimal
-~ Decision Threshold

0.7 -

Thrust On
0.6- Thrust Off

0.5

0.3-

0.1- i i i i U
0 200 400 600 800 1000
Step

Figure 21: Comparison of the agents decisions (§) to apply thrust during a full episode.

seen in Figure [2T)). These results suggest that after the first optimal thrust (step 0), Experiment 2
generally better approximates the optimal altitude compared to Experiment 1, but with more variance.
After the second optimal thrust (step 765), while Experiment 1 contains a smaller error in terms of
altitude until the end of the episode, Experiment 2 contains a lot more variance, suggesting that in this
case the agent arrives at the target orbit (given in equinoctial elements) through different trajectories,
indicating a better understanding of the dynamics than Experiment 1. These results also suggest that
shaping the reward to give more importance to the semi-major axis may be needed, since the agents
where trained to minimize the error of all equinoctial elements.

Table 12: Average fuel difference (in kg) and standard deviation between each experiment and the
optimal maneuver under simplified dynamics (Newtonian attraction), using five successful attempts.

Exp 1 No Perturbations Exp 1 Perturbed Exp 2 No Perturbations Exp 2 Perturbed
0.34(0.02) 0.36(0.01) 0.85(0.31) 0.86(0.16)

Overall, this experiment demonstrates that even when trained without perturbations, the policy
successfully generalizes to real dynamics, adapting to complex gravity fields, third-body forces,
SRP, and atmospheric drag. This is particularly significant in LEO, where gravity and drag are the
dominant influences on a satellite’s trajectory.

Additionally, the impact of providing a more informative reward function is evident, as Experiment 2
more quickly learns to avoid performing maneuvers outside the orbital plane.

E.4.4 Challenges and Future Improvements

Despite the agent’s ability to generalize to realistic dynamics, it still encounters difficulties reaching
the target orbit consistently, as actions in PPO are stochastic by nature, whereas the Hohmann
maneuver requires precise execution. Future improvements for this mission include employing rein-

39

Table 13: Average altitude difference (in km) and standard deviation between each experiment and the
optimal maneuver under simplified dynamics (Newtonian attraction), using five successful attempts.

Step Exp 1 No Perturbations Exp 1 Perturbed Exp 2 No Perturbations Exp 2 Perturbed

0 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
1 0.01(000) 0.0l(oﬂo) 0.01(000) 0.01(()‘00)
2 0.03(0.00) 0.03(0.00) 0.02(0.02) 0.02(0.01)
3 0.07(0.00) 0.06(0'01) 0.04((104) 0.04(0'01)
4 0.11(0_01) 0.10(0.01) 0.06(0_0(5) 0.06(0_01)
553 2.57(1.51) 10.133 66) 2.43(5.07) 8.10(3.60)
554 2.61(1'51) 1013(166) 2.35(207) 8-07(3.58)
555 2.65(1_51) 1012(167) 2.28(2_07) 8.04(3'55)
765 1073(130) 510(112) 1749(297) 566(463)
766 10.781.20) 5.05(1.12) 17.592.07) 5.73(4.63)
767 1083(129) 500(111) 1769(298) 580(463)
998 1630(096) 374(075) 3074(555) 1333(608)
999 16.30(0.96) 3.76(0.75) 30.74(s 53) 13.32(6.00)

Table 14: Chase Target: Training hyperparameters.

Parameter Value
Actor learning rate 0.00001
Critic learning rate 0.0001
GAE A\ 0.95
Epochs 5
Discount factor () 0.99
Clip (¢) 0.1
Initial Standard Deviation 04
Standard Deviation Decay Rate 10000 steps
Standard Deviation Decay Amount 0.05
Minimum Standard Deviation 0.05
Experiences for Training 4096
Batch Size 64

forcement learning algorithms specifically designed for discrete actions and exploring hyperparameter
tuning, since thrusts were not always applied at optimal moments.

E.5 Chase Target

E.5.1 Definition

Orbital transfer missions typically involve placing a satellite into a specific stationary orbit, as seen
in the Hohmann transfer, or performing station-keeping maneuvers to maintain a nominal orbit.
However, targets in such missions can also be nonstationary, as in scenarios where the objective
is to rendezvous with moving bodies such as debris or active satellites. Many missions focus on
approaching dynamic targets, like comets, particularly when the goal is scientific observation and
study.

E.5.2 Environment Setup

Objective and Environment Characteristics. In this experiment, we have an agent/satellite,
called follower, that starts on an orbit characterized by the following Keplerian elements
(ap,ep,ip,wp,Qp, Mp) = (10000 + Rg km,0.1,5.0°,10.0°,10.0°,10.0°). Additionally,
there is a non-maneuverable body, called target, that starts on an orbit with a much
larger altitude and less inclination than the follower: (ar,er,ir,wr,Qp, My) = (40000 +

40

—150 1

—200 1

~250 1 /4 n

—300 +

Reward

—350 1

—400

T T T T T T T T
0 20 40 60 80 100 120 140
Episode

Figure 22: Chase Target: Cumulative reward per episode.

Rg km, 0.001,5.0°,10.0°.10.0°, 10.0°). To avoid singularities, we use equinoctial parameters to
represent the orbits of the follower (ar, €5y, €yp,s Ray, Ry,) and the leader (ar, ez, , €y, hayp s by,).
The objective is for the follower to approximate the leader.

The satellite is characterized by being spherical with a radius of 5 m, a mass of 650 kg (from which
150 kg are fuel), and has a propulsion system containing a specific impulse of I, = 3000 s. Finally,
the dynamics for training are composed of Newtonian attraction without additional perturbations, and
each episode contains 2000 steps of 500 seconds.

Action Space. The satellite thrust system is capable of performing thrusts in any direction with a
maximum magnitude of 30 N, that is, limited by (Tinax, Omax, Pmax) = (30, 7, 27).

Observation Space. Since the orbital elements of the leader remain static throughout the episode
(besides the anomaly M7,), the observation space of the agent becomes smaller, as it does not need to
know those elements: 0, = (ap, €zp, €yps Raps Ryr, Mp, My, fi), where f; represents the current
fuel.

Reward Function. The reward function aims to minimize the error between each equinoctial
element, including the anomaly. We first define the difference between each element e as:

v (ep—er)?

o ife=a
Ae = (er —er)? ife € {es, ey, ha,hy} - (32)
atan2(sin (e;, — ep),cos (e, —ep)) ife=M
The final reward function weights each difference by a factor a:
r = — (o] Ad| + e, | Aes| + ae, |Aey| + an, | Ahg| + ap, |Ahy| + an|AM]) . (33)

The error for the semi-major axis is normalized by the target element (leader) due of its large scale,
and the error in the anomaly needs to account for the periodical nature of the element, where errors
vary between [0, 7r].

E.5.3 Results

For training, the following weights were used, without extensive research for optimal parameters:
(Qas e, ey 0, iy s apg) = (10°,1072,1072,1072,1072,107°). The evolution of training is
shown in Figure 22}

To assess the performance and generalization ability of the follower, we conducted three experiments
incorporating all perturbative forces available in OrbitZoo, including harmonic gravity fields, third-
body forces (Sun and Moon), SRP, and atmospheric drag.

As detailed in Table[T3] the first experiment evaluates the model under the same initial orbital elements
used during training but with all forces applied. In the second experiment, the agent starts in an orbit

41

Table 15: Chase Target: Initial Keplerian elements of the follower for the different experiments.

