

RIEMANNIAN FEDERATED LEARNING VIA AVERAGING GRADIENT STREAMS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Federated learning (FL) as a distributed learning paradigm has a significant advantage
 012 in addressing large-scale machine learning tasks. In the Euclidean setting, FL
 013 algorithms have been extensively studied with both theoretical and empirical suc-
 014 cess. However, there exist few works that investigate federated learning algorithms
 015 in the Riemannian setting. In particular, critical challenges such as partial parti-
 016 cipation and data heterogeneity among agents are not explored in the Riemannian
 017 federated setting. This paper presents and analyzes a Riemannian FL algorithm,
 018 called RFedAGS, based on a new efficient server aggregation—averaging gradient
 019 streams, which can simultaneously handle partial participation and data heterogene-
 020 ity. We theoretically show that the proposed RFedAGS has global convergence
 021 and sublinear convergence rate under decaying step sizes cases; and converges
 022 sublinearly/linearly to a neighborhood of a stationary point/solution under fixed
 023 step sizes cases. These analyses are based on a vital and non-trivial assumption
 024 induced by partial participation, which is shown to hold with high probability.
 025 Extensive experiments conducted on synthetic and real-world data demonstrate the
 026 good performance of RFedAGS.

1 INTRODUCTION

029 Modern learning tasks handle massive amounts of data, which are geographically distributed across
 030 heterogeneous devices. Conventional centralized algorithms, e.g., stochastic gradient descent (SGD),
 031 need to collect the data into single device for training, which consumes significant storage and com-
 032 puting resource. Additionally, from the perspective of privacy security, transmitting raw training data
 033 may leak data privacy. A promising distributed learning paradigm—federated learning (FL)—allows
 034 a center server to coordinate with multiple agents (e.g., mobile phones and tablets) to train a desired
 035 model parameter without raw data sharing, which is an ideal solution to the issues aforementioned.

036 In recent years, with the development of Riemannian optimization, many machine learning problems
 037 have data structures that can be inscribed by low-dimensional smooth manifolds, and thus they can
 038 be modeled on manifolds. There are such examples including but not limited to principal component
 039 analysis (Ye & Zhang, 2021), Fréchet mean computation (Han et al., 2021), hyperbolic structured
 040 prediction (Xiong et al., 2022), low-rank matrix completion (Jawanpuria & Mishra, 2018; Mishra
 041 et al., 2019), multitask feature learning (Jawanpuria & Mishra, 2018; Mishra et al., 2019), and neural
 042 network training (Magai, 2023). This motivates us to develop an efficient Riemannian FL algorithm.

043 This paper focuses on the following Riemannian federated optimization problem

$$045 \quad \arg \min_{x \in \mathcal{M}} F(x) := \frac{1}{N} \sum_{i=1}^N f_i(x), \text{ with } f_i(x) = \mathbb{E}_{\xi \sim \mathcal{D}_i} [f_i(x; \xi)], \quad (1.1)$$

048 where \mathcal{M} is a d -dimensional Riemannian manifold, N is the number of agents, $F : \mathcal{M} \rightarrow \mathbb{R}$ is the
 049 global objective, and $f_i : \mathcal{M} \rightarrow \mathbb{R}$ and \mathcal{D}_i are local objectives and the data distribution held by agent
 050 i , $\forall i \in [N] = \{1, 2, \dots, N\}$. Throughout this paper, we focus on the expected minimization (1.1),
 051 but the resulting conclusions are also true for the finite sum minimization in which the local objective
 052 is defined by $f_i(x) = \frac{1}{N_i} \sum_{j=1}^{N_i} f_i(x; z_{i,j})$ with $\mathcal{D}_i = \{z_{i,1}, z_{i,2}, \dots, z_{i,N_i}\}$ the local dataset held by
 053 agent i . We may not necessarily assume that \mathcal{D}_i , $\forall i \in [N]$, are the independently identical distribution
 (I.I.D.), i.e., the data distributions across different agents are non-I.I.D.

054 A well-known Euclidean FL algorithm is Federated Averaging (FedAvg) (McMahan et al., 2017),
 055 which is adapted from the local stochastic gradient descent (local SGD) method. Specifically, at the
 056 beginning, FedAvg takes an initial guess x_1 as input and then sends it to all agents. Subsequently, the
 057 following steps are performed alternately:

058

- 059 (i) agent j updates its the local parameter via performing K -step SGD with x_t being the initial
 060 guess and generates the trained local parameter $x_{t,K}^j$ (this is called “local update” or “inner
 061 iteration”), and then the local parameter $x_{t,K}^j$ is uploaded to the server;
- 062 (ii) the server at random samples a subset of size S from all agents, denoted by \mathcal{S}_t , and then
 063 averages the received local parameters to generate the next global parameter x_{t+1} , i.e.,

064

$$x_{t+1} \leftarrow \frac{1}{S} \sum_{j \in \mathcal{S}_t} x_{t,K}^j, \quad (1.2)$$

065

066 which is called “server aggregation”, and then sends x_{t+1} to all agents.

067 The two steps above constitute a round of communication (or outer iteration).

068

069 **Related works.** Early works primarily analyzed the convergence of FedAvg and its variants in
 070 limited settings, typically relying on one or both of the following assumptions: (i) full participation
 071 (i.e., $S = N$) and (ii) I.I.D. data distributions; see, e.g., (Zhou & Cong, 2018; Stich, 2019; Yu
 072 et al., 2019; Haddadpour et al., 2019; Wang & Joshi, 2021; Gu et al., 2023) and references therein.
 073 Subsequently, numerous works have studied the convergence of FL algorithms under (iii) partial
 074 participation and (iv) non-I.I.D. data assumption; see e.g., (Li et al., 2020b;a; Rizk et al., 2022) and
 075 references therein. In these works, partial participation is implemented by random sampling—the
 076 server randomly selects a subset of agents to perform local updates in each outer iteration.

077

078 Due to heterogeneity in the computational capabilities and the environment conditions across agents,
 079 their availability and response speeds are hardly predictable. This unpredictability makes random
 080 sampling-based approaches unsuitable for such scenarios. Recent works have instead adopted an
 081 arbitrary participation model, where agents may respond to the server in a stochastic and uncontrolled
 082 manner (Gu et al., 2021; Wang & Ji, 2022; Ribero et al., 2023; Xiang et al., 2023; Yan et al., 2023;
 083 Wang & Ji, 2024; Xiang et al., 2025; Ying et al., 2025). These works can be roughly divided into
 084 three categories: (i) **time-varying statistic**, i.e. agent i participates in the t -th outer iteration with
 085 probability p_t^i varying over time (Wang & Ji, 2022; Ribero et al., 2023; Xiang et al., 2023; Wang &
 086 Ji, 2024; Xiang et al., 2025); (ii) **time-invariant statistic**, i.e., the participation probability for agent i
 087 is not varying over time (meaning $p_t^i = p_i$ for all $t \geq 1$) (Wang & Ji, 2024; Ying et al., 2025); and
 088 (iii) **periodic participation**, i.e., each agent i must participate in at least one communication round
 089 within a fixed iteration interval (Gu et al., 2021; Yan et al., 2023).

090 The FL algorithms mentioned earlier operate solely in Euclidean space and thus cannot directly
 091 handle such problems whose parameters are located in manifolds due to the inherent curvature
 092 effects of manifolds. Only a limited number of studies have explored the design and analysis of FL
 093 algorithms on Riemannian manifolds. (Li & Ma, 2023) proposed a Riemannian counterpart of (1.2)
 094 and thus developed a Riemannian FL algorithm. Their algorithm involves in exponential mapping,
 095 its inverse, and parallel transport. Nevertheless, for some manifolds, e.g., the Stiefel manifold, the
 096 inverse of the exponential mapping and parallel transport have no closed forms, and only iterative
 097 methods can be used to compute them, which brings an extra computation burden. (Huang et al.,
 098 2024) adopted a framework similar to that of (Li & Ma, 2023) but integrate differential privacy to
 099 strengthen privacy guarantees. Under the non-I.I.D. setting, most convergence results in (Li & Ma,
 100 2023; Huang et al., 2024) are established for the case $K = 1$ and full participation, i.e., all agents
 101 just perform one step local update (notably, for $K > 1$, the convergence analyses of both algorithms
 102 further assume that only one agent participates in communication). The algorithm proposed in (Zhang
 103 et al., 2024) supports general settings where $K > 1$ and $S > 1$, but its convergence analysis relies on
 104 the full participation assumption. Additionally, the algorithm therein involves an orthogonal projector
 105 onto the manifold and requires that this projector is a singleton. Thus, its applicability is restricted
 106 to problems on compact Riemannian submanifolds embedded in Euclidean spaces. **Subsequently,**
 107 **Wang et al. (Wang et al., 2025) proposed a zeroth-order gradient estimator and integrate it into**
 108 **RFedProj, resulting a zeroth-order Riemannian FL algorithm called ZO-RFedProj.** The algorithms
 109 in (Xiao et al., 2024; 2025) incorporated the Barzilai-Borwein method into the framework of (Li

& Ma, 2023). Despite the efforts of some, all of the Riemannian FL algorithms above have no theoretical guarantee under both partial participation and data heterogeneity setting. See Table 1 for comprehensive comparisons of existing Riemannian FL algorithms and the proposed RFedAGS. Table 2 summarizes the computational (communication) complexity required for these methods to complete one outer iteration. The table includes the local iteration complexity per agent (LICpA), server computational complexity (SCC), communication complexity (CC), and total computational complexity (TCC), where $TCC = LICpA + SCC$.

Table 1: Summary of existing algorithms and the proposed RFedAGS.

Algorithms	Manifold	Partial Participation	Non-I.I.D.	Retraction	Vector transport
RFedSVRG (Li & Ma, 2023)	General ¹	\times ²	Conditioned ³	Exponential mapping	Parallel transport
RPriFed (Huang et al., 2024)	General ¹	\times	Conditioned ³	Exponential mapping	Parallel transport
RFedProj (Zhang et al., 2024)	Compact submanifold	\times	✓	N/A	N/A
ZO-RFedProj (Wang et al., 2025)	Compact submanifold	\times	✓	N/A	N/A
RFedSVRG-2BBS (Xiao et al., 2024)	General ¹	\times ²	Conditioned ³	Exponential mapping	Parallel transport
RFedSVRG-BB (Xiao et al., 2025)	General ¹	\times ²	Conditioned ³	Exponential mapping	Parallel transport
RFedAGS (this paper)	General	✓	✓	General retraction	Bounded

¹ Although these methods are suitable for general manifolds, due to the usage of exponential mapping and its inverse, they may not work in some manifolds in where the inverses of exponential mappings have no closed-form expressions, for example, the Stiefel manifold.

² These algorithms at each outer iteration compute a full gradient at current global iterate and then it is used by agents to perform local SVRG step. Hence, these algorithms are not suitable for partial participation.

³ We highlight that these methods overcome the non-I.I.D. data challenge only when $K = 1$ and $S = N$, i.e., all agents perform one-step local update. For $K > 1$ cases, the I.I.D. and $S = 1$ assumptions are indispensable. Hence, these algorithms are suitable for the non-I.I.D. data setting conditioned on $K = 1$ and $S = N$.

Table 2: The computational complexity of RFedAvg (Li & Ma, 2023), RFedSVRG (Li & Ma, 2023), RFedProj (Zhang et al., 2024), and RFedAGS over a compact Riemannian submanifold embedded in $\mathbb{R}^{d \times p}$. Here N is the number of agents, K is the number of local iterations, B is the batch size, S is the number of local samples, and \mathbf{r} , \mathbf{ir} , \mathbf{v} , \mathbf{p} , and \mathbf{g} respectively denote the flops in a retraction evaluation, an inverse evaluation of the retraction, a vector transport evaluation, a projection evaluation onto the manifold, and a gradient evaluation of single sample loss $f_i(x; z_{i,j})$.

	LICpA	SCC ¹	CC ¹	TCC
RFedAvg	$\mathbf{r}K + \mathbf{g}BK + dpK$	$(\mathbf{ir} + dp)N + \mathbf{r}$	$2dpN$	$(\mathbf{ir} + dp)N + \mathbf{r}(K + 1) + \mathbf{g}BK + dpK$
RFedSVRG	$\mathbf{r}K + \mathbf{v}K + \mathbf{g}BK + \mathbf{g}S + 3dpK$	$(\mathbf{ir} + 2dp)N + \mathbf{r}$	$4dpN$	$(\mathbf{ir} + 2dp)N + \mathbf{r}(K + 1) + \mathbf{v}K + \mathbf{g}(BK + S) + 3dpK$
RFedProj	$\mathbf{p}(K + 2) + \mathbf{g}BK + dp(4K + 3)$	$\mathbf{p} + dp(N + 2)$	$2dpN$	$\mathbf{p}(K + 3) + \mathbf{g}BK + dp(4K + N + 5)$
RFedAGS	$\mathbf{r}K + \mathbf{v}(K - 1) + \mathbf{g}BK + 2dpK$	$\mathbf{r} + dpN$	$2dpN$	$\mathbf{r}(K + 1) + \mathbf{v}(K - 1) + \mathbf{g}BK + dp(2K + N)$

¹ Here we assume that all agents participate in communication.

Challenges. In this paper, we focus on investigating a FL algorithms on general Riemannian manifolds, which works under arbitrary participation and data heterogeneity setting. In that case, the challenges of designing and analyzing such an algorithm mainly arise from (i) the curvature effects of manifolds, (ii) multiple-step local updates at each agent, (iii) stochastic error of arbitrary participation, and (iv) data heterogeneity across agents. The biggest challenge brought by (i) and (iii) is how the server generates new global parameters based on the local update information from multiple agents, which directly affects the design of the algorithm. While (ii) and (iv) will bring local errors into the global parameter even make algorithms diverge, which is called agent drift effects. These issues often couple together and make convergence analysis more complicated.

Contributions. The main contributions of this paper are summarized as follows.

1. The server aggregation (SA) proposed in (Li & Ma, 2023) is inspired by the Euclidean weighted average (2.1). Although this SA is feasible in practice, it has significant challenges in terms of theory analysis and computation efficiency. This paper present a new SA which can avoid the issues mentioned above. The idea behind the presented SA is that it does not handle local parameters but rather averages local gradient information, which retains linearity to some extent.
2. We investigate the availability of the proposed RFedAGS under arbitrary participation and non-I.I.D. data, where the arbitrary participation setting is based on the time-invariant statistic model without requiring prior knowledge of the participation probabilities. This model encompasses many practical scenarios, including random sampling.
3. We establish the convergence guarantees of the proposed RFedAGS under the arbitrary participation and non-I.I.D data setting with the standard assumptions in FL and Riemannian optimization except Assumption 3.8 which is important and nontrivial. We also discuss the reasonability of this assumption when using the frequencies to estimate the true probabilities.

162 4. Extensive numerical experiments with synthetic/real-world data are conducted to demonstrate the
 163 efficacy of the proposed RFedAGS.
 164

165 **Notations.** Throughout this paper, we use \mathbb{R} , \mathbb{R}^n , and $\mathbb{R}^{m \times n}$ to denote the real numbers, the space
 166 real vectors of dimension n , and the space real matrices of size $m \times n$, respectively. We use \mathcal{M} to
 167 denote the Riemannian manifold and the equipped Riemannian metric is denoted by $\langle \cdot, \cdot \rangle$, whose the
 168 induced norm on the tangent space $T_x \mathcal{M}$ is denoted by $\|\cdot\|_x$ (omitting the subscript sometimes).
 169 Exp , R , \mathcal{T} , and $\text{grad} f$ denote exponential mapping, retraction, vector transport, and the gradient of
 170 $f : \mathcal{M} \rightarrow \mathbb{R}$, respectively. Also, $\langle \cdot, \cdot \rangle_F$, $\|\cdot\|_F$, and ∇f denote the Euclidean inner product, the norm
 171 induced by the Euclidean inner product, and the Euclidean gradient of f .

172 2 RFEDAGS: RIEMANNIAN FEDERATED AVERAGING GRADIENT STREAMS

174 A basic background in Riemannian geometry and optimization is assumed, and the details can be
 175 found in Appendix B. The proposed RFedAGS (stated in Algorithm 1) are explained as follows.
 176

177 **Algorithm 1** Riemannian Federated Learning via Averaging Gradient Streams: RFedAGS

178 **Input:** Initial global model $x_1 \in \mathcal{M}$, number of aggregations T , numbers of local iterations K , local
 179 step size sequence $\{\alpha_t\}_{t=1}^T$, global step size ϖ , batch size sequence $\{B_t\}_{t=1}^T$;
 180

180 **Output:** $\{x_t\}_{t=1}^{T+1}$.

181 1: **for** $t = 1, 2, \dots, T$ **do**

182 2: The server broadcasts x_t to all agents, i.e., $x_{t,0}^j \leftarrow x_t$, $j \in \mathcal{N}$;

183 3: **for** Agent $j \in \mathcal{N}$ in parallel **do**

184 4: Set $\zeta_{t,0}^j \leftarrow 0_{x_t}$;

185 5: **for** $k = 0, 1, \dots, K - 1$ **do**

186 6: Agent j finds indices of the mini-batch sample $\mathcal{B}_{t,k}^j$ by sampling B_t times;

187 7: Set $\eta_{t,k}^j \leftarrow \frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad} f_j(x_{t,k}^j; \xi_{t,k,b}^j)$;

188 8: Set $x_{t,k+1}^j \leftarrow \text{R}_{x_{t,k}^j}(-\alpha_t \eta_{t,k}^j)$;

189 9: Set $\zeta_{t,k+1}^j \leftarrow \zeta_{t,k}^j + \mathcal{T}_{\tilde{\eta}_{t,k-1}^j}(\alpha_t \eta_{t,k}^j)$ with $\tilde{\eta}_{t,k}^j$ satisfying $\text{R}_{x_{t,k}^j}(\tilde{\eta}_{t,k}^j) = x_t$;

190 10: **end for**

191 11: Upload the gradient stream $\zeta_{t,K}^j$ to the server with an unknown but fixed probability p_j ;

192 12: **end for**

193 13: The server computes the approximate probability q_t^j , $\forall j \in \mathcal{S}_t$;

194 14: The server updates the new global model x_{t+1} by (AGS-AP) with q_t^j replacing p_j ;

195 15: **end for**

198 **A new Riemannian SA.** Due to the curvature effects of manifolds, the addition of two points in a
 199 manifold is not valid, and thus the SA via the weighted average of local parameters (1.2) does not
 200 work in the Riemannian setting. Li & Ma (2023) proposed a SA, called tangent mean, defined by
 201

$$202 x_{t+1} \leftarrow \text{Exp}_{x_t} \left(\frac{1}{|\mathcal{S}_t|} \sum_{i \in \mathcal{S}_t} \text{Exp}_{x_t}^{-1}(x_{t,K}^i) \right), \quad (\text{TM})$$

204 which is an approximate to the weighted average of points on a manifold. On the one hand, (TM)
 205 involves the inverse of exponential mapping, which has no closed-form expression in some manifolds,
 206 e.g., the Stiefel manifold. This limits its scope of availability. Additionally, due to the curvature
 207 effects of manifolds, exponential mapping and its inverse almost are nonlinear. Hence, when agents
 208 perform multiple-step local updates, (TM) involves multiple consecutive exponential mappings,
 209 resulting in that the increment of parameters, $\text{Exp}_{x_t}^{-1}(x_{t+1})$, is difficult to be bounded in analysis,
 210 which makes convergence analysis fairly challenging. In view of the discussions above, this paper
 211 resorts to another aggregation which can not only implement SA efficiently but also analyze algorithm
 212 convergence conveniently.

