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Abstract

Commonsense Knowledge Graphs (CSKGs)
are crucial for commonsense reasoning, yet
constructing them through human annotations
can be costly. As a result, various auto-
matic methods have been proposed to con-
struct CSKG with larger semantic coverage.
However, these unsupervised approaches intro-
duce spurious noise that can lower the qual-
ity of the resulting CSKG, which cannot be
tackled easily by existing denoising algorithms
due to the unique characteristics of nodes and
structures in CSKGs. To address this issue,
we propose GOLD (Global and Local-aware
Denoising), a denoising framework for CSKGs
that incorporates entity semantic information,
global rules, and local structural information
from the CSKG. Experiment results demon-
strate that GOLD outperforms all baseline meth-
ods in noise detection tasks on synthetic noisy
CSKG benchmarks. Furthermore, we show
that denoising a real-world CSKG is effective
and even benefits the downstream zero-shot
commonsense question-answering task. Our
code and data are publicly available at https:
//github.com/HKUST-KnowComp/GOLD.

1 Introduction

The emergence of Commonsense Knowledge
Graphs (CSKGs) has significantly impacted the
field of commonsense reasoning (Liu et al., 2021;
Zhang et al., 2020) as CSKGs provide common-
sense knowledge that is often not explicitly stated
in the text and difficult for machines to capture
systematically (Davis and Marcus, 2015). While
existing methods bank on expensive and time-
consuming crowdsourcing to collect commonsense
knowledge (Sap et al., 2019a; Mostafazadeh et al.,
2020), it remains infeasible to obtain CSKGs that
are large enough to cover numerous entities and
situations in the world (He et al., 2022; Tandon
et al., 2014). To overcome this limitation, various
automatic CSKG construction methods have been
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Figure 1: A subgraph of CSKG with two instances of
noise. One noise is (paint, UsedFor, brush your teeth),
as there should be no relation between these two nodes.
Another noise is (painter, IsA, paint house) because the
correct relation should be CapableOf.

proposed to acquire commonsense knowledge at
scale (Bosselut et al., 2019), including prompting
Large Language Model (LLM) (West et al., 2022;
Yu et al., 2022), rule mining from massive cor-
pora (Tandon et al., 2017; Zhang et al., 2022a), and
knowledge graph population (Fang et al., 2021a,b,
2023). Although those methods are effective, they
still suffer from noises introduced by construction
bias and the lack of human supervision. Therefore,
how to identify noise in large-scale CSKG accu-
rately and efficiently becomes a crucial research
question.

To tackle this issue, noise detection algo-
rithms have been proposed for conventional entity-
based KGs by primarily adopting two approaches:
learning-based and rule-based. Learning-based
methods like TransE (Bordes et al., 2013) learn
representations of entities and relations that adhere
to specific relation compositions like translation
assumption or relational rotation. To enhance their
performance, researchers also incorporate local in-
formation around the head and tail entities, such as
different paths from head to tail (Lin et al., 2015;
Xie et al., 2018; Jia et al., 2019) and neighbor-
ing triples (Zhang et al., 2022b). These methods
aim to improve their ability to capture the complex
relationships between entities in KGs. However,
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they are not easily adaptable to the unique char-
acteristics of CSKGs. In CSKGs, nodes are non-
canonicalized, free-form text, meaning nodes with
different descriptions may have related semantics.
As illustrated in Figure 1, “paint door” and “paint
house” are two distinct nodes but imply related se-
mantics (Speer et al., 2017). Additionally, when
detecting noise (paint, UsedFor, brush your teeth),
“brush your teeth” is an isolated node that cannot be
distinguished based on any structural information.
Only through the power of a language model can
it be learned that “paint” and “brush your teeth”
are uncorrelated, thus detecting such noise. The
aforementioned methods overlook this semantic
information and cannot generalize to semantically
similar events with diverse structural information.

On the other hand, rule-based methods utilize
logical rules in KGs for noise detection. For in-
stance, as shown in Figure 1, the correct relation
between “painter” and “paint house” should be
CapableOf. This can be easily detected through
the learned logical rule: CapableOf(x, y) ←
CapableOf(x, z)∧HasPrerequisite(y, z). Belth
et al. (2020) similarly propose an approach based
on information theory that extracts sub-graph pat-
terns to identify the noise. However, the sparsity
of edges in CSKGs (Malaviya et al., 2020) posits a
serious challenge to learning structural information
well, as the number of learnable rules decreases
significantly. This requires a generalizable rule-
learning ability at the noise detector side to expand
the rule bank accordingly, which is currently lack-
ing. Therefore, applying noise detection models for
KGs directly to CSKGs can result in incomplete
learning of both semantic and structural informa-
tion in the CSKGs.

In order to detect noises in CSKGs effectively,
it is important to consider both the semantic infor-
mation and the global and local structural informa-
tion jointly. However, these factors have not been
given enough importance in existing denoising ap-
proaches. To address this gap, we propose GOLD

(Global and Local-aware Denoising), a CSKG
noise detector that uses a PLM-based triple encoder
and two noise detectors that take into account both
global and local structures (Section 4). Specifically,
the triple encoder extracts the semantic informa-
tion contained in the free-text formatted nodes in
CSKGs. To identify correct patterns, the global
detector uses high-frequency patterns extracted
through rule mining, which intrinsically uses a

rule encoder to generalize the learned rules and
guide noise detection. The local detector, inspired
by Zhang et al. (2022b), adopts a graph neural net-
work to efficiently measure the similarity of aggre-
gated semantic information of neighboring triples
of the head and tail nodes to help detect noise. Ex-
tensive experiments on two manually synthesized
noisy-CSKG benchmarks demonstrate the efficacy
and state-of-the-art performance of GOLD. Further
experiments and analyses with ATOMIC10X (West
et al., 2022), a large-scale CSKG distilled from
GPT3, demonstrates its proficiency in identifying
noise within real-world CSKGs, while also yielding
advantages in the downstream zero-shot common-
sense question-answering task.

In summary, in this paper, we make the following
contributions:

• We introduce a new task: CSKG denoising,
which can be applied to various CSKG con-
struction and LLM distillation works.

• We propose a novel framework GOLD, which
outperforms all existing methods (Section 6.1)
and LLMs (Section 6.3).

• We show that GOLD successfully detects
noises in real-world CSKGs (Section 6.5) and
such denoising extrinsically benefits down-
stream zero-shot commonsense question-
answering task (Section 6.4).