Experiment a e i w Q M

Experiment 1 10000 + Rg km 0.1 5.0° 10.0° 10.0° 10.0°
Experiment2 15000 + Rg km 0.5 8.0° 10.0° 10.0° 90.0°
Experiment3 5000 + Rz km 0.001 5.0° 10.0° 180.0° 180.0°

-0.2
T
©
2 -04
]
-4

0 500 1000 1500 2000 2500 3000 3500 4000
Step
—— Experiment 1 Experiment 2 —— Experiment 3

Figure 23: Reward per step, for each experiment. A reward of 0.0 indicates that the follower contains
exactly the same orbital elements as the target, including anomaly.

with a larger semi-major axis, higher eccentricity and inclination, and a different initial anomaly.
Finally, the third experiment tests the agent in a lower orbit (smaller semi-major axis), with reduced
eccentricity and a new initial anomaly. While Experiment 1 assesses the agent’s generalization to
different perturbative forces, Experiment 2 evaluates its adaptability when starting in an orbit with
significantly different characteristics. Lastly, Experiment 3 tests the agent’s ability to escape Earth’s
stronger gravitational potential by applying larger thrusts, which requires greater fuel consumption.

The most straightforward way to assess the agent’s performance is by tracking the immediate reward
over a full episode. Since the reward represents an error, the agent’s objective is to minimize it. As
shown in Figure 23] the agent effectively reduces the error in all experiments, demonstrating that it
has learned a successful policy for reaching the target. In Experiment 3, the reward remains constant
because the agent exhausts all available fuel, maintaining the same orbit until the episode ends. This
outcome is expected, as escaping Earth’s gravitational pull requires significantly more force when
starting at an altitude of 5000 km compared to 10000 km.

To gain a deeper understanding of the agent’s policy and its impact on the reward, we examine
the differences in each orbital element, as shown in Figure [24] Across all experiments, the agent
prioritizes increasing the semi-major axis while keeping the remaining elements as close as possible
to the target.

This behavior is particularly evident in Experiment 3, where the agent initially struggles to increase
the semi-major axis because it simultaneously attempts to minimize deviations in other elements
while gaining altitude. In contrast, Experiment 1 is the only case where the anomaly closely matches
that of the leader, whereas in the other experiments, the agent places greater emphasis on minimizing
all elements. This strategy aligns with the weight distribution in the reward function, reflecting the
relative importance assigned to each orbital parameter.

This experiment demonstrates that the agent learns an effective policy capable of generalizing thrust
maneuvers to initial conditions it did not encounter during training, while also adapting to realistic
orbital dynamics with non-conservative forces.

E.5.4 Challenges and Future Improvements

Despite the agent demonstrating good generalization capabilities, it fails to perform maneuvers
effectively when the target orbit’s inclination differs significantly from those encountered during
training. Additionally, fuel consumption is not explicitly accounted for in the reward function, which
negatively impacts the agent’s long-term strategy, often resulting in rapid fuel depletion.

Future improvements to this mission could include introducing additional penalties for fuel consump-
tion in the reward function, training the agent with initial random orbits, and further exploring the
limits of the agent’s strategy.

42

%107

020
04
3 x
03 0.15 .
x >
< So02 Y010
1 01 2 0.05
00 0.00

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Step Step Step

x10-2

012 \/\I\N\/\/\/\/\/\/\A,‘ 3.0
0.10 3 25
0.08 2.0
0.06 15
0.04 10
0.02 /\\/\\/v_, 1 05
0.00 0.0

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Step Step Step

Ahx
Ahy
~

T~

—— Experiment 1 Experiment 2 —— Experiment 3

Figure 24: Absolute difference between the follower and leader orbital elements per step, for each
experiment.

E.6 Collision Avoidance
E.6.1 Definition

Collision avoidance missions often rely on probabilities, particularly the Probability of Collision
(PoC) [2] between two objects. These include a maneuverable body, referred to as the target with
radius R, and a non-maneuverable body, referred to as the chaser with radius R¢. As the propagation
of these bodies is simulated, inherent uncertainties in their current positions and velocities grow over
time. These uncertainties form the basis for calculating PoC and generating CDMs.

The PoC assumes that the trajectories of the bodies follow linear motion during the very short
period of possible collision, neglects uncertainties in their current velocities, and considers that
position uncertainties remain constant over the short timeframe [80]. By defining the relative position
(r = rp — r¢) and relative velocity (r = 7p — 7°¢) vectors, the exact Time of Closest Approach
(TCA) within the step can be calculated as:

T .
TCA = — . (34)
7Ly
A simplified coordinate system, known as the RTN frame, is then introduced, with the chaser
positioned at the origin. The unit vectors defining the RTN frame are computed as follows:
R='¢ g Tl¢X'C p_NyR, (35)
[rell [rc x rell

where]%, T and N represent the radial, transverse, and normal directions, respectively. These unit

vectors form the columns of the 3 x 3 transformation matrix Q = [R, T, N], which is used to
transform the original relative position, velocity, and position covariances of the target and chaser
(X7 and X) into the RTN reference frame:

rRiN=Qr frin=QF Yrin=QErQ" Zcrmv = QEcQ”. (36)
Next, an orthogonal coordinate system is established based on the relative vectors:

TRTN TTRTN X TC,RTN

[= " J=— o S0 K =]xJ, 37)
||7“RTN|| ||7”T,RTN X TC,RTNH

where I, J and K are the unit vectors forming the orthogonal system. Similarly to the orbital plane
encountered in a Keplerian orbit (as explained in[BI)), given the assumption of negligible velocity

uncertainty, only the J and K axes (defining the conjunction plane) are relevant for the analysis. This
simplifies the problem to two dimensions by introducing a projection matrix C' = [J, K].

Under the assumption that uncertainties follow a Gaussian distribution, the distribution’s parameters
are given by u = CTrgpy and ¥ = C(Zrrrn + Ycrin)C7T. The PoC is then calculated as the

43

integral over a circle centered at the origin with radius R = Ry + R¢:

1 R /R2—y2 B
PoC = %'E'/R/ e~ 39 2 oy, (38)

N

5=[Y] -

and |X| represents the determinant of matrix X.

where

In this approach, we use a faster computation method compared to the traditional one, as outlined in
[23]. According to NASA, a PoC value greater than 10~ indicates a high collision risk, requiring
maneuvers to address it. However, SpaceX places its threshold at 1076, which is the one used in this
experiment.

E.6.2 Environment Setup

Objective and Environment Characteristics. 'We consider a scenario involving two spherical and
isotropic bodies: a satellite (target) — with mg = 250 kg, 50 kg of fuel, I, = 3100 s and Ry = 10
meters — and a drifter (chaser) — with Ro = 5 meters. The real propagation of the bodies follows a
model incorporating Newtonian gravitational attraction and atmospheric drag. However, the satellite
is equipped with a system capable of simulating the propagation of both bodies (and their associated
uncertainties) using a simplified model based solely on Newtonian gravitational attraction, neglecting
drag effects. As expected, this simulator introduces inaccuracies since it does not fully represent the
real propagation dynamics. Nonetheless, it provides valuable estimates of key parameters, including
the PoC, the TCA, and the miss distance, at any given moment.

The setup of the initial conditions for each episode is critical, as the satellite must begin two days
prior to the initial TCA detected by its system, with a PoC exceeding 10~%. To achieve this, the
initial positions of both bodies are set at the same expected location, but with opposing velocities
and small uncertainties. At the start of each episode, the states of both bodies are sampled from their
respective expected positions and uncertainties, followed by propagating their trajectories backward
in time. The objective is for the target to learn a strategy that effectively minimizes the PoC while
maintaining a trajectory close to its nominal orbit.

In practice, both bodies are considered to start with the same Keplerian elements (a, e, i, w, Q, M) =
(2000 + Rg km, 0.01,5.0°,20.0°,20.0°,10.0°). However, they start with opposite velocity vectors.
There is also an uncertainty of 0.1 m and 0.1 m/s when sampling the initial Cartesian position and
velocity of both bodies, respectively.