213 Back to the Euclidean setting, the increment of parameters of FedAvg can be expanded as

$$214 \Delta_t = x_{t+1} - x_t = -\alpha_t \frac{1}{|\mathcal{S}_t|} \sum_{i \in \mathcal{S}_t} \sum_{k=0}^{K-1} \frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^i} \nabla f_i(x_{t,k}^i; \xi_{t,k,b}^i).$$

Observing the expression shows that the increment of parameters is given by the average of mini-batch gradients of active agents. We can adopt the similar idea in the Riemannian setting but require making some adaptations, since directly combining the mini-batch gradients located in different tangent spaces is not well defined. With the aid of vector transport, the combination can be defined. Specifically, we define the the Riemannian “increment of parameters” as

$$\zeta_t = \mathbf{R}_{x_t}^{-1}(x_{t+1}) = -\alpha_t \frac{1}{|\mathcal{S}_t|} \sum_{j \in \mathcal{S}_t} \sum_{k=0}^{K-1} \frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^k; \xi_{t,k,b}^j)).$$

Specific to agent j , it just need to upload $\zeta_{t,K}^j = \sum_{k=0}^{K-1} \frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^k; \xi_{t,k,b}^j))$, called gradient stream, to the server. The resulting new SA is given via averaging gradient streams:

$$x_{t+1} = \mathbf{R}_{x_t}(\zeta_t) = \mathbf{R}_{x_t} \left(-\alpha_t \frac{1}{|\mathcal{S}_t|} \sum_{j \in \mathcal{S}_t} \zeta_{t,K}^j \right). \quad (\text{AGS-RS})$$

It is worth noting that when the manifold reduces to a Euclidean space, (AGS-RS) is equivalent to the Euclidean SA (1.2). In our opinion, this aggregation is a more essential generalization from the Euclidean setting to the Riemannian setting.

From the perspective of geometry, tangent mean (TM) “projects” the final inner iterates x_{t+K}^j back to the tangent space at x_t , then averages them and finally retracts the average into the manifold. While in aggregation (AGS-RS), the intermediary negative mini-batch-gradients $-\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_i(x_{t,k}^j; \xi_{t,k,b}^j)$ are transported to the tangent space at x_t in some way, then averages them and finally retracts the average into the manifold. The (TM) actually is an approximation of the weighted averages of inner iterates $x_{t,K}^j$. When the degree of heterogeneity across clients are large, the inner $x_{t,K}^j$ is closer to the minimizer of local function f_j , and their average may be far away from the minimizer of the global function; while, the proposed (AGS-RS) leverages the gradient information drawn from clients to generate global direction and thus helps to alleviate this bias; see Figure 1(c). In particular, letting the proposed aggregation (AGS-RS) use the exponential map and parallel transport, the two aggregations coincide when (i) $\mathcal{M} = \mathbb{R}^d$; or (ii) $K = 1$. See Figure 1 for a geometric interpretation and an experimental comparison of (TM) and (AGS-RS).

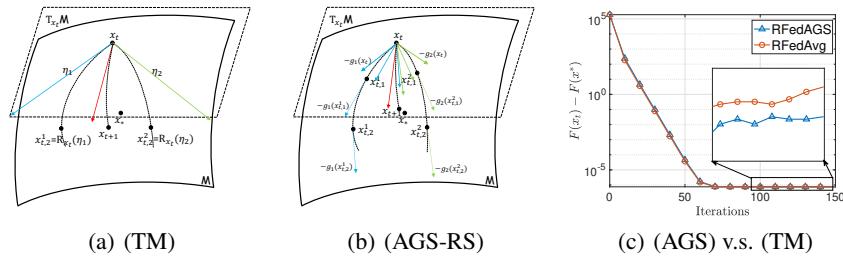


Figure 1: (a)-(b) diagrams of (TM) and (AGS-RS) where $K = 2$, two agent participate in communication, and $g_i(x)$ denotes the local stochastic gradient of agent i at x . (c) (AGS) v.s. (TM) on $\min_{x \in \{x \in \mathbb{R}^{50}: x^T x = 1\}} F(x) = -\frac{1}{2} \left(\frac{1}{60} \sum_{j=1}^{60} (x^T Z_{1,j} Z_{1,j}^T x + x^T Z_{2,j} Z_{2,j}^T x) \right)$.

Arbitrary partial participation. Now we are ready to extend (AGS-RS) to the arbitrary partial participation setting under consideration, which is formally modeled in Assumption 2.1.

Assumption 2.1. Assume that each agent i independently participates in any round of communication with probability $p_i > 0$.

Under Assumption 2.1, when the participation probabilities are not exactly equal to each other, using (AGS-RS) simply may introduce stochastic participation errors. In that case, the next theorem points out that the algorithm equipped with (AGS-RS) may work incorrectly since it may solve another problem different from the original problem.

Theorem 2.1 (Proved in Appendix E.1). *Under Assumption 2.1, let \mathcal{S}_t denotes the set of agents who respond to the server at the t -th round of communication. Then, $\mathbb{E} \left[\sum_{j \in \mathcal{S}_t} \frac{1}{|\mathcal{S}_t|} \text{grad}f_j(x) \right] = \sum_{i=1}^N \tilde{p}_i \text{grad}f_i(x)$, with $\tilde{p}_i = p_i \int_0^1 \prod_{j \neq i}^N (1 - p_j + p_j t) dt$.*

270 Therefore, if $p_i \neq p_j$ for some $i, j \in [N]$, then $\tilde{p}_i \neq \tilde{p}_j$, and thus there exists no $\chi > 0$ such
 271 that $\sum_{i=1}^N \tilde{p}_i \text{grad}f_i(x) = \chi \text{grad}F(x)$. That is, the algorithm may not solve the original problem
 272 $\min_{x \in \mathcal{M}} F(x)$ since each of its search directions leads the iterate x_t to the minimizer of another
 273 problem $\min_{x \in \mathcal{M}} \tilde{F}(x) := \sum_{i=1}^N \tilde{p}_i f_i(x)$.
 274

275 Back again to Assumption 2.1, at the t -th round of communication, note that

$$\begin{aligned} \mathbb{E} \left[\sum_{i \in \mathcal{S}_t} \frac{1}{p_i N} \text{grad}f_i(x) \right] &= \mathbb{E} \left[\sum_{i=1}^N \frac{1}{p_i N} \mathbb{I}_{\mathcal{S}_t}(i) \text{grad}f_i(x) \right] = \sum_{i=1}^N \frac{1}{p_i N} \mathbb{E} [\mathbb{I}_{\mathcal{S}_t}(i) \text{grad}f_i(x)] \\ &= \sum_{i=1}^N \frac{1}{p_i N} (p_i \text{grad}f_i(x)) = \text{grad}F(x), \end{aligned} \quad (2.1)$$

282 where $\mathbb{I}_{\mathcal{S}_t}(i) = 1$ if $i \in \mathcal{S}_t$ otherwise $\mathbb{I}_{\mathcal{S}_t}(i) = 0$. Hence, if the participation probabilities, p_i 's, are
 283 known, one of the feasible aggregation patterns can be chosen as

$$x_{t+1} \leftarrow R_{x_t} \left(-\varpi \sum_{i \in \mathcal{S}_t} \frac{1}{p_i N} \alpha_t \zeta_{t, K}^i \right) \text{ with } \varpi > 0 \text{ the global step size,} \quad (\text{AGS-AP})$$

287 which ensures that the algorithm correctly solves the original problem $\min_{x \in \mathcal{M}} F(x)$.

288 On the other hand, in practical applications, the server is actually unaware of the true probabilities.
 289 In this case, what the server can do is to estimate the true probabilities as possible in some ways,
 290 that is, the server computes q_t^i in the t -th round of communication and uses it to serve as the true
 291 probability p_i . Summarizing above, this paper proposes a Riemannian FL algorithm, called RFedAGS,
 292 which can address the partial participation setting, as stated in Algorithm 1.
 293

294 3 CONVERGENCE ANALYSIS

295 In this section, we establish the convergence properties of RFedAGS (Algorithm 1) on the partial
 296 participation and the non-I.I.D. data settings. All of the proofs can be found in Appendix D.
 297

3.1 ASSUMPTIONS

300 We first present a set of assumptions as follows that are necessary for the convergence analysis. All
 301 assumptions except Assumption 3.8 have been used in e.g., (Bonnabel, 2013; Tripuraneni et al., 2018;
 302 Sato et al., 2019; Han & Gao, 2021), and their reasonability is discussed in Appendix C.

303 **Assumption 3.1.** *The retraction R is such that its restriction to $T_x \mathcal{M}$ for all $x \in \mathcal{M}$, R_x , is of
 304 class C^2 , and the associated vector transport T is continuous and bounded in the sense that there
 305 exists a constant $\Upsilon > 0$ such that for any $x \in \mathcal{M}$, $\zeta_x, \eta_x \in T_x \mathcal{M}$, it holds that $\|T_{\eta_x}(\zeta_x)\| \leq \Upsilon \|\zeta_x\|$.*

306 **Assumption 3.2.** *For a sequence of the outer iterates $\{x_t\}_{t \geq 1}$ and a sequence of the inner iterates
 307 $\{\{x_{t,k}^j\}_{j=1}^N\}_{k=0}^{K-1}\}_{t \geq 1}$ generated by Algorithm 1, there exists a W -totally retractive set $\mathcal{W} \subset \mathcal{M}$
 308 such that $\{x_t\}_{t \geq 1} \subset \mathcal{W}$ and $\{\{x_{t,k}^j\}_{j=1}^N\}_{k=0}^{K-1}\}_{t \geq 1} \subset \mathcal{W}$. The minimizers of Problem (1.1) are
 309 inside \mathcal{W} . Additionally, there exists a compact and connected set $\mathcal{X} \subset \mathcal{M}$ such that $\mathcal{W} \subset \mathcal{X}$.*

310 **Assumption 3.3.** *The cost function F is continuously differentiable in \mathcal{W} , the local cost functions
 311 f_1, \dots, f_N are continuously differentiable in \mathcal{W} , and their components $f_j(\cdot, \xi)$ for $\xi \sim \mathcal{D}_j$ with
 312 $j \in [N]$ are continuously differentiable in \mathcal{W} .*

313 **Assumption 3.4.** *The local objective functions f_j , $j \in [N]$, are L_f -Lipschitz continuously differentiable
 314 in \mathcal{W} with the retraction R and the vector transport T (see Definition B.1), implying that F is
 315 also L_f -Lipschitz continuously differentiable.*

316 **Assumption 3.5.** *F is L_g -retraction smooth over \mathcal{W} with respect to R (see Definition B.2).¹*

317 **Assumption 3.6.** *For any parameter $x \in \mathcal{M}$, the Riemannian stochastic gradient $\text{grad}f_j(x; \xi^j)$ is
 318 an unbiased estimator of the gradient $\text{grad}f_j(x)$, i.e., $\mathbb{E}_{\xi^j} [\text{grad}f_j(x; \xi^j)] = \text{grad}f_j(x)$, $\forall j \in [N]$.*

319 **Assumption 3.7.** *For any fixed parameter $x \in \mathcal{M}$, there exists a positive constant σ_L such that for
 320 all $j \in [N]$, it holds that $\mathbb{E} [\|\frac{1}{B} \sum_{b \in \mathcal{B}^j} \text{grad}f_j(x; \xi_b^j) - \text{grad}f_j(x)\|^2] \leq \frac{\sigma_L^2}{B}$ with $|\mathcal{B}^j| = B$.*

323 ¹In general, in the Riemannian setting, a L -Lipschitz continuously differentiable function $f : \mathcal{M} \rightarrow \mathbb{R}$ is not
 necessarily L -retraction smooth, which is different from the Euclidean setting.

The method estimating the probabilities is discussed in Section 3.3. Now we just make an assumption requiring that the approximate probability q_t^i in each round of communication is not far away from the true probability p_i , formally stated in Assumption 3.8.

Assumption 3.8. *There exist constants $q_{\min}, q_{\max} \in (0, 1]$ and $G \geq 0$ independent of $t \geq 1$ and $i \in [N]$, such that the approximate probabilities q_t^i 's satisfy $\left| \frac{1}{q_t^i} - \frac{1}{p_i} \right| \leq \sqrt{G\alpha_t}$, and $q_{\min} \leq q_t^i \leq q_{\max}, \forall t \geq 1, i \in [N]$, where α_t is the local step size in the t -th round of communication.*

Note that the constant G controls the accuracy of the approximate probabilities and when the true probabilities are available to the server, G can take exactly zero. In Section 3.3, we discuss the reasonability of Assumption 3.8.

Remark 3.1. *In (Wang & Ji, 2024), the authors imposed the following bound on the approximate probabilities: $\sum_{i=1}^N p_i^2 \left(\frac{1}{q_t^i} - \frac{1}{p_i} \right)^2 \leq \frac{N}{81}$. This bound essentially requires that $\left| \frac{1}{q_t^i} - \frac{1}{p_i} \right|$ is less than some constant, which is consistent with Assumption 3.8 in fixed step size cases. Note that this assumption is considered in (Wang & Ji, 2024) only for fixed step size cases, but Assumption 3.8 considers another situation where the bound varies over time t when decaying step sizes are used.*

3.2 CONVERGENCE PROPERTIES

In this section, we establish the convergence properties of the proposed RFedAGS.

Theorem 3.1. *Let Assumptions 3.1-3.8 hold. Suppose Algorithm 1 is run with a fixed global step size $\varpi > 0$ and a decaying local step size sequence $\{\alpha_t\}$ satisfying Conditions*

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \sum_{t=1}^{\infty} \alpha_t^2 < \infty. \quad (3.1)$$

Then, $\liminf_{t \rightarrow \infty} \mathbb{E}[\|\text{grad}F(x_t)\|^2] = 0$.

In what follows, we further characterize the nonasymptotic convergence.

Theorem 3.2. *Under the same conditions as Theorem 3.1 except that the local step size sequence $\{\alpha_t\}$ is determined by $\alpha_t = \frac{\alpha_0}{(\beta+t)^p}$ with constants $\alpha_0, \beta > 0$ and $p \in (1/2, 1]$ satisfying $\varpi\alpha_1 KL_g \leq 1$, the weighted average norm of the squared gradients satisfy, with $A_T = \sum_{t=1}^T \alpha_t$,*

$$\frac{1}{A_T} \sum_{t=1}^T \alpha_t \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq \begin{cases} \mathcal{O}\left(\frac{1}{\ln(\beta+T)}\right) & p = 1, \\ \mathcal{O}\left(\frac{1}{(\beta+T)^{1-p}}\right) & p \in (1/2, 1). \end{cases}$$

Remark 3.2. *In particular, if the full agent participate in any round of communication and agents use the full local gradient in local update, i.e., $G = 0$ and $\sigma_L = 0$, one can relax the step sizes to $\alpha_t = \frac{\alpha_0}{(\beta+t)^p}$ where $p = 1/3 + a$ with $a \in (0, 2/3)$. In this case, for large T , the upper bound can be improved to $\frac{1}{A_T} \sum_{t=1}^T \alpha_t \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq \mathcal{O}\left(\frac{1}{(\beta+T)^{2/3-a}}\right)$ (see Appendix D.3).*

Theorem 3.3. *Under Assumptions 3.1-3.8, suppose that F satisfies RPL condition, i.e., there exists a constant $\mu > 0$, such that for all $x \in \mathcal{W}$, it holds that $F(x) - F(x^*) \leq \frac{1}{2\mu} \|\text{grad}F(x)\|^2$. If we run Algorithm 1 with the batch size $B_t \in [B_{\text{low}}, B_{\text{up}}]$ and the step sizes satisfying $\alpha_t = \frac{\beta}{\gamma+t}$ for some $\gamma > 0$ and $\beta > \frac{1}{\mu\varpi K}$ such that $\alpha_1 \varpi K L_g \leq 1$, then the iterates $\{x_t\}_{t \geq 1}$ satisfy*

$$\mathbb{E}[F(x_t)] - F(x^*) \leq \frac{\nu}{\gamma+t}, \text{ and } \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq \frac{2L_g \nu}{\gamma+t}, \quad (3.2)$$

where $\nu = \max \left\{ \frac{\varpi K \beta^2 Q(K, B_{\text{low}}, \alpha_1, \varpi)}{\beta \mu \varpi K - 1}, (\gamma + 1) \Theta(x_1) \right\}$, $\Theta(x_1) = F(x_1) - F(x^*)$, and $Q(K, B_t, \alpha_t, \varpi) = (2K-1)(K-1)L_f^2 \delta_1^2 P^2 (J^2 + \alpha_t^2 P^2 H^2) \alpha_t / 6 + GP^2 \delta_2^2 + \Upsilon^2 P^2 \delta_4^2 K L_g \varpi + \frac{L_g \delta_3^2 \sigma_L^2 \Upsilon^2 \varpi}{2B_t}$ with P, J , and H being three constants depended on the problem, manifold and the retraction and $\delta_1, \delta_2, \delta_3, \delta_4$ being constants depended on $q_t^i, p_i, \forall i \in [N]$. That is, Algorithm 1 converges sublinearly to the minimizer in expectation.

