
Tied-LoRA: Enhancing parameter efficiency of LoRA with Weight Tying

Anonymous ACL submission

Abstract

We introduce Tied-LoRA, a novel paradigm001
leveraging weight tying and selective training002
to enhance the parameter efficiency of Low-003
rank Adaptation (LoRA). Our exploration en-004
compasses all plausible combinations of param-005
eter training and freezing, coupled with weight006
tying, aimed at identifying the optimal trade-007
off between performance and the count of train-008
able parameters. Across 5 diverse tasks and009
two foundational language models, our experi-010
ments provide comprehensive insights into the011
inherent trade-offs between efficiency and per-012
formance.013

Our findings reveal a specific Tied-LoRA con-014
figuration that distinguishes itself by showcas-015
ing comparable performance to LoRA across016
multiple tasks while utilizing only a fraction017
of the parameters employed by the standard018
LoRA method, particularly at elevated ranks.019
This underscores the efficacy of Tied-LoRA in020
achieving impressive results with significantly021
reduced model complexity.022

1 Introduction023

Large language models (LLMs) play a crucial role024

in various Natural Language Processing (NLP) ap-025

plications due to their proficiency. A significant fac-026

tor driving their widespread adoption is the ability027

to fine-tune pretrained LLMs efficiently for specific028

downstream tasks. This fine-tuning process allows029

the creation of specialized language models that ex-030

cel in specific domains and tasks. Despite dealing031

with smaller training data compared to pretraining,032

the computational demand for during fine-tuning033

remains high, especially for large models with bil-034

lions of parameters.035

Moreover, for LLM service providers, it is of-036

ten necessary to cater to diverse requirements by037

maintaining distinct customizations for each com-038

bination of user and task in the service. For in-039

stance, consider a scenario where a language model040

is employed to assist users in generating content041

W ∈ Rd×3d

A ∈ Rd×r®

v ∈ R3d×1

B ∈ Rr×3d
®

x

z

u ∈ Rr×1

Figure 1: Schematic of our Tied-Lora paradigm, the
main low-rank matrices A and B are tied across (indi-
cated by the ® symbol) all the layers of the base lan-
guage model. We use the gradient shading to indicate
that these parameters can either be trained or frozen.

for social media. User X may have preferences 042

for formal language and professional tone, while 043

another user, Y, might prefer a more casual and 044

conversational style. Additionally, each user may 045

have different tasks, such as composing business 046

emails, translating documents, creating social me- 047

dia captions or drafting blog posts. To serve these 048

varied preferences and tasks simultaneously, the 049

language model needs to be finely tuned for each 050

specific combination of user (X or Y) and task 051

(email composition or translation). 052

As the number of users and tasks per user in- 053

creases, so does the complexity and cost associ- 054

ated with customization. Managing and storing the 055

various combinations of customizations for each 056

user-task pair can introduce additional expenses, 057

especially after the initial training phase. The stor- 058

age and retrieval of these customized models, each 059

tailored to specific user preferences and tasks, con- 060

tribute to ongoing operational costs. Therefore, 061

in addition to efficient utilization of customizable 062

parameters during training, careful consideration 063

must be given to the post-training phase, where the 064
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cost of saving and accessing these combinations065