At each step, the satellite simulates the dynamics of both bodies until the end of the episode,
considering their current states and uncertainties. The simulation outputs the TCA, miss distance, and
PoC. Each step lasts 15 minutes, with termination occurring 10 steps after the initial TCA. Thrust is
applied only during the first 10 seconds of each step.

Action Space. As in the Hohmann maneuver mission (E.4) mission, apart from the polar repre-
sentation of the thrust, the action space also contains the decision () to perform the given thrust:
a; = (T,0,¢,9). This action space is limited by (Tinax, Omax, Pmax; Omax) = (5, 7, 27, 1).

Observation Space. The observation o; = (s¢, My, s, M/, f, P;) € R consists of the current
equinoctial elements of the satellite (s;) and the drifter (s}), both bodies mean anomaly (M, and M),
together with the current fuel mass (f;) and PoC (F;).

Reward Function. The reward function is built in a way to not apply thrusts when there’s a small
PoC, and apply thrusts that do not deviate too much from the satellite’s nominal orbit (5) when it is
higher than 10~°, while reducing the PoC:

—a1lsso5 ,P_1 <1076
_ , 39
" { (Asy + aglp,~10-6) , Pr—1 >107° (39)

where As; = w’'(s; — §), with w’ representing a vector of weights, P;_; and P; are respectively
the PoC before and after the action, and «; and avp are weights given to each parameter.

44

—20 4

—40 4

Reward

—60

—80 4

—100 +

0 20 40 60 80 100 120
Episode
—— DDQN — PPO

Figure 25: Collision Avoidance: Cumulative reward per episode using DDQN and PPO.

E.6.3 Results
The weights used to measure the deviation from the nominal orbit (As;) were set to
w=(10',1072,1072,107%,107 1),

and the weights assigned to each term in the reward function were (g,) = (10°,1071). No
extensive tuning was performed to find optimal parameter values.

For collision avoidance maneuvers, algorithms that work with discrete actions, such as DQN, work
well, as shown by [13]]. Because of this, we used both the DDQN (with the implementation shown in
section [E.1.3) and PPO (with the implementation shown in section [E.T.T)) algorithms. The training
hyperparameters for both algorithms are shown in Table[16]

Table 16: Collision Avoidance: Training hyperparameters for PPO and DDQN.

PPO DDQN
Parameter Value Parameter Value
Actor learning rate 0.0001 Learning rate 0.00005
Critic learning rate 0.001 Epochs 1
GAE)\ 0.95 Discount factor () 0.95
Epochs 5 T 0.001
Discount factor () 0.95 Memory Capacity 10 000
Clip (¢) 0.5 Initial € 0.5
Initial Standard Deviation 0.2 € Decay Rate 1000 steps
Standard Deviation Decay Rate 5000 steps € Decay Amount 0.05
Standard Deviation Decay Amount 0.05 Minimum € 0.05
Minimum Standard Deviation 0.05 Batch Size 256
Experiences for Training 256 Update Target Frequency 10 Online updates
Batch Size 64

Since DDQN only handles discrete actions, we chose to consider the maximum application of thrust
in each of the directions in a 3D space, together with the non-action, as shown in Table

The training progression for both algorithms is illustrated in Figure[25] where PPO demonstrates more
stable convergence compared to DQN. To evaluate the agent’s performance, we examine its decision-
making behavior through key metrics such as the PoC, miss distance, and TCA. Furthermore, to
assess the agent’s generalization capabilities, we activate all perturbative forces available in OrbitZoo,
including higher-order gravitational harmonics, third-body perturbations from the Sun, Moon and
Jupiter, SRP, and atmospheric drag. Importantly, the internal satellite simulator dynamics remain
unchanged, preserving the realistic limitation that the agent operates under incomplete information
about the environment.

45

Table 17: Possible actions in DDQN.
Action Thrust (7,0,¢,0) Direction

0 (5,0,0,1) Forward

1 (5,7/2,0,1) Left (radial out)
2 (5,m0,1) Behind

3 (5,7/2,m,1) Right (radial in)
4 (5,7/2,7/2,1) Up

5 (5,7/2,37/2,1) Down

6 (0,0,0,0) Nothing

Thrust On

w 0.5
Thrust Off
0.04
107 PTTTTTTTTTTN
2 High Risk
D T
£ 10-7 Low Risk

200

=
=)
=3

o
!

0 20 40 60 80 100
Step

—— 2 days before Initial TCA ---- Unrealistic dynamics ~—— Realistic dynamics ~ ---- Initial TCA

Figure 26: Collision Avoidance using DDQN: Agent decision to apply thrust (6 > 0.5), Probability
of Collision (PoC), Miss Distance, and Time of Closest Approach (TCA) by step.

The DDQN results (Figure 26) show that, under unrealistic dynamics, the agent effectively reduces
the collision risk to a low level before the Time of Closest Approach (TCA) by occasionally activating
thrust. Under realistic dynamics, although the agent experiences a consistently low collision risk
throughout the episode, it applies thrust almost continuously. A detailed examination of the orbital
elements in Figure [27|reveals that, under the unrealistic dynamics encountered during training, the
agent performs extremely well by maintaining the nominal orbit. In contrast, under realistic dynam-
ics, the agent reduces its semi-major axis by approximately 40 km while keeping the eccentricity
components close to those of the nominal orbit.

In contrast to DDQN, the results from PPO (Figure [28) indicate that the agent learns a strategy
of applying thrust early in the episode — precisely when the collision risk is highest. This early
intervention effectively reduces the risk for the remainder of the episode. Notably, the agent’s

2000

0.0065 - e
0.0080 -
1990 -) A l l 0.0060 -
)
0.0075 -
= 0.0055 -
£ 1980- x ' >
2 3 3
© 0.0070 - 0.0050 -
1970 -
0.0045 -
0.0065
1960 - 0.0040 -
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Step Step Step

fffff Unrealistic Dynamics Realistic Dynamics ---== Nominal Orbit

Figure 27: Collision Avoidance using DDQN: Evolution of the semi-major axis (a) and eccentricity
components (e, and ey) of the orbit by step, using unrealistic and realistic dynamics.

46

Thrust On

Thrust Off

~ 10734 [s
=4 i
° / d . .
= NS \, High Risk
9 196 Ihs v

i

/’\/ \ \ Low Risk

106 4

=
=)

N
=3
=3

=
=)
=3

TCA (steps) Miss Distance (log m)

=3
L

[20 40 60 80 100
Step

—— 2 days before Initial TCA ---- Unrealistic dynamics —— Realistic dynamics ---- Initial TCA

Figure 28: Collision Avoidance using PPO: Agent decision to apply thrust (§ > 0.5), Probability of
Collision (PoC), Miss Distance, and Time of Closest Approach (TCA) by step.

0.006450 -

0.00765 ~ 1 ;

0.006425 -

x 0.00760 - N 0.006400
o g 1
0.006375 -
0.00755 -
0.006350 -
0.00750 - 0.006325 -

i i ! i i i i i i ! i i i ! ! i i i
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Step Step Step

77777 Unrealistic Dynamics Realistic Dynamics ----- Nominal Orbit

Figure 29: Collision Avoidance using PPO: Evolution of the semi-major axis (a) and eccentricity
components (e, and ey) of the orbit by step, using unrealistic and realistic dynamics.

behavior closely resembles what would be expected under realistic orbital dynamics, demonstrating
the effectiveness of the learned strategy. A closer examination of the orbital elements in Figure 29
shows that the agent increases the semi-major axis by approximately 3 km while maintaining the
eccentricity components near those of the nominal orbit.

From these experiments, we conclude that although both agents learn effective policies under the
unrealistic dynamics used during training, PPO demonstrates superior performance under realistic
dynamics. This improvement is largely attributed to the continuous action space in PPO, which
provides greater flexibility in executing maneuvers.