2 Related Work

2.1 Knowledge Graph Noise Detection
Many existing knowledge graph noise detection
approaches utilize some local information while
simultaneously training embeddings to satisfy the
relational assumption. Path information is the most
commonly used type of local information, as the
reachable path from the head entity to the tail en-
tity has been proven crucial for noise detection
in knowledge graphs (Lin et al., 2015; Xie et al.,
2018; Jia et al., 2019). Zhang et al. (2022b) show
that contrastive learning between the information
of neighboring triples of the head and tail entities
is more effective because of the triple-level con-
trasting instead of entity or graph-level, leading to
superior performance compared to all path-based
methods. Clustering methods (Ge et al., 2020) are
also used to partition noise from triples, and an
active learning-based classification model is pro-
posed to detect and repair dirty data. While these
methods consider local information, our work also
accounts for semantic information and the global



information of the knowledge graph to guide noise
detection, better mitigating the impact of noise on
local information. Regarding direct noise detec-
tion in CSKGs, Romero and Razniewski (2023)
study the problem of mapping the open KB into
the structured schema of an existing one, while our
methods only use the CSKG to be denoised itself,
not relying on any other CSKG.

2.2 Knowledge Graph Rule Mining

Another related line of work is knowledge graph
rule mining, which is essential to our method. This
task has received great attention in the knowledge
graph completion. The first category of methods is
Inductive Logical Programming (ILP) (Muggleton
and Raedt, 1994), which uses inductive and log-
ical reasoning to learn rules. On the other hand,
AMIE (Galárraga et al., 2013) proposes a method
of association rule mining, which explores fre-
quently occurring patterns in the knowledge graph
to extract rules and counts the number of instances
supporting the discovered rules and their confi-
dence scores. AMIE+ (Galárraga et al., 2015) and
AMIE 3 (Lajus et al., 2020) further improve upon
this method by introducing several pruning opti-
mizations, allowing them to scale well to large
knowledge graphs. SWARM (Barati et al., 2017)
also introduces a statistical method for rule min-
ing in large-scale knowledge graphs that focuses
on both instance-level and schema-level patterns.
However, it requires type information of entities,
which is not available in the CSKG and, there-
fore, cannot be applied to CSKG. Recently, with
the success of deep learning, the idea of ILP has
been neuralized, resulting in a series of neural-
symbolic methods. Neural LP (Yang et al., 2017)
and DRUM (Sadeghian et al., 2019) both propose
end-to-end differentiable models for learning first-
order logical rules for knowledge graph reasoning.
Despite the great success achieved by the combina-
tion of Recurrent Neural Network (RNN) (Schus-
ter and Paliwal, 1997) with rule mining (Qu et al.,
2021; Cheng et al., 2022, 2023), neuralized meth-
ods are intuitively hard to interpret due to the con-
fidence scores output by neural networks. Further-
more, jointly learning rules and embedding has
been proven to be effective (Guo et al., 2016), and
iteratively learning between them can also promote
the effectiveness of both (Guo et al., 2018; Zhang
et al., 2019b). For noise detection in knowledge
graphs, Belth et al. (2020) learn higher-order pat-

terns based on subgraphs to help refine knowledge
graphs, but it requires type information of node and
hence cannot be applied to the CSKG.

2.3 Knowledge Graph Completion with
Pretrained Language Models

Aside from specifically designed noise-detection
methods, the line of works targetting KG com-
pletion can also be transferred to tackle noise-
detection tasks. Previous research has shown that
PLMs can achieve outstanding performance on KG
completion tasks for both conventional KGs (Wang
and Li, 2016; An et al., 2018; Yao et al., 2019;
Wang et al., 2021b; Markowitz et al., 2022; Shen
et al., 2022) and CSKGs (Su et al., 2022; Yasunaga
et al., 2022) due to their ability to capture lin-
guistic patterns and semantic information. How-
ever, two limitations still exist. First, performing
edge classification using a PLM requires optimiz-
ing a large number of parameters on textual data
that has been transformed from edges in CSKGs.
Such fine-tuning is not only computationally ex-
pensive but also incapable of learning structural
features in graphs, which are essential for accu-
rately identifying and classifying edges. Second,
recent studies (Safavi et al., 2021; Chen et al., 2023)
have shown that language models, regardless of
their scale, struggle to acquire implicit negative
knowledge through costly language modeling. This
makes them potentially vulnerable to noise detec-
tion tasks, as these noises typically belong to nega-
tive knowledge. Therefore, more sophisticated ma-
nipulations of the semantic information extracted
by PLMs are needed to leverage them for noise
detection tasks efficiently.

3 Problem Definition

Noises in CSKG Commonsense knowledge rep-
resents not only basic facts in traditional knowl-
edge graphs but also the understanding possessed
by most people (Liu and Singh, 2004), we evaluate
whether a triple is a noise from two perspectives:

• Truthfulness: It should be consistent with ob-
jective facts. For example, (London, IsA, city
in France) is not true because London is not
in France but in England.

• Reasonability: It should align with logi-
cal reasoning and be consistent with cul-
tural norms. For example, (read newspaper,
MotivatedByGoal, want to eat vegetables) is
not logically reasonable. The two nodes are



not directly related, and there is no clear rela-
tionship between them. Another example is
that (hippo, AtLocation, in kitchen) violates
our understanding and experience of reality
because hippos are large mammals that are
highly unlikely and unrealistic to be found in
a kitchen.

If a triple fails to satisfy any of the aspects men-
tioned above, we define it as noise.

CSKG Denoising A CSKG can be represented
as G = (V,R, E), where V is a set of nodes,R is
a set of relations, and E ⊆ V × R × V is a set of
triples or edges. Given a triple (h, r, t) ∈ E in a
CSKG, we concatenate the language descriptions
of h, r, and t and determine whether this descrip-
tion conforms to commonsense. We note that each
triple violates commonsense to a different degree,
and we define noise detection as a ranking prob-
lem to standardize the evaluation process better.
Thus, we model noise detection as a ranking pro-
cess where a scoring function f : E → R indicates
the likelihood of the triple being noisy.