becomes a significant factor in the overall resource066

management strategy. This holistic approach is cru-067

cial for maintaining optimal performance across068

diverse user-task combinations while keeping both069

computational and operational costs in check.070

In light of these challenges, developing effec-071

tive customization methods that not only enhance072

model performance but also reduce the number of073

training parameters becomes crucial. Parameter-074

efficient fine-tuning (PEFT) emerges as a valuable075

approach in this context. PEFT involves refining076

pretrained models with minimal parameter updates,077

enabling the creation of specialized models that ex-078

cel in specific domains and tasks. This streamlined079

customization process not only optimizes param-080

eter utilization during training but also mitigates081

the costs associated with managing, storing, and082

serving diverse customizations post-training.083

Low-rank Adaptation (LoRA) (Hu et al., 2021)084

has emerged as a popular (PEFT) method because085

of its straightforward implementation and the abil-086

ity to merge LoRA weights into the base model.087

However, despite its advantages, LoRA training088

can still be expensive, especially as the base mod-089

els become increasingly larger. While prior work090

has attempted to make LoRA more parameter ef-091

ficient, they concentrated on appropriate low-rank092

selection. However, we introduce a novel approach,093

Instead of controlling the number of parameters by094

the rank, we employ simple weight tying coupled095

with selective training. By integrating these two096

core ideas, we propose a range of Tied-LoRA con-097

figurations and study the performance of each con-098

figuration on five diverse customization tasks.099

Low-rank Adaptation (LoRA) method (Hu et al.,100

2021), stands out as a popular and efficient101

parameter-efficient fine-tuning (PEFT) approach,102

offering a straightforward implementation and the103

ability to integrate LoRA weights into the base104

model post-training. Despite its advantages, the ex-105

pense of LoRA training becomes more pronounced,106

particularly with the growing size of base language107

models. While previous efforts focused on en-108

hancing LoRA’s parameter efficiency through care-109

ful low-rank selection, we introduce an alterna-110

tive approach. In contrast to controlling parameter111

count through rank, our method incorporates sim-112

ple weight tying alongside selective training. This113

novel combination forms the basis for a range of114

Tied-LoRAconfigurations, each evaluated for per-115

formance across five diverse customization tasks. 116

Through this approach, we aim to push the bound- 117

aries of parameter-efficient fine-tuning, making ad- 118

vancements in both effectiveness and simplicity. 119

Our contributions are threefold: 120

1. We propose a range of Tied-LoRA configura- 121

tions that use simple weight tying in LoRA 122

along with selective training to boost the pa- 123

rameter efficiency of LoRA. 124

2. We study this spectrum of possible Tied- 125

LoRA configurations on diverse tasks that re- 126

semble real-world customization problems. 127

3. Based on the results of our study, we propose 128

the specific TL6(vB
®
uA

®
) configuration as 129

the best option for maintaining performance 130

while reducing parameters. This configuration 131

is within 1− 2% of LoRA in terms of perfor- 132

mance and in one case beats LoRA while only 133

using 12.5% of the number of parameters. 134

2 Method 135

In this section, we introduce Tied-LoRA, a 136

paradigm for parameter-efficient fine-tuning of 137

large language models through low-rank weight- 138

update approximations, weight-tying and selec- 139

tive training. Our framework offers a range of 140

“LoRA-like” configurations through a series of de- 141

sign choices over selective parameter training and 142

weight tying, including some of the existing PEFT 143

methodologies available in the literature. Specifi- 144

cally, we use weight tying alongside pairs of projec- 145

tion matrices and scaling vectors that can be selec- 146

tively either trained or frozen. As the low-rank com- 147

putation path does not introduce any non-linearity, 148

all Tied-LoRAconfigurations can be merged into 149

the base model weights to preventing additional 150

latency during inference. 151

Table 1 provides an overview of the scenarios we 152

study. We refer to each configuration in our study 153

with TL (Tied-LoRA) followed by a subscript in- 154

dex (e.g., TL1). Additionally, we also include the 155

template of possible training parameters (v,B,u 156

and A, discussed in section 2.1). For Tied-LoRA, 157

the low-rank projection matrices A and B are tied 158

across all the layers of the base model which we 159

indicate using the subscript
®

. We also indicate if a 160

parameter is frozen by blue font and a trainable pa- 161