Theorems 3.1-3.3 provide the global convergence of Algorithm 1. Under mild assumptions, the first theorem states that Algorithm 1 has global convergence in expectation for general objectives

378 while the other theorems further provide the convergence rate of Algorithm 1. However, all of these
 379 theorems require the usage of the decaying step sizes. When decaying step sizes are used, a large
 380 number of iteration are required for Algorithm 1 to converge. A compromise is to use a fixed step
 381 size of moderate size, the advantage of which is that the convergence rate is sublinear (even linear)
 382 while the disadvantage of which is that it may not converge to the minimizers but to an ϵ -stationary
 383 point/solution (see Definition B.4); see Theorems 3.4 and 3.5.

384 **Theorem 3.4.** *Suppose that Assumptions 3.1-3.8 hold. We run Algorithm 1 with a fixed global step
 385 size ϖ , a fixed batch size B , and a fixed number of local updates K .*

387 1. *If the fixed step sizes α and ϖ satisfy $\alpha\varpi KL_g \leq 1$, then*

$$388 \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq \frac{2\Theta(x_1)}{\varpi\alpha KT} + 2\alpha Q(K, B, \alpha, \varpi). \quad (3.3)$$

390 2. *If the true probabilities are known, meaning $G = 0$, and one takes local and global
 391 step sizes α and ϖ such that $\alpha\varpi = \sqrt{\frac{\Theta(x_1)B}{(\delta_3^2\sigma_L^2+2P^2\delta_4^2KB)\Upsilon^2L_gKT}}$ with T satisfying $T \geq$
 392 $\max \left\{ \frac{KL_g\Theta(x_1)B}{(\delta_3^2\sigma_L^2+2P^2\delta_4^2KB)\Upsilon^2}, \frac{\Theta(x_1)(2K-1)^2(K-1)^2L_g^4\delta_1^4P^4(L_g^2\varpi^2J^2K^2+P^2H^2)^2B^3}{9(\delta_3^2\sigma_L^2+2P^2\delta_4^2KB)^3\Upsilon^6L_g^7\varpi^6K^5} \right\}$, then*

$$395 \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq 4\Upsilon \sqrt{L_g\Theta(x_1) \left(\frac{\delta_3^2\sigma_L^2}{KTB} + \frac{2P^2\delta_4^2}{T} \right)}.$$

398 **Remark 3.3.** *If the probabilities p_i are known, i.e., $q_t^i = p_i$, and $p_{\min} = \min_i\{p_i\}$ is not too small
 399 and not fairly far away from $p_{\max} = \max_i\{p_i\}$, such that the constants $\delta_1^2, \delta_2^2, \delta_3^2, \delta_4^2$ are $\delta_1^2 =$
 400 $\frac{1}{N} \sum_{j=1}^N \left(\frac{p_j}{q_t^j} \right)^2 = 1$, $\delta_2^2 = \sum_{j=1}^N \frac{p_j^2}{N} \leq 1$, $\delta_3^2 = \frac{1}{N^2} \sum_{j=1}^N \frac{p_j}{(q_t^j)^2} \leq \frac{1}{Np_{\min}}$, $\delta_4^2 = \frac{1}{N^2} \sum_{j=1}^N \frac{(1-p_j)}{p_j} \leq$
 401 $\frac{1}{Np_{\min}}$, then, Item 2 gives the upper bound as $\mathcal{O}(\frac{1}{\sqrt{p_{\min}NKTB}}) + \mathcal{O}(\frac{1}{\sqrt{p_{\min}NT}})$.
 402 In particular, if the probabilities are the same across agents, e.g., $p_i = \frac{S}{N}$ with $S \leq N$, then $\delta_3^2 = \frac{1}{S}$,
 403 and $\delta_4^2 = \frac{N-S}{NS} \leq \frac{1}{S}$. It follows that Item 2 gives the upper bounds as $\mathcal{O}(\frac{1}{\sqrt{SKTB}}) + \mathcal{O}(\frac{1}{\sqrt{ST}})$. The
 404 bound of $\mathcal{O}(\frac{1}{\sqrt{ST}})$ matches with the existing result for FedAvg given in (Karimireddy et al., 2020,
 405 Theorem 1) and improves by $\frac{1}{\sqrt{K}}$ over that given in (Yang et al., 2021, Corollary 2).*

408 **Theorem 3.5.** *Under Assumptions 3.1-3.8, suppose that F satisfies RPL condition with a constant
 409 $\mu > 0$. If we run Algorithm 1 with batch size $B_t \in [B_{\text{low}}, B_{\text{up}}]$ and step sizes $\alpha_t = \alpha$ and ϖ
 410 satisfying $\alpha\varpi K \leq \min\{1/L_g, 1/\mu\}$, then the resulting iterates $\{x_t\}_{t=1}^T$ satisfy*

$$412 \mathbb{E}[F(x_T)] - F(x^*) \leq (1 - \mu\varpi K\alpha)^{T-1} \Theta(x_1) + \frac{\alpha}{\mu} Q(K, B_{\text{low}}, \alpha, \varpi) \xrightarrow{T \rightarrow \infty} \frac{\alpha}{\mu} Q(K, B_{\text{low}}, \alpha, \varpi). \quad (3.4)$$

414 From Theorem 3.5, if one lets $T \rightarrow \infty$, then the expected optimality gaps $\{\mathbb{E}[F(x_T)] - F(x^*)\}$
 415 are bounded from above by $\frac{\alpha}{\mu} Q(K, B_{\text{low}}, \alpha, \varpi)$, which implies that any accumulation point of the
 416 sequence of iterates $\{x_t\}$ generated by Algorithm 1 is a ϵ -solution if taking $\alpha \leq \frac{\epsilon\mu}{Q(K, B_{\text{low}}, \alpha, \varpi)}$.
 417 Smaller α means smaller upper bound as well as slower convergence speed.

418 **Remark 3.4.** *Similar to the Euclidean setting, the RPL property is weaker than the strong retraction-
 419 convexity. In fact, if the objective $f : \mathcal{M} \rightarrow \mathbb{R}$ is μ -strongly retraction-convex, then it also satisfies
 420 the RPL property with parameter μ (proved in Appendix E.2). Therefore, Theorems 3.3 and 3.5 also
 421 hold under strong retraction-convexity.*

422 3.3 ESTIMATING THE PARTICIPATION PROBABILITIES

424 At the t -th round of communication, let \mathcal{S}_t denote the set of participating agents. Then, under
 425 Assumption 2.1, $\mathbb{I}_{\mathcal{S}_t}(i)$ follows the Bernoulli distribution, i.e., $\mathbb{I}_{\mathcal{S}_t}(i) \sim \text{Bernoulli}(p_i)$. At each
 426 round of communication, for each agent i , whether it participates in communication can be regarded
 427 as a Bernoulli trial. Therefore, by Bernoulli's Large Number Theorem, the frequency of agent i
 428 participating in communication goes closely to the true probability p_i as the growth of t , the number
 429 of communications. Formally, let $q_t^i = \sum_{\tau=1}^t \mathbb{I}_{\mathcal{S}_\tau}(i)$, and compute the approximate probability by
 430 $q_t^i = q_t^i/t$. Then we have $\lim_{t \rightarrow \infty} \mathbb{P}\{|q_t^i - p_i| \leq \epsilon\} = 1$ for any small $\epsilon > 0$. This justifies the use
 431 of frequencies to estimate probabilities. The next theorem shows that Assumption 3.8 holds with
 high probability when the step size takes the form of $\alpha_t = \mathcal{O}(t^{-a})$ with $a \in (1/2, 1] \cup \{0\}$.

432 **Theorem 3.6** (Proved in Appendix D.7). *Under Assumption 2.1, for each agent i , we have*

$$434 \quad \mathbb{P} \left\{ \left| \frac{1}{q_t^i} - \frac{1}{p_i} \right| \leq \mathcal{G} t^{-\frac{a}{2}} \right\} \geq 1 - \min \left\{ 2e^{-\frac{tp_i^2}{2}}, \frac{4(1-p_i)}{tp_i} \right\} - \min \left\{ 2e^{-\frac{\mathcal{G}^2 p_i^4}{2} t^{1-a}}, \frac{4(1-p_i)}{\mathcal{G}^2 p_i^3 t^{1-a}} \right\}, \quad (3.5)$$

436 where $q_t^i = \sum_{\tau=1}^t \mathbb{I}_{\mathcal{S}_\tau}(i)/t$, and $\mathcal{G} \geq 0$ and $a \geq 0$ are constants.

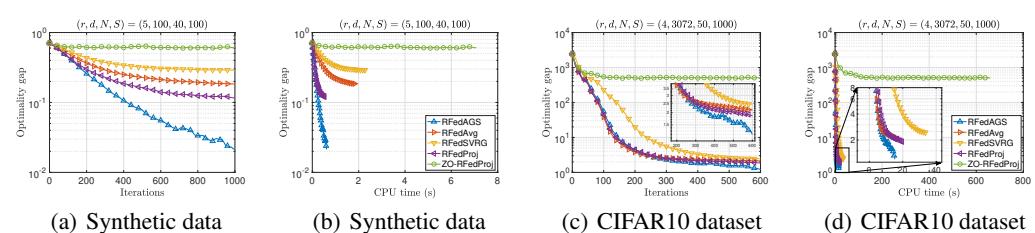
438 In practice, taking $a = 0$ leads to fixed step size cases or $a \in (1/2, 1]$ to decaying step size cases.
439 Therefore, it follows from Theorem 3.6 that Assumption 3.8 holds with probability not less than
440 $1 - \min\{2e^{-\frac{tp_i^2}{2}}, \frac{4(1-p_i)}{tp_i}\} - \min\{2e^{-\frac{\mathcal{G}^2 p_i^4}{2} t^{1-a}}, \frac{4(1-p_i)}{\mathcal{G}^2 p_i^3 t^{1-a}}\}$ with a proper constant $\mathcal{G} \geq 0$. Large
441 enough t and properly chosen \mathcal{G} make the probability high.

4 EXPERIMENTS

445 Here we conduct numerical experiments on principal component analysis (PCA) over the Stiefel
446 manifold, hyperbolic structured prediction (HSP) over the hyperbolic manifold, and the Fréchet mean
447 computation (FMC) over the SPD manifold such that we can compare RFedAGS with existing RFL
448 algorithms, including RFedAvg (Li & Ma, 2023), RFedSVRG (Li & Ma, 2023), RFedProj (Zhang
449 et al., 2024) (used in PCA), and ZO-RFedProj (Wang et al., 2025) (used in PCA). **Additionally,**
450 **we still conduct two experiments on principal eigenvector computation and low-rank matrix**
451 **completion shown in Appendices A.1-A.2.** The first one tests the comprehensive performance of
452 RFedAGS, while the second compares RFedAGS with some existing centralized algorithms showing
453 the comparable availability of RFedAGS with those. **The experiment settings in this section can be**
454 **found in Appendix A.3.**

455 **PCA.** The PCA problem has the form of $\min_{X \in \text{St}(r,d)} F(X) := \frac{1}{N} \sum_{i=1}^N f_i(X)$, with $f_i(X) =$
456 $-\frac{1}{S} \sum_{j=1}^S \text{tr}(X^T (Z_{ij} Z_{ij}^T) X)$, where $\text{St}(r, d)$ is the Stiefel manifold, $Z_{ij} Z_{ij}^T$ is the covariance matrix
457 of local datum $Z_{ij} \in \mathbb{R}^{d \times p}$. We generate $\mathcal{D}_i = \{Z_{ij}\}_{j=1}^S$ in two ways: (i) synthetic data by
458 sampling from the Gaussian distribution $\mathcal{N}(0, \frac{i}{N})$ such that \mathcal{D}_i are non-I.I.D; (ii) real-world data
459 from CIFAR10² dataset. We can observe from Figure 2 that our proposed RFedAGS outperforms
460 the existing three RFL algorithms under the arbitrary participation setting in terms of accuracy of
461 solutions and consumed time. This justifies the efficacy of the proposed RFedAGS.

463 It should be noted that the tools used in our RFedAGS are fairly general (as stated in Assumption 3.1),
464 however RFedAvg and RFedSVRG require more strict tools (the inverse of exponential and parallel
465 transport), and RFedProj and ZO-RFedProj require the orthogonal projector onto the manifold. These
466 requirements limit the application scope of RFedAvg, RFedSVRG, RFedProj and ZO-RFedProj. For
467 instance, RFedProj and ZO-RFedProj can not be used in the HSP and FMC problems below.

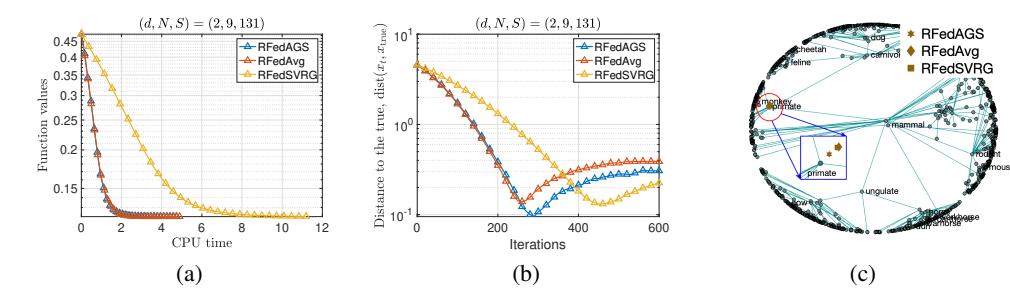


476 Figure 2: PCA: RFedAGS consistently performs better than the competing methods across both
477 synthetic and real datasets.

479 **HSP.** Given a set of training pairs $\mathcal{D} = \{\mathcal{D}_i\}_{i=1}^N = \{\{(w_{i,j}, y_{i,j})\}_{j=1}^S\}_{i=1}^N$, where $w_{i,j} \in \mathbb{R}^r$ is
480 the feature and $y_{i,j} \in \mathcal{H}^d$ is the hyperbolic embedding of the class of $w_{i,j}$. Then for a test sample w , the task of HPS is to predict its hyperbolic embeddings by solving the following problem
481 $\arg \min_{x \in \mathcal{H}^d} F(x) := \frac{1}{N} \sum_{i=1}^N f_i(x)$, with $f_i(x) = \frac{1}{S} \sum_{j=1}^S a_{i,j}(\omega) \text{dist}^2(x, y_{i,j})$ where the hyperbolic
482 manifold \mathcal{H}^d is characterized via the Lorentz hyperbolic model, $[a_1(w), \dots, a_N(w)]^T \in \mathbb{R}^{N \times S}$

485 ²See <https://www.cs.toronto.edu/~kriz/cifar.html>.

486 is a parameter matrix. We use the WordNet³ dataset to test RFedAGS, RFedAvg, and RFedSVRG.
 487 From the reported Figure 3, we can observe that the proposed RFedAGS outperforms both RFedAGS
 488 and RFedSVRG in terms of distance to the true point. Figure 3(c) directly demonstrates this advantage
 489 of RFedAGS.



500 Figure 3: HSP with WordNet dataset. Here “primate” is the test sample (true point).
 501

502 **FMC.** Given a set of SPD matrices, $\mathcal{D} = \{\{X_{i,j}\}_{j=1}^S\}_{i=1}^N$, the FMC of these SPD matrices
 503 is the solution to the problem $\arg \min_{X \in \mathcal{S}_{++}^n} F(X) := \frac{1}{N} \sum_{i=1}^N f_i(X)$ with $f_i(X) =$
 504 $\frac{1}{S} \sum_{j=1}^S \text{dist}^2(X, X_{i,j})$, where $\text{dist}(\cdot, \cdot)$ is the Riemannian distance. We use the PATHMNIST⁴
 505 dataset to test the algorithms. From Figure 4, we still observe that RFedAGS outperforms RFedAvg
 506 and RFedSVRG.
 507



517 Figure 4: FMC with PATHMNIST dataset: RFedAGS consistently performs better than RFedAvg
 518 and RFedSVRG.
 519

520 5 CONCLUSIONS

521 In this work, we propose a Riemannian FL algorithm, called RFedAGS, that addresses critical challenges caused by curvature effects of manifolds, the partial participation, and the heterogeneity data.
 522 Unlike the commonly studied random sampling setting, RFedAGS accommodates a more practical and challenging scenario where agents’ participation statistics may be unknown. Theoretically, we
 523 prove that the proposed RFedAGS, under decaying step sizes, achieves global convergence and provide sublinear convergence rate. When using a fixed step size, it attains sublinear—or even
 524 linear—convergence near a neighborhood of a stationary point/solution. Numerical experiments we
 525 conducted have confirmed the efficacy of RFedAGS and in particular, it outperforms existing RFL
 526 algorithms methods on PCA, HSP, and FMC with synthetic and real-world data.
 527

528 Current analyses on partial participation rely on time-invariant statistical assumptions. An important
 529 direction for future research is to analyze more realistic and complex scenarios, such as settings with
 530 time-varying participation probabilities.
 531

534 535 REFERENCES

536 P.-A. Absil, R. Mahony, and Rodolphe Sepulchre. *Optimization Algorithms on Matrix Manifolds*.
 537 Princeton University Press, Princeton, 2008. ISBN 9781400830244.
 538

539 ³See <https://wordnet.princeton.edu/>.

⁴See <https://medmnist.com/>.

540 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
 541 representation. *Neural Computation*, 15(6):1373–1396, 06 2003. ISSN 0899-7667.
 542

543 Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. *IEEE Transactions on*
 544 *Automatic Control*, 58(9):2217–2229, 2013.

545 W. M. Boothby. An introduction to differentiable manifolds and Riemannian geometry. 1975.
 546

547 Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
 548 learning. *SIAM Review*, 60(2):223–311, 2018.

549 N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization
 550 on manifolds. *Journal of Machine Learning Research*, 15(42):1455–1459, 2014. URL <https://www.manopt.org>:
 551

552 Nicolas Boumal. *An introduction to optimization on smooth manifolds*. Cambridge University Press,
 553 2023.

554 Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of convergence for nonconvex
 555 optimization on manifolds. *IMA Journal of Numerical Analysis*, 39(1):1–33, 2019.

556 Li Deng. The MNIST database of handwritten digit images for machine learning research. *IEEE*
 557 *Signal Processing Magazine*, 29(6):141–142, 2012.

558 OP Ferreira and PR Oliveira. Proximal point algorithm on Riemannian manifolds. *Optimization*, 51
 559 (2):257–270, 2002.

560 Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast federated learning in the
 561 presence of arbitrary device unavailability. In *Advances in Neural Information Processing Systems*,
 562 2021.

563 Xinran Gu, Kaifeng Lyu, Longbo Huang, and Sanjeev Arora. Why (and when) does local SGD
 564 generalize better than SGD? In *International Conference on Learning Representations (ICLR)*,
 565 2023.

