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ABSTRACT

Federated learning (FL) as a distributed learning paradigm has a significant advan-
tage in addressing large-scale machine learning tasks. In the Euclidean setting, FL
algorithms have been extensively studied with both theoretical and empirical suc-
cess. However, there exist few works that investigate federated learning algorithms
in the Riemannian setting. In particular, critical challenges such as partial partici-
pation and data heterogeneity among agents are not explored in the Riemannian
federated setting. This paper presents and analyzes a Riemannian FL algorithm,
called RFedAGS, based on a new efficient server aggregation—averaging gradient
streams, which can simultaneously handle partial participation and data heterogene-
ity. We theoretically show that the proposed RFedAGS has global convergence
and sublinear convergence rate under decaying step sizes cases; and converges
sublinearly/linearly to a neighborhood of a stationary point/solution under fixed
step sizes cases. These analyses are based on a vital and non-trivial assumption
induced by partial participation, which is shown to hold with high probability.
Extensive experiments conducted on synthetic and real-world data demonstrate the
good performance of RFedAGS.

1 INTRODUCTION

Modern learning tasks handle massive amounts of data, which are geographically distributed across
heterogeneous devices. Conventional centralized algorithms, e.g., stochastic gradient descent (SGD),
need to collect the data into single device for training, which consumes significant storage and com-
puting resource. Additionally, from the perspective of privacy security, transmitting raw training data
may leak data privacy. A promising distributed learning paradigm—federated learning (FL)—allows
a center server to coordinate with multiple agents (e.g., mobile phones and tablets) to train a desired
model parameter without raw data sharing, which is an ideal solution to the issues aforementioned.

In recent years, with the development of Riemannian optimization, many machine learning problems
have data structures that can be inscribed by low-dimensional smooth manifolds, and thus they can
be modeled on manifolds. There are such examples including but not limited to principal component
analysis (Ye & Zhang| |2021), Fréchet mean computation (Han et al.,[2021), hyperbolic structured
prediction (Xiong et al.,[2022), low-rank matrix completion (Jawanpuria & Mishra, 2018}, [Mishra
et al.l 2019), multitask feature learning (Jawanpuria & Mishral 2018}, |[Mishra et al.,|2019)), and neural
network training (Magail, [2023). This motives us to develop a efficient Riemannian FL algorithm.

This paper focuses on the following Riemannian federated optimization problem

N
aigerﬂrzinF(m) = ifz_zlfz(w); with fi(z) = E¢op, [fi(2; §)], (1.1)

where M is a d-dimensional Riemannian manifold, IV is the number of agents, F' : M — R is the
global objective, and f; : M — R and D; are local objectives and the data distribution held by agent
i, Vi € [N] ={1,2,..., N}. Throughout this paper, we focus on the expected minimization ,
but the resulting conclusions are also true for the finite sum minimization in which the local objective
is defined by f;(x) = Ni Z;\le filz; 2 ;) with D; = {2;1, 25,2, - . ., 2i,n, } the local dataset held by
agent ¢. We may not necessarily assume that D;, Vi € [IN], are the independently identical distribution
(LL.D.), i.e., the data distributions across different agents are non-1.I.D.
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A well-known Euclidean FL algorithm is Federated Averaging (FedAvg) (McMahan et al.,[2017),
which is adapted from the local stochastic gradient descent (local SGD) method. Specifically, at the
beginning, FedAvg takes an initial guess x; as input and then sends it to all agents. Subsequently, the
following steps are performed alternately:

(i) agent j updates its the local parameter via performing K'-step SGD with x; being the initial
guess and generates the trained local parameter z ;. (this is called “local update” or “inner

iteration”), and then the local parameter J;i x 1s uploaded to the server;

(ii) the server at random samples a subset of size S from all agents, denoted by S;, and then
averages the received local parameters to generate the next global parameter x; 1, i.e.,

1 .
T g > al (1.2)
JES

which is called “server aggregation”, and then sends z;; to all agents.

The two steps above constitute a round of communication (or outer iteration).

Related works. Early works primarily analyzed the convergence of FedAvg and its variants in
limited settings, typically relying on one or both of the following assumptions: (i) full participation
(i.e., S = N) and (ii) LI.D. data distributions; see, e.g., (Zhou & Cong| [2018}; [Stich|, 2019}, [Yu
et al.,|2019; Haddadpour et al., 2019; Wang & Joshil 2021} |Gu et al., [2023)) and references therein.
Subsequently, numerous works have studied the convergence of FL algorithms under (iii) partial
participation and (iv) non-L.I.D. data assumption; see e.g., (Li et al.| 2020bza} |[Rizk et al., [2022) and
references therein. In these works, partial participation is implemented by random sampling—the
server randomly selects a subset of agents to perform local updates in each outer iteration.

Due to heterogeneity in the computational capabilities and the environment conditions across agents,
their availability and response speeds are hardly predictable. This unpredictability makes random
sampling-based approaches unsuitable for such scenarios. Recent works have instead adopted an
arbitrary participation model, where agents may respond to the server in a stochastic and uncontrolled
manner (Gu et al.| 2021} [Wang & Ji, [2022} Ribero et al., 2023} [Xiang et al., 2023 Yan et al.| [2023];
Wang & Ji,2024; Xiang et al., [2025; |Ying et al.l 2025). These works can be roughly divided into
three categories: (i) time-varying statistic, i.e. agent ¢ participates in the ¢-th outer iteration with
probability pi varying over time (Wang & Ji,2022; Ribero et al., [2023} |Xiang et al., 2023; Wang &
Jil |2024; [Xiang et al., 2025); (ii) time-invariant statistic, i.e., the participation probability for agent ¢
is not varying over time (meaning pi = p; forall t > 1) (Wang & Ji,2024; Ying et al.,|2025); and
(iii) periodic participation, i.e., each agent ¢ must participate in at least one communication round
within a fixed iteration interval (Gu et al.,|2021;|Yan et al., 2023).

The FL algorithms mentioned earlier operate solely in Euclidean space and thus cannot directly
handle such problems whose parameters are located in manifolds due to the inherent curvature
effects of manifolds. Only a limited number of studies have explored the design and analysis of FL
algorithms on Riemannian manifolds. (Li & Mal [2023) proposed a Riemannian counterpart of (1.2)
and thus developed a Riemannian FL algorithm. Their algorithm involves in exponential mapping,
its inverse, and parallel transport. Nevertheless, for some manifolds, e.g., the Stiefel manifold, the
inverse of the exponential mapping and parallel transport have no closed forms, and only iterative
methods can be used to compute them, which brings an extra computation burden. (Huang et al.|
2024) adopted a framework similar to that of (Li & Mal [2023) but integrate differential privacy to
strengthen privacy guarantees. Under the non-L.I.D. setting, most convergence results in (L1 & Ma,
2023; Huang et al., [2024) are established for the case K = 1 and full participation, i.e., all agents
just perform one step local update (notably, for K > 1, the convergence analyses of both algorithms
further assume that only one agent participates in communication). The algorithm proposed in (Zhang
et al.,|2024)) supports general settings where K > 1 and .S > 1, but its convergence analysis relies on
the full participation assumption. Additionally, the algorithm therein involves an orthogonal projector
onto the manifold and requires that this projector is a singleton. Thus, its applicability is restricted
to problems on compact Riemannian submanifolds embedded in Euclidean spaces. Subsequently,
Wang et al. (Wang et al., [2025)) proposed a zeroth-order gradient estimator and integrate it into
RFedProj, resulting a zeroth-order Rimannian FL algorithm called ZO-RFedProj. The algorithms
in (Xi1ao et al., [2024; [2025) incorporated the Barzilai-Borwein method into the framework of (L1
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& Ma, [2023)). Despite the efforts of some, all of the Riemannian FL algorithms above have no
theoretical guarantee under both partial participation and data heterogeneity setting. See Table [I]
for comprehensive comparisons of existing Riemannian FL algorithms and the proposed RFedAGS.
Table 2] summarizes the computational (communication) complexity required for these methods to
complete one outer iteration. The table includes the local iteration complexity per agent (LICpA),
server computational complexity (SCC), communication complexity (CC), and total computational
complexity (TCC), where TCC = LICpA + SCC.

Table 1: Summary of existing algorithms and the proposed RFedAGS.

Algorithms Manifold Partial Participation Non-LLD. Retraction Vector transport
RFedSVRG (Li & Mal[2023} General ! x? Conditioned >  Exponential mapping ~ Parallel transport
RPriFed (Huang et al.}[2024) General ! X Conditioned >  Exponential mapping ~ Parallel transport
RFedProj (Zhang et al.|[2024) Compact submanifold X v N/A N/A
Z0-RFedProj (Wang et al.[[2025) Compact submanifold X v N/A N/A
RFedSVRG-2BBS (Xiao et al.[[2024)  General ! x2 Conditioned >  Exponential mapping ~ Parallel transport
RFedSVRG-BB (Xiao et al.[2025) General ! x? Conditioned ®  Exponential mapping ~ Parallel transport
RFedAGS (this paper) General V V General retraction Bounded

! Although these methods are suitable for general manifolds, due to the usage of exponential mapping and its inverse, they may not work in some manifolds in where
the inverses of exponential mappings have no closed-form expressions, for example, the Stiefel manifold.

2 These algorithms at each outer iteration compute a full gradient at current global iterate and then it is used by agents to perform local SVRG step. Hence, these
algorithms are not suitable for partial participation.

3 We highlight that these methods overcome the non-LLD. data challenge only when K = 1 and S = N, i.e., all agents perform one-step local update. For K > 1
cases, the LLD. and S = 1 assumptions are indispensable. Hence, these algorithms are suitable for the non-I.LD. data setting conditioned on K = 1 and S = N.

Table 2: The computational complexity of RFedAvg (Li & Mal 2023), RFedSVRG (Li & Ma, 2023)),
RFedProj (Zhang et al., [2024), and RFedAGS over a compact Riemannian submanifold embedded
in R¥*?_ Here N is the number of agents, K is the number of local iterations, B is the batch
size, S is the number of local samples, and r, ir, v, p, and g respectively denote the flops in a
retraction evaluation, an inverse evaluation of the retraction, a vector transport evaluation, a projection
evaluation onto the manifold, and a gradient evaluation of single sample loss f;(z; z; ;).

LICpA scct cct  TCC
RFedAvg rK +gBK + dpK (ir+dp)N+r  2dpN (ir+dp)N +r(K + 1) + gBK + dpK
RFedSVRG rK +vK +gBK +gS + 3dpK (ir+2dp)N +r 4dpN (ir +2dp)N +r(K + 1)+ vK + g(BK + S) + 3dpK
RFedProj p(K +2)+ gBK + dp(4K + 3) p+dp(N+2) 2dpN p(K+3)+gBK+dp(4K + N +5)
RFedAGS rK +v(K — 1)+ gBK + 2dpK r + dpN 2dpN  r(K+1)+v(K —1)+gBK + dp(2K + N)

! Here we assume that all agents participate in communication.

Challenges. In this paper, we focus on investigating a FL algorithms on general Riemannian
manifolds, which works under arbitrary participation and data heterogeneity setting. In that case,
the challenges of designing and analyzing such an algorithm mainly arise from (i) the curvature
effects of manifolds, (ii) multiple-step local updates at each agent, (iii) stochastic error of arbitrary
participation, and (iv) data heterogeneity across agents. The biggest challenge brought by (i) and
(iii) is how the server generates new global parameters based on the local update information from
multiple agents, which directly affects the design of the algorithm. While (ii) and (iv) will bring local
errors into the global parameter even make algorithms diverge, which is called agent drift effects.
These issues often couple together and make convergence analysis more complicated.

Contributions. The main contributions of this paper are summarized as follows.

1. The server aggregation (SA) proposed in (Li & Mal 2023)) is inspired by the Euclidean weighted
average (2.I). Although this SA is feasible in practice, it has significant challenges in terms
of theory analysis and computation efficiency. This paper present a new SA which can avoid
the issues mentioned above. The idea behind the presented SA is that it does not handle local
parameters but rather averages local gradient information, which retains linearity to some extent.

2. We investigate the availability of the proposed RFedAGS under arbitrary participation and non-
LLD. data, where the arbitrary participation setting is based on the time-invariant statistic model
without requiring prior knowledge of the participation probabilities. This model encompasses
many practical scenarios, including random sampling.

3. We establish the convergence guarantees of the proposed RFedAGS under the arbitrary participa-
tion and non-L.1.D data setting with the standard assumptions in FL. and Riemannian optimization
except Assumption [3.8| which is important and nontrivial. We also discuss the reasonability of this
assumption when using the frequencies to estimate the true probabilities.
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4. Extensive numerical experiments with synthetic/real-world data are conducted to demonstrate the
efficacy of the proposed RFedAGS.

Notations. Throughout this paper, we use R, R", and R™*" to denote the real numbers, the space
real vectors of dimension 7, and the space real matrices of size m X n, respectively. We use M to
denote the Riemannian manifold and the equipped Riemannian metric is denoted by (-, -), whose the
induced norm on the tangent space T, M is denoted by || - ||, (omitting the subscript sometimes).
Exp, R, T, and grad f denote exponential mapping, retraction, vector transport, and the gradient of
f: M — R, respectively. Also, (-, )g, || - ||r, and V f denote the Euclidean inner product, the norm
induced by the Euclidean inner product, and the Euclidean gradient of f.

2 RFEDAGS: RIEMANNIAN FEDERATED AVERAGING GRADIENT STREAMS

A basic background in Riemannian geometry and optimization is assumed, and the details can be
found in Appendix [B] The proposed RFedAGS (stated in Algorithm|[I)) are explained as follows.

Algorithm 1 Riemannian Federated Learning via Averaging Gradient Streams: RFedAGS
Input: Initial global model x; € M, number of aggregations 7', numbers of local iterations K, local
step size sequence {ay }7_;, global step size w, batch size sequence {B;}1_;;

Output: {z;}/"".

1: fort=1,2,...,T do ‘

2:  The server broadcasts z; to all agents, i.e., z] ;, < ¢, j € N;

3. for Agentj € N in parallel do ’

4 Set CtJ,O +— 0,,;

5: fork=0,1,...,K —1do

6.

7

8

Agent j finds indices of the mini-batch sample ny . by sampling B; times;
Set g}, < B%, ZbeB{‘k grad f;(z] 13 &y p)s

J ) J .
Set Ty g1 RI? . (famt’k),

9: Set <g7k+1 — (t{k + 7}# - (atnik) with ﬁik satisfying Rz{ . (ﬁgk) = x4
10: end for o
11: Upload the gradient stream ¢ ;- to the server with an unknown but fixed probability p;;
12:  end for

13 The server computes the approximate probability qj ,Vj € Sy _
14:  The server updates the new global model z;1 by (AGS-AP) with ¢/ replacing p;;
15: end for

A new Riemannian SA. Due to the curvature effects of manifolds, the addition of two points in a
manifold is not valid, and thus the SA via the weighted average of local parameters (I.2) does not
work in the Riemannian setting. |L1 & Ma| (2023)) proposed a SA, called tangent mean, defined by

Tr41 + BExp,, <|Slt| Z Exp;t1 (miK)> , (TM)
i€St
which is an approximate to the weighted average of points on a manifold. On the one hand,
involves the inverse of exponential mapping, which has no closed-form expression in some manifolds,
e.g., the Stiefel manifold. This limits its scope of availability. Additionally, due to the curvature
effects of manifolds, exponential mapping and its inverse almost are nonlinear. Hence, when agents
perform multiple-step local updates, (TM)) involves multiple consecutive exponential mappings,
resulting in that the increment of parameters, Expgjt1 (2¢41), is difficult to be bounded in analysis,
which makes convergence analysis fairly challenging. In view of the discussions above, this paper
resorts to another aggregation which can not only implement SA efficiently but also analyze algorithm
convergence conveniently.

Back to the Euclidean setting, the increment of parameters of FedAvg can be expanded as

K—-1
1 1 i i
A =zp1 — o = —g > B, > Vi@t Ers)-

1€St k=0 bGBi’ .
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Observing the expression shows that the increment of parameters is given by the average of mini-
batch gradients of active agents. We can adopt the similar idea in the Riemannian setting but require
making some adaptations, since directly combining the mini-batch gradients located in different
tangent spaces is not well defined. With the aid of vector transport, the combination can be defined.
Specifically, we define the the Riemannian “increment of parameters” as

G =Ry, (we41) = |S| Z Z B, Z T gradfj(a:t k7€tkb))

JESt k=0 bEB]

. . . . y K71 .
Specific to agent j, it just need to upload CtJ,K = o B% ZbeB{ . 7}7% (gradfj(xﬁk;fi,k’b)),

called gradient stream, to the server. The resulting new SA is given via averaging gradient streams:

i1 = Ra, (¢1) = Ra, < & > d K) : (AGS-RS)
JESt

It is worth noting that when the manifold reduces to a Euclidean space, (AGS-RS) is equivalent to

the Euclidean SA (I.2)). In our opinion, this aggregation is a more essential generalization from the

Euclidean setting to the Riemannian setting.