4 The GOLD Method

Our proposed method GOLD comprises four com-
ponents: triple encoder, global noise detector, lo-
cal noise detector, and comprehensive evaluation
scorer. An overview is presented in Figure 2. First,
we leverage a PLM to encode the natural language
descriptions of nodes and relations in CSKGs to
obtain their sentence embeddings, thus further en-
coding the triples. When detecting noise, we evalu-
ate the likelihood of a triple being noise from both
a global and local perspective. From the global
perspective, we aim to identify high-frequency pat-
terns in the knowledge graph, as a small amount of
noise is less likely to affect correct high-frequency
patterns (Belth et al., 2020). To accomplish this,
we employ rule mining to extract high-quality rules
from the knowledge graph. From the local per-
spective, we adopt graph networks to aggregate
the neighboring triple information around both the
head and tail nodes of a given edge, allowing us to
estimate if there is any correlation. Finally, based
on these two aspects of detection, we obtain a com-
prehensive score indicating the noise level.

4.1 Triple Encoder

As we mentioned earlier, the nodes in CSKG are
linguistic descriptions that are not restricted to any

specific canonicalized form. If their semantic in-
formation is ignored, it will inevitably affect the
accuracy of noise detection. Therefore, the Triple
Encoder (TE) employs a PLM to encode the se-
mantics of each node and relation. For instance,
considering an example of triple (h, r, t), their em-
beddings are defined as:

sh = LM(h), sr = LM(r), st = LM(t), (1)

where LM is a frozen PLM that maps the input
text to an embedding. To strike a balance between
capturing the relationship between h, r, and t and
maintaining model efficiency, we opt an efficient
RNN as our encoding method for the CSKG triples:

eh, er, et = RNN(sh, sr, st). (2)

Then, we simply concatenate them together to get
the representation of the triple (h, r, t):

TE(h, r, t) = [eh∥er∥et] . (3)

4.2 Global Rule Mining

To detect noisy triples, scoring (h, r, t) only from a
local perspective, such as modeling the neighbors
of h and t, or analyzing the path from h to t may
not be sufficient to eliminate the interference of
noisy triples, as it is difficult to determine what is
noise from local structures alone. In commonsense
knowledge graphs, the noise ratio should not be
excessively high. So, learning high-frequency pat-
terns from a global perspective is likely to cover
correct triples. In turn, patterns can guide us in
identifying the noise data when detecting viola-
tions.

To incorporate the global information of the en-
tire CSKG when determining the probability of a
triple being noise, we use the method of rule min-
ing to first extract high-frequency, high-confidence,
and interpretable rules from the CSKG. Taking into
account both the interpretability and efficiency of
the model, we employ AMIE 3 (Lajus et al., 2020),
a rule mining method based on the frequency of
each pattern, to generate logical rules automatically
with the following format:

rh(x, y)← rb1(x, z1) ∧ · · · ∧ rbk (zk−1, y), (4)

where rh(x, y) is rule head and rb1(x, z1) ∧ · · · ∧
rbk(zk−1, y) is rule body, x, y, z1, . . ., zk−1 are
nodes, rh, rb1 . . ., rbk are relations. As depicted in
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Figure 2: Overview of our GOLD framework. The example showing how to examine the noise level of the triple
(cook meal, HasFirstSubevent, buy food) from both global and local perspectives are presented in the figure.
The rule HasFirstSubevent(x, y)← CausesDesire(z1, x)∧CausesDesire(z1, z2)∧HasFirstSubevent(z2, y)
which is learned from the entire CSKG provides guidance to noise detection, while the neighboring triples of “cook
meal” and “buy food” are used for aggregation as features for local structure learning.

Equation (4), the rule body consists of k triples:

t1 = (x, b1, z1), t2 = (z1, b2, z2), · · · , tk = (zk−1, bk, y).
(5)

To address the issue of poor generalization of
mined rules due to sparsity in edges in CSKGs,
we consider a rule body rb as a sequence and em-
ploy an RNN as the neuralized Rule Encoder (RE)
to generalize the rules:

RE(rb) = RNN (TE(t1),TE(t2), · · · ,TE(tk)) . (6)

Specifically, for each relation as the rule head, we
retain the top krules rules with the highest confi-
dence score given by AMIE 3 for training the rule
encoder. In cases where there is no correspond-
ing instance for a rule body, we fill all triples in
the rule body with (x, h, y) to align the energy
scores of the other triples. And we believe that
a well-generalized rule encoder can learn a repre-
sentation that can explicitly infer the rule head rh,
i.e., (x, h, y). Hence, we align the dimensions of
the outputs from TE and RE and define the energy
function as follows:

Eglobal(h, r, t) =
∑

(rb,rh)

∥RE(rb)− TE(rh)∥2. (7)

4.3 Local Neigboring Triple Learning

Structural information plays a significant role in en-
hancing performance for KG noise detection tasks.
Most methods require that the relationship between
two nodes should be equivalent to a translation be-
tween their embeddings (Xie et al., 2018; Zhang
et al., 2022b). We relax this restriction and aim
to determine some level of contextual correlation
between two related nodes. As for the specific
relation, our global rule mining component will
learn its corresponding representation. To capture
the contextual semantic information of the triples
around nodes, we adopt Graph Attention Network
(GAT) (Velickovic et al., 2018) to aggregate the
information of the neighboring triples.

We use a transformation matrix W ∈ RF×d to
map the i-th triple (hi, ri, ti) to the embedding

vi = W [ehi ||eri ||eti ] (8)

where F is the dimension of the latent space and
d is the embedding dimension of the triple, and
perform the self-attention function a : RF ×RF →
R on the triples to get wij = a (vi,vj), which
indicates the context of the j-th triple to the i-th
triple. To compute the attention of the neighboring



triples on the head and tail nodes, respectively, we
define the neighboring triples of the node e asNe =
{(h̃, r̃, t̃)|h̃ = e∨ t̃ = e}, and then use the softmax
function to normalize the coefficients:

αij(h) = softmaxj(h)(wij(h))

=
exp(wij(h))∑

k(h)∈Nhi
exp(wik(h))

,

βij(t) = softmaxj(t)(wij(t))

=
exp(wij(t))∑

k(t)∈Nti
exp(wik(t))

,

(9)

where αij(h) represents the attention of the j(h)-
th triple on node hi, while βij(t) represents the
attention of the j(t)-th triple on node ti. It is worth
noting that the j(h)-th triple is required to meet
the condition of being a neighbor of node hi, and
similarly, the j(t)-th triple must also be a neighbor
of node ti.