E.6.4 Challenges and Future Improvements

While both algorithms demonstrate some ability to generalize to realistic dynamics, they struggle
with the inherent instability of the satellite simulation, particularly the sharp spikes in probability of
collision (PoC) near the Time of Closest Approach (TCA). Additionally, the agents have difficulty
generalizing their strategies when initialized on orbits that differ from those encountered during
training. Although DDQN is unable to fully generalize to realistic dynamics, it shows potential by
maintaining consistent eccentricity components, suggesting a partial understanding of the objective.

Future improvements could include training with a randomized time horizon for maneuver com-
pletion, initializing agents from a broader range of orbits, and enhancing the observation space to
include more informative features. These modifications would reduce uncertainty and support more
effective decision-making. Additionally, providing more detailed information to each body’s internal
simulation could further enable robust strategy learning. The DDQN architecture may also benefit

47

from the integration of recurrent networks, as demonstrated by [13]], which are capable of capturing
temporal dependencies critical for decision-making in dynamic environments.

E.7 GEO Constellation
E.7.1 Definition

Unlike LEO and MEO, which occupy defined altitude ranges, the Geostationary Earth Orbit (GEO) is
a specific orbit located 35786 km above Earth’s equator. This orbit is significant because any object
within it maintains an orbital period equal to Earth’s rotational period, making it appear stationary to
observers on Earth.

There are various possible formations for constellations of satellites in geostationary orbit (GEO). In
this work, we focus on a mission scenario where all agents learn to maintain equal angular separations
along the orbit. Specifically, with n satellites, each pair of adjacent satellites should be separated by
an anomaly difference of 27 /n rad.

Given that the satellites share similar observations and are cooperating, we assume that agents
can exchange knowledge after training, as discussed in Section [C.5] In the context of PPO, this
enables agents to share their critic networks after local training by aggregating and averaging model
parameters — an operation that could be performed, for example, by a ground station. By forming
a global critic, each agent gains a more comprehensive understanding of the environment’s overall
state, even though it has only partial observations locally.

E.7.2 Environment Setup

Objective and Environment Characteristics. We define an environment with n = 4 agents in
GEO, characterized by a semi-major axis of aggo = 35786 + Rp = 42164 km, where Rg is Earth’s
equatorial radius, in a near perfect circular orbit. Each agent is a satellite with my = 250 kg, 50 kg
of which is fuel, and equipped with a thrust with I, = 3100 s.

Each episode contains 500 steps with step sizes of 360 s (approximately 2 revolutions/days), and the
dynamics are purely based on Newtonian attraction. At the start of each episode (¢ = 0), agents are
initialized with random mean anomalies (M{,i = {1,2, ...,n}), representing their positions along
the orbit. The objective for the agents is to learn to distribute themselves uniformly around the orbit,
maintaining angular separations of 27 /n radians (90 degrees for n = 4).

Action Space. Since GEO lies in a single orbital plane near the equator, the problem’s dimen-
sionality can be reduced. The action space is simplified to two dimensions: a; = (7, 6). This
configuration allows agents to perform maneuvers affecting the semi-major axis and eccentricity
components of their equinoctial elements while leaving inclination unchanged. The actions are
limited to (Tiax, Omax) = (5, 27).

Observation Space. The observation space is also reduced. Each agent observation o; =
(at, ext, €yt, ft, M}, M2, M3, M}) receives its current semi-major axis, eccentricity components,
remaining fuel, and the anomalies of all agents in the environment.

Reward Function. To calculate the collective penalty related to the difference in anomalies (Pyy),
we first normalize the anomalies to be within [0, 27|, followed by:

G5 3 (02 0

2 =1 j=i+1
where
Aij = mln(|M1 — Mj|,27’(’ — |M1 - MJD .

The reward function of each agent penalizes differences in altitude (norm of Cartesian position),
magnitude of thrust (7), and close anomalies:
re = —(ai1laceo — ||I7[|| + 2T + a3 Par), 41)

where o, ae and aig work as customizable weights. This reward function is extensible to an arbitrary
number of agents.

48

—2000

—4000

—6000 -

—8000 -

Reward

—10000 4

—12000 4

—14000

50 75 100 125 150 175 200
Episode

o4
N
&

—— Federated Learning —— Independent Learning

Figure 30: GEO Constellation: Average Cumulative Reward per episode, using independent and
federated learning.

0.280 1
0.279 1
0.278 1

0.277 1

Anomalies Penalty

0.276 1

0.275 1

o4

100 200 300 400 500
Step
—— Federated Learning —— Independent Learning

Figure 31: Average Anomaly Penalty (Py) per step over thirty Monte Carlo simulations with realistic
dynamics, comparing independent and federated learning. In these simulations, initial anomalies are
random but equal for both federated and independent constellations.

E.7.3 Results

The agents were trained both independently (without communication) and with a centralized critic
using the Federated Averaging (FedAvg) algorithm, with the training hyperparameters provided in
Table 18]

For training, a combination of parameters that ended up performing rather well was (ay, as, a3) =
(10=%,10%,10~2). The training evolution using these parameters for both experiments is shown at
Figure

For evaluation, we tested the generalization capability of the policies by introducing realistic dynamics,
which include harmonic gravity fields, third body forces, SRP, and drag. To evaluate the performance
of both constellations, we conducted Monte Carlo simulations analyzing the evolution of the anomaly
penalty, as illustrated in Figure [31]

The results show that agents are capable of reducing the collective anomaly penalty in both scenarios.
However, the rate and effectiveness of this reduction depend on the initial constellation configuration.
Federated learning demonstrates a faster decrease in the anomaly penalty, highlighting its potential
advantage over independent learning. Through the OrbitZoo interface, shown in Figure 2] it is evident
that the agents are successfully learning the intended objective, albeit with some imperfections and
rather slowly.

In conclusion, although the agents were initially trained independently without sharing information,
they successfully learned to maintain equal spacing around the GEO orbit — even under realistic

49

Table 18: GEO Constellation: Training hyperparameters.

Parameter Value
Actor learning rate 0.00001
Critic learning rate 0.0001
GAE)\ 0.95
Epochs 3
Discount factor (vy) 0.99
Clip (¢) 0.2
Initial Standard Deviation 0.5
Standard Deviation Decay Rate 10000 steps
Standard Deviation Decay Amount 0.05
Minimum Standard Deviation 0.05
Experiences for Training 1024
Batch Size 64

dynamics not encountered during training. The federated approach, however, demonstrated clear
advantages, enabling more stable training and a better understanding of the global objective in a
cooperative setting.

E.7.4 Challenges and Future Improvements

In some initial configurations — particularly those where agents begin well separated — the anomaly
penalty fails to decrease significantly. This limitation appears in both the independent and federated
constellations. Addressing it may require tuning hyperparameters more effectively, including adjust-
ments to the reward function or exploring alternative RL architectures. Another challenge stems from
the current reward setup: the agents must balance reducing the anomaly penalty with maintaining the
nominal altitude, which slows the rate of improvement.

Future work includes implementing vertical federated learning (VFL) using split learning, as the
FedAvg approach can become unstable due to its simplistic averaging mechanism. Another key
direction is scaling to larger constellations to better reflect realistic operational scenarios.

50

F Exploratory Data Analysis of Starlink open data

Starlink’s ephemeris files are uploaded three times a day, every 8 hours, with each file containing three
days of propagated data. This means that consecutive files have overlapping predictions, with the first
8 hours of each file being considered the most accurate. By analyzing the overlapping predictions,
we can evaluate Starlink’s own propagation error.

Figures 32] through [33] compare the predictions of a three-day propagation starting on November
27th at around 5:00 AM and ending three days later. The aggregation of 10 consecutive ephemeris
files allows for the residual analysis of the initial three-day prediction (from the first ephemeris file)
and the subsequent predictions made in the following 9 ephemeris files. This analysis shows that
Starlink’s data is not error free with prediction errors increase significantly after the 48-hour mark.
This is due to a change in propagator by the ephemeris provider. Due to the high computational cost,
it shifts to a simpler model that only accounts for the oblateness of the Earth [44]].

