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Abstract

Vision-language models like CLIP demonstrate impressive zero-shot generalization
but remain highly vulnerable to adversarial attacks. In this work, we propose
Confidence-Aware Weighting (CAW) to enhance zero-shot robustness in vision-
language models. CAW consists of two components: (1) a Confidence-Aware loss
that prioritizes uncertain adversarial examples by scaling the KL divergence be-
tween clean and adversarial predictions, and (2) a feature alignment regularization
that preserves semantic consistency by minimizing the distance between frozen and
fine-tuned image encoder features on adversarial inputs. These components work
jointly to improve both clean and robust accuracy without sacrificing generalization.
Extensive experiments on TinyImageNet and 14 additional datasets show that CAW
outperforms recent methods such as PMG-AFT and TGA-ZSR under strong attacks
like AutoAttack, while using less memory.

1 Introduction

Traditional deep learning approaches rely on pre-training followed by fine-tuning with labeled data
for each downstream task. The emergence of GPT-3 [1] in the natural language processing field
has popularized models with zero-shot capability, where models trained on diverse internet-scale
data can be applied to a wide range of tasks and unseen domains. In the multimodal setting, CLIP
[2] employs a contrastive loss [3, 4] to align matching image–text pairs in a shared embedding
space while separating mismatched pairs. This enables the model to acquire broad vision–language
knowledge and achieve strong performance across various tasks, including image classification [5, 6],
semantic segmentation [7], object detection [8, 9], image–text retrieval [10], and visual question
answering [11]. Although CLIP demonstrates strong generalization ability, it remains vulnerable
to small, imperceptible perturbations that leave the image visually unchanged to humans but cause
significant shifts in predictions [12]. Adversarial training [13] is among the most effective approaches
for improving robustness against strong attacks, typically training from scratch with both adversarial
and clean examples. However, when applied to large-scale models like CLIP, adversarial training must
be adapted to prevent overfitting and the forgetting of pre-trained knowledge, while still enhancing
robustness [14, 15, 16].

The TeCoA [16] method was the first to study the zero-shot robustness of large-scale vision-language
models. It showed the importance of using text supervision with a contrastive adversarial loss while
applying different adaptation approaches [17]. Later, the PMG-AFT [18] method added new terms to
the previous loss function to enhance robustness while causing a smaller decrease in performance
on clean data. More recently, TGA-ZSR [19] introduced a method that improves both robustness
and clean accuracy, along with the interpretability of attacks. This approach used text supervision
with semantic information instead of relying on the model’s output probabilities. Despite their
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effectiveness, these methods either need high memory usage, or still struggle to maintain robust
accuracy under strong attacks.

We propose a novel adversarial fine-tuning loss named Confidence-Aware Weighting (CAW) that
improves the robustness of a pre-trained CLIP model while preserving clean accuracy and reducing
memory usage. This method introduces two key components designed to improve robustness and
maintain generalization. The first is a Confidence-Aware term, which weights the KL divergence
between clean and adversarial prediction distributions of the fine-tuned and frozen pre-trained
CLIP models, ensuring that training focuses more on hard adversarial examples. The second is a
regularization term, which matches adversarial image features from the fine-tuned image encoder
with those from the frozen pre-trained encoder, helping retain semantic knowledge from the pre-
trained model and reducing overfitting. Experiments on TinyImageNet and 14 zero-shot datasets
(see Appendix B for details) demonstrate state-of-the-art performance under AutoAttack, surpassing
both PMG-AFT and TGA-ZSR in robust accuracy. Under PGD-100 and CW, the proposed method
outperforms PMG-AFT in both robust and clean accuracy, while maintaining lower memory usage
than both baselines.

The key contributions of this work are:

• Propose CAW to improve zero-shot robustness by emphasizing challenging samples.
• Achieves higher robust accuracy than PMG-AFT and TGA-ZSR under AutoAttack.
• Improves clean and robust accuracy over PMG-AFT under PGD-100 and CW.
• Requires less memory than PMG-AFT and TGA-ZSR.

2 Methodology
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Figure 1: Overview of Confidence-Aware Weighting (CAW) method. ⊙ means matrix inner product.