We use the normalized attention coefficients to
calculate a linear combination of the corresponding
embeddings, which then serves as the final output:

pi = σ

(∑
j(h)∈Nhi

αij(h)vj(h)

)
,

qi = σ

(∑
j(t)∈Nti

βij(t)vj(t)

)
,

(10)

where pi is obtained from the perspective of the
neighbors of node hi, qi is obtained from the per-
spective of the neighbors of node ti, and σ repre-
sents a nonlinearity.

We simply employ the Euclidean distance be-
tween them to measure the correlation between
hi and ti and obtain the energy function of triple
(hi, ri, ti) under local perception as follows:

Elocal(hi, ri, ti) = ∥pi − qi∥2. (11)

4.4 Jointly Learning and Optimization

The overall energy function of each triple (h, r, t) is
obtained by combining the global and local energy
functions. We have:

E(h, r, t) = Eglobal(h, r, t) + λElocal(h, r, t), (12)

where λ is a hyperparameter.
We use negative sampling to minimize the

margin-based ranking loss

L =
∑
i+∈E

∑
i−∈E

i+

max
(
0, γ + E(i+)− E(i−)

)
, (13)

where i+ represents a positive triple (h, r, t), and
i− represents a negative triple. We follow the set-
ting of DistMult (Yang et al., 2015): a set of neg-

ative examples Ei+ is constructed based on i+ by
replacing either h or t with a random node ẽ ∈ V:

Ei+ = {(ẽ, r, t)|ẽ ∈ V} ∪ {(h, r, ẽ)|ẽ ∈ V} − E . (14)

5 Experimental Setup

5.1 Datasets

To evaluate the detection capability of denoising
models, we follow the method introduced by Xie
et al. (2018) to construct benchmark datasets for
evaluation, which involves generating noise with
manually defined sampling rules and injecting it
back into the original CSKG. We select Concept-
Net (Speer et al., 2017) and ATOMIC (Sap et al.,
2019a) as two source CSKGs due to their man-
ageable scale and diverse coverage of edge seman-
tics, including various entities, events, and com-
monsense relations. Since these manually curated
CSKGs do not contain noise naturally, we synthe-
size noise for each CSKG separately using meticu-
lously designed rules, as done by Jia et al. (2019),
that incorporate modifications on existing edges
and random negative sampling. This approach, as
demonstrated by Jia et al. (2019), ensures that the
resulting noises not only maintain being highly in-
formative, thus more challenging for the model to
detect, but also stimulate several types of noise that
may appear in real-world CSKGs. More details for
noise synthesis are provided in Appendix A.1.

5.2 Evaluation Metrics

We use two common metrics to evaluate the perfor-
mance of all methods.

Recall@k. Given that there are k noisy triples
in the dataset, we sort all triples by their score in
descending order, where a higher score indicates a
higher probability of being a noisy triple. We then
select the top k triples and calculate the recall rate:

Recall@k =
| Noisy Triples in the top-k list |

k
. (15)

AUC. Area Under the ROC Curve (AUC) mea-
sures the probability that a model will assign a
higher score to a randomly chosen noisy triple than
a randomly chosen positive triple. A higher AUC
score indicates a better performance.

5.3 Competing Methods

We compare our model with state-of-the-art mod-
els, which can be mainly divided into three cate-
gories: (i) structure embedding-based methods that
are unaware of noise, including TransE (Bordes



Model
ConceptNet ATOMIC

N5 N10 N20 N5 N10 N20

R@5 AUC R@10 AUC R@20 AUC R@5 AUC R@10 AUC R@20 AUC

TransE .084 .679 .163 .670 .276 .665 .390 .849 .475 .849 .569 .853
DistMult .118 .656 .187 .652 .283 .653 .425 .841 .490 .835 .551 .840
ComplEx .160 .733 .248 .720 .364 .718 .460 .842 .531 .841 .581 .839
RotatE .114 .614 .177 .609 .262 .604 .140 .738 .212 .732 .311 .728

CKRL .150 .693 .231 .701 .342 .694 .317 .787 .411 .795 .497 .794
CAGED .474 .903 .536 .883 .620 .877 .577 .914 .630 .910 .674 .896

KG-BERT .601 .925 .680 .936 .750 .939 .714 .936 .782 .953 .813 .951
LASS (BERT-base) .640 .955 .706 .955 .768 .951 .762 .956 .791 .956 .821 .955
LASS (BERT-large) .689 .959 .750 .963 .804 .961 .757 .957 .792 .957 .827 .957
LASS (RoBERTa-base) .665 .961 .709 .958 .775 .955 .775 .961 .802 .960 .831 .959
LASS (RoBERTa-large) .730 .971 .785 .973 .831 .971 .780 .964 .814 .964 .844 .963

GOLD (RoBERTa-base) .831 .982 .847 .980 .866 .974 .861 .964 .880 .965 .887 .958
GOLD (RoBERTa-large) .828 .985 .841 .978 .868 .977 .864 .968 .880 .962 .900 .968
GOLD (DeBERTa-v3-base) .839 .979 .861 .980 .875 .975 .862 .965 .873 .967 .884 .959
GOLD (DeBERTa-v3-large) .823 .973 .850 .975 .863 .968 .849 .962 .863 .958 .880 .961
GOLD (Sentence-T5-base) .838 .983 .852 .981 .870 .975 .863 .959 .890 .964 .896 .958
GOLD (Sentence-T5-xl) .822 .982 .836 .979 .858 .973 .862 .960 .880 .962 .891 .960
GOLD (Sentence-T5-xxl) .842 .985 .859 .981 .878 .979 .872 .969 .887 .966 .901 .974

Table 1: Comparison of the effectiveness of different methods. We highlight that our proposed GOLD model
outperforms all baselines across six data sets and both metrics. We denote the best results in bold, while the best
result among the competing methods is marked with an underline. Further analysis is provided in Section 6.1.

et al., 2013), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), and RotateE (Sun
et al., 2019); (ii) embedding-based methods that
are aware of noise, including CKRL (Xie et al.,
2018) and CAGED (Zhang et al., 2022b); (iii) lan-
guage model-based methods that encode both se-
mantic and structural embeddings and are unaware
of noise, including KG-BERT (Yao et al., 2019)
and LASS (Shen et al., 2022). KGist (Belth et al.,
2020) as a rule-based method requires node type
information, which is unavailable in the CSKG,
making it infeasible to use as a baseline. More
detailed descriptions are in Appendix A.2.