Figures [36]through [39]show the evolution of the three positional vectors for four different satellites.
Since the plotted position is derived from a combination of ephemeris files, using only the most
accurate segments from each file, a discontinuity occurs at the transitions between files when one
ends and another begins. As expected, the position is oscillatory in nature, reaching its maximum
value when the satellite is at apogee (the farthest point from Earth along the major axis of an elliptical
orbit) and its minimum value when the satellite is at perigee (the closest point to Earth along the
same axis). Figures [36|to[43]illustrate the satellites’ positional evolution and orbital trajectories over
three days.

35 Ephemeris
| —— Nov 27, 2024, 13:19 UTC
3.0 Nov 27, 2024, 21:05 UTC

—— Nov 28, 2024, 04:40 UTC
—— Nov 28, 2024, 13:20 UTC
€ —— Nov 28, 2024, 21:09 UTC
< —— Nov 29, 2024, 04:34 UTC
© Nov 29, 2024, 13:13 UTC

=]
D, 5| — Nov29,2024,20:59 UTC
ﬁ Nov 30, 2024, 04:55 UTC
1.0
0.5
0.0

10 20 30 40 50 60 70
Time (hours from start)

Figure 32: Comparison of predictions between the first ephemeris file, starting on November 27, 2024,
at 04:50 UTC, with the subsequent nine ephemeris files to form a complete three-day prediction for
the satellite with NORAD ID 44744. The residuals represent the distance between the corresponding
points in each comparison.

51

Ephemeris

—— Nov 27, 2024, 13:11 UTC
—— Nov 27, 2024, 21:08 UTC
g — Nov 28,2024, 05:05 UTC
—— Nov 28, 2024, 13:13 UTC
—— Nov 28, 2024, 21:13 UTC
61 —— Nov 29, 2024, 04:59 UTC

Nov 29, 2024, 13:06 UTC
—— Nov 29, 2024, 21:14 UTC
4 Nov 30, 2024, 04:49 UTC

10

Residual (km)

10 20 30 40 50 60 70
Time (hours from start)

Figure 33: Comparison of predictions between the first ephemeris file, starting on November 27, 2024,
at 04:54 UTC, with the subsequent nine ephemeris files to form a complete three-day prediction for
the satellite with NORAD ID 44748. The residuals represent the distance between the corresponding
points in each comparison.

8 Ephemeris
—— Nov 27, 2024, 12:50 UTC
—— Nov 27, 2024, 20:46 UTC
—— Nov 28, 2024, 04:11 UTC
61 —— Nov 28, 2024, 13:13 UTC
—— Nov 28, 2024, 20:51 UTC
—— Nov 29, 2024, 04:27 UTC
Nov 29, 2024, 13:16 UTC
—— Nov 29, 2024, 20:51 UTC P
Nov 30, 2024, 05:09 UTC

74

Residual (km)
iy

10 20 30 40 50 60 70
Time (hours from start)

Figure 34: Comparison of predictions between the first ephemeris file, starting on November 27, 2024,
at 04:21 UTC, with the subsequent nine ephemeris files to form a complete three-day prediction for
the satellite with NORAD ID 44753. The residuals represent the distance between the corresponding
points in each comparison.

35 Ephemeris
| —— Nov 27, 2024, 12:32 UTC
30l — Nov27,2024,21:12 UTC
| —— Nov 28, 2024, 05:01 UTC
5] — Nov 28,2024, 12:59 UTC
E 7| — Nov 28, 2024, 20:55 UTC
52 ol — Nov29,2024,04:51 UTC h
El Nov 29, 2024, 13:00 UTC
D] — Nov29,2024,21:17 UTC
§ : Nov 30, 2024, 05:05 UTC
1.0
0.5
0.0

10 20 30 40 50 60 70
Time (hours from start)

Figure 35: Comparison of predictions between the first ephemeris file, starting on November 27, 2024,
at 05:05 UTC, with the subsequent nine ephemeris files to form a complete three-day prediction for
the satellite with NORAD ID 44921. The residuals represent the distance between the corresponding
points in each comparison.

52

Evolution of Position (x) for 44744 Ephemeris

—— Nov 27, 2024, 04:50 UTC
60001 —— Nov 27, 2024, 13:19 UTC
—— Nov 27, 2024, 21:05 UTC
—— Nov 28, 2024, 04:40 UTC
4000 —— Nov 28, 2024, 13:20 UTC
—— Nov 28, 2024, 21:09 UTC
£ 5000] —— Nov 29, 2024, 04:34 UTC
< Nov 29, 2024, 13:13 UTC
= Nov 29, 2024, 20:59 UTC
O
o
=
&8 —20001
[T
—4000
—-6000
Evolution of Position (y) for 44744
4000
g 20001
X
£
2 04
fe
o
S
@
&
—-2000
—4000
Evolution of Position (z) for 44744
6000
4000
£ 20001
YA
£
N,
C
°
S
3
a —2000+
—4000
—-6000
11-27 12 11-28 00 11-28 12 11-29 00 11-29 12 11-30 00
Date

Figure 36: Visualization of the satellite’s x, y, and z positional evolution over three days for NORAD
ID 44744. Since the plotted position is derived from a combination of ephemeris files, using only the
most accurate segments from each file, a discontinuity occurs at the transitions between files when
one ends, and another begins.

53

Evolution of Position (x) for 44748 Ephemeris

—— Nov 27, 2024, 04:54 UTC
60001 —— Nov 27, 2024, 13:11 UTC
—— Nov 27, 2024, 21:08 UTC
—— Nov 28, 2024, 05:05 UTC
4000 —— Nov 28, 2024, 13:13 UTC
—— Nov 28, 2024, 21:13 UTC
£ 5000] —— Nov 29, 2024, 04:59 UTC
< ~——— Nov 29, 2024, 13:06 UTC
= Nov 29, 2024, 21:14 UTC
= 01 Nov 30, 2024, 04:49 UTC
o !
=
&8 —20001
o
—4000
—-6000
Evolution of Position (y) for 44748
4000
g 20004
Y3
£
\.>/‘ 04
c
o
S
@
&
—2000
—4000
Evolution of Position (z) for 44748
6000
4000
£ 20001
YA
£
O
C
°
S
3
a —2000+
—4000
—-6000
11-27 12 11-28 00 11-28 12 11-29 00 11-29 12 11-30 00
Date

Figure 37: Visualization of the satellite’s x, y, and z positional evolution over three days for NORAD
ID 44748. Since the plotted position is derived from a combination of ephemeris files, using only the
most accurate segments from each file, a discontinuity occurs at the transitions between files when
one ends, and another begins.

54

Evolution of Position (x) for 44753 Ephemeris

—— Nov 27, 2024, 04:21 UTC
—— Nov 27, 2024, 12:50 UTC
40004 —— Nov 27, 2024, 20:46 UTC
—— Nov 28, 2024, 04:11 UTC
—— Nov 28, 2024, 13:13 UTC
5000 —— Nov 28, 2024, 20:51 UTC
£ —— Nov 29, 2024, 04:27 UTC
< Nov 29, 2024, 13:16 UTC
= Nov 29, 2024, 20:51 UTC
~ 04
c
o
S
i
o
& —2000 {
—4000
Evolution of Position (y) for 44753
6000 1
4000 1
£ 2000]
£
\.>/‘ 04
fe
o
=
8 —2000
[a
—4000 1
—6000
Evolution of Position (z) for 44753
6000
4000 1
£ 20001
YA
£
N]
C
°
S
i
& -2000
—4000
—-6000- - -
11-27 12 11-28 00 11-28 12 11-29 00 11-29 12 11-30 00
Date

Figure 38: Visualization of the satellite’s x, y, and z positional evolution over three days for NORAD
ID 44753. Since the plotted position is derived from a combination of ephemeris files, using only the
most accurate segments from each file, a discontinuity occurs at the transitions between files when
one ends, and another begins.