2.1 Preliminaries and Problem Setup

In this work, we employ CLIP [2] to enhance zero-shot robustness in classification tasks. CLIP has
two encoders that learn a joint visual–text feature space. At inference, the predicted label is the one
that text embedding has the highest cosine similarity with the image embedding. Following prior
works [19, 18], we fine-tune the model using the cross-entropy loss:

LCE(x, t, y) = −Ei,j

[
yij log

exp(cos(f(x)i, g(t)j)/τ)∑
k exp(cos(f(x)i, g(t)k)/τ)

]
(1)

where f(x) and g(t) denote the image and text embeddings, τ is the temperature parameter, and cos
is the cosine similarity. The label yij is set to 1 for positive image-text pairs and 0 otherwise.
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2.1.1 Adversarial Attacks

Deep learning models are typically trained and evaluated on clean data; however, small, imperceptible
perturbations can cause significant prediction errors. Such perturbations can be generated using attack
methods including PGD [20], AutoAttack [21], and CW [22]. PGD is an iterative attack that applies
noise over multiple steps, producing stronger adversarial examples xa than single-step methods such
as FGSM [12]. It seeks perturbations that maximize the loss while keeping the perturbed input within
a specified neighborhood of the clean example:

xa+1 = Πx+S (xa + ε · sign (∇xa
L(xa, t, y))) (2)

where L denotes the loss function, x is the clean input, ε is the perturbation bound under the p-norm,
and ∇xL is the gradient direction that increases the loss. The set S represents the allowed changes
that the adversary can make to the input.

2.1.2 Adversarial Training

By optimizing over adversarially perturbed inputs, adversarial fine-tuning enables models to learn
more robust features through a min-max objective. In some cases, including our method, the objective
function used to craft adversarial examples differs from the one used to optimize the model parameters.
Specifically, in the inner loop (Equation 3), adversarial examples xa are generated by maximizing the
loss L (i.e., LCE, as defined in Equation 1 of our method), which is optimized using the PGD update
rule (Equation 2). In the outer loop (Equation 4), the model parameters θ are updated by minimizing
a separate loss function J (i.e., Ltotal, as defined in Equation 10 of our method).

xa = argmax
x

L(x, t, y) (3)

θ⋆ = argmin
θ

Jθ(xa, t, y) (4)

2.2 Method

Building on previous studies [16, 18, 19], we aim to preserve the generalizable and robust features
learned by the pre-trained CLIP model during fine-tuning with a new loss function. As illustrated
in Figure 1, we use both the original and target image encoders to retain prior knowledge while
improving robustness. Although the TeCoA method [16] introduces a contrastive loss using adver-
sarial examples with text supervision, it remains insufficient for jointly improving clean and robust
accuracy. To address this limitation, we propose two additional loss terms that enhance robustness
while maintaining generalization to unseen tasks.

Confidence-Aware Term We propose Confidence-Aware loss that focuses on challenging samples
by emphasizing hard adversarial examples, i.e., those where the model is less confident in the
correct class, while down-weighting easier ones. In contrast to prior methods that treat all samples
equally in the loss function, our approach explicitly targets the inherent weaknesses in adversarial
training by assigning more weight to samples that are more easily fooled by adversaries. This idea
is inspired by the ARoW method [23], which prioritizes vulnerable samples to enhance adversarial
robustness. However, our formulation significantly differs in both design and scope, as it is tailored
to the unique challenges of vision-language models and zero-shot generalization. Specifically, we
define a KL-based alignment between the frozen CLIP model’s predictions on clean images, P clean,
and the fine-tuned model’s predictions on adversarial images, P adv. This alignment allows the
model to retain semantic knowledge from pre-training while learning to handle difficult adversarial
examples. Unlike ARoW, which uses the reverse KL divergence (KL(P clean∥P adv)), we place the
adversarial distribution as the first argument, i.e., KL(P adv∥P clean), which showed better results in
our experiments. The distributions P adv and P clean are defined as:

P adv = softmax(f(xadv)tar · g(t)⊤), (5)