5.4 Implementation Details

We leverage three families of PLMs from the
Huggingface Library (Wolf et al., 2020) to build
our GOLD framework, including RoBERTa (Liu
et al., 2019), DeBERTa-v3 (He et al., 2023), and
Sentence-T5 (Ni et al., 2022). Detailed variants
of these PLMs are included in Table 1. We train
GOLD with an Adam (Kingma and Ba, 2015) opti-
mizer, with the learning rate set to 1e-3. The default
number of training epochs is 10, with a margin γ of
5 and a rule length set to 3. Additionally, we con-
duct a grid search for λ, ranging from 0 to 1, to find
the best hyperparameter for krules from 0 to 500.
Further information regarding the implementation
is discussed in Appendix A.3.

6 Experiments and Analyses

6.1 Main Results

The performance of all models on the six datasets
in the noise detection task is shown in Table 1. In
general, GOLD can detect noise in CSKG more
accurately, outperforming all baseline methods by
a large margin. Unlike baseline models based on
language models, whose performance significantly
increases with the size of the language model, our
GOLD method consistently surpasses the baseline
across different language model backbones with
small performance variation. Specifically, when us-
ing the RoBERTa family of language models, our
GOLD method achieves an average accuracy im-
provement of 8.64% and 8.50% compared to LASS
methods on the ConceptNet and ATOMIC dataset
series, respectively. Among the language models
we use, the Sentence-T5-xxl model exhibits the
best overall performance, with the highest accuracy
improvement over 10.14% and 9.17% on the Con-
ceptNet and ATOMIC dataset series, respectively,
compared to the baseline. Additionally, the AUC
score also improves by 1.02% and 0.62%.

6.2 Ablation Study

In this section, we conduct an ablation study on
the ConceptNet-N10 dataset to evaluate the contri-
bution of each component in our proposed model.



Model Recall@k AUC

GOLD (Sent-T5-xxl) 0.859 0.981

w/o LM 0.810(↓ 5.7%) 0.968(↓ 1.3%)
w/o Eglobal 0.826(↓ 3.8%) 0.971(↓ 1.0%)
w/o Elocal 0.599(↓ 30.1%) 0.925(↓ 5.7%)

Table 2: Ablation study results comparing the perfor-
mance of GOLD with and without each component on
the ConceptNet-N10 dataset.

The results of this study are presented in Table 2.
Overall, we observe that removing any of the com-
ponents results in varying degrees of performance
degradation, emphasizing the essentiality of each
component in our GOLD model.

Influence of Language Model We remove the
PLM from the triple encoder and use random em-
beddings to encode the information of nodes and
relations, obtaining the embeddings sh, sr, st in
Equation (1). This results in a 5.7% decrease in
the model’s accuracy and a 1.3% decrease in AUC,
indicating that the PLM indeed contributes to un-
derstanding the semantic information of nodes. It is
worth noting that even after removing the language
model, the accuracy and AUC still outperform all
competing methods.

Influence of Global Rule Mining We remove
the global rule encoder, which results in a 3.8%
decrease in accuracy and a 1.0% decrease in AUC,
implying the important role of the rule encoder in
guiding noise detection. Furthermore, as we train
the rule encoder using the top krules rules with
the highest confidence score for each relation from
the rules mined by AMIE 3, we test the impact
of different values of krules on the accuracy us-
ing three datasets from the ConceptNet series. We
vary krules among {100, 200, 300, 400, 500}. The
results are shown in Figure 3. We observe that
when the noise level is relatively low, i.e., in the
N5 dataset, krules = 200 achieves the best perfor-
mance, and adding more rules degrades the model’s
performance. However, increasing the number of
rules improves the model’s performance to some
extent when the noise level is high, such as in the
N10 and N20 datasets. We analyze that this is be-
cause as the noise level increases, learning local
information becomes more prone to being misled.
Hence, more rules are needed to provide global
guidance.
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Figure 3: Accuracy of noise detection vs krules, the
number of selected logical rules on ConceptNet series.

Model Recall@k AUC

GOLD (Sentence-T5-xxl) 0.869 0.982

GPT-3.5 (text-davinci-003) 0.273 0.685
ChatGPT (gpt-3.5-turbo) 0.263 0.734

Table 3: Performance comparison on a randomly sam-
pled ConceptNet-N10 dataset.

Influence of Local Neighbor Learning More-
over, we remove the local neighbor information
learning component, resulting in a significant de-
crease of 30.1% in accuracy and 5.7% in AUC,
demonstrating the crucial role of neighboring triple
information in noise detection. More comprehen-
sive ablation studies are in Appendix C.

6.3 Comparison with ChatGPT

Recent breakthroughs in Large Language Mod-
els (LLMs), such as GPT-3.5 (Brown et al., 2020;
Ouyang et al., 2022) and ChatGPT (OpenAI, 2022),
have demonstrated remarkable performance across
a diverse range of NLP tasks (Chan et al., 2023;
Qin et al., 2023). In light of this, we benchmark
these LLMs on our defined noise detection task to
establish another competitive baseline for compari-
son. To accomplish this, we randomly select 1,000
triples from our poisoned ConceptNet-N10 CSKG
and ask the LLMs to rank them by iteratively com-
paring two triples and merge-sorting them (more
detailed information in Appendix B). This eval-
uation setting ensures that the LLMs follow an
objective that is mostly identical to GOLD. The re-
sults, as shown in Table 3, indicate that both LLMs
perform significantly poorly on our task, leaving
a substantial gap compared to GOLD. One pos-
sible explanation is that these LLMs operate in a
zero-shot setting and lack prior knowledge of noisy
knowledge contained in CSKGs. This highlights
the significance of GOLD, which exhibits a keen
sensitivity to noise in CSKGs through fine-tuning.