566 Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local
 567 SGD with periodic averaging: Tighter analysis and adaptive synchronization. In *Advances in*
 568 *Neural Information Processing Systems (NeurIPS)*, 2019.

569 Andi Han and Junbin Gao. Improved variance reduction methods for Riemannian non-convex
 570 optimization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):7610–
 571 7623, 2021.

572 Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. On Riemannian optimization over
 573 positive definite matrices with the Bures-Wasserstein geometry. In *Advances in Neural Information*
 574 *Processing Systems*, 2021.

575 Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Differentially private Riemannian
 576 optimization. *Machine Learning*, 113(3):1133–1161, 2024.

577 Wen Huang and Ke Wei. Riemannian proximal gradient methods. *Mathematical Programming*, 194
 578 (1):371–413, 2022.

579 Wen Huang, K. A. Gallivan, and P.-A. Absil. A Broyden class of quasi-Newton methods for
 580 Riemannian optimization. *SIAM Journal on Optimization*, 25(3):1660–1685, 2015. doi: 10.1137/
 581 140955483.

582 Wen Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian BFGS method without differentiated
 583 retraction for nonconvex optimization problems. *SIAM Journal on Optimization*, 28(1):470–495,
 584 2018.

585 Zhenwei Huang, Wen Huang, Pratik Jawanpuria, and Bamdev Mishra. Federated learning on
 586 Riemannian manifolds with differential privacy. *arXiv*, arxiv.org/abs/2404.10029(v1), 2024.

594 Pratik Jawanpuria and Bamdev Mishra. A unified framework for structured low-rank matrix learning.
 595 In *International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning
 596 Research*, pp. 2254–2263. PMLR, 10–15 Jul 2018.

597
 598 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 599 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
 600 *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.

601 Jiaxiang Li and Shiqian Ma. Federated learning on Riemannian manifolds. *Applied Set-Valued
 602 Analysis and Optimization*, 5(2):213–232, 08 2023.

603
 604 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 605 Federated optimization in heterogeneous networks. In *Proceedings of Machine Learning and
 606 Systems*, volume 2, pp. 429–450, 2020a.

607 Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
 608 FedAvg on non-iid data. In *International Conference on Learning Representations*, 2020b.

609 German Magai. Deep neural networks architectures from the perspective of manifold learning. In
 610 *2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI)*,
 611 pp. 1021–1031. IEEE, 2023.

612 H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 613 Communication-efficient learning of deep networks from decentralized data. In *Proceedings of the
 614 20th International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2017.

615 George A. Miller. WordNet: A lexical database for English. *Commun. ACM*, 38:39–41, 1995.

616 Bamdev Mishra, Hiroyuki Kasai, Pratik Jawanpuria, and Atul Saroop. A Riemannian gossip approach
 617 to subspace learning on Grassmann manifold. *Machine Learning*, 108:1783 – 1803, 2019.

618 Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
 619 *Advances in Neural Information Processing Systems*, 2017.

620 Mónica Ribero, Haris Vikalo, and Gustavo de Veciana. Federated learning under intermittent client
 621 availability and time-varying communication constraints. *IEEE Journal of Selected Topics in
 622 Signal Processing*, 17(1):98–111, 2023. doi: 10.1109/JSTSP.2022.3224590.

623 Elsa Rizk, Stefan Vlaski, and Ali H. Sayed. Federated Learning Under Importance Sampling. *IEEE
 624 Transactions on Signal Processing*, 70:5381–5396, 2022. ISSN 1053-587X, 1941-0476. doi:
 625 10.1109/TSP.2022.3210365.

626 Hiroyuki Sato, Hiroyuki Kasai, and Bamdev Mishra. Riemannian stochastic variance reduced gradient
 627 algorithm with retraction and vector transport. *SIAM Journal on Optimization*, 29(2):1444–1472,
 628 2019. doi: 10.1137/17M1116787.

629 Sebastian U. Stich. Local SGD converges fast and communicates little. In *International Conference
 630 on Learning Representations (ICLR)*, 2019.

631 Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging stochastic
 632 gradient descent on Riemannian manifolds. In *Conference On Learning Theory*, pp. 650–687.
 633 PMLR, 2018.

634 Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast descriptor for detection and
 635 classification. In *European conference on computer vision*, pp. 589–600. Springer, 2006.

636 Hongye Wang, Zhaoye Pan, Chang He, Jiaxiang Li, and Bo Jiang. Federated learning on riemannian
 637 manifolds: A gradient-free projection-based approach. *arXiv preprint arXiv:2507.22855*, 2025.

638 Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis of
 639 local-update SGD algorithms. *Journal of Machine Learning Research*, 22(213):1–50, 2021.

640 Shiqiang Wang and Mingyue Ji. A unified analysis of federated learning with arbitrary client
 641 participation. In *Advances in Neural Information Processing Systems*, volume 35, pp. 19124–
 642 19137. Curran Associates, Inc., 2022.

648 Shiqiang Wang and Mingyue Ji. A lightweight method for tackling unknown participation statistics
 649 in federated averaging. In *International Conference on Learning Representations*, 2024.
 650

651 Ming Xiang, Stratis Ioannidis, Edmund Yeh, Carlee Joe-Wong, and Lili Su. Towards bias correction
 652 of FedAvg over nonuniform and time-varying communications. In *2023 62nd IEEE Conference on*
 653 *Decision and Control (CDC)*, pp. 6719–6724, 2023. doi: 10.1109/CDC49753.2023.10383258.

654 Ming Xiang, Stratis Ioannidis, Edmund Yeh, Carlee Joe-Wong, and Lili Su. Empowering federated
 655 learning with implicit gossiping: Mitigating connection unreliability amidst unknown and arbitrary
 656 dynamics. *IEEE Transactions on Signal Processing*, 73:766–780, 2025. doi: 10.1109/TSP.2025.
 657 3526782.

658 He Xiao, Tao Yan, and Kai Wang. Riemannian SVRG using Barzilai–Borwein method as second-
 659 order approximation for federated learning. *Symmetry*, 16(9):1101, 2024.
 660

661 He Xiao, Tao Yan, and Shimin Zhao. Riemannian SVRG with Barzilai-Borwein scheme for federated
 662 learning. *Journal of Industrial and Management Optimization*, 21(2):1546–1567, 2025.

663 Bo Xiong, Michael Cochez, Mojtaba Nayyeri, and Steffen Staab. Hyperbolic embedding inference
 664 for structured multi-label prediction. *Advances in Neural Information Processing Systems*, 35:
 665 33016–33028, 2022.

666 Yikai Yan, Chaoyue Niu, Yucheng Ding, Zhenzhe Zheng, Shaojie Tang, Qinya Li, Fan Wu, Chengfei
 667 Lyu, Yanghe Feng, and Guihai Chen. Federated optimization under intermittent client availability.
 668 *INFORMS Journal on Computing*, 36(1):1185–202, 2023.

669 Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation
 670 in non-iid federated learning. In *International Conference on Learning Representations*, 2021.

671

672 Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
 673 Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image
 674 classification. *Scientific Data*, 10(1):41, 2023.

675

676 Haishan Ye and Tong Zhang. DeEPCA: Decentralized exact PCA with linear convergence rate.
 677 *Journal of Machine Learning Research*, 22(238):1–27, 2021.

678

679 Bicheng Ying, Zhe Li, and Haibo Yang. Exact and linear convergence for federated learning under
 680 arbitrary client participation is attainable. *arXiv preprint arXiv:2503.20117*, 2025.

681

682 Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less
 683 communication: Demystifying why model averaging works for deep learning. In *Proceedings of*
 684 *the AAAI Conference on Artificial Intelligence*, pp. 5693–5700, 2019.

685

686 Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
 687 *Conference on learning theory*, pp. 1617–1638. PMLR, 2016.

688

689 Jiaojiao Zhang, Jiang Hu, Anthony Man-Cho So, and Mikael Johansson. Nonconvex federated
 690 learning on compact smooth submanifolds with heterogeneous data. In *Advances in Neural*
 691 *Information Processing Systems*, volume 37, pp. 109817–109844. Curran Associates, Inc., 2024.

692

693 Fan Zhou and Guojing Cong. On the convergence properties of a K-step averaging stochastic gradient
 694 descent algorithm for nonconvex optimization. In *International Joint Conference on Artificial*
 695 *Intelligence*, 2018.

696

697 Xiaojing Zhu and Hiroyuki Sato. Cayley-transform-based gradient and conjugate gradient algorithms
 698 on Grassmann manifolds. *Advances in Computational Mathematics*, 47:1–28, 2021.

699

700

701

Appendix

A Experiment settings and additional experiment results	15
A.1 Comprehensive tests	15
A.1.1 Comparison of two aggregation patterns	16
A.1.2 Comparisons of different participation schemes	17
A.1.3 Influence of the level of data heterogeneity on performance	18
A.1.4 Effect of local multiple-step update	18
A.1.5 Comparisons with existing Riemannian FL algorithms	19
A.2 Comparisons with some centralized algorithms	19
A.2.1 Synthetic case	20
A.2.2 A real-world application	21
A.3 The details of experiment settings in Section 4	22
A.3.1 PCA.	22
A.3.2 HSP.	23
A.3.3 FMC.	24
B Preliminaries on Riemannian optimization	24
C Additional Discussions	26
C.1 Discussions for Assumptions	26
C.2 Discussions for Implementations	27
D Proofs of Theorems in Section 3	27
D.1 Supporting lemmas	27
D.2 Proof of Theorem 3.1	33
D.3 Proof of Theorem 3.2	34
D.4 Proof of Theorem 3.3	34
D.5 Proof of Theorem 3.4	35
D.6 Proof of Theorem 3.5	36
D.7 Proof of Theorem 3.6	36
E Supplementary Proofs	37
E.1 Proof of Theorem 2.1	37
E.2 Proof of the claim in Remark 3.4	37

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A EXPERIMENT SETTINGS AND ADDITIONAL EXPERIMENT RESULTS
757758 In this section, we supplement the numerical experiments conducted to demonstrate the performance
759 of RFedAGS (Algorithm 1) on non-I.I.D. data setting. We focus on empirical minimization of (1.1).
760761 The decaying local step size is determined by the following formula
762

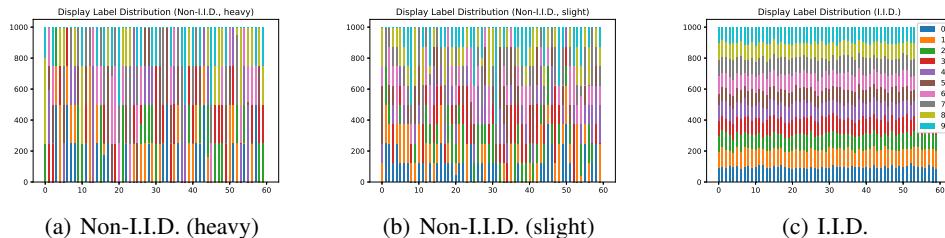
763
$$\alpha_t = \begin{cases} \alpha_0 & \text{if } t = 0, \\ \frac{\alpha_0}{\beta + c_t} & \text{if } t \geq 1, \end{cases} \text{ with } c_t = \begin{cases} 0 & \text{if } t = 0, \\ c_{t-1} + 1 & \text{if } \text{mod}(t, d) = 0, \\ c_{t-1} & \text{otherwise,} \end{cases}$$

764

765 where α_0 and β are two positive constants, and d is a positive constant integer, which results in
766 the step size decaying once after each d iterations. Optimality gap defined as $F(x_t) - F(x^*)$ with
767 $x^* \in \arg \min_{x \in \mathcal{W}} F(x)$ is a commonly-used measure to evaluate the performance of algorithms. In
768 all experiments, the global step size is set as 1. The CPU time consists of the server computation time
769 and the local computation time of active agents, without the communication time between the server
770 and agents. Unless otherwise specified, frequencies are used in Algorithm 1 to estimate the true
771 probabilities. All of algorithms involved in our experiments are implemented built on Manopt (Boumal
772 et al., 2014). All of the experiments are conducted under Windows 11 and MATLAB R2024b running
773 on a laptop (Intel(R) Core(TM) i7-1165G7 CPU @2.80GHz, 16.0G RAM).
774775
776 A.1 COMPREHENSIVE TESTS
777778 Consider the principal eigenvector computation (PEC) problem over the sphere manifold, formulated
779 as follows
780

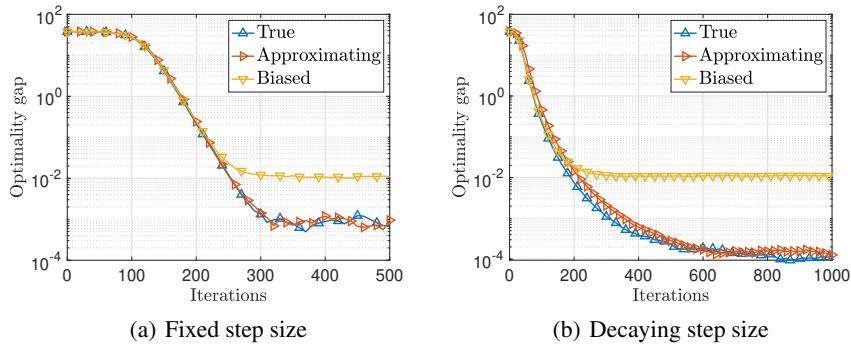
781
$$\min_{x \in \mathbb{S}^{n-1}} F(x) := \frac{1}{N} \sum_{i=1}^N f_i(x), \text{ with } f_i(x) = -\frac{1}{S} \sum_{j=1}^S x^T z_{i,j} z_{i,j}^T x, \quad (\text{A.1})$$

782

783 where $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : x^T x = 1\}$ is the sphere manifold, $\mathcal{D}_i = \{z_{i,1}, \dots, z_{i,S}\}$ is the local
784 samples held by agent i . Problem (A.1) is in the form of finite sum minimization of (1.1).
785786 The sphere manifold \mathbb{S}^{n-1} is viewed as a Riemannian embedded submanifold of \mathbb{R}^n , that is, the
787 Riemannian metric is induced by the Euclidean metric: $\langle \xi, \eta \rangle_x = \xi^T \eta$ for all $\xi, \eta \in T_x \mathbb{S}^{n-1}$.
788 The exponential mapping is chosen as the Retraction and the parallel transport along the geodesic
789 correspondingly is selected as the isometric vector transport. The MNIST dataset (Deng, 2012)⁵
790 consists of 60000 hand-written gray images of size 28×28 each of which is associated with a label
791 taking values from 0 to 9. In our experiments, each image is concatenated into a 784-dimensional
792 column vector by column. In addition, to test the effectiveness of the proposed RFedAGS under
793 the heterogeneity data setting, according to the FL setting, the MNIST dataset is shuffled into
794 different levels of heterogeneity following the way in (McMahan et al., 2017). Figure 5 demonstrates
795 histograms of the MNIST dataset with three different levels of heterogeneity.
796806 Figure 5: Sample distributions across different agents on MNIST dataset. x -axis is the ID of each
807 agents and y -axis is the number of local samples.
808809
5See <https://yann.lecun.com/exdb/mnist/>.

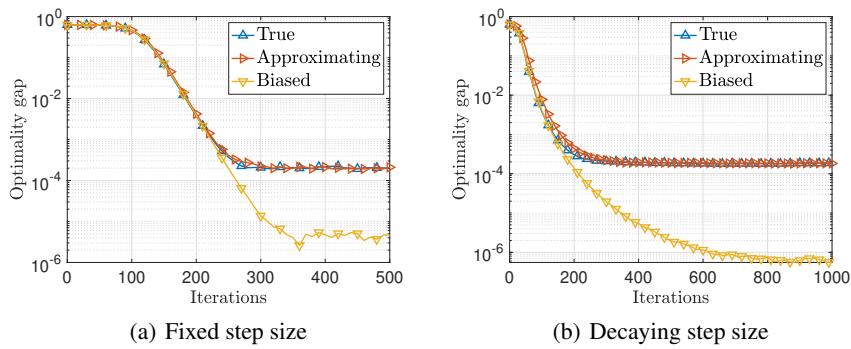
810 A.1.1 COMPARISON OF TWO AGGREGATION PATTERNS
811

812 First we demonstrate the importance of the aggregation pattern (AGS-AP). As shown in (2.1),
813 the aggregation of RFedAGS in Line 14 of Algorithm 1 actually is unbiased in the sense of
814 $\mathbb{E} \left[\sum_{i \in \mathcal{S}_t} \frac{1}{p_i N} \text{grad} f_i(x) \right] = \text{grad} F(x)$. Nevertheless, if the participation probabilities are not
815 considered and the usual aggregation, $x_{t+1} \leftarrow R_{x_t} \left(-\varpi \sum_{j \in \mathcal{S}_t} \frac{1}{|\mathcal{S}_t|} \zeta_{t,K}^j \right)$, is used, then the output
816 of the algorithm equipped with this aggregation will tend towards a minimizer of another objective
817 function different from the original objective when there exist $i, j \in [N]$ such that $p_i \neq p_j$, which
818 exactly is what Theorem 2.1 points out.
819



833 Figure 6: PEC with non-I.I.D. (slight) MNIST dataset: comparisons of the two aggregations pat-
834 terns (AGS-RS) and (AGS-AP).
835

836 Figure 6 reports the experiment results, where the two curves “True” and “Approximating” adopt the
837 aggregation pattern (AGS-AP), the curve “Approximating” uses the frequency to estimate the true
838 probability, and the curve “Biased” uses the usual aggregation (AGS-RS). Besides, the participation
839 probabilities p_i ’s are uniformly and randomly generated (i.e., $p_i, i \in [N]$, follows the uniform
840 distribution $U(0, 1)$), the fixed step size is set as $\alpha = 8.0 \times 10^{-5}$, the parameters for decaying
841 steps sizes are set as $(\alpha_0, \beta, d) = (3.5 \times 10^{-4}, 0.1, 20)$, batch size is $B = 0.5S$, and the number
842 of local updates is set as $K = 5$. It is observed from Figure 6 that RFedAGS equipped with
843 the aggregation pattern (AGS-AP) gives a better solution to Problem (A.1) than that generated
844 by RFedAGS equipped with the usual aggregation pattern (AGS-RS). The reason lies on that the
845 usual aggregation pattern (AGS-RS) leads the iterates to the minimizer of $\tilde{F} := \sum_{i=1}^N \tilde{p}_i f_i$ with
846 $\tilde{p}_i = p_i \int_0^1 \prod_{j \neq i}^N (1 - p_j + p_j t) dt$, as stated by Theorem 2.1. Meanwhile, due to $p_i \neq p_j$ for some
847 $i, j \in [N]$, it follows that there exists no $\chi > 0$ such that $\tilde{F} = \chi \cdot F$. Hence, the minimizers of \tilde{F}
848 may be not consistent with those of F .
849



862 Figure 7: PEC with non-I.I.D. (slight) MNIST dataset: RFedAGS with the two aggregations solve
863 the re-weighted problem $\arg \min_{x \in \mathcal{M}} \tilde{F}(x)$.
864

Furthermore, Figure 7 shows the curves of optimality gap v.s. iterations for the re-weighted objective \tilde{F} valued at the iterates given in Figure 6. Combining Figures 6 and 7, we conclude that RFedAGS equipped with the aggregation pattern (AGS-RS) does solve the re-weighted problem $\arg \min_{x \in \mathcal{M}} \tilde{F}(x)$ rather than the original problem.