P clean = softmax(f(xclean)ori · g(t)⊤), (6)
where f(·) and g(·) denote the image and text encoder embeddings, and the dot operator represents
the matrix inner product between these embeddings. The subscripts tar and ori refer to features
from the fine-tuned and frozen image encoders. The element P adv

i,yi
denotes the predicted probability

for the true label yi under the adversarial input xadv
i , as defined in Equation 7:

P adv
i,yi

=
[
softmax

(
f(xadv

i ) · g(t)⊤
)]

yi
. (7)
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Table 1: Zero-shot robust accuracy under AutoAttack with ϵ = 1/255 on 15 datasets. We highlight
the optimal accuracy in bold and underline the second-best result.
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CAW 50.52 47.35 26.35 74.27 19.64 20.50 41.89 21.61 16.80 11.11 2.52 62.79 47.27 12.23 47.81 33.51

To incorporate this into training, we minimize the KL divergence between P adv and P clean, scaled
by 1 − P adv

i,yi
to give greater importance to uncertain adversarial examples. This results in the

Confidence-Aware loss:

LCA =
1

N

N∑
i=1

[
KL

(
P adv
i ∥P clean

i

) (
1− P adv

i,yi

)]
. (8)

Regularization Term We introduce a regularization loss that encourages consistency between the
image encoder features of the frozen model, f(·)ori, and the fine-tuned model, f(·)tar, for adversarial
inputs. This loss is computed before the text alignment stage, where the image features contain
rich semantic information about the visual input. By aligning these features using the ℓ2 distance
metric, the model retains the pre-trained CLIP knowledge and reduces the risk of overfitting during
adversarial fine-tuning. The regularization loss is defined as:

LReg =
1

N

N∑
i=0

∥f(xadv)tar − f(xadv)ori∥2 . (9)

The overall loss function is formulated as follows:

Ltotal = LCE + α · LCA + β · LReg. (10)

3 Experiments

AutoAttack As shown in Table 1, our method outperforms all compared approaches under AutoAt-
tack. On average, it achieves a 2% improvement in robust accuracy, demonstrating that the proposed
training strategy learns transferable and more robust features resistant to this stronger attack. The
model is trained with PGD-2 using a perturbation bound of ϵ = 1/255 and evaluated on AutoAttack
with the same perturbation bound. See Appendix A for related work, Appendix B for implementation
details and datasets, Appendix C for additional experiments and ablation studies, and Appendix D for
limitations and broader impact.

4 Conclusion

In this work, we demonstrate that emphasizing vulnerable samples during training improves the
zero-shot robustness of CLIP. To this end, we introduce a CAW method that encourages the model to
focus on hard adversarial examples, enabling the learning of more robust and transferable features.
Experimental results show that our method outperforms prior approaches in both clean and robust
accuracy across diverse domains under strong attacks, while requiring less memory, which is important
for large-scale models. For future work, we aim to design a loss function that combines the idea
of weighting challenging samples with attention mechanisms, which are essential components of
large-scale models, to achieve better robustness against various attacks. Additionally, improving
model interpretability by analyzing the features that contribute to robustness on difficult examples
may provide deeper insights into building more resilient vision-language models.
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Appendix

A Related Work

Adversarial robustness Deep neural networks have achieved remarkable performance on complex
tasks, often producing highly confident predictions. However, small, imperceptible perturbations
to the input can easily mislead them, resulting in incorrect outputs [20, 24, 25, 12, 26]. To address
this vulnerability, various techniques have been proposed, including distillation [27], model com-
pression [28], activation pruning [29], gradient regularization [30, 31] and adversarial training [20].
Adversarial training remains the most effective approach, augmenting adversarial examples alongside
clean data during training to improve robustness while maintaining generalization [32]. Methods
such as TRADES [15] balance clean accuracy and robustness by combining standard classification
loss with a robustness regularization term. MART [33] highlights the importance of misclassified
examples for improving robustness, while ARoW [23] focuses on the most vulnerable samples to
enhance both generalization and robustness. HAT [34] mitigates over-robustness by introducing
helper examples, arguing that pushing decision boundaries too far can harm clean accuracy.