From the perspective of geometry, tangent mean (TM) “projects” the final inner iterates xi IK
back to the tangent space at ¢, then averages them and finally retracts the average into the
manifold While in aggregation , the intermediary negative mini-batch-gradients

Bt Db B grad f; (:ct ki &g p) are transported to the tangent space at x; in some way, then aver-

ages them and finally retracts the average into the manifold. The (TM) actually is an approximation
of the weighted averages of inner iterates x] k- When the degree of heterogeneity across clients are

large, the inner x, « 1s closer to the minimizer of local function f;, and their average may be far away
from the minimizer of the global function; while, the proposed (AGS-RS) leverages the gradient
information drawn from clients to generate global direction and thus helps to alleviate this bias; see
Figure[I(c)} In particular, letting the proposed aggregation @ use the exponential map and
parallel transport, the two aggregations coincide when (i) M = R%; or (ii) K = 1. See Figure|l|for a
geometric interpretation and an experimental comparison of (]T_M[) and

10 & RFedAGS
-e-RFedAvg

I 'x. } E N\A—A/
xip=Re,(m) T iRy, (72) =
10° ‘ ‘
0 50 160 150
Iterations
(@ M™) (b) (AGSRS) (©) (AGS) v.s. (TM)

Figure 1: (a)-(b) diagrams of (TM) and (AGS-RS) where K = 2, two agent participate in commu-
nication, and g;(x) denotes the local stochastic gradient of agent ¢ at x. (c) (AGS) v.s. (TM) on

min$€{z€R5°:zTa::1} F({E) é((;lo Z ( TZl JZl gL + wTZQ JZQ i ))

Arbitrary partial participation. Now we are ready to extend to the arbitrary partial
participation setting under consideration, which is formally modeled in Assumption[2.1]

Assumption 2.1. Assume that each agent i independently participates in any round of communication
with probability p; > 0.

Under Assumption 2.} when the participation probabilities are not exactly equal to each other, using

simply may introduce stochastic participation errors. In that case, the next theorem points
out that the algorithm equipped with (AGS-RS)) may work incorrectly since it may solve another
problem different from the original problem.

Theorem 2.1 (Proved in Appendix [E-I). Under Assumption[2.1] let S, denotes the set of agents
who respond to the server at the t-th round of communication. Then, E [Z jes, ﬁ gradf; (x)} =

vazl pigrad fi(x), with p; = p; fo ]# —pj + pjt)dt.
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Therefore, if p; # p; for some i,j € [N], then p; # p;, and thus there exists no x > 0 such

that Zf\il pigradf;(z) = xgradF(z). That is, the algorithm may not solve the original problem
minge o F(x) since each of its search directions leads the iterate x; to the minimizer of another

. = N ~
problem ming e ap F'(x) := > ;_, Difi(x).
Back again to Assumption [2.1] at the ¢-th round of communication, note that

N N
. [; pz‘lN gradf: (5”)] =E [2 p%Nﬂst (i)grad f; (m)} = ; p%NIE [Is, (i)grad fi(z)]
Y
= ; PN (pigradfi(z)) = grad F(z), 2.1

where Is, (i) = 1if i € S; otherwise I, (i) = 0. Hence, if the participation probabilities, p;’s, are
known, one of the feasible aggregation patterns can be chosen as

1 )
ZTi+1 < Ra, < —w Z ﬁatCZ’K) with @ > 0 the global step size, (AGS-AP)
iesy It

which ensures that the algorithm correctly solves the original problem minge o F'(2).

On the other hand, in practical applications, the server is actually unaware of the true probabilities.
In this case, what the server can do is to estimate the true probabilities as possible in some ways,
that is, the server computes ¢! in the ¢-th round of communication and uses it to serve as the true
probability p;. Summarizing above, this paper proposes a Riemannian FL algorithm, called RFedAGS,
which can address the partial participation setting, as stated in Algorithm|[I]

3 CONVERGENCE ANALYSIS

In this section, we establish the convergence properties of RFedAGS (Algorithm [I)) on the partial
participation and the non-LL.D. data settings. All of the proofs can be found in Appendix D}

3.1 ASSUMPTIONS

We first present a set of assumptions as follows that are necessary for the convergence analysis. All
assumptions except Assumption@]have been used in e.g., (Bonnabel, 2013} [Tripuraneni et al.| [2018];
Sato et al.,[2019; |[Han & Gao} 2021), and their reasonability is discussed in Appendix
Assumption 3.1. The retraction R is such that its restriction to T, M for all t € M, Ry, is of
class C?, and the associated vector transport T is continuous and bounded in the sense that there
exists a constant Y > 0 such that for any x € M, (3,5 € T M, it holds that || T, ((z)|| < Y| ]l-
Assumption 3.2. For a sequence of the outer iterates {x, };>1 and a sequence of the inner iterates
{{{mik}évzl}f:_ol ti>1 generated by Algorithm there exists a W -totally retractive set W C M
such that {z:}+>1 C W and {{{x{7k}l§\7:1}szj)1}t21 C W. The minimizers of Problem are
inside YW. Additionally, there exists a compact and connected set X C M such that W C X.

Assumption 3.3. The cost function F is continuously differentiable in W, the local cost functions
fi,..., fn are continuously differentiable in W, and their components f;(-,§) for & ~ D; with
j € [N] are continuously differentiable in V.

Assumption 3.4. The local objective functions f;, j € [N], are L¢-Lipschitz continuously differen-
tiable in W with the retraction R and the vector transport T (see Definition|[B.1)), implying that F is
also L g-Lipschitz continuously differentiable.

Assumption 3.5. F'is Lg-retraction smooth over VV with respect to R (see Definition [1_-]

Assumption 3.6. For any parameter x € M, the Riemannian stochas;ic gradient grad f;(z; &) is
an unbiased estimator of the gradient grad f;(x), i.e., E¢;[gradf;(z;&7)] = gradf;(x), Vj € [N].
Assumption 3.7. For any fixed parameter x € M, there exists a positive constant o, such that for
all j € [N}, it holds that E[|| 5 > c5s gradfj(m;fg) — gradf;(z)[]?] < % with |B?| = B.

'In general, in the Riemannian setting, a L-Lipschitz continuously differentiable function f : M — R is not
necessarily L-retraction smooth, which is different from the Euclidean setting.
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The method estimating the probabilities is discussed in Section[3.3] Now we just make an assumption
requiring that the approximate probability ¢; in each round of communication is not far away from
the true probability p;, formally stated in Assumption [3.8]

Assumption 3.8. There exist constants ¢umin, ¢max € (0,1] and G > 0 independent of t > 1 and

o~ | < VGay, and guin < gf <
t K2

Gmax; Vt > 1,4 € [N], where o is the local step size in the t-th round of communication.

i € [N], such that the approximate probabilities q!’s satisfy

Note that the constant G controls the accuracy of the approximate probabilities and when the true
probabilities are available to the server, G can take exactly zero. In Section [3.3] we discuss the
reasonability of Assumption[3.§]

Remark 3.1. In (Wang & Ji, |2024), the authors imposed the following bound on the approximate

2
e N 2(1 1 N . . . RS
probabilities: ;" p; (qu pi) < g1+ This bound essentially requires that i | is less
than some constant, which is consistent with Assumption[3.8in fixed step size cases. Note that this
assumption is considered in (Wang & Ji| [ 2024) only for fixed step size cases, but Assumption[3.5|

considers another situation where the bound varies over time t when decaying step sizes are used.

3.2 CONVERGENCE PROPERTIES

In this section, we establish the convergence properties of the proposed RFedAGS.

Theorem 3.1. Let Assumptions[3.I{3.8 hold. Suppose Algorithm|[I|is run with a fixed global step size
w > 0 and a decaying local step size sequence {a.} satisfying Conditions

oo

iat = oo,Zaf < 0. 3.1
t=1 t=1

Then, lim inf,_, ., E[||grad F(z;)||?] = 0.

In what follows, we further characterize the nonasymptotic convergence.

Theorem 3.2. Under the same conditions as Theoremexcept that the local step size sequence {ay }
is determined by oy = (‘ﬁi‘;)p with constants a, § > 0 and p € (1/2,1] satisfying won KL, < 1,

the weighted average norm of the squared gradients satisfy, with A = Zthl oy,

T 1
1 2 0(1 T ) p=1,
—_— E a:E[||grad F'(z < n(f+T)
Ar —1 ' [H ( t)” ] { O((5+7})1—p) pE (1/27 1)

Remark 3.2. In particular, if the full agent participate in any round of communication and agents
use the full local gradient in local update, i.e., G = 0 and o, = 0, one can relax the step sizes to
ap = (ﬂii‘;)p where p = 1/3 + a with a € (0,2/3). In this case, for large T, the upper bound can be

improved to ﬁ Zthl aE[||grad F(x,) %] < O(W) (see Appendix.

Theorem 3.3. Under Assumptions[3.113.8| suppose that F satisfies RPL condition, i.e., there exists

a constant p > 0, such that for all x € W, it holds that F(z) — F(z*) < 2iﬂngadF(:v)Hz.

If we run Algorithm |I| with the batch size B, € [Biow, Bup| and the step sizes satisfying o, =

%for some vy > 0and § > ,mvi such that cnwK Ly < 1, then the iterates {x; }+>1 satisfy

2Lg4v
v+t

E[F(x,)] — F(z*) <

< o ond EllgradF(a)|) <

(3.2)

where v = max{WK’BQCBJL??TI’QI’W),(W-F1)@(961)}, O(z1) = F(x1) — F(z*), and

Q(K,Bt,ap,w) = (2K — 1)(K — 1)L?6%P2(J2 +afP?H?)a /6 + GP?03 + T2 P?63 K Lyw +

2 2 2
% with P, J, and H being three constants depended on the problem, manifold and the
retraction and &1, 02,03, 04 being constants depended on q;,p;,¥i € [N]. That is, Algorithm
converges sublinearly to the minimizer in expectation.

Theorems [3.1}j3.3] provide the global convergence of Algorithm[I] Under mild assumptions, the
first theorem states that Algorithm[I|has global convergence in expectation for general objectives
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while the other theorems further provide the convergence rate of Algorithm [I] However, all of these
theorems require the usage of the decaying step sizes. When decaying step sizes are used, a large
number of iteration are required for Algorithm[I]to converge. A compromise is to use a fixed step
size of moderate size, the advantage of which is that the convergence rate is sublinear (even linear)
while the disadvantage of which is that it may not converge to the minimizers but to an e-stationary
point/solution (see Definition [B.4)); see Theorems [3.4]and[3.5]

Theorem 3.4. Suppose that Assumptions 3.1}3.8 hold. We run Algorithm[I|with a fixed global step
size w, a fixed batch size B, and a fixed number of local updates K.

1. If the fixed step sizes o and w satisfy awK Ly < 1, then

%XT:JE[ngadF(xt)H?] < % +2aQ(K, B, o, w). (3.3)

2. If the true probabilitie; are known, meaning G = 0, and one takes local and global

step sizes a and w such that aw = \/(égai—o—QP(;)(%;()g)T?LgKT with T satisfying T >
o (e 2 P

T
8202 2P282
Z [|lgrad F (z)||] < 4T\/Lg®(a¢1) <KTB + =)

Remark 3.3. If the probabilities p; are known, i.e., ¢ = p;, and pmin = min;{p;} is not too small
and not fairly far away from pmax = maxi{pi} such that the constants §%,93,03,03 are 67 =

1 NV _ _ 1 _ 1 N (1-p))
N Zj:l (%) - 175% - Zj 1 N < 1 63 - N2 Z] 1 (q )2 S Npmin’ 52 - N2 Zj:l Tp? S
1 1
Npmin’ \/PminNKTB) + O( VPmin NT )
In particular, if the probabilities are the same across agents, e.g., p; = % with S < N, then 62 =
and §3 = 572 < L. It follows that Itemgives the upper bounds as O(\/j) + (’)( =)- The

bound of (9(\/%) matches with the existing result for FedAvg given in (Karimireddy et al., 2020,

then, Item gives the upper bound as O(
l

Theorem 1) and improves by \/% over that given in (Yang et al.||2021| Corollary 2).
Theorem 3.5. Under Assumptions3.1}3.8| suppose that F satisfies RPL condition with a constant

w > 0. If we run Algorithm I Wlth batch size By € [Biow, Bup| and step sizes o, = o and w
satisfying awK < min{1/Ly, 1/u}, then the resulting iterates {x;};—, satisfy

T—oo &

E[F(zr)] — F(z*) < (1 — pwKa)" 'O (z1) + %Q(K, Blow, @, @) —=2% MQ(K , Biow, @, @). (3.4)

From Theorem if one lets T — oo, then the expected optimality gaps {E[F(zr)] — F(z*)}
are bounded from above by %Q(K , Biow, v, @), which implies that any accumulation point of the

sequence of iterates {x;} generated by Algorithm |1|is a e-solution if taking o <
Smaller o means smaller upper bound as well as slower convergence speed.

€M
Q(K,Biow,a,@)

Remark 3.4. Similar to the Euclidean setting, the RPL property is weaker than the strong retraction-
convexity. In fact, if the objective f : M — R is u-strongly retraction-convex, then it also satisfies
the RPL property with parameter p (proved in Appendix|[E.2)). Therefore, Theorems[3.3|and[3.3] also
hold under strong retraction-convexity.

3.3 ESTIMATING THE PARTICIPATION PROBABILITIES

At the t-th round of communication, let S; denote the set of participating agents. Then, under
Assumption Is, (@) follows the Bernoulli distribution, i.e., Is, (i) ~ Bernoulli(p;). At each
round of communication, for each agent i, whether it participates in communication can be regarded
as a Bernoulli trial. Therefore, by Bernoulli’s Large Number Theorem, the frequency of agent @
participating in communication goes closely to the true probability p; as the growth of ¢, the number
of communications. Formally, let qi = Zj—:l Is. (¢), and compute the approximate probability by

¢/ = q] /t. Then we have lim, ;. P{|q} — p;] < ¢} = 1 for any small ¢ > 0. This justifies the use
of frequencies to estimate probabilities. The next theorem shows that Assumption [3.8 holds with
high probability when the step size takes the form of o = O(t~?) with a € (1/2,1] U {0}.
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Theorem 3.6 (Proved in Appendix|D.7). Under Assumption for each agent i, we have
a tp? — g2p;‘ B .
IP’{ ggt—f}zl—min{ze— 2 ,M}—min{Qe " M}, (3.5)
Di

g2 3tl—a
where q} = Ei 1 Is, (1)/t, and G > 0 and a > 0 are constants.

1 1

g pi

In practice, taking a = 0 leads to fixed step size cases or a € (1/2,1] to decaying step size cases.
Therefore, it follows from Theorem @] that Assumption [3.] holds with probability not less than

tp? G2p4 a
1 — min{2e~ 3 , 4(1 m} min{2e~ "2 toe ézglgtfl)a} with a proper constant G > 0. Large
enough ¢ and properly chosen G make the probab1l1ty high.

4 EXPERIMENTS

Here we conduct numerical experiments on principal component analysis (PCA) over the Stiefel
manifold, hyperbolic structured prediction (HSP) over the hyperbolic manifold, and the Fréchet mean
computation (FMC) over the SPD manifold such that we can compare RFedAGS with existing RFL
algorithms, including RFedAvg (L1 & Mal [2023), RFedSVRG (L1 & Mal, 2023)), RFedProj (Zhang
et al.| [2024)) (used in PCA), and ZO-RFedProj (Wang et al.} [2025)) (used in PCA). Additionally,
we still conduct two experiments on principal eigenvector computation and low-rank matrix
completion shown in Appendices[A.T{A.2] The first one tests the comprehensive performance of
RFedAGS, while the second compares RFedAGS with some existing centralized algorithms showing
the comparable availability of RFedAGS with those. The experiment settings in this section can be
found in Appendix[A.3

PCA. The PCA problem has the form of miny g (r,q) FI(X) := ZZ 1 fi(X), with f;(X) =

-+ Z _1 tr(X7T(Zi; Z];) X), where St(r, d) is the Stiefel manifold, Z;; Z/]; is the covariance matrix
of local datum Z;; € R?XP, We generate D; = {Z;; }le in two ways: (i) synthetic data by
sampling from the Gaussian distribution N (0, +) such that D; are non-LLD; (ii) real-world data
from CIFAR10 E] dataset. We can observe from Figure that our proposed RFedAGS outperforms

the existing three RFL algorithms under the arbitrary participation setting in terms of accuracy of
solutions and consumed time. This justifies the efficacy of the proposed RFedAGS.