6.4 Downstream Benefits of Denoising CSKG

We finally validate the effectiveness of our pro-
posed noise detection framework by investigat-
ing whether eliminating noise from ATOMIC10X

would yield extrinsic benefits for downstream tasks,
specifically, zero-shot commonsense Question-
Answering (QA) (Ma et al., 2021). This task in-
volves performing QA on commonsense bench-
marks, such as Abductive NLI (aNLI; Bhagavat-
ula et al., 2020), CommonsenseQA (CSQA; Tal-
mor et al., 2019), PhysicalIQA (PIQA; Bisk et al.,
2020), SocialIQA (SIQA; Sap et al., 2019b), and
WinoGrande (WG; Sakaguchi et al., 2021), with-
out accessing their respective training data. Ma
et al. (2021) proposed a technique that fine-tunes
a PLM on synthetic QA pairs constructed from
CSKGs, which has been further improved by Kim
et al. (2022) using modularized transfer learn-
ing and Wang et al. (2023a) with conceptualiza-
tions (Wang et al., 2023b). Specifically, the head
node and relation of an edge are transformed into
a question using natural language templates, and
the tail node serves as the ground-truth answer.
Distractors are tails of other edges sampled from
the same CSKG whose head node does not share
common keywords with the question. A PLM is
then fine-tuned on such synthetic QA entries us-
ing marginal ranking loss to serve as a general QA
model. To this extent, we keep the QA synthesis
protocol and model training process fixed and abla-
tively study the role of leveraging different CSKGs,
in our case, raw ATOMIC10X and noise-cleaned
ATOMIC10X. We use accuracy as the evaluation
metric and trained three QA models separately on
(1) the original ATOMIC10X, (2) ATOMIC10X de-
noised with LASS, and (3) ATOMIC10X denoised
with GOLD, where the former two served as the
baselines. The results are reported in Table 4. We
observe that cleaning ATOMIC10X with GOLD out-
performs both baselines on average, indicating that
denoising CSKG is potentially useful for automati-
cally generated CSKGs and that GOLD is superior
to other noise detection frameworks on real-world
CSKGs.

6.5 Case Study

We present specific case studies on the mined logi-
cal rules and detected noises in the real large-scale
CSKG in Appendix D. Those cases directly show
the effectiveness of our proposed method.

Denoising aNLI CSQA PIQA SIQA WG Avg.

N/A 74.0 65.4 73.8 59.5 73.9 69.3

LASS 71.8 65.8 77.7 57.4 67.3 68.0
GOLD 72.2 69.6 79.0 58.8 71.5 70.3

Table 4: Zero-shot evaluation results (%) on five bench-
marks for QA models trained on the original/denoised
ATOMIC10X. N/A stands for not using any denoising
technique, and Avg. refers to average.

7 Conclusions

In this paper, we propose GOLD, a noise detection
framework leveraging the power of language mod-
els, global rules, and local structural information.
This method is motivated by the fact that nodes in
CSKGs are in free-text format, and correct patterns
are unlikely to be drowned out by noise. Experi-
mental results indicate that our method achieves
state-of-the-art performances in CSKG noise de-
tection tasks. This method shows promising di-
rections for automatically obtaining a large-scale
CSKG with minimal noise, as well as effectively
representing knowledge for downstream tasks.

Limitations

In our experiments, we follow the approach of pre-
vious noise detection literature (Xie et al., 2018; Jia
et al., 2019) and inject synthesized noise back into
the original CSKGs. Although this noise injection
technique has been deemed reliable in previous
works, further investigation is necessary to verify
its rigor in the field of commonsense reasoning.
This is because such noise can typically be classi-
fied as negative commonsense knowledge, which,
as suggested by Chen et al. (2023), should be ver-
ified by whether it can be grounded as negative
knowledge. Alternatively, we could inject noise
from the perspective of graph attacks (Zhang et al.,
2019a) to increase the difficulty of noise detection
and improve the model’s robustness.

Ethics Statement

This paper introduces GOLD, a novel denoising
framework for CSKG noise detection that is both
global and local-aware. The experiments presented
in this paper utilize open-source datasets, includ-
ing ConceptNet, ATOMIC, ATOMIC10X, and five
commonsense question-answering benchmarks.
The crowdsourced datasets, such as ConceptNet,
ATOMIC, and the five commonsense question-
answering benchmarks, have been manually cu-



rated and further processed to ensure that they are
anonymized and desensitized. The experiments
align with their intended usage, which is for re-
search purposes. Additionally, while ATOMIC10X

is generated using language models, its prompt
engineering ensures that no harmful content is gen-
erated, which has been verified by manual inspec-
tion (West et al., 2022). Therefore, to the best of
the authors’ knowledge, we believe that GOLD in-
troduces no additional risk.
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Appendices

A Experimental Setup Details

A.1 Datasets

ConceptNet ConceptNet, or CN-100K, was first
proposed by (Li et al., 2016). It contains Open
Mind Common Sense (OMCS) in the ConceptNet
5 dataset. CN-82K dataset (Wang et al., 2021a)
is a uniformly sampled version of the CN-100K
dataset.

ATOMIC ATOMIC contains over 300K everyday
commonsense knowledge nodes, organized as if-
then relations. It proposes nine types of if-then rela-
tions to distinguish various aspects of events, such
as causality, intents, and mental states. Malaviya
et al. constructed a dataset from ATOMIC for the
task of CSKG completion.

In our experiments, we follow Wang et al.
(2021a) to use CN-82K and ATOMIC. Unlike
CSKG completion settings, we merge the train,
valid, and test split to get training and testing sets
because noise detection is a ranking task requir-
ing training and testing on the entire knowledge
graph. To introduce noisy triples, we follow Xie
et al. (2018) and Jia et al. (2019) to add noisy triples
to these two datasets separately manually. Specif-
ically, the noise we generate is divided into four
parts, with a probability of 1/4 for randomly gener-
ating a new triple (ĥ, r̂, t̂) where ĥ, t̂ ∈ V, r̂ ∈ R,
and probabilities of 1/4 each for modifying the
head node, relation, or tail node of an existing triple.
When modifying an existing triple, we randomly
sample a ground truth triple (h, r, t) ∈ E from
the CSKG and then replace one of its components
with a randomly chosen node ĥ, t̂ ∈ V , or relation
r̂ ∈ R, to create a new triple (ĥ, r, t), (h, r̂, t) or
(h, r, t̂). The process of generating noisy triples
requires ensuring that they do not exist in the orig-
inal CSKG. Taking (hotel room, UsedFor, tempo-
rary residence) from ConceptNet and (John works
long hours, xIntent, to make more money) from
ATOMIC as examples, Table 6 presents several ex-
amples of noise generated by replacing the head
node, relation, and tail nodes, as well as examples
of newly generated triples. It can be observed that
these noises are still informative and theoretically
challenging to detect, aligning with our previous
definition of noises in CSKG in Section 3. Hence,
we believe that the noise generated through the
above method is effective for model training. The

statistical information for the datasets is presented
in Table 5.