A.1.2 COMPARISONS OF DIFFERENT PARTICIPATION SCHEMES

Here we consider the special case where each agent participates in any round of communication with the same participation probability, i.e., $p_i = p_j$ with $i, j \in [N]$. In this case, the random sampling scheme is denoted by Scheme I, while our arbitrary participation scheme is denoted by Scheme II, where we use frequencies to estimate the true probabilities. For Scheme I, the sampling rate (the ratio of the number of sampled agents to the number of total agents) is as $\rho = 0.3$ (0.5, or 0.7). For Scheme II, the participation probability agent i is respectively set as $p_i = 0.3$ (0.5, or 0.7) for all $i \in [N]$ such that the number of participating agents in Scheme II is equivalent to that of Scheme I in expectation, which means $\sum_{i=1}^N p_i = \rho N$. The fixed step size is set $\alpha = 8 \times 10^{-5}$, the parameters for decaying step sizes are set as $(\alpha_0, \beta, d) = (3.5 \times 10^{-4}, 0.1, 20)$, batch size is $B = 0.5S$, and the number of local updates is set as $K = 5$. As demonstrated in Figure 8, the performance of two participation schemes are extremely the same. This indicates that Scheme I can be viewed as a special case of our participation scheme and that using frequencies to estimate the true probabilities is sufficient to ensure convergence.

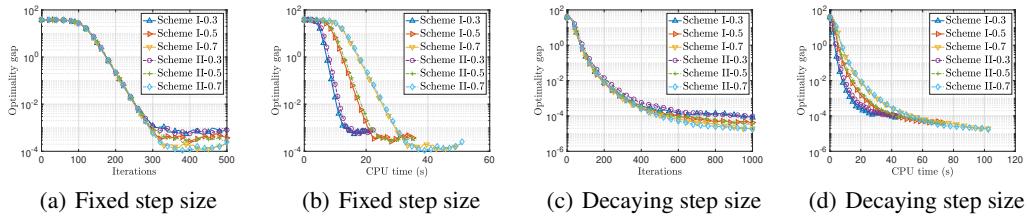


Figure 8: PEC with non-I.I.D. (slight) MNIST dataset: comparisons of the two participation schemes.

Next, we simulate the scenario of straggling agent participation. Suppose that the first three agents are stragglers and make their local computation time become 10 times as much as that under normal conditions. Specifically, for Scheme I, if one of the three stragglers are chosen, then its local computational time becomes 10 times as much as that under normal conditions; for Scheme II, setting the stragglers' participation probabilities as 0.05 ensures that they rarely participate in local updates, and when one of the stragglers responds to the server, its local computational also becomes 10 times as much as that under normal conditions. The participation probabilities of the other agents are properly set such that $\sum_{i=1}^N p_i \approx \rho N$. The fixed step size is set $\alpha = 8 \times 10^{-5}$, the parameters for decaying step sizes are set as $(\alpha_0, \beta, d) = (2.8 \times 10^{-4}, 0.1, 20)$, batch size is $B = 0.5S$, and the number of local updates is set as $K = 5$. The experiment results are shown in Figure 9.

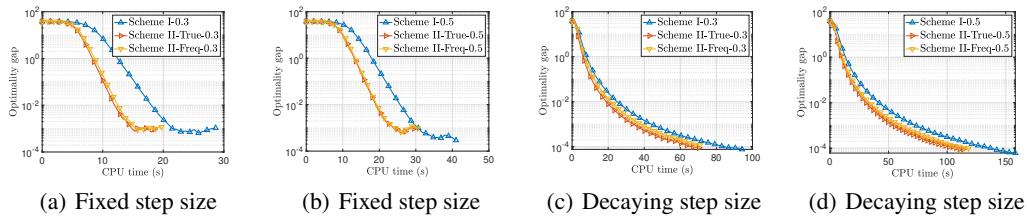


Figure 9: PEC with non-I.I.D. (slight) MNIST dataset: the situation where the FL system has three stragglers. Here in the legends, Scheme-II-True (or Scheme-II-Freq) means that the Scheme II is equipped with the true probabilities (or frequencies serving as the true probabilities).

918 By the definition of Scheme I, each agent is sampled with probability ρ (e.g., 0.3 and 0.5 in our
 919 experiments), which is much greater than 0.05 in Scheme II for the three stragglers. Hence, the
 920 number of stragglers participating local updates of Scheme I is greater than the one of Scheme II,
 921 leading to the CPU time of Scheme I are greater than the one of Scheme II. The results in Figure 9 is
 922 consistent with our analysis. Meanwhile we note that the performance of using the true probabilities
 923 and frequencies is extremely the same, which indicates again the validity of using frequencies serving
 924 as the true probabilities.

925 It should be noted that in a practical situation, if some agents do not respond to the server in a certain
 926 round of communication, then scheme I may not work in this case, because one of these agents
 927 may be sampled by the server, but it will not respond to the server. This will cause the algorithm to
 928 stagnate. Nevertheless, Scheme II does not encounter this issue since the server does not choose the
 929 agents which do not respond.

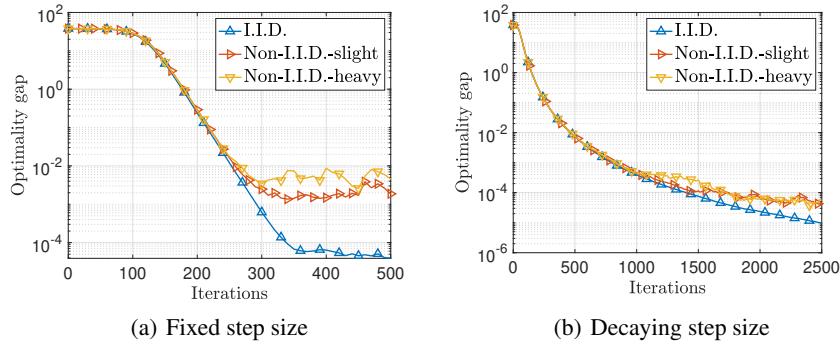
930

A.1.3 INFLUENCE OF THE LEVEL OF DATA HETEROGENEITY ON PERFORMANCE

931

932 Next we test the impact of the heterogeneity level of the MNIST dataset on the performance of
 933 RFedAGS. Here the participation probabilities p_i 's are uniformly and randomly generated, that is,
 934 $p_i \sim U(0, 1)$ for $i \in [N]$. The fixed step size is set $\alpha = 8 \times 10^{-5}$, the parameters for decaying
 935 step sizes are set as $(\alpha_0, \beta, d) = (2.8 \times 10^{-4}, 0.1, 20)$, batch size is $B = 0.5S$, and the number of
 936 local updates is set as $K = 5$. The experiment results are reported in Figure 10, where we observe
 937 that the quality of the solution generated by Algorithm 1 gets worse as the growth of the levels of
 938 heterogeneity of the training data across agents. Additionally, Theorems 3.1 and 3.2 point out that if
 939 decaying step sizes satisfying equation 3.1 are used, Algorithm 1 has global convergence. Hence, it is
 940 expected that the higher-quality solutions may be found when using decaying step sizes and running
 941 more rounds of communication compared with the case using a fixed step size. This is consistent
 942 with the experiment results as shown in Figure 8-Figure 10.

943



956 Figure 10: PEC with different non-I.I.D. datasets: impact of heterogeneity level.

957

958

A.1.4 EFFECT OF LOCAL MULTIPLE-STEP UPDATE

959

960

961 In addition, we test the impact of different number of local updates K on the performance of
 962 Algorithm 1. The participation probabilities p_i 's are uniformly and randomly generated, that is,
 963 $p_i \sim U(0, 1)$ for $i \in [N]$. The fixed step size is set $\alpha = 8 \times 10^{-5}$ and batch size is $B = 0.5S$. The
 964 experiment results are shown in Figure 11.

965

966

967

968

969

970

971

972 When using a fixed step size, Item 1 of Theorem 3.4 states that the convergence upper bound consists
 973 of two terms: a decaying term $\frac{2\Theta(x_1)}{\varpi\alpha KT}$ as K (or T) increases, and a increasing (or constant) term
 974 $2\alpha Q(K, B, \alpha, \varpi)$ with respect to K (or T). The initial guess x_1 is usually generated at random such
 975 that $\Theta(x_1)$ is relatively large, and thus the first term dominates at the initial stage. As a result, at
 976 the initial stage, the convergence speed is accelerated when using larger K . Subsequently, due to
 977 the growth of T , the second term begins to dominate and thus when using larger K the error of
 978 solution generated by Algorithm 1 to the minimizer get larger. This analysis is verified by Figure 11.
 979 Additionally, we note that in fixed step size cases, Algorithm 1 numerically demonstrates linear
 980 convergence as seen in Figures 6-11.

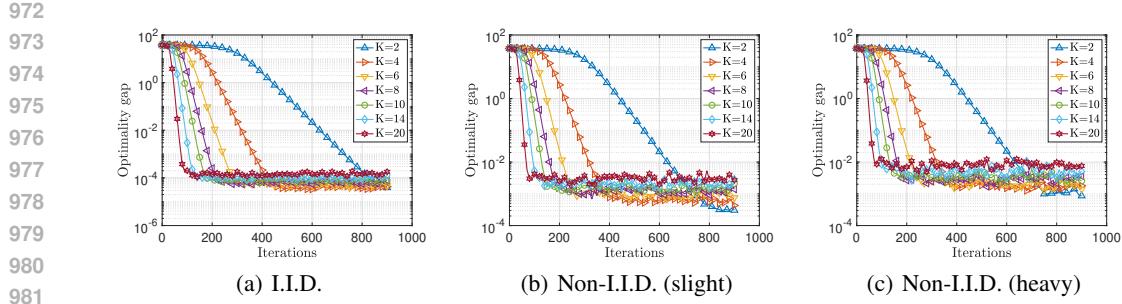


Figure 11: PEC with non-I.I.D. (slight) MNIST dataset: impact of number of local updates.

A.1.5 COMPARISONS WITH EXISTING RIEMANNIAN FL ALGORITHMS

Here we test the performance of RFedAGS, RFedAvg, RFedSVRG, and RFedProj as (i) data distributions diverge or (ii) participation becomes sparse.

(i) for the first purpose, we use the MNIST dataset partitioned as three different levels of heterogeneity; see Figure 5 for the sample distributions. Figures 12(a)-12(b) show the results, where the participation probabilities p_i 's are uniformly and randomly generated (i.e., $p_i \sim \mathcal{U}(0, 1)$ for $i \in [N]$), the fixed step size is set as $\alpha = 8 \times 10^{-5}$, and batch size is $B = 0.5S$. We can observe from Figure 12 that as expected, for all of algorithms, as data distributions diverge, the performance becomes poor. Besides, at the same level of data heterogeneity, RFedAGS consistently outperforms compared to the other algorithms.

(ii) for the second purpose, we use the non-I.I.D. (slight) MNIST dataset (see Figure 5(b)). The experimental results are reported in Figures 12(c)-12(d), where 0.5, 0.4, 0.3 in the legends denote the expected participation ratios, i.e., $\frac{1}{N} \sum_{i=1}^N \mathbb{E}[p_i] = 0.5, 0.4, 0.3$. Specifically, for participation ratio 0.5, we set the participation probabilities as $p_i \sim \mathcal{U}(0, 1)$; next, for participation ratio 0.4 (or, 0.3), we let $p'_i = 0.8 \times p_i$ (or, $p'_i = 0.6 \times p_i$). It follows from Figures 12(c)-12(d) that as participation becomes sparse, the performance of all algorithms becomes poor. On the other hand, at the same participation ratio, our RFedAGS consistently performs compared to other algorithms.

A.2 COMPARISONS WITH SOME CENTRALIZED ALGORITHMS

Low-rank matrix completion (LRMC) aims to recover the missing entries of an unknown matrix from a small account of accessible entries with low-rank constraint for the matrix. Mishra et al. (Mishra et al., 2019) formulate LRMC in the form of finite sum, which can be extended to the FL setting with finite sum minimization as follows:

$$\min_{\mathcal{U} \in \text{Gr}(r, m)} F(\mathcal{U}) := \frac{1}{N} \sum_{i=1}^N f_i(\mathcal{U}), \text{ with } f_i(\mathcal{U}) = \frac{1}{S} \sum_{j=1}^S 0.5 \|\mathcal{P}_{\Omega_{ij}}(\mathbf{U}\mathbf{W}_{ij}^T\mathbf{U}) - \mathcal{P}_{\Omega_{ij}}(\mathbf{Y}_{ij}^*)\|_F^2 + \lambda \|\mathbf{U}\mathbf{W}_{ij}^T\mathbf{U} - \mathcal{P}_{\Omega_{ij}}(\mathbf{U}\mathbf{W}_{ij}^T\mathbf{U})\|_F^2 \quad (\text{A.2})$$

where $\text{Gr}(r, m)$ is the Grassmann manifold, i.e., the set of all the r -dimension subspaces of \mathbb{R}^m , $\mathbf{U} \in \text{St}(r, m)$ is the matrix characterization of $\mathcal{U} \in \text{Gr}(r, m)$, $\mathbf{W}_{ij}\mathbf{U} \in \mathbb{R}^{n_{ij} \times r}$ with $\sum_{i=1}^N \sum_{j=1}^S n_{ij} = n$ is the least-squares solution to $\arg \min_{\mathbf{W}_{ij} \in \mathbb{R}^{n_{ij} \times r}} 0.5 \|\mathcal{P}_{\Omega_{ij}}(\mathbf{U}\mathbf{W}_{ij}^T) - \mathcal{P}_{\Omega_{ij}}(\mathbf{Y}_{ij}^*)\|_F^2 + \lambda \|\mathbf{U}\mathbf{W}_{ij}^T - \mathcal{P}_{\Omega_{ij}}(\mathbf{U}\mathbf{W}_{ij}^T)\|_F^2$, $\mathbf{Y}^* \in \mathbb{R}^{m \times n}$ is the known matrix and is partitioned into $\mathbf{Y}^* = [\mathbf{Y}_{1,1}^*, \dots, \mathbf{Y}_{1,S}^*, \dots, \mathbf{Y}_{N,1}^*, \dots, \mathbf{Y}_{N,S}^*]$ with $\mathbf{Y}_{ij}^* \in \mathbb{R}^{m \times n_{ij}}$, Ω is the indices set of elements of \mathbf{Y}^* : the (l, k) -element of \mathbf{Y}^* is nonzero if and only if its index belongs to Ω and is also partitioned similar to the way of \mathbf{Y} : $\Omega = \{\Omega_{1,1}, \dots, \Omega_{1,S}, \dots, \Omega_{N,1}, \dots, \Omega_{N,S}\}$, and operator $\mathcal{P}_{\Omega_{ij}}$ is the orthogonal sampling operator defined by $[\mathcal{P}_{\Omega_{ij}}(\mathbf{Y})]_{lk} =$ the (l, k) -element of \mathbf{Y} if $(l, k) \in \Omega_{i,j}$ and $[\mathcal{P}_{\Omega_{ij}}(\mathbf{Y})]_{lk} = 0$ otherwise. It is worthy mentioned that Problem (A.2) is defined on $\text{Gr}(r, m)$ but the computation can be implemented with matrices \mathbf{U} in $\text{St}(r, m)$. The over-sampling ratio (OS) is the ratio of number of entries of Ω and the freedom degree of \mathbf{Y}^* , i.e., $OS = |\Omega|/((m + n - r)r)$.

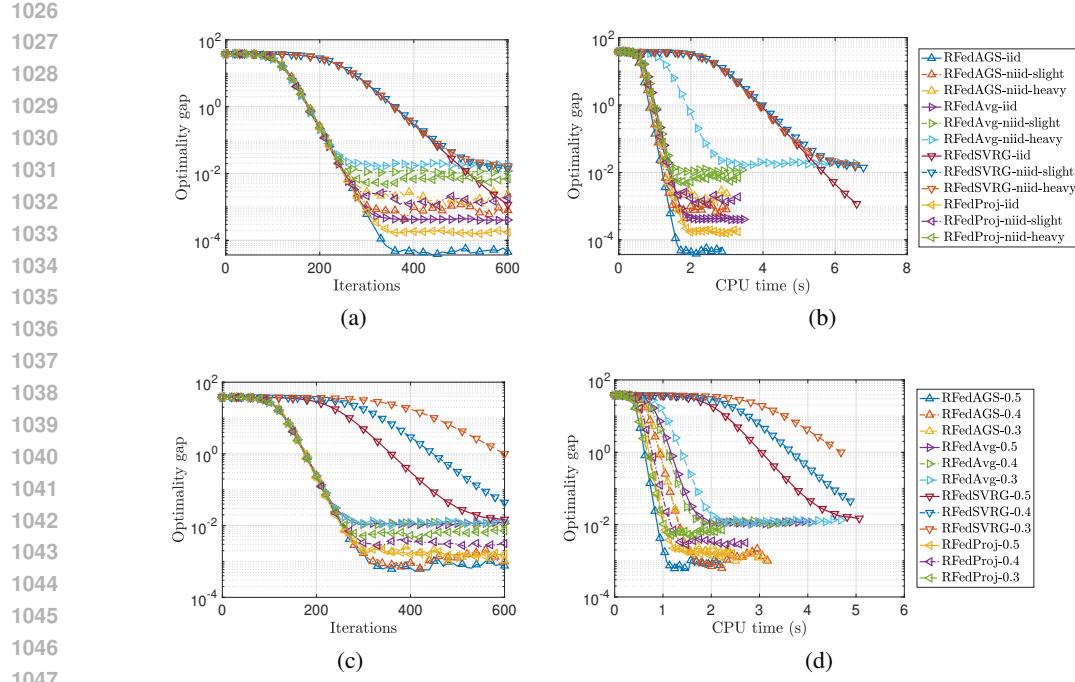


Figure 12: PEC with the MNIST dataset. (a)-(b): performance as data distributions diverge. (c)-(d): performance as participation becomes sparse.