55

Evolution of Position (x) for 44921 Ephemeris

—— Nov 27, 2024, 05:05 UTC
4000 1 —— Nov 27, 2024, 12:32 UTC
—— Nov 27, 2024, 21:12 UTC
—— Nov 28, 2024, 05:01 UTC
—— Nov 28, 2024, 12:59 UTC
2000 1 —— Nov 28, 2024, 20:55 UTC
£ —— Nov 29, 2024, 04:51 UTC
< Nov 29, 2024, 13:00 UTC
= Nov 29, 2024, 21:17 UTC
~ 04
c
e
S
@
o
o
—2000-
—4000
Evolution of Position (y) for 44921
6000 1
4000 1
£ 2000/
£
2 04
c
k]
=
&4 -2000
[a
—4000
—6000
Evolution of Position (z) for 44921
4000 1
£ 20001
YA
£
N]
C
kel
S
3
@ —2000 {
—4000

11-27 12 11-28 00 11-28 12 11-29 00 11-29 12 11-30 00
Date

Figure 39: Visualization of the satellite’s x, y, and z positional evolution over three days for NORAD
ID 44921. Since the plotted position is derived from a combination of ephemeris files, using only the
most accurate segments from each file, a discontinuity occurs at the transitions between files when
one ends, and another begins.

56

Ephemeris
—— Nov 27, 2024, 04:50 UTC
—— Nov 27, 2024, 13:19 UTC
—— Nov 27, 2024, 21:05 UTC
—— Nov 28, 2024, 04:40 UTC
—— Nov 28, 2024, 13:20 UTC
—— Nov 28, 2024, 21:09 UTC
Nov 29, 2024, 04:34 UTC
Nov 29, 2024, 13:13 UTC
Nov 29, 2024, 20:59 UTC

Figure 40: Visualization of the satellite’s orbit evolution over three days for satellite with NORAD
ID 44744. To display the most accurate three-day trajectory, a combination of consecutive ephemeris
files was used, selecting only the most accurate segment from each ephemeris file, roughly the first 8
hours of each file.

Ephemeris
—— Nov 27, 2024, 04:54 UTC
—— Nov 27, 2024, 13:11 UTC
—— Nov 27, 2024, 21:08 UTC
—— Nov 28, 2024, 05:05 UTC
—— Nov 28, 2024, 13:13 UTC
—— Nov 28, 2024, 21:13 UTC
—— Nov 29, 2024, 04:59 UTC
Nov 29, 2024, 13:06 UTC
Nov 29, 2024, 21:14 UTC
Nov 30, 2024, 04:49 UTC

Figure 41: Visualization of the satellite’s orbit evolution over three days for satellite with NORAD
ID 44748. To display the most accurate three-day trajectory, a combination of consecutive ephemeris
files was used, selecting only the most accurate segment from each ephemeris file, roughly the first 8
hours of each file.

57

Ephemeris
—— Nov 27, 2024, 04:21 UTC
—— Nov 27, 2024, 12:50 UTC
—— Nov 27, 2024, 20:46 UTC
—— Nov 28, 2024, 04:11 UTC
—— Nov 28, 2024, 13:13 UTC
—— Nov 28, 2024, 20:51 UTC
Nov 29, 2024, 04:27 UTC
Nov 29, 2024, 13:16 UTC
Nov 29, 2024, 20:51 UTC

Figure 42: Visualization of the satellite’s orbit evolution over three days for satellite with NORAD
ID 44758. To display the most accurate three-day trajectory, a combination of consecutive ephemeris
files was used, selecting only the most accurate segment from each ephemeris file, roughly the first 8
hours of each file.

Ephemeris
—— Nov 27, 2024, 05:05 UTC
—— Nov 27, 2024, 12:32 UTC
—— Nov 27, 2024, 21:12 UTC
—— Nov 28, 2024, 05:01 UTC
—— Nov 28, 2024, 12:59 UTC
—— Nov 28, 2024, 20:55 UTC
Nov 29, 2024, 04:51 UTC
Nov 29, 2024, 13:00 UTC
Nov 29, 2024, 21:17 UTC

Figure 43: Visualization of the satellite’s orbit evolution over three days for satellite with NORAD
ID 44921. To display the most accurate three-day trajectory, a combination of consecutive ephemeris
files was used, selecting only the most accurate segment from each ephemeris file, roughly the first 8
hours of each file.

58

G Comparison of Orekit Propagation and Ephemerides

To validate Orekit’s propagator, physical parameters were optimized using Bayesian optimization.
The parameters included:

* Drag coefficient (Cp).

¢ Reflection coefficient (Cg).

* Satellite radius.

* Third-body gravitational forces (enabled/disabled).

The optimization minimized the Root Mean Square Error (RMSE) between Orekit’s propagated
trajectory and the ephemeris data over 1000 steps (16.6 hours). The RMSE was calculated as:

N
1
RMSE = N tz:; ||Tephemeris(t) - TOrekit(t) H2 (42)

G.1 Figures of Residuals and Orbits

Figures 49| to[52] present the propagated orbits compared to the ephemeris data. Oscillatory residuals
were observed in the z, y, and z components, in Figure@ increasing over time due to unmodeled
perturbative forces and numerical integration errors.

G.2 Residuals Analysis

In this section we present further analysis to validate the precision of the OrbitZoo propagation against
ephemeris data from Starlink. Residuals between real orbital data were computed by comparing
overlapping predictions from ephemeris files. The residual at each time step was calculated as the
Euclidean norm of the difference between the position vectors:

Residual(t) = ||7ephemeris (t) — Torekit (£) |- (43)
The following scenarios were evaluated to understand the discrepancies between predictions:

* Scenario 1: Full Propagation vs. Initial Ephemeris File. Residuals were computed for
the entire 1000-step propagation against the first ephemeris file.

* Scenario 2: Second Half Propagation vs. Second Ephemeris File. Residuals were
computed for the second half of the propagation (500 steps) against the second ephemeris
file.

* Scenario 3: Overlapping Region Between Consecutive Files. Residuals were computed
for the overlapping period (approximately 8 hours) between two consecutive ephemeris
files.

Figures [44] to 47| illustrate the residuals for these scenarios. The overlapping region provides the
most reliable assessment of the Starlink propagator’s accuracy, as it is based on the most recent
ephemeris data. These figures demonstrate the high accuracy of Orekit’s propagator when compared
to Starlink’s ephemeris predictions, particularly in the overlapping regions.

As mentioned earlier, the first 8 hours of these ephemeris files are the most relevant as they contain
the most up-to-date information at the time of their release. To assess the accuracy of our predictions
using Orekit, we must also evaluate the accuracy of Starlink’s own predictions. If Starlink’s error is
significant, potentially due to unforeseen events, our propagation may also exhibit a large error as a
result.

A propagation of 16.6 hours (1000 steps) was performed using Orekit, Figures 4] through 7 display
the residuals of this propagation for four different satellites.

The first case shown in the figures corresponds to the residuals between the propagated data and
the first ephemeris file. This case is labeled as " Orekit vs Ephemeris 1" because it uses the initial

59

ephemeris file for comparison. The propagation was initiated with the first position of this first
ephemeris file.

The second case shows the residuals between the same propagated trajectory and the second ephemeris
file, labeled as "ephemeris 2." This second file contains more up-to-date information compared to the
first ephemeris file, as it was released 8 hours later.

Finally, the third case examines the residuals between the two consecutive ephemeris files (ephemeris
1 and ephemeris 2). These residuals represent Starlink’s propagator’s error, as the discrepancies arise
solely from Starlink’s own predictions over the overlapping time frame. If the residual from this
third case is higher than the error in the first case, it means that Orekit’s propagation outperformed
Starlink’s.