A.2 Competing Methods
We compare GOLD with three categories of algo-
rithms, beginning with four structure embedding-
based methods that are unaware of noise. Here,
h, r, t represent the embeddings of the head entity,
relation, and tail entity, respectively.

• TransE (Bordes et al., 2013) The score func-
tion is ∥h+ r − t∥, where h, r, t ∈ Rd.

• DistMult (Yang et al., 2015) The score func-
tion is ⟨r,h, t⟩, where ⟨·⟩ denotes the gener-
alized dot product, and h, r, t ∈ Rd.

• ComplEx (Trouillon et al., 2016) The score
function is R (⟨r,h, t̄⟩), where h, r, t ∈ Cd.

• RotatE (Sun et al., 2019) The score function
is ∥h◦r−t∥2, where ◦ denotes the Hadamard
product, and h, r, t ∈ Cd.

Next, we consider two embedding-based meth-
ods that capture noise using local information:

• CKRL (Xie et al., 2018) They introduce
the triple confidence and path confidence to
conventional translation-based methods for
knowledge representation learning.

• CAGED (Zhang et al., 2022b) They pro-
pose a contrastive learning framework to cap-
ture noise by aggregating triple information
around the head and tail entities while also
learning the traditional translation embedding.

We also evaluate our methods against fine-tuned
language models:

• KG-BERT (Yao et al., 2019) They first pro-
pose concatenating the triples into textual de-
scriptions and transforming the representation
learning into a triplet classification problem.
We evaluate the performance of noise detec-
tion by using scores designed for classifica-
tion.

• LASS (Shen et al., 2022) They propose a joint
language semantic and structure embedding
for knowledge graph completion. We also use
the scores designed for triplet classification
to evaluate the performance. Experimental
results from their paper demonstrate that their



Dataset Nodes Relations Original Triples Noisy Triples Avg. Degree Avg. Words

ConceptNet-N5
78,339 34 102,400

5,120
1.31 2.85ConceptNet-N10 10,240

ConceptNet-N20 20,480

ATOMIC-N5
304,439 9 762,230

39,297
2.50 4.47ATOMIC-N10 78,595

ATOMIC-N20 157,190

Table 5: Statistical information for six datasets. Avg. Degree represents the average degree of each node and Avg.
Words represents the average number of words in the text description of each node.

Type Head Relation Tail

Replacing h with ĥ
playground equipment UsedFor temporary residence
John has trouble falling asleep xIntent to make more money

Replacing r with r̂
hotel room NotCapableOf temporary residence
John works long hours oEffect to make more money

Replacing t with t̂
hotel room UsedFor prepare food to eat
John works long hours xIntent lose money or resources

New Triple plastic fork CapableOf buy food
John drinks coffee oEffect to go to the movie theatre

Table 6: Examples of four manually generated types of noise. The ground truth triples modified in the examples are
(hotel room, UsedFor, temporary residence) from ConceptNet and (John works long hours, xIntent, to make more
money) from ATOMIC. The modified parts are indicated by underlines.

model outperforms other PLM-based methods
in triplet classification tasks. Hence, we select
it as our baseline. In particular, their model is
tested on four backbones, namely BERT-base,
BERT-large, RoBERTa-base, and RoBERTa-
large. We also conduct experiments on these
four backbones.

A.3 Implemention Details
For the embedding-based baseline models, we
use the implementation from OpenKE(Han et al.,
2018). For the rest, we use the released code corre-
sponding to each paper to perform experiments. In
order to align the performance of different models,
we set the dimension of all embeddings apart from
language models to 100, the number of negative
samples to 1, and the batch size to 256. Our model
also follows these settings. For the remaining hy-
perparameters of baseline models, we follow the
settings proposed in the original paper and perform
a grid search when modifications are necessary.

B Details of the Zero-shot Noise Detection

ChatGPT cannot directly sort a large number of
triples, so we implement a merge sort in Algo-
rithm 1 to sort the triples in descending order of
their noise level. When comparing the order of
two triples, we draw inspirations from Wang et al.

(2023c) and call the ASKCHATGPT function to em-
ploy ChatGPT to choose which triple is more likely
to be noisy from two triples. Inspired by chain-of-
thought (CoT) prompting (Wei et al., 2022), we
guide ChatGPT in the prompt to first provide the
specific reasoning process and then compel it to
provide the answer. The prompt used for compar-
ing which of the two triples is more likely to be
noise is listed in Table 7. We use OpenAI’s API1

to prompt ChatGPT and retrieve its response.

Prompt

Given two triples from a knowledge graph:
(h1, r1, t1), (h2, r2, t2). Which one is more likely
to be wrong? Show me the reason first, and
then print the wrong triple. You are forced
to make a decision.

Table 7: A natural language prompt used to guide Chat-
GPT to compare two triples and determine which one
is more likely to be noise. Entries in italics will be re-
placed by actual triples. The last sentence mandates
ChatGPT to choose which of the two triples is more
likely to be noise.

C Full Results of Ablation Study

In this section, we provide a comprehensive sup-
plementary ablation study. The results of all exper-

1https://chat.openai.com/

https://chat.openai.com/


Model
ConceptNet

N5 N10 N20

Acc AUC Acc AUC Acc AUC

GOLD (Sent-T5-xxl) .842 .985 .859 .981 .878 .979

w/o PLM .779(↓ 7.5%) .970(↓ 1.5%) .810(↓ 5.7%) .968(↓ 1.3%) .834(↓ 5.0%) .963(↓ 1.6%)
w/o Eglobal .791(↓ 6.1%) .974(↓ 1.1%) .826(↓ 3.8%) .971(↓ 1.0%) .862(↓ 1.8%) .974(↓ 0.5%)
w/o Elocal .478(↓ 43.2%) .915(↓ 7.1%) .599(↓ 30.3%) .925(↓ 5.7%) .652(↓ 25.7%) .907(↓ 7.4%)
w/ Etranslation .841(↓ 0.1%) .986(↑ 0.1%) .856(↓ 0.4%) .983(↑ 0.2%) .867(↓ 1.3%) .971(↓ 0.8%)

Model
ATOMIC

N5 N10 N20

Acc AUC Acc AUC Acc AUC

GOLD (Sent-T5-xxl) .872 .969 .887 .966 .901 .974

w/o PLM .779(↓ 10.7%) .927(↓ 4.3%) .801(↓ 9.7%) .928(↓ 3.9%) .822(↓ 8.8%) .929(↓ 4.6%)
w/o Eglobal .859(↓ 1.5%) .960(↓ 0.9%) .874(↓ 1.5%) .961(↓ 0.5%) .884(↓ 1.9%) .955(↓ 2.0%)
w/o Elocal .656(↓ 24.8%) .931(↓ 3.9%) .699(↓ 21.2%) .930(↓ 3.7%) .747(↓ 17.1%) .926(↓ 4.9%)
w/ Etranslation .868(↓ 0.5%) .962(↓ 0.7%) .886(↓ 0.1%) .965(↓ 0.1%) .901(↓ 0.0%) .970(↓ 0.4%)

Table 8: The comprehensive ablation study results comparing the impact of each component on the results on all six
datasets. Additionally, we verify the effect of adding the translation-based energy function on the results.