The Grassmann manifold $\text{Gr}(r, m)$ is equipped with the quotient structure $\text{Gr}(r, m) = \text{St}(r, m)/\text{O}(r) = \{[\mathbf{U}] : \mathbf{U} \in \text{St}(r, m)\}$ with $\text{O}(r)$ the orthogonal group of the order r . The Riemannian metric on $\text{Gr}(r, m)$ is induced by the inner product, i.e., $\langle \eta_{\mathcal{U}}, \xi_{\mathcal{U}} \rangle_{\mathcal{U}} = \text{trace}(\eta_{\mathcal{U}}^T \xi_{\mathcal{U}})$, where $\xi_{\mathcal{U}}^{\uparrow}$ is the horizontal lift of $\xi_{\mathcal{U}}$. The retraction via Cayley transform (CT) (Zhu & Sato, 2021) is given by

$$R_{\mathcal{U}}^{\text{Cay}}(\xi_{\mathcal{U}}) = \left[\mathbf{U} + \xi_{\mathcal{U}}^{\uparrow} - \left(\frac{1}{2} \mathbf{U} + \frac{1}{4} \xi_{\mathcal{U}}^{\uparrow} \right) \left(I_r + \frac{1}{4} \xi_{\mathcal{U}}^T \xi_{\mathcal{U}}^{\uparrow} \right)^{-1} \xi_{\mathcal{U}}^T \xi_{\mathcal{U}}^{\uparrow} \right],$$

and the inverse of R^{Cay} (Zhu & Sato, 2021) is computed by

$$\left(\left(R_{\mathcal{U}}^{\text{Cay}} \right)^{-1} (\mathcal{V}) \right)_{\mathcal{U}} = 2(\mathbf{V} - \mathbf{U} \mathbf{U}^T \mathbf{V}) (I_r + \mathbf{U}^T \mathbf{V})^{-1}.$$

Correspondingly, the isometric vector transport associated with R^{Cay} (Zhu & Sato, 2021) is given by

$$(\mathcal{T}_{\eta_{\mathcal{U}}}^{\text{Cay}}(\xi_{\mathcal{U}}))_{\mathcal{V}} = \xi_{\mathcal{U}}^{\uparrow} - \left(\mathbf{U} + \frac{1}{2} \eta_{\mathcal{U}}^{\uparrow} \right) \left(I_r + \frac{1}{4} \eta_{\mathcal{U}}^T \eta_{\mathcal{U}}^{\uparrow} \right)^{-1} \eta_{\mathcal{U}}^T \xi_{\mathcal{U}}^{\uparrow}$$

with $\mathcal{V} = R_{\mathcal{U}}^{\text{Cay}}(\eta_{\mathcal{U}})$. We point out that Algorithm 1 does not require the usage of the inverse of retraction. Here, what we use the inverse of retraction is just to assist in the implementation of the vector transport. Moreover, if one uses the vector transport by projection, then the inverse of retraction does not need.

A.2.1 SYNTHETIC CASE

Sample at random two matrices $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{n \times r}$. Let $\mathbf{Y}^* = \mathbf{AB}^T$. $mn - |\Omega|$ entries are randomly removed with uniform probability. Each of the rest entries is perturbed by noise obeying the Gaussian distribution with mean zero and standard deviation 10^{-6} . In the experiment, the rank is set as $r = 5$, the OS is set as $OS = 6$, and $(m, n) = (100, 2000)$. The other parameters are set as $\lambda = 0$, $(N, S) = (20, 100)$, $p_i \sim \text{U}(0, 1)$, $\forall i \in [N]$, $B = 0.5S$, and $\alpha = 2 \times 10^{-3}$,

1080 Let $\tilde{\mathbf{U}}$ be the solution given by Algorithm 1. Then $\mathbf{W}_{\tilde{\mathbf{U}}} = [\mathbf{W}_{11\tilde{\mathbf{U}}}, \dots, \mathbf{W}_{1S\tilde{\mathbf{U}}}, \dots, \mathbf{W}_{N1\tilde{\mathbf{U}}}, \dots, \mathbf{W}_{NS\tilde{\mathbf{U}}}]$, and thus the approximation to \mathbf{Y}^* is given by $\tilde{\mathbf{Y}} = \tilde{\mathbf{U}}\mathbf{W}_{\tilde{\mathbf{U}}}^T$. Relative error (lower is better) 1081 between $\tilde{\mathbf{Y}}$ and \mathbf{Y}^* , computed by 1082

1084

$$\text{rel_err}(\tilde{\mathbf{Y}}) = \frac{\|\tilde{\mathbf{Y}} - \mathbf{Y}^*\|_F}{\|\mathbf{Y}^*\|_F},$$

1085

1086

1087

1088

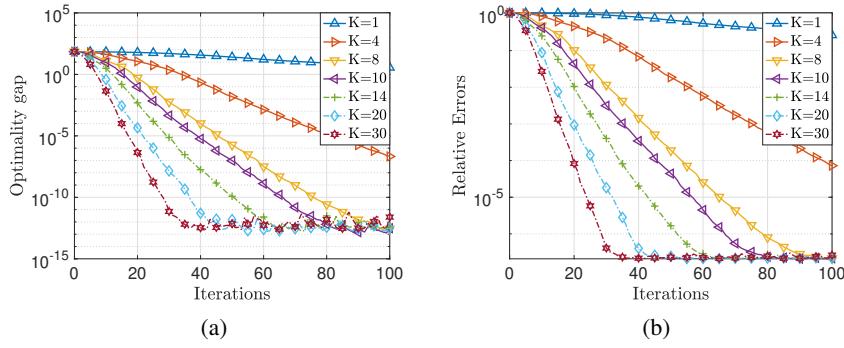
1089

1090

1091

1092

1093

1105
1106 Figure 13: LRMC with synthetic data: performance of RFedAGS with different K .
1107
1108
11091110 A.2.2 A REAL-WORLD APPLICATION
1111

1112 We use MovieLens 1M⁶ dataset which consists of 1000209 ratings with 6040 users rating 3952 movies. In LRMC setting, $\mathbf{Y}^* \in \mathbb{R}^{m \times n}$, with $m = 3952$, $n = 6040$, and $|\Omega| = 1000209$, whose 1113 nonzero elements are the ratings. We randomly sample 80% ratings for each column of \mathbf{Y}^* as 1114 the training samples, denoted by \mathbf{Y}^{tr} , and the testing dataset, denoted by \mathbf{Y}^{te} , is consisted of the 1115 remainder. In terms of the FL setting, \mathbf{Y}^{tr} is equally divided into $N = 40$ agents by column at 1116 order, i.e., $\mathbf{Y}^{\text{tr}} = [\mathbf{Y}_1^{\text{tr}}, \dots, \mathbf{Y}_N^{\text{tr}}]$, and each agent has $S = 151$ columns, i.e., $\mathbf{Y}_i^{\text{tr}} = [\mathbf{Y}_{i,1}^{\text{tr}}, \dots, \mathbf{Y}_{i,S}^{\text{tr}}]$ 1117 where $\mathbf{Y}_{i,j}^{\text{tr}} \in \mathbb{R}^m$. The other parameters are set as $\lambda = 10^{-2}$, $p_i \sim U(0, 1)$, $\forall i \in [N]$, $B = 0.5S$, 1118 and $\alpha = 6 \times 10^{-4}$. 1119

1120 In order to evaluate the performance of those methods, the root mean square error (RMSE) is used 1121 and is computed by 1122

$$\text{RMSE}(\tilde{\mathbf{Y}}) = \sqrt{\frac{1}{|\Omega^{\text{te}}|} \sum_{(i,j) \in \Omega^{\text{te}}} |\tilde{\mathbf{Y}}_{ij} - \mathbf{Y}_{ij}^{\text{te}}|^2}$$

1123

1124

1125

1126

1127

1128

1129

1130

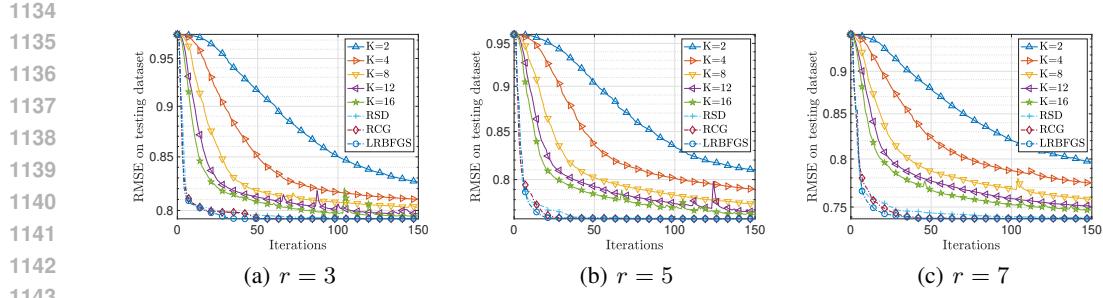
1131

1132

1133

1129 with $\tilde{\mathbf{Y}}$, \mathbf{Y}^{te} , and Ω^{te} being the approximation to \mathbf{Y}^{te} , the testing matrix, and the indices set of 1130 known entries of \mathbf{Y}^{te} , respectively. We observe in Figure 14 and Table 3 that the proposed RFedPP 1131 is comparable to these centralized methods in solving LRMC in terms of RMSE when choosing an 1132 appropriate K . 1133

⁶See <https://grouplens.org/datasets/movielens/1m/>.



1144
1145
1146
1147
1148
1149 Figure 14: LRMC with MovieLens 1M dataset: comparisons of RFedAGS (with different K) with
1150 RSD, RCG, and LRBFGS.

1151
1152
1153
1154
1155
1156 Table 3: The best RMSE scores (lower is better) on testing set for different subspace dimension r and
1157 different number of local update K . Here the scalar $a.bcd_k$ denotes $a.bcd \times 10^k$.

	RFedAGS					RSD	RCG	LRBFGS
	$K = 2$	$K = 4$	$K = 8$	$K = 12$	$K = 16$			
$r = 3$	8.260 ₋₁	8.101 ₋₁	8.023 ₋₁	7.968 ₋₁	7.948 ₋₁	7.925 ₋₁	7.925 ₋₁	7.925 ₋₁
$r = 5$	8.095 ₋₁	7.902 ₋₁	7.757 ₋₁	7.679 ₋₁	7.654 ₋₁	7.616 ₋₁	7.614 ₋₁	7.614 ₋₁
$r = 7$	7.966 ₋₁	7.743 ₋₁	7.577 ₋₁	7.507 ₋₁	7.468 ₋₁	7.392 ₋₁	7.384 ₋₁	7.382 ₋₁

1158 A.3 THE DETAILS OF EXPERIMENT SETTINGS IN SECTION 4
1159

1160 In this section, we detail the experiment settings in Section 4.

1161 A.3.1 PCA.

1162 We restate the PCA problem as follows for convenience:

$$1165 \min_{X \in \text{St}(r, d)} F(X) := \frac{1}{N} \sum_{i=1}^N f_i(X), \quad \text{with } f_i(X) = -\frac{1}{S} \sum_{j=1}^N \text{tr}(X^T (Z_{ij} Z_{ij}^T) X), \quad (\text{A.3})$$

1166 where $\text{St}(r, d) = \{X \in \mathbb{R}^{d \times r} : X^T X = I_r\}$ is the Stiefel manifold, $\mathcal{D}_i = \{Z_{i1}, \dots, Z_{iS}\} \subseteq \mathbb{R}^{d \times p}$
1167 is the local dataset held by agent i , $\forall i \in [N]$.

1168 For the Stiefel manifold $\text{St}(r, d)$, we view it as a Riemannian manifold embedded in $\mathbb{R}^{d \times r}$. Thus the
1169 Riemannian metric is chosen as $\langle U, V \rangle_X = \langle U, V \rangle_F$ for all $X \in \text{St}(r, d)$ and $U, V \in T_X \text{St}(r, d)$.
1170 The retraction is the qr-retraction (Absil et al., 2008) and the vector transport is given via the
1171 projection, i.e., $\mathcal{T}_V U = \mathcal{P}_{\text{R}_X^{\text{qr}}(V)}(U)$. In theory, RFedAvg and RFedSVRG (Li & Ma, 2023) require
1172 the exponential mapping, its inverse, and parallel transport. But on the Stiefel manifold, the last two
1173 operators have no closed-form expressions. Thus we use retraction, its inverse, and vector transport
1174 to replace them.

1175 **Setup details corresponding to Figures 2(a)-2(b).** For the synthetic data, we set $p = 1$ and
1176 generate the local datasets by setting $[Z_{i1}, \dots, Z_{iS}] = Z_i$ drawn from the Gaussian distribution
1177 $Z_i \sim \mathcal{N}(0, \frac{i}{N})$. In experiment, all parameters are set as $(r, d) = (5, 100)$, $(N, S) = (40, 100)$,
1178 $\alpha = 6 \times 10^{-3}$, $B = 0.5S$, $K = 5$, and $p_i \sim \text{U}(0, 1)$.

1179 **Setup details corresponding to Figures 2(c)-2(d).** For CIFAR10 dataset, whose training dataset
1180 contains 50000 RGB images with size 32×32 of each channel, it is also shuffled following the
1181 way of McMahan et al. (2017) such that the local datasets are non-I.I.D. (see Figure 15 below). In
1182 experiment, we flatten each image into a vector in \mathbb{R}^{3072} , and thus each local data point Z_{ij} is inside
1183 \mathbb{R}^{3072} . The other parameters are set as $(r, d) = (4, 3072)$, $(N, S) = (50, 1000)$, $\alpha = 3 \times 10^{-5}$,
1184 $B = 0.5S$, $K = 5$, and $p_i \sim \text{U}(0, 1)$.

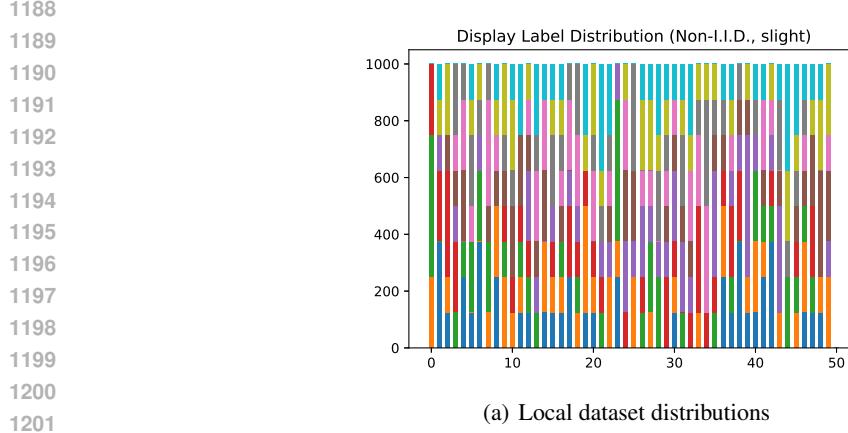


Figure 15: Local dataset distributions of the CIFAR10 dataset

Scalability of RFedAGS on PCA. Here we conduct additional experiments to empirically explore the scalability of RFedAGS. The results are reported in Figure 16, where the local update step is set as $K = 5$, batch size is $B = 0.5S$. In the first column, we fix the local dataset size and the manifold dimension and enlarge the number of agents. In the second column, we enlarge local dataset size and fix the other two factors. In the last column, we enlarge the manifold dimension and fix the other two factors. In summary, it can be observed from Figure 16 that the RFedAGS can all solve these problems of such scale, showing the scalability of RFedAGS. We would like to point out that as shown in Table 2, number of agents, local dataset size, and manifold dimension have a linear relationship with the total computation complexity, so their increase will not cause the total computation complexity to increase sharply.

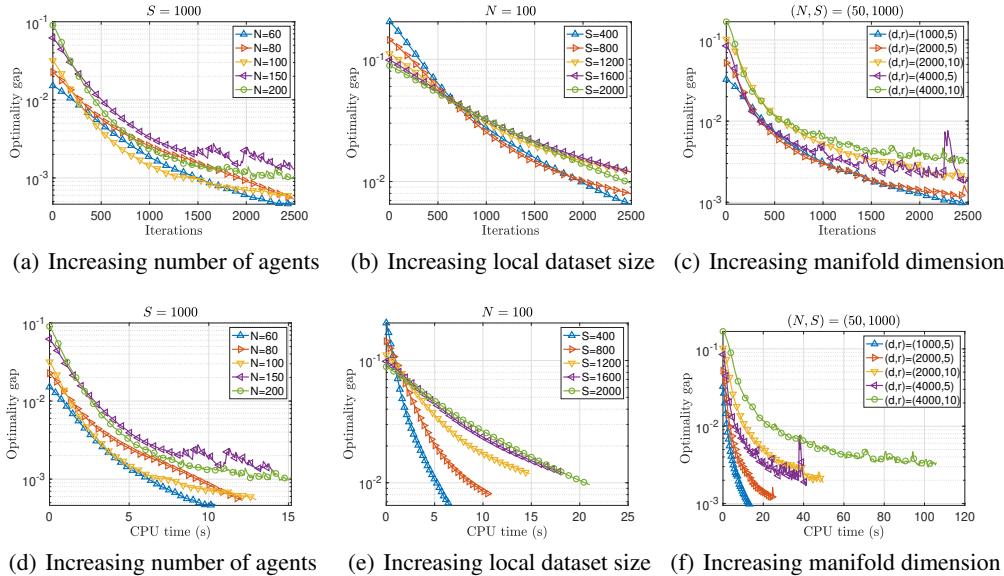


Figure 16: PCA with synthetic data: scalability of RFedAGS.

A.3.2 HSP.