As a final remark, multiple factors beyond unknown satellite characteristics can contribute to higher
RMSE values.

First, limited information on how Starlink produces its ephemeris data can lead to inconsistencies
when attempting to approximate the satellites’ trajectories. Researchers [44] suggest that Starlink
may use multiple propagators and even switch among them mid-propagation, introducing further
uncertainty into a single ephemeris file. Consequently, reconstructing each satellite’s real orbital
trajectory from Starlink’s ephemeris data may vary across different satellites.

Second, our propagation relies exclusively on the first recorded position and velocity from each
Starlink ephemeris file, under the assumption that this initial state has the least accumulated error. If
that first state is inaccurate, our predicted trajectory will be skewed, causing higher RMSE values.

Lastly, Starlink’s propagation benefits from detailed space weather information. As a result, some
of our trajectory predictions may happen to align more closely with real conditions than others,
contributing to variability in RMSE values. This same reasoning extends to the previously mentioned
satellite characteristics, as well as other forces acting on the satellite.

0.30{ —— Case 1: Orekit vs Ephemeris (1000 steps)
Case 2: Orekit vs Ephemeris 2 (491 steps)
—— Case 3: Ephemeris 1 vs Ephemeris 2 (491 steps)

°
N
o

Residual (km)
o
=
wv

0 2 4 6 8 10 12 14 16
Time (hours)

Figure 44: Visualization of the residuals in three different cases for NORAD ID 44744. The residuals
represent the distance between the corresponding points in each comparison. Case 1 (in blue) shows
the residuals between the ephemeris data from the first ephemeris file and the Orekit propagation over
the entire 1000 steps. Case 2 (in yellow) shows the residuals between the second ephemeris file and
the Orekit propagation over the later 491 steps. Case 3 (in green) shows the residuals between the
two consecutive ephemeris files during their overlapping region within the 1000 steps. The first and
second ephemeris files provide position data for different time spans, with the intersection capturing
the transition between them.

60

0.1751 —— Case 1: Orekit vs Ephemeris (1000 steps)
Case 2: Orekit vs Ephemeris 2 (503 steps) \
0.150{ —— Case 3: Ephemeris 1 vs Ephemeris 2 (503 steps)
r‘/ ‘
0.125 /
g
= 0.100
©
3
‘% 0.075
(9]
4
0.050
0.025
0.000 AN~

0 2 4 6 8 10 12 14 16
Time (hours)

Figure 45: Visualization of the residuals in three different cases for NORAD ID 44753. The residuals
represent the distance between the corresponding points in each comparison. Case 1 (in blue) shows
the residuals between the ephemeris data from the first ephemeris file and the Orekit propagation over
the entire 1000 steps. Case 2 (in yellow) shows the residuals between the second ephemeris file and
the Orekit propagation over the later 503 steps. Case 3 (in green) shows the residuals between the
two consecutive ephemeris files during their overlapping region within the 1000 steps. The first and
second ephemeris files provide position data for different time spans, with the intersection capturing
the transition between them.

2.00
—— Case 1: Orekit vs Ephemeris (1000 steps)
1.75 Case 2: Orekit vs Ephemeris 2 (491 steps)
—— Case 3: Ephemeris 1 vs Ephemeris 2 (491 steps)
1.50
'é 1.25
<
© 1.00
>
o
ors
0.50
0.25 U W/\V\/ \/
0.00
0 2 4 6 8 10 12 14 16
Time (hours)

Figure 46: Visualization of the residuals in three different cases for NORAD ID 44923. The residuals
represent the distance between the corresponding points in each comparison. Case 1 (in blue) shows
the residuals between the ephemeris data from the first ephemeris file and the Orekit propagation over
the entire 1000 steps. Case 2 (in yellow) shows the residuals between the second ephemeris file and
the Orekit propagation over the later 491 steps. Case 3 (in green) shows the residuals between the
two consecutive ephemeris files during their overlapping region within the 1000 steps. The first and
second ephemeris files provide position data for different time spans, with the intersection capturing
the transition between them.

61

—— Case 1: Orekit vs Ephemeris (1000 steps)
Case 2: Orekit vs Ephemeris 2 (553 steps)
—— Case 3: Ephemeris 1 vs Ephemeris 2 (553 steps)

w
o

N N
o w

Residual (km)
=
w

1.0
0.5
0.0
0 2 4 6 8 10 12 14 16
Time (hours)

Figure 47: Visualization of the residuals in three different cases for NORAD ID 44921. The residuals
represent the distance between the corresponding points in each comparison. Case 1 (in blue) shows
the residuals between the ephemeris data from the first ephemeris file and the Orekit propagation over
the entire 1000 steps. Case 2 (in yellow) shows the residuals between the second ephemeris file and
the Orekit propagation over the later 553 steps. Case 3 (in green) shows the residuals between the
two consecutive ephemeris files during their overlapping region within the 1000 steps. The first and

second ephemeris files provide position data for different time spans, with the intersection capturing
the transition between them.

081 —— Mean X Residual
o6l —— Mean Y Residual
| —— Mean Z Residual
0.41
IS
2 0.2]
©
=)
B 0.0
(%]
()
@
—0.21
_0.4,
—0.61
2 a 6 8 10 12 14 16
Time (hours)

Figure 48: Visualization of the mean position residuals between the ephemeris data and Orekit
propagation over 1000 steps for the satellites with NORAD ID 44744, 44748, 44753 and 44921.

62

o
=3
S

w
3
Z (zoomed)

200
1900

6200 - a’

O
X (56400 NG
Domed)

6608400

Figure 49: Comparison of the propagated orbits and the ephemeris data, for NORAD ID 44744,
illustrating the overlap between the two. The cube in the left plot indicates the approximated region
that is magnified in the right plot for a closer view. The Orekit propagation is represented by a solid
red line, while the ephemeris data is shown as a dashed blue line.

©
1=
S

N
g
Z (zoomed)

600
—400 ~2300

6150

X (58425
oO’"ed

4000
4000 6000 6708800
Figure 50: Comparison of the propagated orbits and the ephemeris data, for NORAD ID 44748,
illustrating the overlap between the two. The cube in the left plot indicates the approximated region
that is magnified in the right plot for a closer view. The Orekit propagation is represented by a solid
red line, while the ephemeris data is shown as a dashed blue line.

~
o
S

=
Z
Z (zoomed)

200
—5500

N
3400 &

X (53600 ¢
Oo, <
'776‘0') 3806100

Figure 51: Comparison of the propagated orbits and the ephemeris data, for NORAD ID 44753,
illustrating the overlap between the two. The cube in the left plot indicates the region approximated
that is magnified in the right plot for a closer view. The Orekit propagation is represented by a solid
red line, while the ephemeris data is shown as a dashed blue line.

63

1<
S

X (52300
O
0"79(1)

2606400

Figure 52: Comparison of the propagated orbits and the ephemeris data, for NORAD ID 44921
illustrating the overlap between the two. The cube in the left plot indicates the region approximated
that is magnified in the right plot for a closer view. The Orekit propagation is represented by a solid

red line, while the ephemeris data is shown as a dashed blue line.

64

G.3 Applicability Beyond Starlink

Since no RL environments offering quantitative propagation analysis were found, the evaluation
was extended beyond Starlink data. The Root Mean Squared Error, expressed in meters, was
compared over 16 hours of propagation between OrbitZoo (via Orekit) and real satellite data from
multiple sources, including OneWeb, as shown in Table 53] Additional datasets were obtained
from the EUROLAS Data Center, encompassing organizations such as the Deutsches Geoditisches
Forschungsinstitut (DGFI), the Joint Center for Earth Systems Technology (JCET), and the NERC
Space Geodesy Facility (NSGF).