It should be noted that the tools used in our RFedAGS are fairly general (as stated in Assumption 3.1,
however RFedAvg and RFedSVRG require more strict tools (the inverse of exponential and parallel
transport), and RFedProj and ZO-RFedProj require the orthogonal projector onto the manifold. These
requirements limit the application scope of RFedAvg, RFedSVRG, RFedProj and ZO-RFedProj. For
instance, RFedProj and ZO-RFedProj can not be used in the HSP and FMC problems below.

(r,d, N, S) = (5,100, 40, 100) o (r,d, N, $) = (5,100,40, 100) " (r,d, N, S) = (4,3072,50,1000) " (r,d, N, $) = (4,3072,50,1000)

5 10%
z 4
=) -RFedAGS
S ot > RFedAvg
108 2 RFedSVRG
< RFedProj < RFedProj

N -o-Z0-RFedProj N £ o = [-o-20-RFedProj
0 200 400 600 800 1000 0 2 4 6 8 0 100 2ou 300 400 500 600 0 200 400 600 800
Tterations CPU time (s) CPU time (s)

(a) Synthetic data (b) Synthetic data (c) CIFARIO dataset (d) CIFAR10 dataset

~5-RFedAGS
- RFedAvg
RFedSVRG

Figure 2: PCA: RFedAGS consistently performs better than the competing methods across both
synthetic and real datasets.

HSP. Given a set of training pairs D = {D;} | = {{(wi;, v, J)}J Y, where w; ; € R" is

the feature and y; ; € H? is the hyperbolic embedding of the class of wy ;. Then for a test sam-
ple w, the task of HPS is to predict its hyperbolic embeddings by solving the following problem

arg min, ¢y, F(z) = & vazl fi(z), with fi(z) = £ Zle a; j(w)dist®(z, ;. ;) where the hyper-
bolic manifold H is characterized via the Lorentz hyperbolic model, [a; (w), ..., ax(w)]T € RN*3

2See https://www.cs.toronto.edu/ kriz/cifar.html,


https://www.cs.toronto.edu/~kriz/cifar.html
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is a parameter matrix. We use the WordNetﬂdataset to test RFedAGS, RFedAvg, and RFedSVRG.
From the reported Figure 3] we can observe that the proposed RFedAGS outperforms both RFedAGS
and RFedSVRG in terms of distance to the true point. Figure B(c)|directly demonstrates this advantage
of RFedAGS.

d,N,S) = (2,9,131 —~ d,N,S) = (2,9,131 ]
0.45 @ )=« ) £ 10! ( )= ) ST * RFedAGS
-5-RFedAGS & -A-RFedAGS fctah 23 ¢ RFedAvg
0.4 -4 RFedAvg g --RFedAvg fhllna - atuialM
, 0.35 RFedSVRG = RFedSVRG| RFe/dsy_R
z
Z 03 3 7=,
2025 =
2 02 £
0.15 g s pabbtsti Junguite
0 2 4 6 g 10 12 A 600 o
CPU time Iterations
(@ (b) (©

Figure 3: HSP with WordNet dataset. Here “primate” is the test sample (true point).

FMC. Given a set of SPD matrices, D = {{X,;}7_,},, the FMC of these SPD matri-
ces is the solution to the problem arg miny ey, F(X) = %Zf\; fi(X) with f;(X) =

< Zle dist?(X, X, ;), where dist(-,-) is the Riemannian distance. We use the PATHMNISTH
dataset to test the algorithms. From Figure ] we still observe that RFedAGS outperforms RFedAvg
and RFedSVRG.

(d,N,S) = (9,50,400) (d, N, S) = (9,50,400)

-A-RFedAGS
->-RFedAvg
RFedSVRG

-A-RFedAGS
~>-RFedAvg
RFedSVRG|

Optimality gap
Optimality gap

0 100 200 300 0 50 100 150
Iterations CPU time

(@) (b)
Figure 4: FMC with PATHMNIST dataset: RFedAGS consistently performs better than RFedAvg
and RFedSVRG.

5 CONCLUSIONS

In this work, we propose a Riemannian FL algorithm, called RFedAGS, that addresses critical chal-
lenges caused by curvature effects of manifolds, the partial participation, and the heterogeneity data.
Unlike the commonly studied random sampling setting, RFedAGS accommodates a more practical
and challenging scenario where agents’ participation statistics may be unknown. Theoretically, we
prove that the proposed RFedAGS, under decaying step sizes, achieves global convergence and
provide sublinear convergence rate. When using a fixed step size, it attains sublinear—or even
linear—convergence near a neighborhood of a stationary point/solution. Numerical experiments we
conducted have confirmed the efficacy of RFedAGS and in particular, it outperforms existing RFL
algorithms methods on PCA, HSP, and FMC with synthetic and real-world data.

Current analyses on partial participation rely on time-invariant statistical assumptions. An important
direction for future research is to analyze more realistic and complex scenarios, such as settings with
time-varying participation probabilities.
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A EXPERIMENT SETTINGS AND ADDITIONAL EXPERIMENT RESULTS

In this section, we supplement the numerical experiments conducted to demonstrate the performance
of RFedAGS (Algorithm[T)) on non-LI.D. data setting. We focus on empirical minimization of (II).

The decaying local step size is determined by the following formula

ag  ift=0 0 if£ =0,
e - Ci—1 otherwise,

where oy and 8 are two positive constants, and d is a positive constant integer, which results in
the step size decaying once after each d iterations. Optimality gap defined as F'(z;) — F'(«*) with
x* € argmin, ¢y, F(z) is a commonly-used measure to evaluate the performance of algorithms. In
all experiments, the global step size is set as 1. The CPU time consists of the server computation time
and the local computation time of active agents, without the communication time between the server
and agents. Unless otherwise specified, frequencies are used in Algorithm [I]to estimate the true
probabilities. All of algorithms involved in our experiments are implemented built on Manopt
2014). All of the experiments are conducted under Windows 11 and MATLAB R2024b running
on a laptop (Intel(R) Core(TM) i7-1165G7 CPU @2.80GHz, 16.0G RAM).

A.1 COMPREHENSIVE TESTS

Consider the principal eigenvector computation (PEC) problem over the sphere manifold, formulated
as follows

N s
r?éian Z x), with fi(z) = gz 2528 (A.1)
where S"~! = {z € R" : 272 = 1} is the sphere manifold, D; = {z;1,..., 2 s} is the local

samples held by agent 7. Problem @ is in the form of finite sum minimization of (L.T).

The sphere manifold S™=1 is viewed as a Riemannian embedded submanifold of R™, that is, the
Riemannian metric is induced by the Euclidean metric: (¢,7), = &Tn for all £,y € T,S" 1.
The exponential mapping is chosen as the Retraction and the parallel transport along the geodesic
correspondingly is selected as the isometric vector transport. The MNIST dataset (Deng m
consists of 60000 hand-written gray images of size 28 x 28 each of which is associated with a label
taking values from O to 9. In our experiments, each image is concatenated into a 784-dimensional
column vector by column. In addition, to test the effectiveness of the proposed RFedAGS under
the heterogeneity data setting, according to the FL setting, the MNIST dataset is shuffled into
different levels of heterogeneity following the way in (McMahan et al., 2017). Figure 5] demonstrates
histograms of the MNIST dataset with three different levels of heterogeneity.

Display Label Distribution (Non-LL.D., heavy) Display Label Distribution (Non-L.1.D., slight) Display Label Distribution (11.D.)

H |‘ M |||||| |||‘ =
| |||||I|||||||||I|||||IIII||||||I|I|||||||||||I||||II||
‘ | ‘I |II‘ I‘

600 | |

(a) Non-LLD. (heavy) (b) Non-LLD. (slight) (c) LLD.

5
s
:
9

IIII||

Figure 5: Sample distributions across different agents on MNIST dataset. z-axis is the ID of each
agents and y-axis is the number of local samples.

3See https://yann.lecun.com/exdb/mnist/,
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A.1.1 COMPARISON OF TWO AGGREGATION PATTERNS

First we demonstrate the importance of the aggregation pattern (AGS-AP). As shown in 2.,
the aggregation of RFedAGS in Line [T4] of Algorithm [I] actually is unbiased in the sense of

E (Y ics, ﬁgrad fi (x)} = gradF(z). Nevertheless, if the participation probabilities are not

considered and the usual aggregation, z+4+1 < R, (—w > jes, ﬁ{tj K), is used, then the output
of the algorithm equipped with this aggregation will tend towards a minimizer of another objective
function different from the original objective when there exist ¢, j € [N] such that p; # p;, which
exactly is what Theorem [2.1] points out.

10 10
BRD>Bepty, -A-True oy -A-True
\ -5 Approximating ‘:} -5 Approximating
a * Biased a A Biased
% 10° AN 51000 §
ey & 3
E E
Z Z
2 102 2102
) 10 ) 10
1 0,4 10 4 2>
0 100 200 300 400 500 0 200 400 600 800 1000
Iterations Iterations
(a) Fixed step size (b) Decaying step size

Figure 6: PEC with non-L.I.D. (slight) MNIST dataset: comparisons of the two aggregations pat-
terns (AGS-RS)) and (AGS-AP).

Figure [f] reports the experiment results, where the two curves “True” and “Approximating” adopt the
aggregation pattern (AGS-AP), the curve “Approximating” uses the frequency to estimate the true
probability, and the curve “Biased” uses the usual aggregation (AGS-RS). Besides, the participation
probabilities p;’s are uniformly and randomly generated (i.e., p;, ¢ € [N], follows the uniform
distribution U(0, 1)), the fixed step size is set as @ = 8.0 x 1075, the parameters for decaying
steps sizes are set as (ag, 3,d) = (3.5 x 1074,0.1, 20), batch size is B = 0.59, and the number
of local updates is set as K = 5. It is observed from Figure [f] that RFedAGS equipped with
the aggregation pattern gives a better solution to Problem (AI) than that generated
by RFedAGS equipped with the usual aggregation pattern (AGS-RS). The reason lies on that the
usual aggregation pattern leads the iterates to the minimizer of F' := Zf\il pifi with
Di = pi fol H;Zm(l — p; + p;t)de, as stated by Theorem Meanwhile, due to p; # p; for some
1,7 € [N], it follows that there exists no y > 0 such that F' = x - F'. Hence, the minimizers of F
may be not consistent with those of F'.
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Figure 7: PEC with non-LLD. (slight) MNIST dataset: RFedAGS with the two aggregations solve
the re-weighted problem arg min v, F'(z).

16



Under review as a conference paper at ICLR 2026

Furthermore, Figure [7] shows the curves of optimality gap v.s. iterations for the re-weighted ob-
jective F valued at the iterates given in Figure @ Combining Figures |§| and [7| we conclude that
RFedAGS equipped with the aggregation pattern (AGS-RS)) does solve the re-weighted problem
arg min, . v, F/() rather than the original problem.

A.1.2 COMPARISONS OF DIFFERENT PARTICIPATION SCHEMES

Here we consider the special case where each agents participates in any round of communication with
the same participation probability, i.e., p; = p; with ¢, j € [N]. In this case, the random sampling
scheme is denoted by Scheme I, while our arbitrary participation scheme is denoted by Scheme II,
where we use frequencies to estimate the true probabilities. For Scheme I, the sampling rate (the
ratio of the number of sampled agents to the number of total agents) is as p = 0.3 (0.5, or 0.7). For
Scheme 11, the participation probability agent 7 is respectively set as p; = 0.3 (0.5, or 0.7) for all
i1 € [N] such that the number of participating agents in Scheme II is equivalent to that of Scheme I in
expectation, which means vazl p; = pN. The fixed step size is set & = 8 x 1075, the parameters
for decaying step sizes are set as (ag, 3,d) = (3.5 x 107%,0.1, 20), batch size is B = 0.59, and
the number of local updates is set as X = 5. As demonstrated in Figure 8] the performance of
two participation schemes are extremely the same. This indicates that Scheme I can be viewed as a

special case of our participation scheme and that using frequencies to estimate the true probabilities
is sufficient to ensure convergence.
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Figure 8: PEC with non-LL.D. (slight) MNIST dataset: comparisons of the two participation schemes.

Next, we simulate the scenario of straggling agent participation. Suppose that the first three agents
are stragglers and make their local computation time become 10 times as much as that under normal
conditions. Specifically, for Scheme I, if one of the three stragglers are chosen, then its local
computational time becomes 10 times as much as that under normal conditions; for Scheme II, setting
the stragglers’ participation probabilities as 0.05 ensures that they rarely participate in local updates,
and when one of the stragglers responds to the server, its local computational also becomes 10 times
as much as that under normal conditions. The participation probabilities of the other agents are

properly set such that Zfil pi =~ pN. The fixed step size is set « = 8 x 1075, the parameters for

decaying step sizes are set as (g, 3,d) = (2.8 x 107%,0.1, 20), batch size is B = 0.55, and the
number of local updates is set as ' = 5. The experiment results are shown in Figure 9]

Optimality gap
Optimality gap

10 20 30 0 10
CPU time (s)

30 40 50 60 50

20 K 0 150
CPU time (s) CPU time (s)

(a) Fixed step size (b) Fixed step size (c) Decaying step size (d) Decaying step size

Figure 9: PEC with non-L.LI.D. (slight) MNIST dataset: the situation where the FL system has three
stragglers. Here in the legends, Scheme-II-True (or Scheme-II-Freq) means that the Scheme II is
equipped with the true probabilities (or frequencies serving as the true probabilities).
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By the definition of Scheme I, each agent is sampled with probability p (e.g., 0.3 and 0.5 in our
experiments), which is much greater than 0.05 in Scheme II for the three stragglers. Hence, the
number of stragglers participating local updates of Scheme I is greater than the one of Scheme II,
leading to the CPU time of Scheme I are greater than the one of Scheme II. The results in Figure[9]is
consistent with our analysis. Meanwhile we note that the performance of using the true probabilities
and frequencies is extremely the same, which indicates again the validity of using frequencies serving
as the true probabilities.

It should be noted that in a practical situation, if some agents do not respond to the server in a certain
round of communication, then scheme I may not work in this case, because one of these agents
may be sampled by the server, but it will not respond to the server. This will cause the algorithm to
stagnate. Nevertheless, Scheme II does not encounter this issue since the server does not choose the
agents which do not respond.

A.1.3 INFLUENCE OF THE LEVEL OF DATA HETEROGENEITY ON PERFORMANCE

Next we test the impact of the heterogeneity level of the MNIST dataset on the performance of
RFedAGS. Here the participation probabilities p;’s are uniformly and randomly generated, that is,
pi ~ U(0,1) for i € [N]. The fixed step size is set « = 8 x 1075, the parameters for decaying
step sizes are set as (g, 3,d) = (2.8 x 107%,0.1, 20), batch size is B = 0.55, and the number of
local updates is set as K = 5. The experiment results are reported in Figure[I0] where we observe
that the quality of the solution generated by Algorithm [I]gets worse as the growth of the levels of
heterogeneity of the training data across agents. Additionally, Theorems [3.1]and [3.2] point out that if
decaying step sizes satisfying equation[3.1]are used, Algorithm [I]has global convergence. Hence, it is
expected that the higher-quality solutions may be found when using decaying step sizes and running
more rounds of communication compared with the case using a fixed step size. This is consistent
with the experiment results as shown in Figure 8} Figure
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Figure 10: PEC with different non-1.I.D. datasets: impact of heterogeneity level.

A.1.4 EFFECT OF LOCAL MULTIPLE-STEP UPDATE

In addition, we test the impact of different number of local updates K on the performance of
Algorithm [T} The participation probabilities p;’s are uniformly and randomly generated, that is,
pi ~ U(0,1) fori € [N]. The fixed step size is set « = 8 x 10~° and batch size is B = 0.5S. The
experiment results are shown in Figure [IT]

When using a fixed step size, Item[I] of Theorem [3.4]states that the convergence upper bound consists
of two terms: a decaying term 29;2}) as K (or T') increases, and a increasing (or constant) term
20Q(K, B, a, @) with respect to K (or T'). The initial guess x; is usually generated at random such
that ©(z1) is relatively large, and thus the first term dominates at the initial stage. As a result, at
the initial stage, the convergence speed is accelerated when using larger K. Subsequently, due to
the growth of T, the second term begins to dominate and thus when using larger K the error of
solution generated by Algorithm|[I]to the minimizer get larger. This analysis is verified by Figure[IT]
Additionally, we note that in fixed step size cases, Algorithm [T| numerically demonstrates linear

convergence as seen in Figures [}
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Figure 11: PEC with non-L.L.D. (slight) MNIST dataset: impact of number of local updates.