rameter with regular font. Thus, traditional LoRA 162

can be expressed as vBuA and VeRA (Kopiczko 163

et al., 2023) can be expressed as vB
®
uA

®
. 164
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2.1 Formulation165

The overall structure of the tied LoRA framework166

can be seen in Figure 1. Note that the original167

LoRA (Hu et al., 2021) uses a dedicated pair of168

low-rank projections for each of the Q,K,V ma-169

trices. However, in our formulation, W is a d× 3d170

matrix that jointly projects Q,K, and V attention171

matrices, where d is the hidden size of the base172

language model. Therefore, our down projection173

A is a d× r shaped matrix and up projection ma-174

trix B has shape r × 3d, where r is the low-rank175

bottleneck dimension. Essentially, the down pro-176

jection A is shared by Q,K, and V, leading to177

fewer trainable parameters (4dr) than the original178

LoRA (6dr).179

For a linear layer with a frozen pretrained weight180

matrix W, we define the layer output as181

z = Wx+∆Wx ≈ Wx+
α

r
ΛvBΛuAx, (1)182

where ∆W is the full-rank update matrix, α is a183

scaling factor, A and B are low-rank projection ma-184

trices, and Λu and Λv are diagonal matrices with185

diagonal elements given by u and v, respectively.186

Herein, ΛvBΛuAx is the low-rank approximation187

to the parameter update matrix ∆W. Unlike the188

original LoRA, where α is a hyper-parameter that189

can be manually set, we simply set α = r, effec-190

tively removing its scaling effect.191

Equation 1 is a generalized formulation for meth-192

ods that utilize low-rank approximations to esti-193

mate parameter updates. Particular settings of pa-194

rameter updates and weight tying reduces this equa-195

tion to some of the existing formulations in the lit-196

erature. Setting and freezing Λu = Λv = I and197

untying A and B results in LoRA:198

z = Wx+BAx. (2)199

Similarly, randomly initializing A and B matri-200

ces and tying them across all layer leads the the201

VeRA formulation (Kopiczko et al., 2023):202

z = Wx+ ΛvBΛuAx, (3)203

2.2 Weight Tying204

The third column of Table 1 presents representa-205

tions for number of trainable parameters each Tied-206

Lora configuration requires. As is apparent from207

the table, weight tying is a critical ingredient of208

our proposed approach which drastically reduces209

Method Parameters Initialization

LoRA (vBuA) 4Ldr A ∼ N , B = 0, u, v = 1
Vera (vB

®
uA

®
) L(r + 3d) A,B ∼ N , u = 1, v = 0

TL1(vB
®
uA

®
) dr A,B ∼ N , u, v = 1

TL2(vB
®
uA

®
) dr + L(r + 3d) A,B ∼ N , u = 1, v = 0

TL3(vB
®
uA

®
) 3dr A,B ∼ N , u, v = 1

TL4(vB
®
uA

®
) (L+ 3d)r A,B ∼ N , v, u = 1

TL5(vB
®
uA

®
) 4dr A ∼ N , B = 0, u, v = 1

TL6(vB
®
uA

®
) 4dr + L(r + 3d) A,B ∼ N , u = 1, v = 0

Table 1: Tied-LoRAconfigurations included in our study.
The first column shows acronyms used to identify each
Tied-LoRAconfiguration (i.e., method). Symbols with
subscript

®
indicate that it is shared across all layers

and the color blue indicates that the parameter is frozen.
Formulas for the number of trainable parameters in each
configuration as a function of number of layers L, hid-
den size d, and low-rank r are also provided.

the number of trainable parameters. For exam- 210

ple, LoRA (vBuA) training using the 7B LLaMA- 211

2 (Touvron et al., 2023) language model with a typ- 212

ical low rank setting of 8 requires ∼ 4.2M trainable 213

parameters. By merely introducing weight tying 214

across the 32 layers of this model reduces the train- 215

able parameters to ∼ 131K, which is a 96.875% 216

reduction. In comparison, the Vera method results 217

in a reduction of 90.6%. 218

2.3 Selective Training 219

Through the flexible framework that equation 1 of- 220

fers, we are given the opportunity to investigate a 221

range training configurations. By selectively updat- 222

ing the components A,B, u, and v during the train- 223

ing process, we can generate a variety of method- 224

ological variations. These variations not only ex- 225

hibit differences in parameter count, but they also 226

demonstrate distinct capabilities across a variety 227

of tasks. This exploration allows us to investigate 228

the intriguing regime of extremely low-parameter 229

and low-rank PEFT models. This is a key step to- 230

wards the customization of models, enabling them 231

to excel at specific tasks while maintaining a mini- 232

mal parameter count. Our ultimate goal here is to 233

harness the power of this methodology to create 234

highly efficient, task-specific models that achieve 235

high performance with reduced complexity. 236

3 Experiments 237

We now turn to evaluating the different configu- 238

rations possible within our Tied-LoRAparadigm. 239

While LoRA (vBuA) and PEFT methods can be 240

used to train models for general instruction follow- 241

ing (Sun et al., 2023; Lermen et al., 2023; Sun 242
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et al., 2023), we focus our evaluations in a “task243