Source Satellite ID RMSE (m)

OneWeb 19 39459
OneWeb 1 2540.5
OneWeb 20 554.0
OneWeb 28 3360.3
OneWeb 14 2007.7
OneWeb 16 1581.9
OneWeb 18 5745.6
OneWeb 22 4797.2
OneWeb 23 3067.1
OneWeb 24 247.5
OneWeb 42 1050.8
OneWeb 39 1552.8
OneWeb 30 5653.4
OneWeb 21 4228.9
OneWeb 17 3648.1
OneWeb 15 1526.9
OneWeb 46 1095.0
OneWeb 48 4606.5
OneWeb 20 702.8
OneWeb 49 327.1
OneWeb 57 410.4
DGFI ajisai 1801.2
DGFI lageosl 4509.7
DGFI lageos2 3531.3
JCET etalonl 2096.1
JCET etalon2 4624.4
NSGF lares 1553.1
NSGF lares2 5006.4
NSGF larets 1169.8
NSGF starlette 1573.2
NSGF stella 826.6

Figure 53: Orbital propagation errors (RMSE)
between the Orekit propagation and reference
satellites from different organizations.

For some of the tested satellites in Table[53] OrbitZoo maintains errors below 1 km after 16 hours of
propagation. We note that satellites outside the OneWeb constellation experience corrective forces
(e.g., empirical accelerations) not modeled by Orekit, which may explain some discrepancies.

H Broader Impacts

This work advances RL research in high-dimensional, discrete and continuous control domains
relevant to space operations, incorporating perturbative forces, model uncertainties, and ephemeris-
based validation. Notably, OrbitZoo includes support for federated learning, enabling decentralized
training across multiple agents or environments while preserving data locality, an important step
toward scalable and privacy-aware coordination in space missions.

65

Potential positive impacts include increased autonomy and efficiency in satellite operations, reduced
reliance on ground-based control, and more resilient responses to unexpected events like debris
conjunctions. OrbitZoo can accelerate the development of safe, adaptive control strategies for real-
world missions, and democratize access to space-focused RL research by offering an open, extensible
platform.

A central challenge for deployment is the sim-to-real transfer — the reliable application of policies
trained in simulation to real spacecraft. Closing this gap requires models that capture orbital
perturbations, actuator limits, and sensor noise while remaining computationally efficient for on-board
use. Real-time operation further demands low-latency inference and synchronization with existing
flight software. Integrating RL-based control with established attitude and orbit control systems,
telemetry pipelines, and ground operations is crucial for achieving certifiable autonomy.

Potential negative impacts include over-reliance on black-box models that may behave unpredictably
in safety-critical situations. The deployment of learned policies without robust interpretability or
certification frameworks could lead to unintended behaviors or mission failures. Additionally,
advances in autonomous maneuvering might be misused in military or competitive commercial
contexts without adequate regulatory oversight.

Our experiments demonstrate that policies trained in OrbitZoo can closely replicate real-world satel-
lite behavior, including Starlink trajectories, positioning the platform as a benchmark for trustworthy
and autonomous space systems.

66

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper presents OrbitZoo, a multi-agent reinforcement learning environ-
ment built on the high-fidelity Orekit library, designed to enable realistic and accurate orbital
simulations. It addresses key challenges in applying RL to orbital dynamics — such as the
lack of standardization, oversimplified models, and limited reproducibility — and highlights
how OrbitZoo overcomes these limitations by offering a robust, flexible, and validated
platform. The environment is compared against other publicly available frameworks, and
its capabilities are demonstrated across several representative use cases, including collision
avoidance, station-keeping, orbital transfers, and multi-agent missions using both indepen-
dent and federated learning and several RL algorithms. These experiments align closely
with the abstract’s claims. Additionally, the paper includes a validation against real Starlink
orbital data, showing a MAPE of 0.16%, which substantiates the claim of high-fidelity
simulation.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of the developed framework in terms of environment
configurability and computational performance. For each experiment, we evaluate the
specific challenges encountered and outline potential directions for future improvement.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

67

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: There are no theoretical results presented in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In addition to sharing all the code used to run the experiments, we also
provide the trained models. Furthermore, the appendix includes a detailed description of the
environment setup and the specific configurations used in each experiment, complementing
the provided code and facilitating full reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

68

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to all code developed for this work, including the
OrbitZoo environment and all experiment scripts. To facilitate understanding and usage
of the environment, a comprehensive README.md file is also included. The code can be
accessed here: code repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main paper and appendix contain, for each experiment, detailed descrip-
tions of the environment setup, the specific configuration that was used, training evolution,
and test results. To further support clarity and reproducibility, the accompanying code
contains all remaining implementation details.

Guidelines:

* The answer NA means that the paper does not include experiments.

69

https://anonymous.4open.science/r/orbit-zoo-EB4E
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Regarding the computational performance of OrbitZoo, we report 1-sigma error
margins to capture variability in execution time. Specifically, we evaluate how increasing
the number of bodies and enabling realistic force models affect simulation speed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a dedicated section on the computational performance of the
environment, analyzing how it scales with the addition of bodies and perturbative forces.
From these results, along with training data, one can infer the computational resources
required for each experiment.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

70

https://neurips.cc/public/EthicsGuidelines

10.

11.

Answer: [Yes]

Justification: Our research complies with the NeurIPS Code of Ethics by using only public
or simulated orbital data, ensuring privacy and legal compliance. OrbitZoo is only designed
for scientific applications and avoids use cases involving surveillance, weaponization, or
deception. All datasets and models are documented, licensed, and shared to support repro-
ducibility and appropriate use. We address environmental concerns by optimizing simulation
efficiency and limiting computational overhead. No sensitive personal data is used, and our
work promotes fairness by enabling flexible evaluation across diverse mission profiles.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a dedicated section on the broader impacts of our research,
outlining both the potential benefits — such as advancing autonomous space operations — and
possible risks, including the lack of interpretability of learned strategies and policy misuse.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve the release of high-risk models or datasets. All
assets used are publicly available and widely used in the research community. No additional
safeguards were necessary.

Guidelines:

71

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In this paper, the assets used include OrbitZoo’s interface, Starlink ephemeris
data, and publicly available implementations of reinforcement learning algorithms. All
assets are openly accessible and have been properly cited throughout the paper.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce the OrbitZoo environment as a new asset, accompanied by spe-
cific use cases and reinforcement learning implementations. This environment is thoroughly
documented both in the repository and throughout this paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

72

paperswithcode.com/datasets

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve human subjects and is entirely focused on a
multi-agent reinforcement learning environment applied to orbital dynamics.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our research does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are not a component of our research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

73

https://neurips.cc/Conferences/2025/LLM

	OrbitZoo: A Framework for Multi-Agent RL in Orbital Dynamics
	Architecture and Design
	Use Cases

	Orbital Mechanics
	Coordinate Systems
	Thrust Representation
	Propagation

	Formal Model Definitions
	Double Deep Q-Network (DDQN)
	Deep Deterministic Policy Gradient (DDPG)
	Proximal Policy Optimization (PPO)
	Generalized Advantage Estimation (GAE)
	Federated Learning (FL)

	Computational Performance
	Hardware Specifications
	Scalability
	Parallelization
	Challenges and Future Improvements

	Experiments
	Learning Algorithms and Architectures
	OrbitZoo vs. SOTA: Kolosa Comparison
	OrbitZoo vs. SOTA: Herrera Comparison
	Hohmann Maneuver
	Chase Target
	Collision Avoidance
	GEO Constellation

	Exploratory Data Analysis of Starlink open data
	Comparison of Orekit Propagation and Ephemerides
	Figures of Residuals and Orbits
	Residuals Analysis
	Applicability Beyond Starlink

	Broader Impacts