A.1.5 COMPARISONS WITH EXISTING RIEMANNIAN FL ALGORITHMS

Here we test the performance of RFedAGS, RFedAvg, RFedSVRG, and RFedProj as (i) data
distributions diverge or (ii) participation becomes sparse.

(1) for the first purpose, we use the MNIST dataset partitioned as three different levels of heterogeneity;
see Figure 5] for the sample distributions. Figures[I2(@)I2(b)]show the results, where the participation
probabilities p;’s are uniformly and randomly generated (i.e., p; ~ U(0,1) for i € [N]), the fixed
step size is set as v = 8 x 1075, and batch size is B = 0.5S. We can observe from Figurethat as
expected, for all of algorithms, as data distributions diverge, the performance becomes poor. Besides,
at the same level of data heterogeneity, RFedAGS consistently outperforms compared to the other
algorithms.

(ii) for the second purpose, we use the non-LLD. (slight) MNIST dataset (see Figure 5(b)). The
experimental results are reported in Figures where 0.5, 0.4, 0.3 in the legends denote the
expected participation ratios, i.e., % Zivzl E[p;] = 0.5,0.4,0.3. Specifically, for participation ratio
0.5, we set the participation probabilities as p; ~ U(0, 1); next, for participation ratio 0.4 (or, 0.3),
we let p, = 0.8 X p; (or, p; = 0.6 X p;). It follows from Figures [I2(c){12(d)| that as participation
becomes sparse, the performance of all algorithms becomes poor. On the other hand, at the same
participation ratio, our RFedAGS consistently performs compared to other algorithms.

A.2 COMPARISONS WITH SOME CENTRALIZED ALGORITHMS

Low-rank matrix completion (LRMC) aims to recover the missing entries of an unknown matrix from
a small account of accesible entries with low-rank constraint for the matrix. Mishra et al.
formulate LRMC in the form of finite sum, which can be extended to the FL setting with
finite sum minimization as follows:

N S
1 1
min  F(U) = — J(U), with f;(U) ==Y 0.5]|Pq,, (UWLy) — Pa., (Y57
UeGr(r,m) ( ) N;f( ) f( ) S; H Q”( JU) Qt]( J)”F (AZ)

+A[OW iy = Pa, (UW )|

where Gr(r,m) is the Grassmann manifold, i.e, the set of all the r-dimension subspaces of
R™, U € St(r,m) is the matrix characterization of & € Gr(r,m), W;;u € R™*" with
Zi]\il Zle nij = n is the least-squares solution to argminyy  cgn;xr 0.5[|Po,, (UW;) —
Pa,, (Y5)IE + AMUWE —Po, (UW])||%, Y* € R™*™ is the known matrix and is partitioned
into Y* = [Y7,....Y g, .. YN 5o o, Yy o] with Y7, € R™*™i, () is the indices set of
elements of Y*: the (I, k)-element of Y* is nonzero if and only if its index belongs to €2 and is
also partitioned similar to the way of Y: @ = {Qy1,...,Q1.5,...,Qn1,...,Qn,5}, and opera-
tor Pq,; is the orthogonal sampling operator defined by [Pq,, (Y)ix = the (I, k)-element of Y
if (1,k) € Q;; and [Pq,,(Y)lix = 0 otherwise. It is worthy mentioned that Problem (A.2) is
defined on Gr(r, m) but the computation can be implemented with matrices U in St(r,m). The

over-sampling ratio (OS) is the ratio of number of entries of {2 and the freedom degree of Y*, i.e.,
oS =|Q/((m+n—r)r).
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Figure 12: PEC with the MNIST dataset. (a)-(b): performance as data distributions diverge. (c)-(d):
performance as participation becomes sparse.

The Grasssmann manifold Gr(r,m) is equipped with the quotient structure Gr(r,m) =
St(r,m)/O(r) = {[U] : U € St(r,m)} with O(r) the orthogonal group of the order . The
Riemannian metric on Gr(r,m) is induced by the inner product, i.e., (nu, &)y, = trace(ny &u, ),
where &, is the horizontal lift of §,. The retraction via Cayley transform (CT) (Zhu & Sat0|, 2021

is given by

11 1 -
RE™ () = U+, — (304 360 ) (14 16060 ) i |

and the inverse of R (Zhu & Sato, 2021 is computed by

((RC’W) B (V))u —o(V - UUTV)(I, + UTV)"

u

Correspondingly, the isometric vector transport associated with R (Zhu & Sato|, 2021)) is given by

1 1 -

with V = Rgay (n). We point out that Algorithm |1{does not require the usage of the inverse of
retraction. Here, what we use the inverse of retraction is just to assist in the implementation of
the vector transport. Moreover, if one uses the vector transport by projection, then the inverse of

retraction does not need.

A.2.1 SYNTHETIC CASE

Sample at random two matrices A € R™*" and B € R"*". Let Y* = AB”. mn — |Q] entries are
randomly removed with uniform probability. Each of the rest entries is perturbed by noise obeying
the Gaussian distribution with mean zero and standard deviation 10~°. In the experiment, the rank is
set as r = 5, the OS is set as OS = 6, and (m, n) = (100, 2000). The other parameters are set as
A=0,(N,S) = (20,100),p; ~ U(0,1),Vi € [N], B=0.5S,and a« = 2 x 1073,
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Let U be the solution given by Algorithm Then Wg = W g, s Wiggs > Waigs - -s
W s> and thus the approximation to Y* is given by Y = UWITj. Relative error (lower is better)
between Y and Y*, computed by

- Y-Y*
rel_err(Y) = ”||Y*|F|F7

is used to measure the performance of Algorithm|[I] From Figure[I3] we also observe a similar result:
the number of inner iterations significantly affects the convergence. It is worth mentioning that the
results demonstrate Algorithm[T|has a linear convergence rate.

Optimality gap
Relative Errors

1071® : e R S
0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
() (b)

Figure 13: LRMC with synthetic data: performance of RFedAGS with different K.

A.2.2 A REAL-WORLD APPLICATION

We use MovieLens 1M E| dataset which consists of 1000209 ratings with 6040 users rating 3952
movies. In LRMC setting, Y* € R™*", with m = 3952, n = 6040, and |Q2| = 1000209, whose
nonzero elements are the ratings. We randomly sample 80% ratings for each column of Y* as
the training samples, denoted by Y, and the testing dataset, denoted by Y*¢, is consisted of the
remainder. In terms of the FL setting, Y is equally divided into N = 40 agents by column at
order, i.e., Y™ = [Y{", ..., YY], and each agent has S = 151 columns, i.e., Y = [Y;r17 . ,Ygs]
where Y!"; € R™. The other parameters are set as A\ = 1072, p; ~ U(0,1),Vi € [N], B = 0.5S,
and v = 6 x 1074,

In order to evaluate the performance of those methods, the root mean square error (RMSE) is used
and is computed by

N 1 -
RMSE(Y) = | = > [V — Y2

|Qte| -
(i,5) €t

with Y, Y*, and Q' being the approximation to Y, the testing matrix, and the indices set of
known entries of Y, respectively. We observe in Figure[14]and Table that the proposed RFedPP
is comparable to these centralized methods in solving LRMC in terms of RMSE when choosing an
appropriate K.

8See https://grouplens.org/datasets/movielens/1m/,
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Figure 14: LRMC with MovieLens 1M dataset: comparisons of RFedAGS (with different K') with
RSD, RCG, and LRBFGS.

Table 3: The best RMSE scores (lower is better) on testing set for different subspace dimension 7 and
different number of local update . Here the scalar a.bcdy, denotes a.bed x 10F.

RFedAGS RSD RCG LRBFGS
K =2 K=4 K=8 K=12 K=16

r=3 8260_, 8101y 8.023_; 7.968_1 7.948_, T7.925_¢ 7.925_; 7.925_,
r=5 8095_, 7902_; 7.757_; 7.679_; 7.654_; T7.616_, 7.614_; 7.614_;
r=7 7.966_, 77431 7.577_y 7.507_; 7.468_y 7.392_, 7.384_; 7.382_4

A.3 THE DETAILS OF EXPERIMENT SETTINGS IN SECTION[4]

In this section, we detail the experiment settings in Section 4]

A.3.1 PCA.
We restate the PCA problem as follows for convenience:
1 1
in F(X):=—)Y filX ith f;(X) = —< ) tr(X7(Z;Z2)X A3
i PO = 7 DA, il ) = =5 DX (22X, A

where St(r,d) = {X € R¥*": XTX = [,.} is the Stiefel manifold, D; = {Z;1, ..., Z;s} C R¥XP
is the local dataset held by agent 7, Vi € [N].

For the Stiefel manifold St(r, d), we view it as a Riemannian manifold embedded in R%*". Thus the
Riemannian metric is chosen as (U, V) y = (U, V) for all X € St(r,d) and U,V € TxSt(r,d).
The retraction is the gr-retraction (Absil et al., 2008) and the vector transport is given via the
projection, i.e., Ty U = PR‘;‘("(V) (U). In theory, RFedAvg and RFedSVRG (Li & Ma, 2023) require
the exponential mapping, its inverse, and parallel transport. But on the Stiefel manifold, the last two
operators have no closed-form expressions. Thus we use retraction, its inverse, and vector transport
to replace them.

Setup details corresponding to Figures 2(@)2(b)} For the synthetic data, we set p = 1 and
generate the local datesets by setting [Z;1, ..., Z;s| = Z; drawn from the Gaussian distribution
Z; ~ N(0,+). In experiment, all parameters are set as (r,d) = (5,100), (N, S) = (40, 100),
a=6x10"3% B =055, K =5, and p; ~ U(0, 1).

Setup details corresponding to Figures For CIFAR10 dataset, whose training dataset
contains 50000 RGB images with size 32 x 32 of each channel, it is also shuffled following the
way of McMahan et al.| (2017) such that the local datasets are non-LLD. (see Figure[I3]below). In
experiment, we flatten each image into a vector in R3°72, and thus each local data point Z;; is inside
R3072, The other parameters are set as (r,d) = (4,3072), (N, S) = (50,1000), o = 3 x 1075,
B =0.55, K =5,and p; ~ U(0,1).
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Figure 15: Local dataset distributions of the CIFAR10 dataset

Scalability of RFedAGS on PCA. Here we conduct additional experiments to empirically explore
the scalability of RFedAGS. The results are reported in Figure [[6] where the local update step is
set as K = 5, batch size is B = 0.55. In the first column, we fix the local dataset size and the
manifold dimension and enlarge the number of agents. In the second column, we enlarge local dataset
size and fix the other two factors. In the last column, we enlarge the manifold dimension and fix
the other two factors. In summary, it can be observed from Figure [I6] that the RFedAGS can all
solve these problems of such scale, showing the scalability of RFedAGS. We would like to point
out that as shown in Table number of agents, local dataset size, and manifold dimension have a
linear relationship with the total computation complexity, so their increase will not cause the total

computation complexity to increase sharply.
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Figure 16: PCA with synthetic data: scalability of RFedAGS.

A.3.2 HSP.
Given a set of training pairs D = {D;}}Y, = {{(wij, i ;)}5-1 }1-,, where w; ; € R" is the feature
and y; ; € H? is the hyperbolic embedding of the class of w, ;. Then for a test sample w, the task of
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HPS is to predict its hyperbolic embeddings by solving the following problem

arg min F(x fZ ), with f;(z ai, dlst (z, 95,5
i J

zEHI

where the hyperbolic manifold ’Hd is characterized via the Lorentz hyperbolic model H? := {x €
R4 (2, y) , = —1} with (2, 2) . = 2Ty — 22191, a1 (w)T = (a;1(w), ..., a;5(w))T € RYis
a pre-given constant vector related to w, and dist(-, ) : M x M — R is the Riemannian distance.
A commonly used option of a;(w) is computed by a;(w) = (K; + vI) 'K, ,,, where 7 is the
regularization parameter, and K; € RS*% and K; ,, € R are given by (K;); 5 = k(w; 1, w; ) and
(Kiw); = k(w; j,w) for araial basis function (RBF) kernel k(w, w’) = exp(—|lw — w'||3/(2v)?)
with a constant v > 0.

Setup details corresponding to Figure[3] The WordNet dataset (Miller} [I995) is used to conduct
the experiment of inferring hyperbolic embeddings. Following (Nickel & Kiela,2017), the pretrained
hyperbolic embeddings on H? of the mammals subtree with the transitive closure containing n =
1180 nodes (words) and 6540 edges (hierarchies) are used. E]The features are stemmed from Laplacian
eigenmap (Belkin & Niyogi, |2003) to dimension r = 3 of the adjacency matrix formed by the edges.
In other words, we obtained {(w;, y;)}"; C R x H2. This setting is in line with the work in (Han
et al.,[2024)). In the experiments, the word “primate” is selected as the test sample, and the remainder
is used to train. Therefore, the hyperbolic embedding of the word “primate” is known and is viewed as
the true embedding, i.e., T4uc. For other parameters, they are set as (N, S) = (9,131), a = 6 x 1072,
B=0.55,K=5,p; ~U(0,1), and (y,v) = (1075,0.3).

A.3.3 FMC.

Given a set of training SPD matrices D := {D;}I¥, = {{X;;}_,},, where {X,;}_,

SY, ={X e RV*N : XT = X, X » 0}, the FMC of these SPD matrices is the solution to the
followmg problem

S
argmin F'(X Zfl ), with f;(X) = %ZdistQ(X, Xi;),

Xesy, j=1

where dist(X,Y) = |[logm(X 12X, ; X~/2)||p with logm(-) the principal matrix logarithm is
the Riemannian distance.

Setup details corresponding to Figuresd, The PATHMNIST dataset (Yang et al.,[2023) consists
of 89996 RGB images and we transform each image into a 9 x 9 SPD matrix by the covariance
descriptor (Tuzel et al.| |2006). In the experiment, we randomly selects 20000 images to construct the
training dataset. The parameters are set as (N, .S) = (50,400), « = 0.01, B = 0.55, K = 5, and
pi ~ U(O, 1)

B PRELIMINARIES ON RIEMANNIAN OPTIMIZATION

In this section, we briefly review the basic ingredients for Riemannian optimization, which are drawn
from the standard literature, e.g., (Boothby, 1975} |Absil et al., [2008)). Let M be a d-dimensional
Riemannian manifold equipped with a Riemannian metric (-, -) : (0g, (z) — (M2, (z), € R for any
x € M,n,,( € T, M (when it is clear in the context, we omit the subscript and write (), ) for
short). For all z € M, the tangent space T, M is a d-dimensional linear space. The norm induced by
the Riemannian metric in the tangent space T, M is ||n|| = \/(n,n) for all n € T, M. An open ball
centered at 77 € T, M with radius r in T, M is denoted by B(n,r) = {¢ € T, M : | — 7| <}
The union of all tangent spaces is tangent bundle, denoted by TM. A vector field is a mapping
which maps from M to TM, formally definedbyn : M — TM : z — n, € T, M. Given a
differentiable function f : M — R, the Riemannian gradient of f, denoted by gradf, is a vector
field such that for any = € M, grad f(x) is the unique vector satisfying D f(x)[n] = (gradf(z),n)
for any € T, M, where D f(z)[n] is the directional derivative of f at x along .

"t is referred to website https://github.com/facebookresearch/poincare-embeddings|

24


https://github.com/facebookresearch/poincare-embeddings

Under review as a conference paper at ICLR 2026

A critical concept in Riemannian optimization is retraction, which defines a smooth mapping, denoted
by R, from the tangent bundle to the manifold, i.e., R : TM — M, satisfying

1. R(0,) = z for all z € M, where 0, is the origin of T,M;

2. DR(0;)[n] = n for all n € T, M, which implies that DR(0,) = idr, o4 with idr, ¢ being
the identity in T, M.

When restricted to T, M, we denote R by R,, i.e., R; = R |, o¢. Note that the domain of R does
not need to be the whole tangent bundle. In practice, it is usually the case. In this paper, we always
assume that R is well-defined whenever needed. A special retraction is the exponential mapping,
dented by Exp, satisfying Exp,(n,) = (1) where « is the geodesic such that y(0) = x and
v'(0) = n,. Geodesic is the generalization of straight line in the Euclidean setting to the Riemannian
setting, and naturally the exponential mapping is the generalization of addition to the Riemannian
setting. Additionally, retraction is a first-order approximation to the exponential mapping. A r-totally
retractive set W is a subset of M such that for any y € W, it holds that W C R, (B(0,,r)) and R,
is a diffeomorphism on B(0,, 7). Hence, R, ! (y) is well-defined, whenever z,y € W.