customization” perspective, where each model is244

trained on a specific task and is evaluated on a test245

set from the same task.246

3.1 Tasks & Datasets247

To evaluate the performance of each Tied-248

LoRAconfiguration across diverse data settings, we249

utilized the following types of tasks:250

Extractive QA is a common task where the251

model is expected to “read” some relevant text (the252

context) and answer questions. The answers are253

usually exact sub-strings from the provided context.254

We use SQuADv1 dataset (Rajpurkar et al., 2016)255

in our experiments. Since the official test split of256

this dataset does not contain ground-truth answers,257

we use the validation set as our test set. We create258

a validation set comprising of a random sample of259

4800 examples extracted from the training set.260

Summarization is a central problem in NLP261

and several variations of summarization datasets262

have been proposed. We employ the DialogSum263

dataset (Chen et al., 2021) to study our models’ per-264

formance on this task. DialogSum includes sum-265

maries of real-word conversations on a diverse set266

of topics and scenarios. This dataset was an attrac-267

tive option as the length of the conversations and268

summarizes are within the context lengths (4096269

tokens) of the base language models.270

Commonsense Natural Language Inference271

(NLI) is a task designed to probe the ability272

of language models to apply “commonsense rea-273

soning” to choose a possible ending for a given274

situation described in natural language. These275

tasks are typically trivial for humans but language276

models can still struggle. We use the HellaSwag277

dataset (Zellers et al., 2019) to study the perfor-278

mance of our proposed models on this type of task.279

As HellaSwag contains multiple-choice questions,280

it can be viewed as a classification problem.281

Translation Machine translation is a natural lan-282

guage generation task which is widely used in re-283

search and industry. Translation is inherently mul-284

tilingual and thus offers a challenging domain to285

study our Tied-LoRAparadigm. There are several286

large scale translation datasets but we focus on a287

moderately sized IWSLT 2017 German-to-English288

spoken language translation dataset (Cettolo et al.,289

2017). With over 206k training examples this is290

the largest dataset we study.291

Mathematical Reasoning is a challenging do- 292

main where large language models still lag behind 293

human performance. Using PEFT methods on such 294

tasks further amplifies these challenges as there are 295

very few trainable parameters. In our experiments, 296

we use the GSM8K benchmark (Cobbe et al., 2021) 297

which contains 8.5K high-quality, grade-school 298

level math word problems. Each example in the 299

GSM8K benchmark contains a question and an 300

answer. The answers are provided with natural lan- 301

guage solutions which contain explanations of each 302

step used to obtain the final answer. The final nu- 303

merical answer is demarcated from the rest of the 304

natural language solution. We evaluate our models 305

by comparing these final numerical answers. 306

3.2 Base Language Models 307

Although PEFT enables the base language model 308

to perform new tasks, the final performance heavily 309

depends on the inherent abilities learned during pre- 310

training. This necessitates investigating the perfor- 311

mance of Tied-LoRAon multiple base models with 312

different inherent capabilities. Therefore, we use a 313

relatively small two billion parameter, GPT-2B-001 314

model1 released by NVIDIA and the moderately 315

large 7B LLaMA 2 model (Touvron et al., 2023) 316

released by Meta. 317

In addition to the size differences, these mod- 318

els also differ in the amount of pretraining data 319

used. The GPT-2B-001 model was trained on 1.1 320

trillion tokens of text from publicly available multi- 321

lingual text spanning 53 languages. The LLaMA2 322

7B model was trained on 2 trillion tokens of pre- 323

dominately English text. Both models are auto- 324

regressive language models with a context size of 325

4096 tokens. 326

3.3 Implementation Details 327

We use the open-source NeMo Framework to im- 328

plement all the algorithms presented in this paper. 329

Our implementation is publicly available through 330

the NeMo GitHub repository.2 We set max training 331

steps to 2k, but training was terminated sooner us- 332

ing early stopping with a patience of 10 to prevent 333

over-fitting. We trained all configurations using 334

AdamW optimizer (Loshchilov and Hutter, 2017) 335

with a weight decay of 0.01 and a cosine learning 336

rate schedule with 50 warm-up steps. 337

For each Tied-Lora method we tried two learn- 338

ing rates, a high rate of 1−4 and a low learning rate 339

1https://huggingface.co/nvidia/GPT-2B-001
2anonymized
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Base Model Method Dialogsum GSM8K HellaSwag IWSLT 2017 Squad
RougeL r P% EM r P% Acc. r P% BLEU r P% EM r P%