Algorithm 1 Merge Sort guided by ChatGPT
Input: A triple list L
Output: A tiple list sorted from high to low according to the
noise level
Function: MERGESORT(L)
1: h← |L|/2
2: Lleft ← MERGESORT(L[1, 2, · · · , h])
3: Lright ← MERGESORT(L[h+ 1, · · · |L|])
4: i← 1
5: j ← 1
6: for k ← 1 to |L| do
7: if i > h then
8: L[k]← Lright[j]
9: j ← j + 1

10: else if j > h then
11: L[k]← Lleft[i]
12: i← i+ 1
13: else if ASKCHATGPT(Li, Lj) = Li then
14: L[k]← Lleft[i]
15: i← i+ 1
16: else
17: L[k]← Lright[j]
18: j ← j + 1
19: end if
20: end for
21: return L

iments conducted on the six datasets are listed in
Table 8.

Influence of Language Model By removing the
PLM from the triple encoder, we observe an aver-
age decrease of 6.1% in accuracy on the Concept-
Net series datasets and an average decrease of 9.7%
on the ATOMIC series datasets. This indicates that
PLM has a greater impact on the accuracy of the
ATMOIC datasets, as the average number of words
per node in ATOMIC is much higher than that in

ConceptNet. Therefore, PLM plays a more crucial
role in capturing semantic information.

Influence of Global Rule Mining After elimi-
nating the global rule encoder, the accuracy of the
ConceptNet series and ATOMIC series datasets de-
creases by 3.9% and 1.6%, respectively. Our analy-
sis suggests that the lower number of relations in
the ATOMIC datasets, only 9 compared to 34 in
the ConceptNet datasets, results in a significantly
lower number of learnable rules compared to the
ConceptNet. As a result, the global rule encoder
provides limited assistance in the ATOMIC datasets,
and its contribution is not as significant as in the
ConceptNet datasets.

Influence of Local Neighbor Learning The lo-
cal neighbor learning component exhibits the high-
est contribution across all datasets, as evidenced
by the average accuracy drops of 33.1% and 21.0%
in accuracy, as well as 6.7% and 4.2% in AUC af-
ter its removal on ConceptNet series and ATOMIC

series datasets, respectively. We believe that the
reason why this component has a smaller impact
on the ATOMIC datasets is still due to the limited
number of relations, leading to a less diverse set
of information learned from the neighboring triple
information.

Influence of Translation Assumption We at-
tempt to investigate whether the model would ben-
efit from the incorporation of a translation assump-
tion, such as the h+ r ≈ t relation in TransE (Bor-



Rules

IsA(x, y)← IsA(x, z1) ∧ DefinedAs(z1, z2) ∧ IsA(z2, y)
CapableOf(x, y)← HasA(x, z1) ∧ PartOf(z1, z2) ∧ CapableOf(z2, y)
NotDesires(x, y)← DefinedAs(x, z1) ∧ CreatedBy(z1, z2) ∧ NotDesires(z2, y)
HasPrerequisite(x, y)← HasPrerequisite(x, z1) ∧ MadeOf(z1, z2) ∧ HasPrerequisite(z2, y)

Table 9: Examples of the most frequent rules mined from the ConceptNet-N10 dataset.

Head Relation Tail

X is a good friend with Y isAfter X is a little weird
X refuses to take a pen oEffect are glad to see X
X steals Y’s breakfast oNeed to leave X’s room
X catches a stranger isAfter X checks the weather forecast
X flies to Washington oEffect become a politician
X falls down again isAfter X’s mother gives X a hug
X seems to stay well oWant to see X get sick
X assumes that Y is a nice person isAfter Y has done something that upsets X
X studies hard for his exam oNeed to cheat on the exam
X is afraid of getting in trouble oNeed to tell X that he or she could get in trouble

Table 10: Example of noise detected in the ATOMIC10X CSKG.

des et al., 2013), where h, r, t represents the em-
bedding of the head entity, relation, and tail entity
respectively. Inspired by this, we also integrate an
energy function based on the translation assump-
tion into our approach. We design the energy func-
tion for the translation part as follows:

Etranslation(h, r, t) = ∥eh + er − et∥2. (16)

By adding Equation (16) to Equation (12), we ob-
tain a new overall energy function as follows:

E(h, r, t) = Eglobal(h, r, t)

+ λElocal(h, r, t)

+ λ(t)Etranslation(h, r, t),

(17)

where λ and λ(t) are both hyperparameters. We per-
form a grid search for them between 0.001 to 1 and
report the best results in Table 8. The experimental
results indicate that the energy function based on
the translation assumption in the form of Equation
(16) cannot provide significant assistance to our
model. The overall impact on precision is negative,
with an average decrease of 0.4%. This suggests
that our GOLD method does not need to rely on
such translation assumption constraints when per-
forming noise detection task. It can implicitly learn
the relationship between nodes using the energy
functions of the global and local parts.

D Case Studies

Mined Logical Rules We list the most frequent
rules mined from the ConceptNet-N10 dataset us-
ing AMIE 3 and present them in Table 9. We can

observe that these rules are highly interpretable
and not affected by mixed-in noise. Therefore, they
can be treated as ground truth to validate the entire
knowledge graph (Bai et al., 2023).

Detected Noise We conduct our proposed GOLD

method on the ATOMIC10X dataset and examine
the triples with noise levels in the top 1%. We list
ten specific examples that violate reasonability (see
Section 3) in Table 10. The results show that our
method can effectively extract noise triples from a
large-scale CSKG.