For our RFedPP, another essential concept is vector transport, denoted by 7, which is usually
associated with a retraction R. Given a retraction R, a vector transport associated with R maps from
TM & TM, the Whitney sum, to TM, ie., T : TM & TM — TM, and satisfies that for any
(x,7m,) € domain(R) and all (, € T,.M, the followings hold that

1. Tz(Cl) € TR(nw)M;

2. To,Ce = (a3

3. Ty, is linear, i.e., for all a;,as € Rand &, (, € T, M, it holds that 7, (a1&; + a2(s) =
a1Ty, (§2) + a2 Ty, (Cx)-

We say 7T is isometric if for any (z,7,) € domain(R), &,,(, € TyM, it satisfies
(Tna(2): Tno (G2 gy = (o> Ca),» Which implies that |7, (C2)ll = [|Cz[l. An important vec-
tor transport is the parallel transport, which is isometric; refer to (Absil et al., 2008; Boumal, 2023)
for the rigorous definition.

In the Euclidean setting, the convergence analyses of FedAvg are established under the assumption
that F' is L-smooth, where a continuously differentiable function f : R™ — R is said L-smooth if

IVf(x) = Vi)l < Lllz - y[| vz, y € R",

in which case we have

F() < F@) 4 {VF(@)y — ) + 2y >

Both properties above are critical in the analyses of FedAvg. Similar assumptions are made in the
Riemannian setting for the analysis of the proposed RFedAGS; see Definitions (Huang et al.,
2018)) and @] (Huang & Weil [2022)). The first one is called L-Lipschitz continuously differentiable
(Definitions and the second one is called L-retraction-smooth (Definitions[B.2).

Definition B.1 (L-Lipschitz continuous differentiability). Let T be a vector transport associated
with a retraction R. A function f : M — R is said L-Lipschitz continuous differentiable with respect
toT onU C M if there exists a constant L > 0 such that

7o (gradf(y)) — gradf(z)|| < Liln]|
Sforall x € U and n € T, M satisfying y = R, (n).

Definition B.2 (L-retracton-smoothness). A function f : M — R is called L-retraction-smooth with
respect to a retraction R in N' C M if for any x € N and any N, C T, M satisfying Ry(N;) C N,
it holds that

L
f(Ra(n)) < f(x) + (gradf(z),n) + §||77||2,
foralln € N.
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A function which is L-Lipschitz continuously differentiable is not necessarily L-retraction-smoooth,
however it is the case in the Euclidean setting. It should be highlighted that there exist some cases
where L-Lipschitz continuous differentiability implies also L-retraction smoothness (Huang et al.,
2018;Boumal et al., 2019; Boumal, [2023)).

Next we review convexity and strong convexity in the Riemannian setting (Huang & Wei, [2022)).

Definition B.3 (Strongly retraction-convex, retraction-convex). A function f : M — R is called
u-strongly retraction-convex with respect to a retraction R in N' C M if for any x € N and any
N, C T, M satisfying R, (N,) C N, there exist a constant i > 0 and a tangent vector ¢ € T, M
such that f, = f o R, satisfies

foln) = £2(6) + (G = € + Slln — &1 vn. & € A
In particular, if i = 0, we call f retraction-convex with respect to R in N.

Note that ¢ = gradf, (&) if f is differentiable; otherwise, ( is any Riemannian subgradient of f, at
¢. In literature, convexity has been studied based on geodesic; see, e.g., (Ferreira & Oliveiral 2002}
Zhang & Sral [2016)), in which case a function f : M — R is called geodesic convex, if for any
x,y € M, there exists a tangent vector (, € T, M such that f(y) > f(z) + <C$7Exp;1(y)>. It
can be verified if taking £ = 0 and exponential mapping as the retraction in Definition then
retraction-convexity reduces to geodesic convexity.

We end this section with an introduction to the concept of e-stationary points/solutions.

Definition B.4. We say that xp € M, the output from Algorithm (I} is an e-stationary point of
Problem if it holds that E[||grad F (x7)||?] < €, or is an e-solution if it holds that E[F (zv1)] —
F(x*) <€ where z* € argmin ¢\, F(x).

C ADDITIONAL DISCUSSIONS

C.1 DISCUSSIONS FOR ASSUMPTIONS

Assumptions[3.1}[3.7]are standard for Riemannian stochastic gradient-based methods. Assumptions[3.1]
imposes requirements for the retraction under consideration to be C2 and the vector transport under
consideration to be continuous and bounded from above. These requirements are fairly standard in
Riemannian optimization. Note that the boundedness for vector transport can be achieved by requiring
isometricness, in which case we have || 7, (¢;)|| = ||¢z|l, implying Y = 1. In fact, a lots of papers
do have such requirements, e.g., (Sato et al., 2019} |Li & Ma, [2023)). Additionally, if the Riemannian
manifold M is a submanifold embedded in a Euclidean space and equipped with the inner product as
its Riemannian metric, then an option for vector transport is based on the orthogonal operation onto
the tangent space, i.e., Ty, ((z) = Pr(y,)(Ce) With Py(u) = argmin,cp_ g [|v — ul|f, in which
case by the nonexpansivity of the orthogonal projection we have || 7,_(¢:)|| < |||, also implying
T=1

In the deterministic optimization, the compactness of the sublevel set of the objective function is
required to ensure that the iterates generated by the algorithms which are monotonically decreasing
are still located in that compact set. However, in the stochastic setting, it is difficult to ensure that
the iterates generated by the algorithms all fall within the sublevel set since the algorithms are
not necessarily monotonically decreasing, and thus, it is not sufficient to require the sublevel set
to be compact under stochastic optimization. In this case, Assumption [3.2] becomes a commonly
used choice in Riemannian stochastic optimization; see, e.g., (Bonnabel, 2013; Zhang & Sra, 2016;
Tripuraneni et al.| 2018 |Sato et al.||2019; |Han & Gao} 2021} |Li & Ma, [2023). For some manifolds
that are compact themself, e.g., the Stiefel manifold and the Grassmann manifold, the compactness
assumption naturally holds. Moreover, in all experiments we conducted, it is observed that the
generated iterates x;, with ¢ > 1, fall into the sublevel set {z € M : f(z) < f(z1)}.

Assumptions and impose requirements on the first- and second-order moments for the local
stochastic gradient estimator, which are necessary for Riemannian/Euclidean stochastic gradient-
based methods. In the analyses for Euclidean federated learning algorithms, majority of works make
extra assumptions for addressing the heterogeneity data. These assumptions essentially require that
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the divergence between local and global gradients is bounded, i.e., there exists a constant o > 0 such

that for all x,
IV fi(x) = V()| < o”.

In our analyses for the proposed RFedAGS, we do not explicitly make the similar assumption, since
Assumption [3.2]implies the counterpart requirement. Indeed, under Assumption [3.2] there exists
a constant P > 0, such that ||gradf;(z)|| < P and ||gradF(z)|| < P foralli € [N]and x € W.
Hence, it holds that

lgradfi(z) — grad F(x)||* < 2l|gradf(z)|2 + 2llgrad F(x)||* < 4P*.

Assumption [3.§]imposes the requirement that the approximate probabilities are how close to the
true probabilities. As discussed in Section [3.3] when using frequencies as the approximation, this
assumption holds with high probability. Numerically, the reported results show that the performance
using frequencies is comparable to the case using true probabilities. We note that in the fixed step
size case, existing work (Wang & Ji,[2024) also makes an equivalent assumption. The difference lies
in that the assumption in (Wang & Ji, 2024) only considers fixed step size cases, but Assumption 3.§]
more finely encompasses the cases of decaying step sizes.

In summary, except Assumption [3.8]that aims to address the arbitrary partial participation, there exists
no assumption beyond those made for Riemannian (stochastic) optimization and federated learning.
In theory, the proposed RFedAGS is the first algorithm that can simultaneously address the challenges
caused by the partial participation and the heterogeneity data settings. The partial participation under
consideration allows arbitrary participation which is more practical than the commonly-countered
participation scheme based on random sampling. Even without the Riemannian manifold constraint,
i.e., M = R", the proposed RFedAGS can reduce to one proposed in (Wang & Ji,[2024). This paper
establishes the convergence propoerties of RFedAGS under both the decaying (see Theorems [3.1] 3.2}
and [3.3) and fixed (see Theorems [3.4]and step size cases. Under the decaying step size case,
global convergence is guaranteed. These analyses depend on a vital and non-trivial observation (see
Assumption @]) However, (Wang & Ji,/2024) only considered the assumption of the fixed step case,
and thus only established convergence under the fixed step size case, which does not ensure global
convergence rather only converges to a e-stationary point.

C.2 DISCUSSIONS FOR IMPLEMENTATIONS

In Algortihm(T] there exists a scenario (called NA) where in certain round of communication no agent
participates in communication. We emphasize that this scenario happens with fairly low probability.
For example, considering a FL system where 20 agents participate in communication with probability
p;i = 01,7 =1,2,...,20, and 5 agents participate with probability p;, = 0.5, ¢ = 21,22, ..., 25.
Then the scenario NA happens only with probability not greater than 0.38%. For the purpose of
robustness, when the scenario NA happens, one option is set x;41 < x; to restart the next round of
local updates.

D PROOFS OF THEOREMS IN SECTION 3]

D.1 SUPPORTING LEMMAS

If the objective F' in Problem (T.1)) is L-retraction smooth (Assumption [3.5), under Assumption 3.1}
it follows that

L
Eo[F(2041)] = Fa:) < E[(gradF(z), RS (z41))] + ?gEt[HRLl(th)HZ]- (D.D
Without considering the arbitrary participation, recalling (TM) and (AGS-RS), we have
Expmt Tit1) Z Exp xt ), and (D.2)
JESf
1 K-1
Ry (@) =—ag > > Ty | & Z grad f;(z] ;60 ,) | - (D.3)
JES: k=0 beBt R
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When K > 1and S > 1, from the increment of parameters of (TM) it follows that analyzing the upper
bounds of the two terms in the right-hand side of (D.T) is fairly challenging, since the nonlinearity
of exponential and its inverse leads to difficulty expand (D.2) into the desired one involved gradient
information. However, the form of (D.3) is very similar to the Euclidean version and thus significantly

address the issue.

Lemmas together with have provided an upper bound for the first term in the right-hand side
g p pp g

of (O.1)

Lemma D.1. Under Assumptions at the t-th outer iteration of Algorithm[I|with a stepsize o

and a batchsize By, we have that

K—1
wa
E¢[(gradF (z:), R, (w141))] < — ||gr8u01F(ﬂft)||2 +war L7 Y EilIRG (ay)II7)
k=0
2
B N » 4
+ wa?KGP?62 — 5 DE|ID. & TJ gradf; (=] )| |+ (D.4)
k=0 j=1 t
2 2
where 67 = max;>, {I{[ Zjv:l (Z—j) } and 63 = Zjvzl 2.
Proof of Lemma([D.1] On the one hand, we have
E.[(gradF(z¢), R, (ze41))] = Ei[(gradF(z;), R, (2441) + way KgradF(z;) — way K grad F(z))]
= —wa, K ||gradF (z;)||* + E¢[(grad F(z;), R} (#441) + wa Kgrad F(zy))], (D.5)

where for the second term of the equality on the right-hand side, we have

E[(gradF(z;), Ry ! (z141) + woy KgradF(z;))]

=E;

[ —

< gradF'(z),

JES AN = beBl |

K-1

(=32 (3 0

k=0 \jes, Tt

=E;
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bBJ
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>
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where the third equahty follows (2.1), the sixth equality follows E[Ls, (j)] = p;, and the last equality
is due to (u,v) = 1(||lul]* + ||vH2 Hu — v||?). Moreover, we note that

N

K—1 2
ot pj 1 . . 1
=5 Et{ Z i (qj’]}]i’k(gradfj(%g’k)) - p—jgrad 1 (xt)) ]
k=0 Jj=1 t
oo, L N pi (1
_ t J . (T )) — _
=3 2 E, [ ]2 N (qZ (%;k (gradfj(zy;)) — gradf; (ft))

K-1 N 2
< way Z Et{ Z };J (Egk(gradf(a:t ) gradf](a:t)) }
k=0 S ahN ’
K-1 N o1 2
towa » K =2 ( )gradfj (z¢) ]
k=0 j=1 N\q P
w2 N /o \2K-1 »
< TN (B) T i eI+ 3 R aG el
j=1 Nt/ k=0 j=1
K-1
< way07L7 Y B[R, (] )|%] + wef KGP?53, (D.7)
k=0

where the first inequality follows |Ju + v||2 < 2||ul? 2, the second inequality is due to the
L g-retraction smoothness of grad f; for j =1,2,..., N, Assumptlon@ (which implies that there
exists P > 0 such that ||gradf; (xt)|| < P), E and 3.8] and the third mequahty follows that

2
6% = max>1 {N PO (5—:) } and 62 = SN 5’\} Comblnmg and ylelds the

desired result.

In order to further bound E¢[(gradF (z;), R; ! (x¢+1))] for K > 1, from Lemma|D.1] it is necessary
to estimate the bounds for E¢[|[R (x} ;,)[|%], as theoretically discussed in Lemma D.3| which states

that for agent j, the “distance” between the k-th local update xi i and the the ¢-th outer iterate x; are

controlled by the sum of squared step sizes. Intuitively, the “distance” increases as the number of
local iterations grows, which is shown in Lemma@ Meanwhile, it also reflects the drift between

an agent’s local update parameter xi i and the global parameter x;. A general result is provided in
Lemma

Lemma D.2. Under Assumptions[3.1{33) let F : M — R be a smooth function. If consider the
following update formulation

Tt k1 = R, (—ae kGr(Te 1)),

where G (1) is an estimator of grad F(z, 1), ¢y = 4,0, and oy, is the step size, then it follows

that
k—1

IR (@eo)l® < 2k Y af (T + af A HP |G (e o ) IIP) |G () I,
7=0
where J and H are two positive constants related with the manifold and retraction.

The proof of Lemma[D.2]needs the following inverse function theorem on manifolds.

Theorem D.1 (Inverse function theorem). Given a smooth mapping P : M — M’ defined between
two manifolds, if DP(x) is invertible at some point © € M, then there exist neighborhoods U, C M
of x and Vp(yy € M’ of P(x) such that Ply, : U, — Vp(s) is a diffeomorphism. Meanwhile, if
P~ is the inverse of P inU,, then we have (DP(x))~! = DP~1(P(x)).