LLaMA2 7B

LoRA (vBuA) 40.76 8 100 32.75 64 100 91.97 16 100 41.30 8 100 88.52 2 100

Vera (vB
®
uA

®
) 38.77 8 9.4 27.22 64 1.2 89.91 16 4.7 40.22 8 9.4 87.69 2 37.5

TL1(vB
®
uA

®
) 38.73 8 0.8 27.07 64 0.8 90.03 16 0.8 40.34 8 0.8 87.72 2 0.8

TL2(vB
®
uA

®
) 38.69 8 10.2 27.07 64 2.0 90.11 16 5.5 40.35 8 10.2 87.67 2 38.3

TL3(vB
®
uA

®
) 40.20 8 2.3 17.74 64 2.3 89.38 16 2.3 39.93 8 2.3 87.34 2 2.3

TL4(vB
®
uA

®
) 39.46 8 2.3 21.00 64 2.3 89.46 16 2.3 40.34 8 2.3 87.06 2 2.3

TL5(vB
®
uA

®
) 40.62 8 3.1 30.33 64 3.1 91.75 16 3.1 40.01 8 3.1 87.11 2 3.1

TL6(vB
®
uA

®
) 39.24 8 12.5 31.77 64 4.3 91.15 16 7.8 41.33 8 12.5 87.97 2 40.6

Vera (vB
®
uA

®
) 40.07 64 9.4 29.11 16 1.2 90.47 2 4.7 40.41 16 9.4 87.69 2 37.5

TL1(vB
®
uA

®
) 39.74 16 1.6 29.95 16 0.2 90.52 4 0.2 40.52 64 6.3 87.72 2 0.8

TL2(vB
®
uA

®
) 39.81 64 15.7 28.73 16 1.4 90.32 2 4.8 40.50 128 22.0 87.67 2 38.2

TL3(vB
®
uA

®
) 40.20 8 2.3 24.34 4 0.1 90.27 8 1.2 40.48 16 4.7 87.62 8 9.4

TL4(vB
®
uA

®
) 40.17 16 4.7 25.70 8 0.3 90.18 4 0.6 40.65 16 4.7 87.72 4 4.7

TL5(vB
®
uA

®
) 40.62 8 3.1 30.33 64 3.1 91.75 16 3.1 41.37 16 6.3 88.22 4 6.3

TL6(vB
®
uA

®
) 39.71 16 15.6 31.77 64 4.3 91.90 64 17.2 41.37 32 21.9 88.49 4 43.8

GPT-2B-001

LoRA (vBuA) 38.59 4 100 12.28 64 100 85.64 64 100 40.19 128 100 83.58 32 100

Vera (vB
®
uA

®
) 37.02 4 18.8 6.97 64 1.2 75.94 64 1.2 38.20 128 0.6 79.43 32 2.3

TL1(vB
®
uA

®
) 37.11 4 1.0 8.26 64 1.0 76.32 64 1.0 38.12 128 1.0 79.26 32 1.0

TL2(vB
®
uA

®
) 37.00 4 19.8 8.11 64 2.2 77.02 64 2.2 38.17 128 1.6 79.50 32 3.4

TL3(vB
®
uA

®
) 36.50 4 3.1 5.69 64 3.1 25.05 64 3.1 36.46 128 3.1 76.96 32 3.1

TL4(vB
®
uA

®
) 36.82 4 3.1 6.82 64 3.1 25.05 64 3.1 32.98 128 3.1 77.47 32 3.1

TL5(vB
®
uA

®
) 37.17 4 4.2 8.34 64 4.2 82.25 64 4.2 38.58 128 4.2 81.43 32 4.2

TL6(vB
®
uA

®
) 37.63 4 22.9 9.78 64 5.3 85.02 64 5.3 39.74 128 4.8 83.02 32 6.5

Vera (vB
®
uA

®
) 37.28 8 18.8 8.26 2 1.2 83.41 2 1.2 39.15 2 0.6 81.77 2 2.3

TL1(vB
®
uA

®
) 37.22 8 2.1 9.55 4 0.1 83.54 4 0.1 39.09 2 0.1 82.20 2 0.1

TL2(vB
®
uA

®
) 37.29 8 20.1 9.40 4 1.2 83.64 2 1.2 39.11 2 0.6 82.41 4 2.5

TL3(vB
®
uA

®
) 37.18 16 12.5 6.97 8 0.4 80.66 4 0.2 38.25 4 0.1 80.96 4 0.4

TL4(vB
®
uA

®
) 36.88 32 25.1 7.20 32 1.6 80.51 4 0.2 38.30 8 0.2 81.03 8 0.8

TL5(vB
®
uA

®
) 37.55 8 8.3 9.40 128 8.3 83.71 32 2.1 39.20 64 2.1 82.74 16 2.1

TL6(vB
®
uA

®
) 37.81 32 52.2 10.31 16 2.2 85.13 32 3.3 39.74 128 4.8 83.56 64 10.8

Table 2: The results entire spectrum of Tied-LoRA configurations on five tasks using LLaMA2 7B base model and
the GPT-2B-001 base model. For each base model section, the first row shows the best LoRA (vBuA) scores on
each task along with rank r at which the best score was achieved.