Zero-shot Adversarial Robustness for VLMs The introduction of the attention mechanism [35],
combined with advances in GPUs and access to large-scale unlabeled internet data, enabled the
development of language models like BERT [36], GPT-2 [37], and GPT-3 [1], marking a new era in
deep learning. GPT-3’s emergence brought zero-shot capabilities, allowing knowledge transfer to
unseen domains and tasks. Following this trend, vision-language models (VLMs) such as BLIP [38],
CLIP [2] and ALIGN [39] incorporate textual information with images to improve performance
across diverse tasks rather than a single downstream application. Despite their generalization ability,
VLMs remain vulnerable to imperceptible perturbations in the input, which can cause incorrect
predictions[14]. Recent research has explored enhancing VLM robustness. TeCoA [16] introduced
the use of text knowledge for model alignment with adversarial examples through contrastive
loss. PMG-AFT [18] and TGA-ZSR [19] extended this approach by adding terms such as KL
divergence or semantic alignment with text embeddings to improve both clean and robust accuracy.
Another method [40] extracts normalized semantic feature embeddings (anchors) for each class label
from a CLIP text encoder and uses them to guide the image encoder during adversarial training,
enabling robustness transfer to unseen categories. FARE approach [41] aligns adversarial example
features directly with the embeddings of a pre-trained CLIP model without requiring labels. Another
related work [42] leverages not only the final adversarial examples from the PGD process but also
intermediate samples along the adversarial trajectory for training. Our work focuses on challenging
adversarial examples to guide the model in learning more robust and generalizable features.

B Datasets and Implementation

Datasets To evaluate both clean and adversarial performance, we conduct extensive experiments
on a diverse collection of image classification datasets. Our primary model, a pre-trained CLIP, is
fine-tuned on the TinyImageNet [43] dataset. Evaluation is then performed not only on TinyImageNet
but also on 14 additional datasets spanning five distinct domains. These include general object
recognition benchmarks such as CIFAR-10 [44], CIFAR-100 [44], STL-10 [45], Caltech-101 [46],
and Caltech-256 [47]; fine-grained classification datasets like OxfordPets [48], Flowers102 [49],
FGVCAircraft [50], and StanfordCars [51]; scene recognition via SUN397 [52]; domain-specific
datasets including Food101 [53], EuroSAT [54], and DTD [55]; and one medical imaging dataset,
PCAM [56].

Implementation Details For implementation, we use the ViT-B/32 architecture as the backbone for
the CLIP model and fine-tune it on adversarial examples generated from the TinyImageNet dataset.
Adversarial examples for both training and evaluation are produced using PGD attacks under the ℓ∞
norm. Training updates all image encoder parameters using SGD with a learning rate of 1× 10−4,
momentum of 0.9, weight decay of 0, and a batch size of 128. All experiments use PGD with 2
iterations and a perturbation bound of 1/255. For evaluation, we employ PGD-100, AutoAttack, and
CW, each with a step size equal to the perturbation bound. We set the hyperparameters α = 6 and
β = 3 to balance clean and robust accuracy. To ensure fair comparison, we adopt settings consistent
with prior studies, which also used an RTX 3090 GPU.
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Table 2: Zero-shot robust accuracy under PGD-100 with ϵ = 1/255 on 15 datasets. All methods are
fine-tuned on TinyImageNet using PGD-2.
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CLIP 0.88 2.42 0.26 26.11 1.00 6.60 3.84 1.19 2.02 0.05 0.00 19.88 12.60 0.20 0.11 5.14
FT-Clean 13.55 19.92 4.94 40.00 0.82 2.64 2.40 0.68 2.66 0.05 0.03 14.95 9.69 0.09 1.32 7.58
FT-Adv. 51.59 38.58 21.28 69.55 17.60 12.55 34.97 19.92 15.90 11.95 1.83 50.73 48.48 8.42 48.88 30.15
TeCoA 37.57 30.30 17.53 69.17 19.70 14.76 36.44 22.46 17.45 12.14 1.62 55.86 41.89 8.79 47.39 28.87
FARE 23.88 21.25 10.72 59.59 8.30 10.97 24.56 15.48 10.96 0.14 0.84 45.96 34.35 4.38 10.17 18.77
PMG-AFT 47.11 46.01 25.83 73.92 22.21 19.58 41.62 23.45 15.05 12.54 1.98 62.42 45.99 11.72 48.64 33.20