Now we are ready to prove Lemma[D.2]
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Proof of Lemma[D.2} For two points x,y € W, consider the map P, , = R;' o R, : T,M —
TyM : 1y = R ' (Re (1)), which is defined between two vector spaces. According to the chain
rule for the differential of a map and the first-order property of the retraction, i.e., DR, (0,) = I,
we have

DP;4(0,) = D(jol oR;)(0;) = Djol(Rw(Ow)) o DR (0,)
= (DRy (R, ' (Rx(02))) " o Im,p = (DR, (R, (2))) ™ = (A)) "

where the third equality is due to the inverse function Theorem Noting that the map P. .(-) is
defined in Tyy = {(z,v,n) : x,y € W,n € Ry (W)}, which is inside a compact set, according to
Assumption thus, smoothness of the retraction implies that the Jacobin and Hessian of P. .(-)
with respect to the third variable is uniformly bounded in norm on the compact set. We, thus, use
(5, C3 > 0 to denote bounds on the operator norms of the Jacobin and Hessian of P. .(-) with respect
to the third variable in the compact set. Noting that

F B (nzi,k71) = thl (Rmik (77 J )) = Rmtl (xi,k)a and

Tt k—1:Tt -1 k-1

s O =R Ry - (0) =R e, )

Ty p—1:Tt Tt

with 7, = —ay,-1GrF (xi x_1)» using a Taylor expansion for P, , yields
t,k—1 ’

RO (@) =P, (—oek-1Gr(at,y))

t thk—
= P:EJ Jk— 1>Tt (0) + Dsz,k—pxt (O)(_at’kilgF(xivk_l)) + at’kilegvk_l

-~ ZL’j o . .
=R @] o)) — k1 (M) TN Gr (@ _))) + aukore]

where ||e{7k71|| < at7k_103||gp(x{)k71)||2. Hence, repeatedly, we have

k—
R; (2] ,) }:mT A NGl )+ aued, (D.8)

where we used R ' (z;) = 0,,. Combining , \|(A§;”“*1)—1(QF(3:{,,€71)|| < C2||Qp(xf’k71)\|
(forallt =1,2,...,T—landk=1,2,...,K —1),and || Y}/, u;||*> <n > i, |lus]|? yields the
desired result. O

When M reduces into a Euclidean space, e.g., M = R<, the constants in Lemma _will be-
come C = 1 and C3 = 0. In this case, the results correspondingly becomes ||z; — 27, ||* <
k-1 j . P

kZT;o o? ||Gr(zl)]? In Lemma if one uses - ZbeB{’k grad f;(x} ;€] ;) to replace
Gr (2] ), then the desired result is obtained in Lemma
Lemma D.3. Under Assumptions at the k-th inner iteration of the t-th outer iteration of
Algorithml(l] for each agent j € Sy and k = 1,2, ..., K — 1, we have

IR, (@ )IP < 2K2af P2(J2 + af P2H?), (D.9)

1,2,...,N and & ~ D, it holds that

J =
< P by Assumption

)l

(
where P is a positive constant such that for all x € VW
lgrad F(z)]| < P, |lgradf; (x)]| < P and grad ;(w;¢

Proof of Lemma[D.3] From Algorithm (1| letting Gp(z],) = — 2 D bepi eradf; (] 1€ o)
» t ok ) S
then, we have

||gF(${,k)||: ey Z grad f; ftk’gtkb) § Z ||gradfj(xfka£tkb)” <P

B;
beB} " beBg)k

Hence, combining the inequality above and Lemma [D.2] gives rise to the desired result (D.9). [
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Under the same conditions as Lemma [D.1] plugging (D.9) into (D-4) yields

2
N
wozt

Et[<gradF(xt),R;t1(xt+1 | < —— Z E, Z ;—j\[?%gk(gradfj(xik))
J ,

watK

1
llgradF(z¢)||? + wai KGP?65 + 5 ~(2K —1)K(K — 1)L36{P*(J* + a; P’ H*)wdy.
(D.10)

The next is to bound the second term E, [||[R; ' (2:11)]?].

Lemma D.4. Under Assumptions 3.8| the iterates {x}_, generated by Algorithm with fixed
stepsize oy and fixed batchsize By within parallel inner iterations satisfies

2
_ w2l Y2025 K e N D, ,
B[R, (e1)]?] < tTS +?afK Y E | jjvﬁgﬁk(gradfj(wi,k))
k=0 j=1 %
+ w?al PP K253 (D.11)

2 _ 1 N pj 2 _ (1—-p;)
where 635 = 3= ijl W and 65 = N2 Z] B .

q)2

Proof of Lemma Let z; denote the ¢-th aggregation by the server. Then,

1 ; .
SN AN CUD DT REN

beBl

EIR: (] )] = = aE[

]

jes, 4

N K-1 2
! 1 ; ;
= w2at2Et[ ZH&(J)?N Z 7;7Zk (-Bt Z gradfj(xi,k;fi,m)) }
j=1 £ k=0 beB
N | K=l 1 ‘
- w204t2Et[ Z]Ist (j)J— 7:7] ( Z grad f;( xt k,ft k. b) — gradfj(xik)
— N — i\ By
Jj=1 k=0 beBl
2
+aadad)| |
N K-1 2
Hst Vi 1
szafEt[ Z j( ) %gk< grad f;(xy ;& k,p) — gradf;(z; k)) }
el i "vesy,
N | K 2
+ w2at2Et[ Z]I& (1) Z Ta | <gradfj (z] k)) }
j=1 @N =
N K-1 2
Hgt J 1
=w a?Et[ Z JE\T) 7%“< grad f;(z] ;& v b) gradfj(xtk)) }
g=1 B k=0 TN yepi
N | Kl 2
+ w2a?Et [ Z(Hst (4) — pj -‘rpj)T 7;7? . (gradfj(xt k)) :|
j=1 oN =
w?aiT?02 K al P; 9 9 al 1 = 2
< N?B, Z = +w atIEt[ Z(Hs, () Pj)q]N 7:7;% (gradf;(x] ) }
=1 \% j=1 t4V k=0
N o K-l 2
e =
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2021202 K & pJ w Oét p] K—1 o
- N’B, Z Z { k; T , (gradfi(z; ;) ]
N D K—-1 2
+w a?Et[ > J;V > Ty | (eradfy(a] ) }
j=1 &V k=0
w202 Y%02 52K y 2
< t 5 L3 4 20?2 P2K%52 + wld’K Z Et{ Z . ;VTJ (gradfj(mtk)) ]

j=1

where the fourth equality follows that

N . N .
Is, (4) Is,(7)
E Z 0N 7;,1 Z grad f;( xt k’gt ko) | | = Z 0N %Z‘k(gradfj(:vt 9))
j=1 k=0 1t beBJ j=1 k=0 1t
and that E[||u?] = E[||u — E[u]||?] + ||E[u]||, the first inequality follows that
3~ L)
St
E{Z o Ty <B > gradfi(ad ;&) - gradf](xtk))} =0
j=1 k=0 9t e 5l ,
and that E[|| Y"1 | w;[|?] = Y7, E[||w;]|?] with u; being independent and having zero mean, that
177 (Ol < T (Assumption[3.1), and Assumption [3.6] the sixth equality follows that
N | Kl _
j=1 4V k=0
and that E[(Is,(j) — pj)?] = pj(1 — pj), and the last inequality follows that 65 =
N 5 _ N j 1— j n
max>1 {# > i1 (;%)2 } 82 = maxy> {ﬁ > i1 %}, and || >0 w?

(VAN

3y il

Now we can formally state the descent lemma in the Riemannian FL setting.

Lemma D.5. Under Assumptions 3.1}3.8] we run Algorithm[I|with batch size By and step sizes
w > 0 and {o.} satisfying

1> KLyway. (D.12)
Then, we have
woay K
By [F(2441)] — F(2) < ————||gradF (z})|? + wa? KQ(K, By, oy, @), (D.13)
where Q(K, By, ap, @) = (2K — 1)(K — 1)L367P*(J? + ofP?H?)oy /6 + GP265 +
T2P2IK Ly + Lol

Proof of Lemma[D.3] By the L -retraction smoothness of F', it follows for ¢ > 1 that
_ Ly _
F(z141) < F(xg) + (gradF(z), Ry, (241)) + 79||th1(%+1)||2,

where the existence of R;tl (2441) is guaranteed by Assumption Taking expectation on both
sides over the randomness over the ¢-th outer iteration yields

L
B (@11)] < Flan) + B l{grad Fle), Ry (o)) + SZERS @) |2 ©.14)
Inequality equation I]LMI together with Lemmas [D.1] [D.3] and [D.4] give rise to

Et[F(2441)] — F(z) < —

||gradF (z)|I* + 6(2K — DK(K —1)L}67P*(J* + of PP H?)wo;
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2
K-1 N

(1-KLjway) ZEt Z P 7- (gradfj(xf,k))
q

k=0 j=1

wat

KL,027Y?§3w? cvt
2B,

+ wa? KGP?62 + Lyw?alY?P? K265 + (D.15)

Under Condition (D.12), the third term on the right-hand side of (D.I5) can be discarded and then we
obtain

KLyo2Y%53w?a?
2B,

K
Ey[F(2011)] — Fla) < === |grad F(z,) || + wa? KGP6% +

+ Lyw?a T2 PPK?65 + 5 (2K —1K(K —1)L}6{P*(J* 4+ o} PP H?)wa

— —Z0 R grad P |? + =02 KQUE, By, )

where Q(K, By, a,@w) = (2K — 1)(K — 1)L36P%(J? + afP?H?)a,/6 + GP?65 +
2 _2 2

T2P20K Lyw + Lottt O

Note that Q(K, By, a;, w) in (D.13) consists of four error terms: the first one resulted from the agent
drift effect and non-LL.D. setting, the second one brought by the probability approximating, the third
one caused by partial participation, and the fourth one caused by the local stochastic gradient.

D.2 PROOF OF THEOREM[3.]]

Now we are ready to prove Theorem 3.1

Theorem[32] The second condition in (3.1)) ensure {a:} — 0, and thus, without loss of generality,
we may assume that L, Kwa; < 1 forall ¢ € N . Then, it follows from@that

2(F(J?t+1) - Et[F(xt)])
Kw

OétHgI'adF(xt)”2 S +at2Q(K7 Bt,Oét,W).

Summing the inequality above over t = 1,2,...,T and taking total expectation yields

A

T T
> arEllamndP (e} < T L 57 02U, By )

t=1
T
+ ZQ?Q(Kv Bt7 atvw)'

t=1

2(F(xo) — F(z7))
Kw

IN

Dividing the both side by Ay = Zthl o results in the bound for the weighted average norm of the
squared gradients as follows

2(F(xo) — F(z¥))
I(;wAT +

zatla lrad ()| <

T
1
17 2 QUK Brarw),  (D.16)
t 1 t=1

which, under Conditions (3.1)), implies that

T—o0

T
. 1
lim . Z o E[||lgrad F(z;)||?] =
T
The desired result follows the fact above. ]
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D.3 PROOF OF THEOREM [3.2]

Theorem[3.2] By the definition of a4, there exists a positive constant M > 0 such that
S a2 ad Y ek Y af < Mforall T > 1. Then,

T

1
> afQ(K, Biow, o, @) < @K —1)(K - 1)L367P*(J? + P2 H*)M
t=1
L 62 2 T2
+ GP2%EM + P62 K LywM + %M. (D.17)
low
On the other hand,
4 _zT: g >/T+1 W g ao(In(T+1+8) —In(+1)) p=1,
T BHr T i (Bt PO(T+1+B)7 = (b+ 1)) pe(1/2,1),
which gives
1 < ao(ln(T-&-l-&-l{?l—ln(ﬁ-&-l)) p=1 (D.18)
Ar = | mEmm e PE(1/21).
Plugging (D.17)) and (D.18) into (D.16) ensures the desired result. O

In particular, if full agents participate in any round of communication and agents use local full
gradient in local updates, implying G = 0, 67 = 0, and o7 = 0, then we have

T T T
1
S 02QUK, B0, ) = (2K ~ (K ~ DI3SPAP Y of 4 P2 Y )

t=1 t=1 t=1
Hence, we can relax the condition for oy as > ;o oy = oo and Y -, af < oo. If one takes
ay = 5757 With constants ag, 8,p = 1/3 +aand a € (0,2 /3) properly small, it follows that
M{(a)

T
1 2
yw > auBe[lgradF (z,)[*] < BrT)RAe

t=1

where M (a) is a constant depended on a. The smaller a the larger M (a).

D.4 PROOF OF THEOREM[3.3]

Theorem[3.3] By Lemma|D.3|and the RPL condition, we have
EA[F(2141))~ F(a*) +(F(2*)~ F(2,)) < —pmKoy (F(2,)~F(a"))+ w0l KQK, Biow, a1, ).
Rearranging this inequality yields

E[F(2i11)] — F(2*) < (1 — pwKay)(B[F(x;)] — F(2*)) + wal KQ(K, Biow, a1, @), (D.19)

where we take the total expectation on both sides. Subsequently, we prove the desired result by
induction. For ¢ = 1, it follows from the definition of v. Now assume that (3.2) holds for ¢t > 1.
Then, from (D.19), it follows that

Q(K, Biow, a1, w)

E[F(2¢41)] - F(a") < (1 . ﬂmfff) v =KB

t 2
t— BuwK wK p?
= (ﬁt/;) v+ t2ﬁ Q(Ka B10W7a17w)
t—1 wk —1 wK 2
= ( @ )y— <ﬁﬂ 2 >V+ t2ﬁ Q(K, Biow, 1, @)
< ti - (D.20)
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where t = 7 + ¢, the last inequality is due to — (ﬁ‘mg_l) v+ wﬁﬁ2 Q(K, Biow) < 0 by the
definition of v and £ > (t — 1)(t+ 1).
On the other hand, for any two points x,y € W, it follows from the Lg-smoothness of F' that

F(y) < F(x) + (gradF(z), R (y)) + *g||R Yyl
Plugging y = Rx(—igradF (z)) into the inequality above yields
N 1
F(a*) < F(y) < (&) — 51 laradF ()],
9
which gives i”gradF(w)H < F(x) — F(z*). Replacing = with z; and plugging the replaced
inequality into Inequality (D.20) yields
2L,v
E[|lgradF(z,)||?] < ==,
llgradF (e < 2222
which completes the proof. O

D.5 PROOF OF THEOREM [3.4]

Here we rewrite Theorem [3.5]as the following more complete statement.

Theorem D.2. Suppose that Assumptions[3.I{3-8 hold. We run Algorithm[I|with a fixed global step
size w, a fixed batch size B, and a fixed number of local updates K.

1. Ifthe fixed step sizes o and w satisfy awK Ly < 1, then

T
S BlradF(@) ) < 220) | gaQ(k, B, ). 021

t=1

2. If local full gradient descent step is performed in local updates, i.e., c;, = 0, and one takes

a local fixed step size o« > 0 such that o = \/QWPQ(GEQJ%?:S%KL KT with T satisfying
wKL?*0(z1) O(z1)(2K—1)*(K—1)L}§{ (=’ L2 J* K*+ P* H?)?
g
T > max { 2P (GO + KL, T253) 72P2L4K4w°(G52+KL w1252 } , then
- G62 L, Y262
radF(x < 4P, [20(x — .
7 - Ellsadrz) ) (@) (S + )

3. If the true probabilities are known, meaning G = 0, and one takes local and global
step sizes o and w such that aw = \/(égai+2P?§4§;<)§)T2LqKT with T satisfying T >
max KL,O(z1)B O(z1)(2K—1)*(K-1)’L}61 P*(L2w* J* K>+ P°H?)* B® then

(6202 12P252KB)Y2’ 9(0302 +2P283 KB)? YO LT w0 K® J

T
6202 2P2§2
Z:: [|lgrad F (z)||*] < 4T\/Lg@(a:1) <KTB +55 )

Proof. Item[T} Using a; = o and B, = B in Lemma[D.5] we have

2E[F(z¢) — F(w441)]
wak

’ﬂ \

E[||gradF(mt)||2] < +2aQ(K, B, oy, @).