Given a set of training pairs $\mathcal{D} = \{\mathcal{D}_i\}_{i=1}^N = \{\{(w_{i,j}, y_{i,j})\}_{j=1}^S\}_{i=1}^N$, where $w_{i,j} \in \mathbb{R}^r$ is the feature and $y_{i,j} \in \mathcal{H}^d$ is the hyperbolic embedding of the class of $w_{i,j}$. Then for a test sample w , the task of

1242 HPS is to predict its hyperbolic embeddings by solving the following problem
 1243

$$1244 \arg \min_{x \in \mathcal{H}^d} F(x) := \frac{1}{N} \sum_{i=1}^N f_i(x), \text{ with } f_i(x) = \frac{1}{S} \sum_{j=1}^S a_{i,j}(\omega) \text{dist}^2(x, y_{i,j})$$

1245 where the hyperbolic manifold \mathcal{H}^d is characterized via the Lorentz hyperbolic model $\mathcal{H}^d := \{x \in \mathbb{R}^{d+1} : \langle x, y \rangle_{\mathcal{L}} = -1\}$ with $\langle x, y \rangle_{\mathcal{L}} = x^T y - 2x_1 y_1$, $a_1(w)^T = (a_{i,1}(w), \dots, a_{i,S}(w))^T \in \mathbb{R}^S$ is
 1246 a pre-given constant vector related to w , and $\text{dist}(\cdot, \cdot) : \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$ is the Riemannian distance.
 1247 A commonly used option of $a_i(w)$ is computed by $a_i(w) = (K_i + \gamma I)^{-1} K_{i,w}$, where γ is the
 1248 regularization parameter, and $K_i \in \mathbb{R}^{S \times S}$ and $K_{i,w} \in \mathbb{R}^S$ are given by $(K_i)_{l,h} = k(w_{i,l}, w_{i,h})$ and
 1249 $(K_{i,w})_j = k(w_{i,j}, w)$ for a radial basis function (RBF) kernel $k(w, w') = \exp(-\|w - w'\|_2^2/(2\nu)^2)$
 1250 with a constant $\nu > 0$.
 1251

1252 **Setup details corresponding to Figure 3.** The WordNet dataset (Miller, 1995) is used to conduct
 1253 the experiment of inferring hyperbolic embeddings. Following (Nickel & Kiela, 2017), the pretrained
 1254 hyperbolic embeddings on \mathcal{H}^2 of the mammals subtree with the transitive closure containing $n =$
 1255 1180 nodes (words) and 6540 edges (hierarchies) are used.⁷ The features are stemmed from Laplacian
 1256 eigenmap (Belkin & Niyogi, 2003) to dimension $r = 3$ of the adjacency matrix formed by the edges.
 1257 In other words, we obtained $\{(w_i, y_i)\}_{i=1}^n \subset \mathbb{R}^3 \times \mathcal{H}^2$. This setting is in line with the work in (Han
 1258 et al., 2024). In the experiments, the word ‘‘primate’’ is selected as the test sample, and the remainder
 1259 is used to train. Therefore, the hyperbolic embedding of the word ‘‘primate’’ is known and is viewed as
 1260 the true embedding, i.e., x_{true} . For other parameters, they are set as $(N, S) = (9, 131)$, $\alpha = 6 \times 10^{-2}$,
 1261 $B = 0.5S$, $K = 5$, $p_i \sim \text{U}(0, 1)$, and $(\gamma, \nu) = (10^{-5}, 0.3)$.
 1262

1263 A.3.3 FMC.

1264 Given a set of training SPD matrices $\mathcal{D} := \{\mathcal{D}_i\}_{i=1}^N = \{\{X_{i,j}\}_{j=1}^S\}_{i=1}^N$, where $\{X_{i,j}\}_{j=1}^S \subseteq$
 1265 $\mathcal{S}_{++}^N := \{X \in \mathbb{R}^{N \times N} : X^T = X, X \succ 0\}$, the FMC of these SPD matrices is the solution to the
 1266 following problem

$$1267 \arg \min_{X \in \mathcal{S}_{++}^N} F(X) := \frac{1}{N} \sum_{i=1}^N f_i(X), \text{ with } f_i(X) = \frac{1}{S} \sum_{j=1}^S \text{dist}^2(X, X_{i,j}),$$

1268 where $\text{dist}(X, Y) = \|\text{logm}(X^{-1/2} X_{i,j} X^{-1/2})\|_F$ with $\text{logm}(\cdot)$ the principal matrix logarithm is
 1269 the Riemannian distance.

1270 **Setup details corresponding to Figures 4.** The PATHMNIST dataset (Yang et al., 2023) consists
 1271 of 89996 RGB images and we transform each image into a 9×9 SPD matrix by the covariance
 1272 descriptor (Tuzel et al., 2006). In the experiment, we randomly selects 20000 images to construct the
 1273 training dataset. The parameters are set as $(N, S) = (50, 400)$, $\alpha = 0.01$, $B = 0.5S$, $K = 5$, and
 1274 $p_i \sim \text{U}(0, 1)$.
 1275

1276 B PRELIMINARIES ON RIEMANNIAN OPTIMIZATION

1277 In this section, we briefly review the basic ingredients for Riemannian optimization, which are drawn
 1278 from the standard literature, e.g., (Boothby, 1975; Absil et al., 2008). Let \mathcal{M} be a d -dimensional
 1279 Riemannian manifold equipped with a Riemannian metric $\langle \cdot, \cdot \rangle : (\eta_x, \zeta_x) \mapsto \langle \eta_x, \zeta_x \rangle_x \in \mathbb{R}$ for any
 1280 $x \in \mathcal{M}$, $\eta_x, \zeta_x \in T_x \mathcal{M}$ (when it is clear in the context, we omit the subscript and write $\langle \eta, \zeta \rangle$ for short). For all $x \in \mathcal{M}$, the tangent space $T_x \mathcal{M}$ is a d -dimensional linear space. The norm induced by
 1281 the Riemannian metric in the tangent space $T_x \mathcal{M}$ is $\|\eta\| = \sqrt{\langle \eta, \eta \rangle}$ for all $\eta \in T_x \mathcal{M}$. An open ball
 1282 centered at $\eta \in T_x \mathcal{M}$ with radius r in $T_x \mathcal{M}$ is denoted by $\mathbb{B}(\eta, r) = \{\zeta \in T_x \mathcal{M} : \|\zeta - \eta\| < r\}$.
 1283 The union of all tangent spaces is tangent bundle, denoted by $T \mathcal{M}$. A vector field is a mapping
 1284 which maps from \mathcal{M} to $T \mathcal{M}$, formally defined by $\eta : \mathcal{M} \rightarrow T \mathcal{M} : x \mapsto \eta_x \in T_x \mathcal{M}$. Given a
 1285 differentiable function $f : \mathcal{M} \rightarrow \mathbb{R}$, the Riemannian gradient of f , denoted by $\text{grad} f$, is a vector
 1286 field such that for any $x \in \mathcal{M}$, $\text{grad} f(x)$ is the unique vector satisfying $Df(x)[\eta] = \langle \text{grad} f(x), \eta \rangle$
 1287 for any $\eta \in T_x \mathcal{M}$, where $Df(x)[\eta]$ is the directional derivative of f at x along η .
 1288

1289 ⁷It is referred to website <https://github.com/facebookresearch/poincare-embeddings>.
 1290

1296 A critical concept in Riemannian optimization is retraction, which defines a smooth mapping, denoted
 1297 by R , from the tangent bundle to the manifold, i.e., $R : T\mathcal{M} \rightarrow \mathcal{M}$, satisfying
 1298

- 1299 1. $R(0_x) = x$ for all $x \in \mathcal{M}$, where 0_x is the origin of $T_x\mathcal{M}$;
- 1300 2. $DR(0_x)[\eta] = \eta$ for all $\eta \in T_x\mathcal{M}$, which implies that $DR(0_x) = \text{id}_{T_x\mathcal{M}}$ with $\text{id}_{T_x\mathcal{M}}$ being
 1301 the identity in $T_x\mathcal{M}$.

1302 When restricted to $T_x\mathcal{M}$, we denote R by R_x , i.e., $R_x = R|_{T_x\mathcal{M}}$. Note that the domain of R does
 1303 not need to be the whole tangent bundle. In practice, it is usually the case. In this paper, we always
 1304 assume that R is well-defined whenever needed. A special retraction is the exponential mapping,
 1305 denoted by Exp , satisfying $\text{Exp}_x(\eta_x) = \gamma(1)$ where γ is the geodesic such that $\gamma(0) = x$ and
 1306 $\gamma'(0) = \eta_x$. Geodesic is the generalization of straight line in the Euclidean setting to the Riemannian
 1307 setting, and naturally the exponential mapping is the generalization of addition to the Riemannian
 1308 setting. Additionally, retraction is a first-order approximation to the exponential mapping. A r -totally
 1309 retractive set \mathcal{W} is a subset of \mathcal{M} such that for any $y \in \mathcal{W}$, it holds that $\mathcal{W} \subseteq R_y(\mathbb{B}(0_y, r))$ and R_y
 1310 is a diffeomorphism on $\mathbb{B}(0_y, r)$. Hence, $R_y^{-1}(y)$ is well-defined, whenever $x, y \in \mathcal{W}$.

1311 For our RFedPP, another essential concept is vector transport, denoted by \mathcal{T} , which is usually
 1312 associated with a retraction R . Given a retraction R , a vector transport associated with R maps from
 1313 $T\mathcal{M} \oplus T\mathcal{M}$, the Whitney sum, to $T\mathcal{M}$, i.e., $\mathcal{T} : T\mathcal{M} \oplus T\mathcal{M} \rightarrow T\mathcal{M}$, and satisfies that for any
 1314 $(x, \eta_x) \in \text{domain}(R)$ and all $\zeta_x \in T_x\mathcal{M}$, the followings hold that

- 1315 1. $\mathcal{T}_{\eta_x}(\zeta_x) \in T_{R(\eta_x)}\mathcal{M}$;
- 1316 2. $\mathcal{T}_{0_x}\zeta_x = \zeta_x$;
- 1317 3. \mathcal{T}_{η_x} is linear, i.e., for all $a_1, a_2 \in \mathbb{R}$ and $\xi_x, \zeta_x \in T_x\mathcal{M}$, it holds that $\mathcal{T}_{\eta_x}(a_1\xi_x + a_2\zeta_x) =$
 1318 $a_1\mathcal{T}_{\eta_x}(\xi_x) + a_2\mathcal{T}_{\eta_x}(\zeta_x)$.

1319 We say \mathcal{T} is isometric if for any $(x, \eta_x) \in \text{domain}(R)$, $\xi_x, \zeta_x \in T_x\mathcal{M}$, it satisfies
 1320 $\langle \mathcal{T}_{\eta_x}(\xi_x), \mathcal{T}_{\eta_x}(\zeta_x) \rangle_{R(\eta_x)} = \langle \xi_x, \zeta_x \rangle_x$, which implies that $\|\mathcal{T}_{\eta_x}(\zeta_x)\| = \|\zeta_x\|$. An important vec-
 1321 tor transport is the parallel transport, which is isometric; refer to (Absil et al., 2008; Boumal, 2023)
 1322 for the rigorous definition.

1323 In the Euclidean setting, the convergence analyses of FedAvg are established under the assumption
 1324 that F is L -smooth, where a continuously differentiable function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is said L -smooth if

$$1325 \|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\| \quad \forall x, y \in \mathbb{R}^n,$$

1326 in which case we have

$$1327 f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2}\|y - x\|^2.$$

1328 Both properties above are critical in the analyses of FedAvg. Similar assumptions are made in the
 1329 Riemannian setting for the analysis of the proposed RFedAGS; see Definitions B.1 (Huang et al.,
 1330 2018) and B.1 (Huang & Wei, 2022). The first one is called L -Lipschitz continuously differentiable
 1331 (Definitions B.1) and the second one is called L -retraction-smooth (Definitions B.2).

1332 **Definition B.1** (L -Lipschitz continuous differentiability). *Let \mathcal{T} be a vector transport associated
 1333 with a retraction R . A function $f : \mathcal{M} \rightarrow \mathbb{R}$ is said L -Lipschitz continuously differentiable with respect
 1334 to \mathcal{T} on $\mathcal{U} \subseteq \mathcal{M}$ if there exists a constant $L > 0$ such that*

$$1335 \|\mathcal{T}_\eta(\text{grad}f(y)) - \text{grad}f(x)\| \leq L\|\eta\|$$

1336 for all $x \in \mathcal{U}$ and $\eta \in T_x\mathcal{M}$ satisfying $y = R_x(\eta)$.

1337 **Definition B.2** (L -retraction-smoothness). *A function $f : \mathcal{M} \rightarrow \mathbb{R}$ is called L -retraction-smooth with
 1338 respect to a retraction R in $\mathcal{N} \subseteq \mathcal{M}$ if for any $x \in \mathcal{N}$ and any $\mathcal{N}_x \subseteq T_x\mathcal{M}$ satisfying $R_x(\mathcal{N}_x) \subseteq \mathcal{N}$,
 1339 it holds that*

$$1340 f(R_x(\eta)) \leq f(x) + \langle \text{grad}f(x), \eta \rangle + \frac{L}{2}\|\eta\|^2,$$

1341 for all $\eta \in \mathcal{N}_x$.

1350 A function which is L -Lipschitz continuously differentiable is not necessarily L -retraction-smooth,
 1351 however it is the case in the Euclidean setting. It should be highlighted that there exist some cases
 1352 where L -Lipschitz continuous differentiability implies also L -retraction smoothness (Huang et al.,
 1353 2018; Boumal et al., 2019; Boumal, 2023).

1354 Next we review convexity and strong convexity in the Riemannian setting (Huang & Wei, 2022).

1355 **Definition B.3** (Strongly retraction-convex, retraction-convex). *A function $f : \mathcal{M} \rightarrow \mathbb{R}$ is called*
 1356 *μ -strongly retraction-convex with respect to a retraction R in $\mathcal{N} \subseteq \mathcal{M}$ if for any $x \in \mathcal{N}$ and any*
 1357 *$\mathcal{N}_x \subseteq T_x \mathcal{M}$ satisfying $R_x(\mathcal{N}_x) \subseteq \mathcal{N}$, there exist a constant $\mu > 0$ and a tangent vector $\zeta \in T_x \mathcal{M}$*
 1358 *such that $f_x = f \circ R_x$ satisfies*

$$1360 \quad f_x(\eta) \geq f_x(\xi) + \langle \zeta, \eta - \xi \rangle + \frac{\mu}{2} \|\eta - \xi\|^2 \quad \forall \eta, \xi \in \mathcal{N}_x.$$

1362 In particular, if $\mu = 0$, we call f retraction-convex with respect to R in \mathcal{N} .

1364 Note that $\zeta = \text{grad} f_x(\xi)$ if f is differentiable; otherwise, ζ is any Riemannian subgradient of f_x at
 1365 ξ . In literature, convexity has been studied based on geodesic; see, e.g., (Ferreira & Oliveira, 2002;
 1366 Zhang & Sra, 2016), in which case a function $f : \mathcal{M} \rightarrow \mathbb{R}$ is called geodesic convex, if for any
 1367 $x, y \in \mathcal{M}$, there exists a tangent vector $\zeta_x \in T_x \mathcal{M}$ such that $f(y) \geq f(x) + \langle \zeta_x, \text{Exp}_x^{-1}(y) \rangle$. It
 1368 can be verified if taking $\xi = 0$ and exponential mapping as the retraction in Definition B.3, then
 1369 retraction-convexity reduces to geodesic convexity.

1370 We end this section with an introduction to the concept of ϵ -stationary points/solutions.

1371 **Definition B.4.** *We say that $x_T \in \mathcal{M}$, the output from Algorithm 1, is an ϵ -stationary point of*
 1372 *Problem (1.1) if it holds that $\mathbb{E}[\|\text{grad}F(x_T)\|^2] \leq \epsilon$, or is an ϵ -solution if it holds that $\mathbb{E}[F(x_T)] -$*
 1373 *$F(x^*) \leq \epsilon$, where $x^* \in \arg \min_{x \in \mathcal{M}} F(x)$.*

1375 C ADDITIONAL DISCUSSIONS

1376 C.1 DISCUSSIONS FOR ASSUMPTIONS

1379 Assumptions 3.1-3.7 are standard for Riemannian stochastic gradient-based methods. Assumptions 3.1
 1380 imposes requirements for the retraction under consideration to be C^2 and the vector transport under
 1381 consideration to be continuous and bounded from above. These requirements are fairly standard in
 1382 Riemannian optimization. Note that the boundedness for vector transport can be achieved by requiring
 1383 isometricness, in which case we have $\|\mathcal{T}_{\eta_x}(\zeta_x)\| = \|\zeta_x\|$, implying $\Upsilon = 1$. In fact, a lots of papers
 1384 do have such requirements, e.g., (Sato et al., 2019; Li & Ma, 2023). Additionally, if the Riemannian
 1385 manifold \mathcal{M} is a submanifold embedded in a Euclidean space and equipped with the inner product as
 1386 its Riemannian metric, then an option for vector transport is based on the orthogonal operation onto
 1387 the tangent space, i.e., $\mathcal{T}_{\eta_x}(\zeta_x) = \mathcal{P}_{R(\eta_x)}(\zeta_x)$ with $\mathcal{P}_x(u) = \arg \min_{v \in T_x \mathcal{M}} \|v - u\|_F^2$, in which
 1388 case by the nonexpansivity of the orthogonal projection we have $\|\mathcal{T}_{\eta_x}(\zeta_x)\| \leq \|\zeta_x\|$, also implying
 1389 $\Upsilon = 1$.

1390 In the deterministic optimization, the compactness of the sublevel set of the objective function is
 1391 required to ensure that the iterates generated by the algorithms which are monotonically decreasing
 1392 are still located in that compact set. However, in the stochastic setting, it is difficult to ensure that
 1393 the iterates generated by the algorithms all fall within the sublevel set since the algorithms are
 1394 not necessarily monotonically decreasing, and thus, it is not sufficient to require the sublevel set
 1395 to be compact under stochastic optimization. In this case, Assumption 3.2 becomes a commonly
 1396 used choice in Riemannian stochastic optimization; see, e.g., (Bonnabel, 2013; Zhang & Sra, 2016;
 1397 Tripathaneni et al., 2018; Sato et al., 2019; Han & Gao, 2021; Li & Ma, 2023). For some manifolds
 1398 that are compact themselves, e.g., the Stiefel manifold and the Grassmann manifold, the compactness
 1399 assumption naturally holds. Moreover, in all experiments we conducted, it is observed that the
 1400 generated iterates x_t , with $t \geq 1$, fall into the sublevel set $\{x \in \mathcal{M} : f(x) \leq f(x_1)\}$.