CAW 52.16 48.21 27.99 74.83 21.33 22.72 43.41 24.06 18.24 11.93 3.51 63.99 48.68 14.68 47.92 34.91

Table 3: Zero-shot clean accuracy under PGD-100 with ϵ = 1/255 on 15 datasets. All methods are
fine-tuned on TinyImageNet using PGD-2.
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CLIP 57.26 88.06 60.45 97.04 57.26 83.89 87.41 65.47 40.69 42.59 20.25 85.34 81.73 52.02 52.09 64.77
FT-Clean 79.04 84.55 54.25 93.78 46.80 80.98 46.33 30.32 24.39 9.30 9.30 78.69 70.81 31.15 47.89 52.51
FT-Adv 73.83 68.96 39.69 86.89 33.37 27.74 60.10 33.45 13.26 16.49 4.86 67.41 57.72 18.11 49.91 43.45
TeCoA 63.97 66.14 36.74 87.24 40.54 35.11 66.15 33.25 13.75 17.13 6.75 64.63 56.20 25.65 49.01 44.15
FARE 77.54 87.58 62.80 94.33 49.91 70.02 81.47 57.10 36.33 22.69 14.19 84.04 77.50 44.35 46.07 60.39
PMG-AFT 67.11 74.62 44.68 88.85 37.42 37.47 66.34 35.66 21.17 17.76 4.71 76.70 61.96 25.21 49.60 47.28

CAW 75.64 82.96 55.49 91.36 41.96 50.87 71.02 42.15 28.56 23.42 9.42 80.66 67.94 34.88 49.98 53.75

C Ablation studies

To evaluate our method, we compare against the reported results of CLIP, FT-Clean, FT-Adv, TeCoA,
FARE [41], PMG-AFT, and TGA-ZSR, as presented in the TGA-ZSR paper [19]. FT-Clean and
FT-Adv are fine-tuned using clean and adversarial examples, both with contrastive loss.

PGD and CW Attack As shown in Table 2, our method outperforms PMG-AFT in robust accuracy
on most datasets, achieving a higher average performance. Table 3 further demonstrates that our
method surpasses PMG-AFT in clean accuracy across all datasets. Based on these results, our method
performs well on both clean and adversarial samples, showing competitive performance compared to
other approaches. Table 4 indicates that our approach achieves better results than PMG-AFT under
the CW attack. We compare only with CLIP and PMG-AFT because these are the only methods
reported in the paper [19]. The model is trained with PGD-2 using a perturbation bound of ϵ = 1/255
and evaluated on PGD-100 and CW with the same bound.

Effect of Attack Strength Table 5 presents the average robust accuracy under PGD-100 with
perturbation bounds of ϵ = 1/255, 2/255, and 4/255 across 15 datasets. Our method outperforms
PMG-AFT on average and surpasses other baseline methods across various attack strengths.

Analyzing the Effect of Each Loss Component As shown in Table 6, the LCE row reports the
average clean and robust accuracy across all 15 datasets under PGD-100 with ϵ = 1/255. The LCA

row presents the results after adding this component to the previous loss term. Finally, the LReg

row reflects the performance using the full loss function. These results demonstrate that our method
improves both robustness and clean accuracy on average, compared to the standard CLIP loss.

Analysis of Computational Cost and Memory Usage As shown in Table 7, our method uses less
memory than both PMG-AFT and TGA-ZSR while achieving better accuracy under stronger attacks,
as discussed in previous sections. It also maintains a training time comparable to the aforementioned
approaches.
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Table 4: Zero-shot robust accuracy under CW attack on 15 datasets. All methods are fine-tuned on
TinyImageNet using PGD-2.
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CLIP 0.21 0.36 0.10 10.59 1.16 0.82 1.23 1.09 2.18 0.01 0.00 13.50 7.36 2.36 0.07 2.45
PMG-AFT 44.59 44.86 24.15 74.11 19.99 17.33 39.88 20.95 13.51 12.09 1.47 60.99 44.46 10.57 48.59 32.36