of 1−5. While the “typical” range of the low-rank340

dimension r is 4− 16 we find that some complex341

tasks benefit from higher r so we trained all our342

models with a wide range of r ∈ {2, 4, 8, . . . , 128}.343

Each task was trained with a global batch size of344

256 and a validation check interval of 30 steps. The345

only exception was the IWSLT translation dataset346

for which we set global batch size and validation347

check interval of 1024 and 60 respectively. No348

extensive hyper-parameter search was conducted.349

During inference, we used greedy-decoding to gen-350

erate the models’ predictions with a limit of 500351

tokens.352

4 Results353

Table 2 provides a detailed comparison of various354

Tied-LoRAconfigurations across our 5 tasks for355

the LLaMA2 7B and GPT-2B-001 base models.356

For each task we report the metric used, such as357

RougeL (Lin and Och, 2004), Exact Match (EM),358

Accuracy and BLEU (Papineni et al., 2002), and the359

rank r used. For each model, the table is segmented360

into two sections: The first section compares the361

performance of all Tied-LoRAconfigurations at the362

same rank where LoRA (vBuA) achieved its op- 363

timum score. The second section shows the best 364

performance of achieved by each configuration. In 365

addition to metric scores and rank (r) we also re- 366

port parameter usage percentage (P%) as a compar- 367

ison to the parameter count of the best-performing 368

Lora configuration. This offers a direct measure 369

of efficiency, showing how each model, especially 370

TL5(vB
®
uA

®
) and TL6(vB

®
uA

®
) , leverages a 371

smaller percentage of parameters compared to the 372

LoRA (vBuA) for achieving its results. 373

We can immediately see that LoRA (vBuA) is 374

the best performing model for both the 2B and 375

7B base language models on most tasks. This 376

is hardly surprising as it is the most expen- 377

sive method with respect to trainable parame- 378

ters. The TL6(vB
®
uA

®
) configuration demon- 379

strates the best overall performance among all Tied- 380

LoRA configurations for both model sizes and is 381

not far behind LoRA. For our translation task with 382

the LLaMA2 7B base model, TL6(vB
®
uA

®
) out 383

performs LoRA (vBuA) while using 12.5% 384

of the number of parameters. This consistent 385

performance illustrates it effectiveness across 386
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diverse model scales and task types. The387

TL5(vB
®
uA

®
) configuration, while marginally388

outperformed by TL6(vB
®
uA

®
) , is notable for389

its parameter efficiency. This method achieves com-390

parable performance to TL6(vB
®
uA

®
) for typical391

ranks r = 8, 16, 32, 64, 128, but with a reduced392

parameter count.393

Both TL5(vB
®
uA

®
) and TL6(vB

®
uA

®
) show394

robust performance at the same rank where tra-395

ditional LoRA (vBuA) is optimized (i.e., per-396

formed best). This implies that for systems pre-397

tuned for LoRA (vBuA) , TL5(vB
®
uA

®
) and398

TL6(vB
®
uA

®
) can be utilized with the same rank399

configuration as a “drop-in” replacement.400

On average, we observe a 1.36 % decline401

in TL6(vB
®
uA

®
) performance compared to the402

LoRA (vBuA) model with the LLaMA 2 7B403

model. This decline, however, is marginally higher404

at 1.95 % with the 2B model. These findings sug-405

gest that the efficiency of TL6(vB
®
uA

®
) config-406

uration may enhance with a larger or more ca-407

pable base models (such as the LLaMA2 70B408

model). This hypothesis warrants a future explo-409

ration which we leave for future research.410

4.1 Task-Dependent Optimal Rank411

From Table 2, we can see that the optimal rank412

for LoRA (vBuA) varies significantly across dif-413

ferent tasks. Furthermore, perhaps surprisingly, a414

higher rank does not result in higher scores. For415

example, for LoRA (vBuA) , a rank of 2 suffices416

for achieving best performance for the Squad task,417

while a higher rank of 64 is optimal for GSM8K.418

In scenarios where traditional LoRA (vBuA) re-419

quires a higher rank, Tied-LoRA, especially420

TL5(vB
®
uA

®
) and TL6(vB

®
uA

®
) , present an421

effective alternative by delivering comparable per-422

formance with substantially fewer parameters. For423

instance, for GSM8K, TL6(vB
®
uA

®
) needs only424

4.3 % of the parameters that LoRA (vBuA) uses,425

while achieving a comparable performance (EM426

score of 31.77 vs. 32.75 for TL6(vB
®
uA

®
) and427

LoRA, respectively).428

4.2 Stability Across Ranks429

As indicated by Figures 2a and 2b, apart from430

TL6(vB
®
uA

®
) , all other Tied-LoRAmethods431

experience a decline in performance with in-432

crease rank. This trend highlights a general chal-433

lenge faced by Tied-LoRAconfigurations, with434

TL6(vB
®
uA

®
) being an exception. Specifically,435

TL3(vB
®
uA

®
) and TL4(vB

®
uA

®
) exhibit the436

Task LoRA
Layer 1

LoRA
Layer 32

TL5
(vB

®
uA

®
)

DialogSum 37.856 31.688 39.731
GSM8K 13.798 2.729 27.066
HellaSwag 77.644 47.301 91.755
IWSLT2017 38.048 22.465 41.37
Squad 85.326 56.216 87.739

Table 3: LoRA applied to a single layer in the trans-
former vs. TL5(vB

®
uA

®
) . All results in this table are

for a rank of 16 for the 7B base model and use the same
number of trainable parameters.