Summing the inequality above overt = 1,2,...,7T gives rise to
2E[F(z0) — F(rr41)]

T
1 2
7 2 BlleradF (e |) £ 2T 4 20Q(K, o)

A

_ 2F(w) ~ F(a*))
- waKT

+2aQ(K, B, a, w),
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where the last inequality follows F'(z*) < F'(zp41).
Item 2] In particular, suppose that let o and w satisfy

%(QK —1)(K = 1)L76; P*(J* + P’ H?)a < GP?63 + Y*P*§]K Lyw. (D.22)

Define h(a) = i@a(;lT) +4aGP%53 + 472 P53 K Lywa. Solving o = arg min,, - h(«) results in

(1) G} LT3
" = ) =4P,[2 - .
“ \/2wP2(G6§ TR LmyRT ) \/ O(e1) (wKT T

Taking

wKLQG(xl) O(z1)(2K — 1)2(K — 1)2L%5%(w2L2J2K2 + PZH2)2
T > max g : g

2P2(Go% + KL,wY?52)’ T2P2LIK w5 (Go3 + K Lyw253)3

can ensure that «*wK Ly, < 1 and that @) holds. Hence, the left-hand side of (D.21)) is not
greater than h(a*). The proof for Item 3| I is similar to that for Iteml O

Remark D.1. Continuing with Remark- If the probabilities p; are known, i.e., q,f = p;, and
Pmin = mMin;{p;} is not too small and not fairly far away from pp.x = max;{p;}, Item@ gives the
upper bound as O( \/7) —l— O(ﬁ). In particular, if p; = % with S < N, the upper bound

becomes O( \/7) + (9( =)-

D.6 PROOF OF THEOREM[3.3]
Theorem[33 Using a fixed stepsize oy = o < 1/(puwK) satisfying Condition and batchsize
Bk € [Biow, Bup). it follows from that
E[F(z¢41)] — F(2*) < (1 — pwKa)E[F(z4)] — F(2*) + wa?KQ(K, S, Biow, @, @),
which implies that
E[F(z7)] — F(z*) < (1 — pwKo)E[F(z7_1)] — F(2*) + wa? KQ(K, Biow, o, @)
< (1 — pwKa)*(E[F(zr_2)] — F(z*) + (1 — pwKa) + 1)wa? KQ(K, Biow, 0, @)

T-1
< (1 - pwKa)' Y E[F(z1)] — F(z*)) + Z(l — pwKa) wa? KQ(K, Biow, o, @)
=0
1—(1—pwKa)T

=(1—pwKa)''e(z)) + wa? KQ(K, Biow, a, @)

poKa
< (1 - pwKa)T10(x1) + %Q(K, Biow, @, @),

which completes the proof. O

D.7 PROOF OF THEOREM [3.6|

Theorem[3.8) Restricting qi € [p;/2, 3p;/2] yields P{|q} —p;| < p;/2} > 1 —min{2e~P:/2 4(1 -
p:)/(tp;)} by the Hoeffding’s and Chebyshev’s inequalities Then

1 1) |a-p
A Rl ol B

holds with probability not less than 1 — min{2e’tpi /2 4(1 — p;)/(tp;)}. Noting that under ¢/ €
[pi/2.3pi/2). Flai — pil < Gt/ Gie.. g — pil < §pit~*/?) implies |(g)) ™ —p; | < Gt=*/2,

and that G ) " )
1< Y9 22 - ~rip-e A0 —pi)
IP){|q; pl' S 2pzt “ } Z 1 min{?e 2 ’Gzp,‘?tl*a ’

where we use the Hoeffding’s and Chebyshev’s inequalities again. Let A := {|(¢})™* — p;'| <

Gt=%/2}, B = {q} € [pi/2,3p:i/2]}, and C := {|q} — p;| < $p7t~/?}. The desired result follows
BNCC Aand P{BNC) > 1 - P{B°} — P{C°}. 0

iqt i
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E SUPPLEMENTARY PROOFS

E.1 PROOF OF THEOREM [2.1]

Lemma E.1. Let x1,29,...,xN be independent Bernoulli random variables with p; > 0, i.e.,

x; ~ Bernoulli(p;). Then,
1 e
— | = (1 —p; +pit)dt

Proof. Let S = S u;. Considering that for any a > 0, it follows - L — [7 e7*dt. Picking
a=1+ 5> 0yields

1
1+ e 148
Taking expectation for both sides of the equality above, we have

]E{Hzl 1%] —E[/Oooe_te_Stdt] :/OOO e 'Ele”"]dt,

—St

oo
e te St

where the second equality is due to that e~ is a discrete random variable. Since x; is independent
and S = YN ~1 a4, it follows E[e~5%] = [, E[e~*]. Noting that E[e~""] = pe™" + (1 — p;),

we obtain E[e 5] = Hz‘=1(191 ~t 4+ (1 — p;)). Finally, let w = e~*. Then du = —e~'dt, u — 1 as
t — 0,and © — 0 as t — oo. Hence,

00 1 N
| e star = [ I -+
0 0 =1

which completes the proof. O
Now we are ready to prove Theorem

Proof of Theorem2.1] At the t-th outer iteration, S; denotes the indices set of agents who send their
1 eS8, Then

radient streams to the server. Let x; =
& ! { 0 ¢ St

(E.1)

Z S, grad filz ] Z grad f;(z

1€S

Zz 1x‘|.

Noting that E [ i } =E []E {Z ;i }
i=1Ti i=1Ti

xi] =pE {HZ#, ]] Since z; ~ Bernoulli(p,) is

independent, by Lemma |E.1} we have £ [ — p; + p;t)dt. Plugging these

1+Z]¢7 a:l:| fO J#z
intermediate results into (E.1)) leads to the desired result. O

E.2 PROOF OF THE CLAIM IN REMARK[3.4]

In general, it is difficult to verify directly whether the objective function satisfies the PL (in the
Euclidean setting) or RPL (in the Riemannian setting) property. There are some stronger but useful
sufficient conditions that imply PL or RPL condition. Specifically, in the Euclidean setting, a strongly
convex function satisfies the PL condition (Bottou et al.,[2018). Similarly, in the Riemannian setting,
the geodesic strong convexity of real-valued functions implies the RPL property (Boumal, 2023)).
However, geodesic strong convexity usually requires the use of exponential mapping and its inverse,
whose the closed-form expression is not available in some manifolds, e.g., the Stiefel manifold. In the
next theorem, we use a more general notion of the strong convexity of real-valued functions—strong
retraction-convexity, in the Riemannian setting than geodesic strong convexity and claim that a
strongly retraction-convex function also satisfies RPL condition.
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Theorem E.1. Suppose that function q : M — R is twice continuously differentiable and p-
strongly retraction-convex with respect to the retraction R on W C M, which is a totally retractive
neighborhood of x*, a minimizer of ¢ on W. Then,

N 1
q(z) = q(2") < 5 - [lgradg(@)]?,
%
that is, q satisfies the RPL condition on W.

Proof. From the poof of Huang et al.| (2015, Lemma 3.2), the u-strongly retraction-convexity of ¢
implies that

a(y) — q(a) > (gradg(x), ) + S Il (E2)
for any z € W, n € T, M, and y = Ro(n) € W. Define ¢,(n) = q(z) + (gradq(z),n) + &||n||*

with n € T, M, which is u-strongly convex with respect to n (in classical), implying that the
unique minimizer of ¢, is given by n* = f%gradq(x). Thus, min,et, m ¢=(n) = ¢ (n*) =

q(x) — %ﬂ”gradq(x)HQ. It follows from 1) that
% jz X 1
q(z") = q(x) + (gradq(x), n) + Slnl* > ¢ (1) = a(x) - EHgYadQ(CC)HZ,

which completes the proof. O
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RESPONSE TO REVIEWERS

1# REVIEWER ZBLO: RATING 6, CONFIDENCE 3

*W1.* While I understand the reasonableness of G, I am wondering what the value of G would be
when the true probabilities are not available to the server in the experiments.

*A1.* The precise value of G is not easily available if the true probabilities are not available. However,
we want to emphasize that the constant G is **only used in theory**, but not used as an input of the
proposed algorithm. We are more concerned with the existence of this constant than with obtaining its
precise value. Theorem 3.6 **guarantees** the existence of GG under some reasonable assumptions.
In the experiments, we did not need the precise value of G and the proposed algorithm RFedAGS
works well in various scenarios.

*W2.* How are the data partitioned across clients? How many total clients are included in the
experiments, and what is the client participation ratio?

*A2.* In Appendix A.3, we give the details of the experiment settings. Specifically, for the MNIST
and CIFRA10 datasets, we partition the data for clients following the way (Pathological Non-IID)
in [1]. Doing so makes the number of each tag different for clients, and thus the local datasets are
non-LLD across clients. For PCA problem, the number of clients is 40 in the synthetic data case, and
that is 50 in the MNIST data case.

For the HSP problem, due to the nature of the dataset of mammals subtree of WordNet itself (total
1180 samples), the number of clients is set as 9.

For the FMC problem, the number of clients is set as 50. For all of the experiments in Section 4, we

set the true probability p; following uniformly distribution U (0, 1). Thus, the client participation
N .

ratio is 0.5 in expectation since W =1

*W3.* The ablation study is somewhat limited, and the sensitivity of several important parameters is

missing—for example, different participation ratios, varying numbers of local steps, and comparisons

between using approximate probabilities and true probabilities.

*A3.*
In Appendix A, we already show a number of ablation studies. Below, we reproduce those again.

- *different participation ratio:* In Appendix A1.2, we conduct experiments to test if frequencies
approximating probabilities is workable, and the impact of different participation ratio. Here we let
each agent has the same true probability p; = p. This case indeed reduces to the random sampling
case, and it is expected that the performance is consistent with that of random sampling. The results
are indeed so.

- *varying numbers of local steps:* In Appendix A1.4, we test the impact of different number of
local updates K on the performance of RFedAGS. The results show that more K leads to faster
convergence at the initial stage and introduces more noise to the final solutions, which is consistent
with the theoretical finding (Theorem 3.4).

- *comparisons between using approximate probabilities and true probabilities:* In Appendix Al.1,
the results shows the performance of using frequencies is very close to that of using true probabilities.

*W4.* The assumption of Lipschitz continuity for each f; seems a bit strong, although it may be
necessary for the Riemannian SGD convergence analysis. I am also curious whether this Lipschitz
continuity can be empirically verified in the experiments.

*A4.* The assumption of Lipschitz continuity is a **standard requirement** for Euclidean/Rie-
mannian optimization [2-5]. The commonly encountered problems are smooth and thus satisfy the
assumption when restricted on a compact subset, which naturally hold for compact manifolds such as
the Stiefel manifold. Therefore, in experiments, if the generated iterates stay in a compact subset of
the manifold and the objective function is smooth, then we can empirically claim that the function is
Lipschitz continuity in the compact subset. Moreover, in [4], an upper bound of Lipschitz constant is
obtained for some problems under reasonable assumptions, e.g., principal eigenvector computation
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over sphere manifold, Frechet mean computation over SPD manifold, Wasserstein barycenter over
SPD manifold, and hyperbolic structured prediction.

[1] McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks
from decentralized data. Artificial intelligence and statistics. PMLR, 2017.

[2] Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
on Leamning Representations (ICLR), 2019.

[3] Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis
of local-update SGD algorithms. Journal of Machine Learning Research, 2021.

[4] Han, A., Mishra, B., Jawanpuria, P. et al. Differentially private Riemannian optimization. Mach
Learn 113, 1133-1161 (2024).

[5] Hosseini, R., Sra, S. An alternative to EM for Gaussian mixture models: batch and stochastic
Riemannian optimization. Math. Program, 2020.

2# REVIEWER MU3X: RATING 4, CONFIDENCE 3

*W1.* Limited novelty. The key idea—aggregating gradient flows in tangent space—is conceptually
straightforward once the FedAvg update is projected to a manifold setting.

*Al.* Although our key idea builds up from FedAvg (Euclidean), it is **not a trivial generalization**
of the Euclidean counterpart.

The proposed aggregation (AGS) is not simply projecting the FedAvg update, but drawing insight on
the nature of the update of FedAvg—averaging all of local stochastic gradients. To achieve this goal,
the AGS uses the standard Riemannian optimization tool—vector transport instead of projection.

In fact, there exists different versions of Riemannian generalization of the aggregation. See also our
Table 1 in the paper for comparisons. However, we emphasize that **not all of them** can yield
nice theoretical results and convincing numerical performance. Our contribution to the best of our
knowledge provides the most general (relaxed) take, e.g., partial participation, non-iid data, use of
retraction, and use of bounded vector transport.

*W2.* The paper lacks an argument for why RFedAGS offers a distinct or superior geometric
interpretation.

*A2.* Due to the limitations of space, in the last manuscript we did not present the geometric
interpretation. We have now added the part in the revision; see Figure 1 (in the revised version). For
convenience, we restate that here.

From the perspective of geometry, the (TM) “projects” the final inner iterates xi x back to the tangent
space at &, then averages them and finally retracts the average into the manifold. While, in (AGS),
the intermediary negative mini-batch gradients — B% Db Bl grad fi(z] ;€] ) are transported to
the tangent space at x; in some way, then averages them and finally retracts the average into the
manifold.

The (TM) actually is an approximation of the weighted averages of inner iterates xi - When the

degree of heterogeneity across clients are large, the inner :L'g x 18 closer to the minimizer of local
function f;, and their average may be far away from the minimizer of the global function. While the
proposed (AGS) leverages the gradient information drawn from clients to generate global direction
and thus helps to alleviate this bias.

*W3.* Some results tied too closely to specific manifolds. Experiments and implementation notes
(Appendix A.3) are mostly focused specific manifolds. Broader applicability to more exotic or
high-dimensional manifolds remains an open question.

*A3.* We have already conducted experiments on **5 problems**, which are over the **Stiefel**
manifold (Section 4, PCA), the **hyperbolic** manifold (Section 4, HSP), the **SPD** manifold
(Section 4, FMC), the **sphere** manifold (Appendix A.l), and the **Grassmann** manifold
(Appendix A.2). Those five manifolds are commonly-encountered and widely-used in many important
applications.
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*Q1.* Can the authors provide empirical or theoretical discussion regarding the scalability of the
method as the number of agents, local dataset size, or manifold dimension increases?

*A1.* Thanks for your comment. We have conducted a new experiment to explore the scalability of
the RFedAGS as the number of agents, local dataset size, or manifold dimension increases; see the
table provided below or **Figure 16** in Appendix A.3.1 of the revision.

In the second row of the table below, we fix the local dataset size and the manifold dimension and
enlarge the number of agents. In the fourth row, we enlarge local dataset size and fixed the other
two factors. In the last row, we enlarge the manifold dimension and fix the other two factors. In
summary, it can be observed from the table that the RFedAGS can all solve these problems of such
scale, showing the scalability of RFedAGS. We would like to point out that as shown by Table 2 in the
revision, number of agents, local dataset size, and manifold dimension have a linear relationship with
the total computation complexity, so their increase will not cause the total computation complexity to
increase sharply.

-1 (dr) = (100,5) IN = 60l N = 8 I N = 1001 N = 150 1 N = 200
| | | | |

-1 ! 1S = 1000 | rel_error(x10~3)/CPU time (s) | 2.80/10.30 |
1.81/12.12 1 1.21/12.99 1 1.25/14.06 1 0.58/15.18 I | - | (d,r) = (100,5) 1 .S = 4001 .S = 800 |
S = 120018 = 16001 S = 2000 | | N = 100 | rel_error(x10~3)/CPU time (s) | 3.44/6.59 |
4.31/10.79 1 6.57/14.83 1 6.69/18.34 1 5.40/21.03 | | - | - | (d,r) = (1000,5) | (d,r) = (2000, 5)
| (d,7) = (2000,10) | (d,r) = (4000,5) | (d,r) = (4000,10) I | (N,S) = (50,1000) |
rel_error(x10~2)/CPU time (s) | 1.74/13.31 | 1.56/24.14 | 1.27/49.80 | 1.61/41.06 | 1.40/101.83
|

Note: relative error is defined as (F'(x;)—F*)/F* and the CPU time is equal to Zthl (Si+max; A; ¢)
with S; and A; ; being the time consumed by the server and agent  at the ¢-th round.

*Q2.* Could the method be efficiently applied to other manifolds? Are there limitations?

*A2.* Appendix discusses experiments on a number of applications/manifolds (5). The proposed
method can efficiently work in general manifolds, not limited to Riemannian submanifolds embedded
in Euclidean spaces, e.g., the Grassmann manifold. Our numerical experiments include various
manifolds, including sphere manifold, Stiefel manifold, hyperbolic manifold, SPD manifold, and
Grassmann manifold.

*Q3.* Could the method be compared with recent or advanced Riemannian federated learning
algorithms (e.g., Wang et al., 2025 [1])?

*A3.* We were not aware of this paper at the submission time (Wang et al. paper was in arXiv in July
and the ICLR deadline was in Sep). Thank you for bringing this to attention.

In the revision, we have now added the comparison of RFedAGS with the algorithm in Wang et al.,
2025 [1] (called ZO-RFedProj); see Figure 2 or the table below. We point out that in our work, the
problems we encounter are first-order accessible, while ZO-RFedProj is designed to the situation
where the exact first-order information (i.e., gradient) is not available. In the latter case, the authors of
[1] proposed an estimator to approximate the gradient and integrate the estimator into the RFedProj
[2]. Due to the existence of the estimator error, it can be expected that the performance of ZO-
RFedProj is poorer than that of RFedProj. Therefore, as expected, ZO-RFedProj does not perform as
good as our algorithm and actually is the worst one compared to other algorithms that uses first-order
information.

| I | RFedAGS | RFedAvg | RFedSVRG | RFedProj | ZO-RFedProj | ———I

| | | | | [ I Synthetic |
rel_error(x 10~3)/CPU time (s) | 8.66/0.62 | 74.66/1.90 | 118.29/2.34 | 47.30/0.55 | 248.44/7.07 |
| CIFAR10 | rel_error(x 10~3)/CPU time (s) | 0.49/15.28 1 0.87/16.17 | 1.00/34.653 1 0.76/20.21 |
203.94/659.666 |

*Q4.* The paper claims computational efficiency due to the removal of exponential/logarithmic
maps, yet provides no quantitative analysis. Could the authors offer detailed communication and
computation cost metrics per round, beyond total CPU time, to support this claim?
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*A4.* Thank you for your suggestion. We would like to emphasize that the baselines RFedAvg
and RFedSVRG require the **exponential** mapping, its inverse, and parallel translation. In the
Stiefel manifold, for instance, the exponential mapping involves matrix exponential calculation
which is computationally expensive, and the inverse of exponential mapping has not a closed-form
expression and only iterative methods are developed to compute it, which makes the computational
cost unacceptable. Instead, our RFedAGS requires **retraction and vector transport**. For most of
commonly encountered manifolds, the two tools are computationally cheap.