CAW 51.7 47.68 26.80 74.62 20.46 21.52 43.79 22.29 16.22 11.60 3.51 63.48 47.91 14.09 47.71 34.87

Table 5: Zero-shot robust accuracy under PGD-100 with ϵ = 1/255, 2/255 and 4/255 on 15 datasets.
All methods are fine-tuned on TinyImageNet using PGD-2.
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CLIP 0.64 2.15 0.12 20.35 0.52 5.94 2.97 0.72 0.71 0.03 0.00 14.28 9.18 0.11 0.04 3.65
FT-Clean 12.44 18.80 4.65 37.16 0.43 0.52 2.03 0.41 0.92 0.02 0.01 13.02 7.96 0.03 0.44 6.21
FT-Adv 29.33 18.10 11.06 45.13 8.58 5.65 16.45 10.15 9.72 9.82 0.83 33.43 24.14 3.80 38.06 17.07
TeCoA 18.17 12.78 8.12 39.87 8.53 6.12 11.04 10.07 10.07 9.88 0.63 34.94 23.92 3.45 33.20 15.41
FARE 12.41 9.09 4.23 33.72 2.98 4.75 9.67 5.52 4.26 0.25 0.28 23.97 16.95 1.48 3.43 8.54
PMG-AFT 25.30 21.71 13.29 47.69 11.42 9.49 20.68 12.86 9.45 10.65 0.90 41.86 28.92 3.72 37.88 19.27

CAW 31.15 22.49 13.67 47.99 9.87 9.88 20.16 12.14 10.90 7.05 1.43 41.33 29.06 6.03 29.88 19.53

D Discussion

Limitations Our method focuses solely on the CLIP model and has not been tested on other vision-
language models under adversarial attacks. In addition, it only addresses adversarial perturbations
in the image encoder, whereas the text encoder is also a crucial component of VLMs and should be
considered to improve overall robustness.

Broder impact Large-scale models like VLMs have demonstrated strong zero-shot capabilities,
performing well across diverse tasks and unseen domains. However, their performance under
adversarial perturbations remains limited, which is an important and active area of research. As these
models are increasingly deployed in real-world applications, ensuring their robustness and privacy
against adversarial attacks becomes critical. Our method aims to improve the zero-shot robustness of
CLIP under such attacks, contributing to the development of safer and more reliable vision-language
systems.

Table 6: Average zero-shot robust and clean ac-
curacy after adding each component, evaluated
under PGD-100 with ϵ = 1/255 on 15 datasets.
All methods are fine-tuned on TinyImageNet us-
ing PGD-2.

Robust Clean Average

CLIP 4.90 64.42 34.66

LCE 30.39 45.58 37.98
+LCA 33.64 51.50 42.57
+LReg 34.92 53.65 44.28

Table 7: Memory Consumption and Training
Time

Methods Train memory
usage

Train time
(per epoch / batch)

CLIP 0Mb 0s / 0s
TeCoA 12,873Mb 512s / 0.65s
CAW 15,986Mb 842s / 1.08s
PMG-AFT 18,449Mb 828s / 1.06s
TGA-ZSR 21,227Mb 885s / 1.13s
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions of our method are clearly explained in both the introduction
and abstract, and they are supported by experiments on 15 zero-shot datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method in Section D of the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work is entirely empirical and does not include theoretical assumptions or
formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our method is described in full detail and step-by-step in Section 2.2, and
comprehensive implementation details are provided in Appendix B, ensuring that the main
experimental results can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide open access to the code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full details of our experimental implementation, including training
and evaluation settings, in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars or statistical significance tests in this work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:We calculate the training memory usage and training time for our method and
compare them with other baselines, as shown in Table 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
aligns with its principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our work in Section D of the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: While our method builds on the publicly available CLIP model, we do not
release any new pretrained model or dataset with high-risk misuse potential. Our work
focuses on improving adversarial robustness using standard benchmarks, and no additional
safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The models, methodologies, datasets, and other elements used are appropriately
aligned and referenced throughout the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve any crowdsourcing, user studies, or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve any research with human subjects or participants,
and therefore IRB approval is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research does not involve LLMs in the core methodology; any usage was
limited to writing or editing assistance.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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