most dramatic drop at higher ranks among all Tied- 437

LoRA configurations. We leave addressing these 438

limitations for future research. 439

Figures 2c and 2d show only the best 440

Tied-LoRAconfigurations, along with base- 441

lines LoRA (vBuA) and Vera (vB
®
uA

®
) . 442

While TL5(vB
®
uA

®
) aligns closely with 443

TL6(vB
®
uA

®
) at typical ranks of 4 − 16, 444

it also exhibits a small performance reduc- 445

tion at higher ranks. This pattern is repeated 446

for Vera (vB
®
uA

®
) as well. In contrast, 447

TL6(vB
®
uA

®
) maintains high performance 448

across a broad range of ranks and is closest to 449

LoRA (vBuA) . 450

4.3 Layer Selection Vs. Tied-LoRA 451

The success of Tied-LoRA, specifically 452

TL5(vB
®
uA

®
) as seen from Table 2, begs 453

the question – Would adding LoRA to a single 454

transformer layer lead to similar performance as 455

TL5(vB
®
uA

®
) ? After all single-layer LoRA and 456

TL5(vB
®
uA

®
) would use the same number of 457

parameters. After all, TL5(vB
®
uA

®
) does not 458

use layer-specific parameters (recall the v and 459

u are frozen and set to 1) and has the same 460

parameter count as applying LoRA (vBuA) to a 461

single layer in the transformer model. To examine 462

this, we trained all tasks with LoRA applied to 463

a single transformer layer’s attention projection 464

matrices. The obvious follow-up question is, 465

which layer should LoRA be applied to? We 466

attempt single-layer LoRA on the lowest (closest 467

to the input embeddings) layer, which we designate 468

as “Layer 1” and the highest layer, “Layer 32” in 469

the LLaMA2 7B model. 470

Table 3 compares the performances of single- 471

layer LoRA against TL5(vB
®
uA

®
) (which uses 472

the same number of trainable parameters as single- 473

layer LoRA). The TL5(vB
®
uA

®
) configuration is 474

a strong performer on all the tasks we examined, 475
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Figure 2: Plots showing the performance of the Tied-LoRAconfigurations averaged over tasks across all
ranks.Figures 2a and 2b display all Tied-LoRAconfigurations, while Figures 2c and 2d display the best Tied-
LoRAconfigurations with LoRA and Vera as baselines. Appendix A contains plots for each task and base model.

while single-layer LoRA does not perform well.476

While applying LoRA to Layer 1 is considerably477

better than applying LoRA to Layer 32 (the highest478

layer) it still lags behind TL5(vB
®
uA

®
) config-479

uration. This suggests that there is potentially a480

single low-rank update that can be applied to all481

layers to boost performance, but it is hard to find482

a low-rank update for a single-layer that results in483

strong performance.484

5 Related Work485

Parameter-efficient fine-tuning (PEFT): Re-486

cent work on PEFT of pretrained language models487

has shown competitive capabilities, often match-488

ing full fine-tuning performance for task-specific489

model customization while utilizing significantly490

fewer trainable parameters. Adapters (Houlsby491

et al., 2019; Pfeiffer et al., 2021) introduce task-492

specific parameters within the transformer layers493

that adapt to a particular task. Prompt tuning based494

methods such as P-Tuning and Prefix-Tuning (Li495

and Liang, 2021; Liu et al., 2023) attempt to do496

the same but via task-specific vectors that can be497

appended to the inputs or at various layer represen-498

tations. BitFit and IA3 (Ben Zaken et al., 2022;499

Liu et al., 2022) are PEFT methods that attempt to500

only alter bias vectors or scaling vectors in the base 501

large language model. 502

Low-Rank adaptation (LoRA): One of the 503

most popular PEFT techniques is LoRA, intro- 504

duced by Hu et al. (2021). LoRA employs 505

low-rank matrix approximations of full weights’ 506

gradient-descent (GD) update to significantly re- 507

duce the number of trainable parameters. Impor- 508

tantly, LoRA can incorporate the low-rank updates 509

into the frozen base weights after the fine-tuning 510

process, avoiding any inference speed penalties or 511

model architecture changes. In summary, LoRA 512

paves the way for efficient fine-tuning for task- 513

specific customization of large models with mini- 514

mal computational overhead and no changes to the 515

model’s architecture. 516

Extensions to LoRA: Since its arrival, there have 517

been several efforts to improve the LoRA method. 518

These methods mostly concentrated around reduc- 519

ing the trainable parameters and memory footprint 520

while increasing the performance of the method on 521

downstream tasks. AdaLoRA (Zhang et al., 2023) 522

introduces dynamic rank adjustment for the low- 523

rank matrices during the fine-tuning process. The 524

fundamental premise of this extension is to opti- 525
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mally distribute the parameter budget over model526