For the purpose of comparison, we provide a table below (which is added into the revision; see
Table 2) to quantitatively demonstrate the computation and communication cost per round taking the
compact Riemannian submanifold embedded in RI%P a5 an example, where we use retraction, its
inverse, and vector transport to replace exponential mapping, its inverse, and parallel translation. The
communication complexity of RFedAGS, RFedAvg, and RFedProj is the same, and a half of that of
RFedSVRG. In terms of computational complexity, as shown in the table, the servers in RFedAvg
and RFedSVRG require an additional ir x N flops compared to RFedAGS and RFedProj since r ~ p
in our experiments. Meanwhile, RFedAGS has approximately the same LICpA as RFedSVRG but
requires K additional vector transport evaluations compared to RFedAvg. Consequently, the CPU
time of RFedSVRG is expected to be consistently higher than those of RFedAGS and RFedAvg,
regardless of the value of N. When K is small and NV is large, RFedAvg may require more CPU
time than RFedAGS. Compared to RFedProj, the proposed RFedAGS requires K additional vector
transport evaluations in local updates. When a lower-complexity vector transport (e.g., vector
transport by projection) is used, RFedAGS may require less CPU time than RFedProj in each outer
iteration even if p is not large. This is verified by Figure 2.

[ LICpPA | SCCICCITCCI | ! !

| | [
RFedAGS I rK + v(K — 1) + gBK + 2dpK |r + dpN |1 2dpN Ir(K + 1) + v(K — 1) + gBK +
dp(2K + N) | | RFedAvg | rK + gBK + dpK | (ir + dp)N + r | 2dpN | (ir + dp)N +r | |
RFedSVRG IrK + vK + gBK + g5 + 3dpK | (ir + 2dp) N +r | 4dpN | (ir + 2dp)N + r(K +
1) +vK +g(BK + S) 4+ 3dpK || RFedProj | p(K +2) + gBK + dp(4K + 3) I p+ dp(N + 2) |
2dpN I p(K +3) + gBK + dp(4K + N 4+ 5) |

In the table above, LICpA, SCC, CC, and TCC denote the local iteration complexity per agent,
server computational complexity, communication complexity, and total computational complexity,
respectively. Note that TCC=LICpA+SCC.

[1] Wang H, Pan Z, He C, et al. Federated Learning on Riemannian Manifolds: A Gradient-Free
Projection-Based Approach[J]. arXiv preprint arXiv:2507.22855, 2025.

[2] Jiaxiang Li and Shigian Ma. Federated learning on Riemannian manifolds[J]. Applied Set-Valued
Analysis and Optimization, 2023.

[3] Zhang J, Hu J, So A M C, et al. Nonconvex federated learning on compact smooth submanifolds
with heterogeneous data[J]. Advances in Neural Information Processing Systems, 2024.

3# REVIEWER MABS: RATING 4, CONFIDENCE 2

*W1.* Theoretical clarity and novelty: While the proposed framework claims to generalize exist-
ing Riemannian FL methods by relaxing the requirements on retraction and vector transport, the
theoretical advancement remains unclear. Specifically, the main difficulty in proving convergence
under assumptions like 3.1, 3.2, and 3.5 is not explicitly articulated. The authors should clarify why
convergence analysis becomes more challenging under generalized retraction and bounded vector
transport, and in what way their proof techniques go beyond those established in prior works. In
other words, the paper should highlight which parts of the analysis cannot be handled by the existing
Riemannian FL theoretical tools and why this generalization is nontrivial.

*Al.* Existing Riemannian FL algorithms can be divided into two categories: (1) ones based on
orthogonal projection [1-2] and (2) ones based (TM) [3-6]. (1) the first class algorithms are restricted
on the compact Riemannian submanifolds embedded in Euclidean spaces, however our framework
proposed in this paper is designed for general manifolds. Thus the analysis therein is not suitable
for our proposed RFedAGS. (2) whether it is the second class algorithms or our algorithm, the two
key steps in analysis are bounding the two terms E[(grad F'(z;), R;! (2441))] and E[||[R;! (z411)||?]
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(retraction R is replaced with exponential mapping Exp in the second calss algorithms). For the
second class algorithms, it follows form (TM) that Exp_;t1 (Te41) = 5> jes, Exp;t1 (sc{ % )> which
still makes these two terms difficult to be bounded when K > 1 due to the effects of curvature
of manifolds. Beyond that, to bound the first term mentioned above, a consequent key step is to
bound E[||R, (xt 1) |I?] which states the "distance" between the &-th local update 27 ; and the ¢-th
outer iterate x;. EX1st1ng Riemannian FL theoretical tools all do not address these issues for K > 1.
Instead, our proposed (AGS) makes use of vector transport to avoid the computation of Exp ! (even
R~1) in (TM), maintains linearity with respect to local stochastic gradients (which is consistent with
that in the Euclidean setting), and thus enables analysis for K > 1.

*W2.* Significance of AGS-AP extension: The transition from AGS-RS to AGS-AP appears to be a
relatively straightforward correction that compensates for non-uniform participation probabilities by
reweighting expectations. While this adjustment enables handling arbitrary participation, it is not
evident that it introduces fundamentally new theoretical challenges. The proposed fix seems more
like an incremental adaptation rather than a substantial methodological contribution. The authors
should therefore elaborate on why the treatment of partial participation in the Riemannian context
poses unique analytical obstacles that cannot be addressed by simply adapting existing Euclidean
analyses with weighted expectations.

*A2.* We would to emphasize that such a situation where agents’ availability and response speeds
are hardly predictable is more practical in the FL setting. Existing Riemannian FL algorithms do
not have theoretical guarantees in this setting (even in the random sampling setting). Our (AGS-AP)
extension enables proposed RFedAGS to be the **first one** in such a setting. It is noted that the
theoretical challenges of this paper do not lie in introducing this extension, but in analyzing under
the algorithm with (AGS), as pointed out in **A1**. Once the analysis challenges (mentioned in
**A1%*) are overcome, the analysis using the (AGS-AP) extension becomes relatively easy.

*Q1.* In A.1.4 it seems like the effect of heterogeneity is almost unseen as the convergence improves
consistently when K increases. Is it possible to show results for K > 10? Since the algorithm is
not designed to mitigate heterogeneity, there should be a certain level of performance degradation
observed with extremely large K.

*A1.* Thank you for your comment. We have performed new experiments with K = 14, 20; see
updated Figures 11 and 13, or tables provided below. As stated in Item 1 of Theorem 3.4, at the
initial state, the larger K is the faster RFedAGS converges. But for larger K since more noises are
introduced, the second term (constant with respect to 7T") at the right-hand side of (3.3) is larger, which
may lead to the more inaccuracy of the solutions. From the tables provided below or Figures 11 and
13, we can observe the consistent results with theoretical analysis.

Table for **Figure 11**
| Figure 11 | IID | NIID-slight | NIID-heavy | IID | NIID slight | NIID- heavy | IID | NIID- shght |

NIID- heavy [ 1ID | NIID- shght | NIID-heavy | | | | |

[ | | | 'IIterK|8|8|8|

10110110114114114120120120110137.99137.99137.99137.99137.99137.99137.99 137.99 |
37.99137.99137.99137.991150134.48134.48134.45129.15129.14129.1119.6819.6519.45 |
3.66 x 1071 13.66 x 10711355 x 1071 1110012.8212.8112.7712.80 x 101 12.80 x 107! |
2.79% 1071 13.00 x 1073 15.25 x 1073 18.57 x 107312.02 x 1074 14.23 x 1073 11.24 x 1072 ||
15012.37x107212.50 x 10721256 x 102 17.33 x 10~ 11.71 x 1072 14.45x 1072 11.24 x 10~
1241 x 1072 19.19 x 10731 1.38 x 1074 13.14 x 1073 16.66 x 1073 11200 | 2.56 x 107% |
1.80 x 1072 12.65 x 1072 18.96 x 107511.63 x 1072 14.00 x 107319.99 x 107511.77 x 103
14.25 x 1073 11.40 x 1074 12.50 x 1073 17.00 x 1072 11250 15.94 x 10~° [ 1.67 x 1073 |
3.63x107317.09x107°11.36 x 1073 13.58 x 1073 11.11 x 107411.91 x 1073 14.29 x 10~3
1121 x 1074 12.20 x 1073 14.14 x 1073113001 6.02 x 10751 9.55 x 1074 12.43 x 1073 |
879 x107°11.84x107313.31 x107311.16 x 107%12.88 x 1073 16.38 x 1073 11.81 x 10~%1|
3.70 x 1073 11.10 x 1072 |

Table for **Figure 13**
|KIter|0|30I60|90|100|' ! | '

[110170.1714.50 x 10~*11.30 x 10~ 9|147x10 13|309><10 13

14|7017I734><10 612,53 x 1071218.76 x 10713 14.05 x 1073 1120170.1711.41 x 10~8 |
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2.40%x1071312.59x 10713 13.09 x 10~ 13 1130170.1717.13x 10712 15.44 x 10~1313.16 x 10~ 13
12.47 x 10712 |

[1] Zhang J, Hu J, So A M C, et al. Nonconvex federated learning on compact smooth submanifolds
with heterogeneous data[J]. Advances in Neural Information Processing Systems, 2024.

[2] Wang H, Pan Z, He C, et al. Federated Learning on Riemannian Manifolds: A Gradient-Free
Projection-Based Approach[J]. arXiv, 2025.

[3] Jiaxiang Li and Shigian Ma. Federated learning on Riemannian manifolds[J]. Applied Set-Valued
Analysis and Optimization, 2023.

[4] Zhenwei Huang, Wen Huang, Pratik Jawanpuria, and Bamdev Mishra. Federated learning on
Riemannian manifolds with differential privacy. arXiv, 2024.

[5] He Xiao, Tao Yan, and Kai Wang. Riemannian SVRG using Barzilai-Borwein method as
second-order approximation for federated learning. Symmetry, 2024

[6] He Xiao, Tao Yan, and Shimin Zhao. Riemannian SVRG with Barzilai-Borwein scheme for
federated learning. Journal of Industrial and Management Optimization, 2025.

4# REVIEWER IW4M: RATING 6, CONFIDENCE 3

*W1.* While the paper is theoretically rigorous, its dense and mathematically demanding nature may
hinder its accessibility to a broader audience at ICLR. Consequently, many critical ideas, such as the
geometric intuition behind averaging gradient streams and how vector transport preserves consistency,
are primarily presented in formal notation.

*A1.* Thank you for your comment. To ensure the rigor and completeness of this paper, we have
reviewed the necessary basic knowledge about Riemannian geometry and optimization in Appendix
B. Besides, in the main body (see Section 2.1), we show the geometry interpretation of (TM) and our
proposed (AGS) to conveniently understand.

*Q1.* The convergence proofs rely heavily on Assumption 3.8, which bounds the deviation between
estimated and true participation probabilities. However, it remains unclear how g; ; is actually
computed during training.

- *Q1.1.* Are these probabilities updated as empirical participation frequencies over rounds, or are
they fixed a priori?

*Al.1* g;, is updated as empirical participation frequencies over rounds. In Assumption 2.1,
we assume that each agent independently participates in communication with a fixed probability
independent of other agent. This enable us to approximate the true probability by frequency as
discussed in Section 3.4.

- *Q1.2.* How sensitive is RFedAGS to inaccurate or time-varying participation estimates (e.g., if
some clients drop out permanently)?

*A1.2.* Empirically, we observe that the performance of our RFedAGS using frequencies is very
close to that of using true probabilities even early iteration. This is observed from Figures 6 and
7 (in Appendix A.1.1), where the curves **Scheme II-True-0.3** and **Scheme II-True-0.5%*
exactly use true probabilities while the curves **Scheme II-Freq-0.3** and **Scheme II-Freq-0.5%%*
use frequencies to estimate the probabilities. We observe that the **red** and **yellow** curves
(corresponding to using true probabilities and frequencies, respectively) behave similarly. This
also highlights the robustness of our method. For time-varying participation probabilities case, it
is an interesting and more challenging work. The theoretical convergence of Euclidean FL with
time-varying participation probabilities is still not well understood.

*Q2.* While the theory emphasizes arbitrary participation and heterogeneous data, the experiments
do not explicitly test these conditions.

- *Q2.1.* Could the authors provide additional experiments that vary (a) the proportion of participating
clients per round and (b) the degree of data heterogeneity across clients?
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*A2.1.* We provide a new experiment where we enlarge the level of data heterogeneity and the
participation sparsity, respectively. See the table below or Figure 12 in the revision for details.

- ¥Q2.2.* How does RFedAGS perform compared to baselines as participation becomes sparse or
data distributions diverge?

*A2.2.%* It follows from the table below (or, see Figure 12 in the revision) that (i) for all of algorithms,
as data distributions diverge, the performance becomes poor; besides, at the same level of data hetero-
geneity, RFedAGS consistently outperforms compared to the other algorithms. (ii) as participation
becomes sparse, the performance of all algorithms becomes poor; on the other hand, at the same
participation ratio, our RFedAGS consistently performs compared to other algorithms.

| Algorithms heterogeneity or ratio | iid | nud slight | niid- heavy [ 05 1 04 [ 0.3
I .

' ' ||RFedAGS|445><10—5|792><104|234><103
17.58 x 1074 11.00 x 1072 11.04 x 1073 || RFedAvg 1 4.06 x 107%11.20 x 1072 11.87 x 1072
1.16 x 1072 11.13 x 1072 11.33 x 1072 | IRFedSVRG 1 1.17 x 1073 11.40 x 1072 11.67 x 1072 |
1.49%x107214.43x107211.00 | | RFedProj | 1.74 x 1074 11.88 x 1072 1 7.01 x 1073 1.59 x 1073
13.17 x 1073 17.20 x 1073 |

*Q3.* The proposed AGS framework involves transporting and averaging gradients in the mani-
fold’s tangent space, which may introduce additional computational overhead compared to standard
Riemannian FedAvg.

- #¥Q3.1.* How does this affect runtime and communication efficiency when the number of clients or
model dimensionality scales up?

*A3.1* We provide table below (which also is added in the revision; see Table 2), which shows
the computation and communication complexity when the manifolds are compact Riemannian
submanifolds embedded in R4*P. As shown in the table, the server in RFedAvg requires an additional
ir x N flops compared to RFedAGS. Meanwhile, RFedAGS requires K additional vector transport
evaluations compared to RFedAvg. When K is small and N is large, RFedAvg may require more
CUP time than RFedAGS. These discussions are verified by Figure 2. On the other hand, we
would like to point out that number of clients, local dataset size, and manifold dimension have a
linear relationship with the total computation complexity, so their increase will not cause the total
computation complexity to increase sharply.

Il LICpA | SCC I CC I TCC I | ! |

[ ! Il
RFedAGS IrK + v(K — 1) + gBK + 2dpK |r + dpN 1 2dpN I r(K + 1) + v(K — 1) + gBK +
dp(2K + N) | | RFedAvg | rK + gBK + dpK | (ir + dp)N + r | 2dpN | (ir + dp)N +r | |
RFedSVRG IrK + vK + gBK + g5 + 3dpK | (ir + 2dp)N + r | 4dpN | (ir + 2dp)N + r(K +
1) +vK +g(BK + S) 4+ 3dpK || RFedProj | p(K +2) + gBK + dp(4K + 3) I p+ dp(N +2) |
2dpN | p(K +3) + gBK + dp(4K + N 4+ 5) |

Note: LICpA, SCC, CC, and TCC denote the local iteration complexity per agent, server compu-
tational complexity, communication complexity, and total computational complexity, respectively.
Note that TCC=LICpA+SCC.

- ¥Q3.2.* Are there specific manifolds (e.g., Stiefel or SPD) where vector transport becomes a
bottleneck?

*A3.2.* For Riemannian submanifolds embedded in Euclidean spaces, there is a **cheap** vector
transport, i.e., vector transport by projection. In these cases, vector transport is not the bottleneck;
see Figure 2 for example, where RFedAGS costs less time than others. Obviously, there are some
manifolds, whose vector transport is relatively expensive. See Figure 4, for example, where the
manifold is the SPD manifold, we use parallel translation as the vector transport, and but ever here as
well RFedAGS performed similarly to RFedAvg in time but gave better optimality gap.
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