layers. Chavan et al. (2023) combined the adapter527

tuning with LoRA to derive a generalized frame-528

work that utilized both methods for increased flexi-529

bility and capability across a wide variety of tasks530

and datasets. Kopiczko et al. (2023) proposes the531

VeRA method the freezes randomly initialized pro-532

jection matrices and introduces trainable scaling533

vectors that vary across layers. This method shows534

similar performance to the LoRA (vBuA) method535

while dramatically reducing the number of train-536

able parameters. We view VeRA as one spe-537

cific configuration which lies on end of the Tied-538

LoRAspectrum.539

Tangential to the efforts that aim to reduce train-540

able parameters, QLoRA (Dettmers et al., 2023),541

significantly reduces the memory usage of LoRA542

using a 4-bit or 8-bit quantized base language543

model during training. The method provides al-544

gorithms and custom kernels to backpropagate gra-545

dients through the frozen, quantized base model to546

update low-rank matrices during training, resulting547

in considerable reduction in memory usage. Com-548

bining quantization and reduction in the number of549

trainable parameters is a direction of future work.550

Weight tying: Weight tying (Press and Wolf,551

2017; Inan et al., 2017) is a common approach552

that reduces the number of parameters by using the553

same set of weights in different parts of the net-554

work. Typically the input word embedding layer555

and the output word embedding layer (sometimes556

referred to as the language model head) are tied. In557

this study, we apply weight tying to the low-rank558

weight matrices used in LoRA, and share them559

across the layers of the base language model. This560

simple procedure leads to efficient training meth-561

ods where the number of trainable parameters are562

either unaffected by, or only increases marginally563

with the number of hidden layers. As models get564

deeper this approach naturally provides greater pa-565

rameter reduction over original LoRA method.566

Vision Transformers: Ideas similar to Tied-Lora567

are also being explored in the vision based tasks.568

Dong et al. (2023), for example, uses weight tying569

and bottleneck adapters.570

6 Conclusion & Future Work571

In this paper, we introduced the Tied-572

LoRA paradigm, a novel approach to enhance573

the parameter efficiency of Lora by employing a574

simple technique of weight-tying and selective 575

training of low-rank matrices. 576

Our empirical analysis demonstrates that the 577

TL6(vB
®
uA

®
) configuration achieves perfor- 578

mance comparable to Lora across various tasks, 579

while utilizing only a fraction of the parameters 580

employed by Lora across a spectrum of low-rank 581

dimensions. This efficiency becomes more pro- 582

nounced at higher ranks, leading to a more aggres- 583

sive reduction in the number of trainable parame- 584

ters compared to Lora. Remarkably, in the transla- 585

tion task, TL6(vB
®
uA

®
) surpassed Lora’s perfor- 586

mance while using only 12.5% of the number of 587

parameters. 588

Our study highlights that the benefits of this 589

configuration are particularly evident in tasks that 590

leverage the inherent strengths of the base language 591

model, such as commonsense NLI, extractive QA, 592

and summarization. Tasks involving mathematical 593

reasoning and arithmetic calculations, however, fa- 594

vor the sheer learning capacity of Lora with more 595

parameters. 596

As language models continue to advance, the 597

Tied-LoRA configurations, with their optimized 598

efficiency, emerge as a promising candidate to re- 599

place traditional Lora in a broader range of applica- 600

tions. This progression underscores the relevance 601

of Tied-LoRA as a scalable solution in the dynamic 602

landscape of large language model customization. 603

For future research, we plan to delve into the 604

application of Tied-LoRA methods on larger base 605

models. This exploration aims to assess their scala- 606

bility and effectiveness within the broader context 607

of large language models. Additionally, we in- 608

tend to investigate weight tying in other parameter- 609

efficient fine-tuning methods such as Adapters 610

and Prefix Tuning, both of which introduce layer- 611

specific parameters. 612

Limitations 613

Parameter Efficient Fine-Tuning methods are in- 614

herently sensitive to the base large language which 615

they are applied to as well as the specific customiza- 616

tion task. While we attempt to test our methods 617

on multiple base models computation cost restricts 618

us to only 2 models (so far). While extending our 619

analysis to other models is possible, extending to 620

more tasks is more challenging as the variety of 621

tasks is large. Furthermore, predicting the behavior 622

of a PEFT method on a new task based on it’s per- 623

formance on some existing task is very challenging. 624
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Even in our analysis we did not expect translation625

task to be an outlier (our Tied-LoRAmethod out626

performed LoRA) because on all the other tasks627

LoRA was slightly better. Thus, we caution against628

very strong claims of task generalization and high-629

light that while we show results on diverse tasks630

there are still a wide range of tasks we have not631

explored.632
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Figure 3: Plots showing the performance of the Tied-LoRAconfigurations along with the baseline LoRA (vBuA) for
5 diverse tasks at 4 different values for low-rank dimension setting. Note that we let the plot for TL3(vB

®
uA

®
) and

TL4(vB
®
uA

®
) go out of bounds to show details for the other curves.
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