1401 Assumptions 3.6 and 3.7 impose requirements on the first- and second-order moments for the local
 1402 stochastic gradient estimator, which are necessary for Riemannian/Euclidean stochastic gradient-
 1403 based methods. In the analyses for Euclidean federated learning algorithms, majority of works make
 extra assumptions for addressing the heterogeneity data. These assumptions essentially require that

1404 the divergence between local and global gradients is bounded, i.e., there exists a constant $\sigma > 0$ such
 1405 that for all x ,

$$1406 \quad \|\nabla f_i(x) - \nabla F(x)\|^2 \leq \sigma^2.$$

1407 In our analyses for the proposed RFedAGS, we do not explicitly make the similar assumption, since
 1408 Assumption 3.2 implies the counterpart requirement. Indeed, under Assumption 3.2, there exists
 1409 a constant $P > 0$, such that $\|\text{grad}f_i(x)\| \leq P$ and $\|\text{grad}F(x)\| \leq P$ for all $i \in [N]$ and $x \in \mathcal{W}$.
 1410 Hence, it holds that

$$1411 \quad \|\text{grad}f_i(x) - \text{grad}F(x)\|^2 \leq 2\|\text{grad}f_i(x)\|^2 + 2\|\text{grad}F(x)\|^2 \leq 4P^2.$$

1413 Assumption 3.8 imposes the requirement that the approximate probabilities are how close to the
 1414 true probabilities. As discussed in Section 3.3, when using frequencies as the approximation, this
 1415 assumption holds with high probability. Numerically, the reported results show that the performance
 1416 using frequencies is comparable to the case using true probabilities. We note that in the fixed step
 1417 size case, existing work (Wang & Ji, 2024) also makes an equivalent assumption. The difference lies
 1418 in that the assumption in (Wang & Ji, 2024) only considers fixed step size cases, but Assumption 3.8
 1419 more finely encompasses the cases of decaying step sizes.

1420 In summary, except Assumption 3.8 that aims to address the arbitrary partial participation, there exists
 1421 no assumption beyond those made for Riemannian (stochastic) optimization and federated learning.
 1422 In theory, the proposed RFedAGS is the first algorithm that can simultaneously address the challenges
 1423 caused by the partial participation and the heterogeneity data settings. The partial participation under
 1424 consideration allows arbitrary participation which is more practical than the commonly-countered
 1425 participation scheme based on random sampling. Even without the Riemannian manifold constraint,
 1426 i.e., $\mathcal{M} = \mathbb{R}^n$, the proposed RFedAGS can reduce to one proposed in (Wang & Ji, 2024). This paper
 1427 establishes the convergence properties of RFedAGS under both the decaying (see Theorems 3.1, 3.2,
 1428 and 3.3) and fixed (see Theorems 3.4 and 3.5) step size cases. Under the decaying step size case,
 1429 global convergence is guaranteed. These analyses depend on a vital and non-trivial observation (see
 1430 Assumption 3.8). However, (Wang & Ji, 2024) only considered the assumption of the fixed step case,
 1431 and thus only established convergence under the fixed step size case, which does not ensure global
 1432 convergence rather only converges to a ϵ -stationary point.

1433 C.2 DISCUSSIONS FOR IMPLEMENTATIONS

1435 In Algorithm 1, there exists a scenario (called NA) where in certain round of communication no agent
 1436 participates in communication. We emphasize that this scenario happens with fairly low probability.
 1437 For example, considering a FL system where 20 agents participate in communication with probability
 1438 $p_i = 0.1$, $i = 1, 2, \dots, 20$, and 5 agents participate with probability $p_i = 0.5$, $i = 21, 22, \dots, 25$.
 1439 Then the scenario NA happens only with probability not greater than 0.38%. For the purpose of
 1440 robustness, when the scenario NA happens, one option is set $x_{t+1} \leftarrow x_t$ to restart the next round of
 1441 local updates.

1443 D PROOFS OF THEOREMS IN SECTION 3

1445 D.1 SUPPORTING LEMMAS

1447 If the objective F in Problem (1.1) is L_g -retraction smooth (Assumption 3.5), under Assumption 3.1,
 1448 it follows that

$$1449 \quad \mathbb{E}_t[F(x_{t+1})] - F(x_t) \leq \mathbb{E}_t[\langle \text{grad}F(x_t), \mathbf{R}_{x_t}^{-1}(x_{t+1}) \rangle] + \frac{L_g}{2} \mathbb{E}_t[\|\mathbf{R}_{x_t}^{-1}(x_{t+1})\|^2]. \quad (\text{D.1})$$

1451 Without considering the arbitrary participation, recalling (TM) and (AGS-RS), we have

$$1453 \quad \text{Exp}_{x_t}^{-1}(x_{t+1}) = \frac{1}{S} \sum_{j \in \mathcal{S}_t} \text{Exp}_{x_t}^{-1}(x_{t,K}^j), \text{ and} \quad (\text{D.2})$$

$$1456 \quad \mathbf{R}_{x_t}^{-1}(x_{t+1}) = -\alpha_t \frac{1}{S} \sum_{j \in \mathcal{S}_t} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j) \right). \quad (\text{D.3})$$

When $K > 1$ and $S > 1$, from the increment of parameters of (TM) it follows that analyzing the upper bounds of the two terms in the right-hand side of (D.1) is fairly challenging, since the nonlinearity of exponential and its inverse leads to difficulty expand (D.2) into the desired one involved gradient information. However, the form of (D.3) is very similar to the Euclidean version and thus significantly address the issue.

Lemmas D.1 together with D.3 have provided an upper bound for the first term in the right-hand side of (D.1).

Lemma D.1. *Under Assumptions 3.1-3.5, at the t -th outer iteration of Algorithm 1 with a stepsize α_t and a batchsize B_t , we have that*

$$\begin{aligned} \mathbb{E}_t[\langle \text{grad}F(x_t), \mathbf{R}_{x_t}^{-1}(x_{t+1}) \rangle] &\leq -\frac{\varpi\alpha_t K}{2} \|\text{grad}F(x_t)\|^2 + \varpi\alpha_t L_f^2 \delta_1^2 \sum_{k=0}^{K-1} \mathbb{E}_t[\|\mathbf{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] \\ &\quad + \varpi\alpha_t^2 KGP^2 \delta_2^2 - \frac{\varpi\alpha_t}{2} \sum_{k=0}^{K-1} \mathbb{E} \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) \right\|^2 \right], \end{aligned} \quad (\text{D.4})$$

where $\delta_1^2 = \max_{t \geq 1} \left\{ \frac{1}{N} \sum_{j=1}^N \left(\frac{p_j}{q_t^j} \right)^2 \right\}$ and $\delta_2^2 = \sum_{j=1}^N \frac{p_j^2}{N}$.

Proof of Lemma D.1. On the one hand, we have

$$\begin{aligned} \mathbb{E}_t[\langle \text{grad}F(x_t), \mathbf{R}_{x_t}^{-1}(x_{t+1}) \rangle] &= \mathbb{E}_t[\langle \text{grad}F(x_t), \mathbf{R}_{x_t}^{-1}(x_{t+1}) + \varpi\alpha_t K \text{grad}F(x_t) - \varpi\alpha_t K \text{grad}F(x_t) \rangle] \\ &= -\varpi\alpha_t K \|\text{grad}F(x_t)\|^2 + \mathbb{E}_t[\langle \text{grad}F(x_t), \mathbf{R}_{x_t}^{-1}(x_{t+1}) + \varpi\alpha_t K \text{grad}F(x_t) \rangle], \end{aligned} \quad (\text{D.5})$$

where for the second term of the equality on the right-hand side, we have

$$\begin{aligned} &\mathbb{E}_t[\langle \text{grad}F(x_t), \mathbf{R}_{x_t}^{-1}(x_{t+1}) + \varpi\alpha_t K \text{grad}F(x_t) \rangle] \\ &= \mathbb{E}_t \left[\left\langle \text{grad}F(x_t), -\sum_{j \in \mathcal{S}_t} \frac{\varpi\alpha_t}{q_t^j N} \sum_{k=0}^{K-1} \frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j)) + \varpi\alpha_t K \text{grad}F(x_t) \right\rangle \right] \\ &= \mathbb{E}_t \left[\left\langle \text{grad}F(x_t), -\sum_{k=0}^{K-1} \left(\sum_{j \in \mathcal{S}_t} \frac{\varpi\alpha_t}{q_t^j N B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j)) + \text{grad}F(x_t) \right) \right\rangle \right] \\ &= \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\langle \text{grad}F(x_t), -\varpi\alpha_t \sum_{j \in \mathcal{S}_t} \left(\frac{1}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) - \frac{1}{p_j N} \text{grad}f_j(x_t) \right) \right\rangle \right] \\ &= \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\langle \sqrt{\varpi\alpha_t} \text{grad}F(x_t), -\sum_{j \in \mathcal{S}_t} \frac{\sqrt{\varpi\alpha_t}}{N} \left(\frac{1}{q_t^j} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) - \frac{1}{p_j} \text{grad}f_j(x_t) \right) \right\rangle \right] \\ &= \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\langle \sqrt{\varpi\alpha_t} \text{grad}F(x_t), -\sum_{j=1}^N \mathbb{I}_{\mathcal{S}_t}(j) \frac{\sqrt{\varpi\alpha_t}}{N} \left(\frac{1}{q_t^j} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) - \frac{1}{p_j} \text{grad}f_j(x_t) \right) \right\rangle \right] \\ &= \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\langle \sqrt{\varpi\alpha_t} \text{grad}F(x_t), -\sum_{j=1}^N \frac{p_j \sqrt{\varpi\alpha_t}}{N} \left(\frac{1}{q_t^j} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) - \frac{1}{p_j} \text{grad}f_j(x_t) \right) \right\rangle \right] \\ &= \frac{\varpi\alpha_t K}{2} \|\text{grad}F(x_t)\|^2 + \frac{\varpi\alpha_t}{2} \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} \left(\frac{1}{q_t^j} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) - \frac{1}{p_j} \text{grad}f_j(x_t) \right) \right\|^2 \right] \\ &\quad - \frac{\varpi\alpha_t}{2} \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) \right\|^2 \right], \end{aligned} \quad (\text{D.6})$$

1512 where the third equality follows (2.1), the sixth equality follows $\mathbb{E}[\mathbb{I}_{\mathcal{S}_t}(j)] = p_j$, and the last equality
 1513 is due to $\langle u, v \rangle = \frac{1}{2}(\|u\|^2 + \|v\|^2 - \|u - v\|^2)$. Moreover, we note that
 1514

$$\begin{aligned}
 1515 & \frac{\varpi\alpha_t}{2} \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{N} \left(\frac{1}{q_t^j} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) - \frac{1}{p_j} \text{grad}f_j(x_t) \right) \right\|^2 \right] \\
 1516 & = \frac{\varpi\alpha_t}{2} \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{N} \left(\frac{1}{q_t^j} (\mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) - \text{grad}f_j(x_t)) \right. \right. \right. \\
 1517 & \quad \left. \left. \left. + \left(\frac{1}{q_t^j} - \frac{1}{p_j} \right) \text{grad}f_j(x_t) \right) \right\|^2 \right] \\
 1518 & \leq \varpi\alpha_t \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} (\mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) - \text{grad}f_j(x_t)) \right\|^2 \right] \\
 1519 & \quad + \varpi\alpha_t \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{N} \left(\frac{1}{q_t^j} - \frac{1}{p_j} \right) \text{grad}f_j(x_t) \right\|^2 \right] \\
 1520 & \leq \frac{\varpi\alpha_t L_f^2}{N} \sum_{j=1}^N \left(\frac{p_j}{q_t^j} \right)^2 \sum_{k=0}^{K-1} \mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] + \sum_{j=1}^N \frac{p_j^2}{N} KGP^2 \varpi\alpha_t^2 \\
 1521 & \leq \varpi\alpha_t \delta_1^2 L_f^2 \sum_{k=0}^{K-1} \mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] + \varpi\alpha_t^2 KGP^2 \delta_2^2, \tag{D.7}
 1522 \\
 1523 & \leq \varpi\alpha_t \delta_1^2 L_f^2 \sum_{k=0}^{K-1} \mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] + \varpi\alpha_t^2 KGP^2 \delta_2^2,
 1524 \\
 1525 & \leq \varpi\alpha_t \delta_1^2 L_f^2 \sum_{k=0}^{K-1} \mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] + \varpi\alpha_t^2 KGP^2 \delta_2^2,
 1526 \\
 1527 & \leq \varpi\alpha_t \delta_1^2 L_f^2 \sum_{k=0}^{K-1} \mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] + \varpi\alpha_t^2 KGP^2 \delta_2^2,
 1528 \\
 1529 & \leq \varpi\alpha_t \delta_1^2 L_f^2 \sum_{k=0}^{K-1} \mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] + \varpi\alpha_t^2 KGP^2 \delta_2^2,
 1530 \\
 1531 & \leq \varpi\alpha_t \delta_1^2 L_f^2 \sum_{k=0}^{K-1} \mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] + \varpi\alpha_t^2 KGP^2 \delta_2^2,
 1532 \\
 1533 & \leq \varpi\alpha_t \delta_1^2 L_f^2 \sum_{k=0}^{K-1} \mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] + \varpi\alpha_t^2 KGP^2 \delta_2^2,
 1534 \\
 1535 & \leq \varpi\alpha_t \delta_1^2 L_f^2 \sum_{k=0}^{K-1} \mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] + \varpi\alpha_t^2 KGP^2 \delta_2^2,
 1536
 \end{aligned}$$

1536 where the first inequality follows $\|u + v\|^2 \leq 2\|u\|^2 + 2\|v\|^2$, the second inequality is due to the
 1537 L_f -retraction smoothness of $\text{grad}f_j$ for $j = 1, 2, \dots, N$, Assumption 3.2 (which implies that there
 1538 exists $P > 0$ such that $\|\text{grad}f_i(x_t)\| \leq P$), 3.4, and 3.8, and the third inequality follows that
 1539 $\delta_1^2 = \max_{t \geq 1} \left\{ \frac{1}{N} \sum_{i=1}^N \left(\frac{p_i}{q_i^t} \right)^2 \right\}$ and $\delta_2^2 = \sum_{i=1}^N \frac{p_i^2}{N}$. Combining (D.5), (D.6), and (D.7) yields the
 1540 desired result. \square
 1541

1542 In order to further bound $\mathbb{E}_t [\langle \text{grad}F(x_t), \mathcal{R}_{x_t}^{-1}(x_{t+1}) \rangle]$ for $K > 1$, from Lemma D.1, it is necessary
 1543 to estimate the bounds for $\mathbb{E}_t [\|\mathcal{R}_{x_t}^{-1}(x_{t,k}^j)\|^2]$, as theoretically discussed in Lemma D.3 which states
 1544 that for agent j , the “distance” between the k -th local update $x_{t,k}^j$ and the the t -th outer iterate x_t are
 1545 controlled by the sum of squared step sizes. Intuitively, the “distance” increases as the number of
 1546 local iterations grows, which is shown in Lemma D.4. Meanwhile, it also reflects the drift between
 1547 an agent’s local update parameter $x_{t,k}^j$ and the global parameter x_t . A general result is provided in
 1548 Lemma D.2.
 1549

1550 **Lemma D.2.** *Under Assumptions 3.1-3.3, let $F : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function. If consider the
 1551 following update formulation*

$$x_{t,k+1} = \mathcal{R}_{x_{t,k}}(-\alpha_{t,k} \mathcal{G}_F(x_{t,k})),$$

1552 where $\mathcal{G}_F(x_{t,k})$ is an estimator of $\text{grad}F(x_{t,k})$, $x_t = x_{t,0}$, and $\alpha_{t,\tau}$ is the step size, then it follows
 1553 that

$$1554 \|\mathcal{R}_{x_t}^{-1}(x_{t,k})\|^2 \leq 2k \sum_{\tau=0}^{k-1} \alpha_{t,\tau}^2 (J^2 + \alpha_{t,\tau}^2 H^2 \|\mathcal{G}_F(x_{t,\tau})\|^2) \|\mathcal{G}_F(x_{t,\tau})\|^2,$$

1555 where J and H are two positive constants related with the manifold and retraction.
 1556

1557 The proof of Lemma D.2 needs the following inverse function theorem on manifolds.

1558 **Theorem D.1** (Inverse function theorem). *Given a smooth mapping $P : \mathcal{M} \rightarrow \mathcal{M}'$ defined between
 1559 two manifolds, if $DP(x)$ is invertible at some point $x \in \mathcal{M}$, then there exist neighborhoods $\mathcal{U}_x \subseteq \mathcal{M}$
 1560 of x and $\mathcal{V}_{P(x)} \subseteq \mathcal{M}'$ of $P(x)$ such that $P|_{\mathcal{U}_x} : \mathcal{U}_x \rightarrow \mathcal{V}_{P(x)}$ is a diffeomorphism. Meanwhile, if
 1561 P^{-1} is the inverse of P in \mathcal{U}_x , then we have $(DP(x))^{-1} = DP^{-1}(P(x))$.*

1562 Now we are ready to prove Lemma D.2.
 1563

1566 *Proof of Lemma D.2.* For two points $x, y \in \mathcal{W}$, consider the map $P_{x,y} = R_y^{-1} \circ R_x : T_x \mathcal{M} \rightarrow$
 1567 $T_y \mathcal{M} : \eta_x \mapsto R_y^{-1}(R_x(\eta_x))$, which is defined between two vector spaces. According to the chain
 1568 rule for the differential of a map and the first-order property of the retraction, i.e., $DR_x(0_x) = I_{T_x \mathcal{M}}$,
 1569 we have
 1570

$$\begin{aligned} 1571 \quad DP_{x,y}(0_x) &= D(R_y^{-1} \circ R_x)(0_x) = DR_y^{-1}(R_x(0_x)) \circ DR_x(0_x) \\ 1572 &= (DR_y(R_y^{-1}(R_x(0_x))))^{-1} \circ I_{T_x \mathcal{M}} = (DR_y(R_y^{-1}(x)))^{-1} = (\Lambda_y^x)^{-1}, \\ 1573 \end{aligned}$$

1574 where the third equality is due to the inverse function Theorem D.1. Noting that the map $P_{\cdot,\cdot}(\cdot)$ is
 1575 defined in $T_{\mathcal{W}} = \{(x, y, \eta) : x, y \in \mathcal{W}, \eta \in R_x^{-1}(\mathcal{W})\}$, which is inside a compact set, according to
 1576 Assumption 3.2, thus, smoothness of the retraction implies that the Jacobin and Hessian of $P_{\cdot,\cdot}(\cdot)$
 1577 with respect to the third variable is uniformly bounded in norm on the compact set. We, thus, use
 1578 $C_2, C_3 > 0$ to denote bounds on the operator norms of the Jacobin and Hessian of $P_{\cdot,\cdot}(\cdot)$ with respect
 1579 to the third variable in the compact set. Noting that

$$\begin{aligned} 1580 \quad P_{x_{t,k-1},x_t}(\eta_{x_{t,k-1}}) &= R_{x_t}^{-1}(R_{x_{t,k-1}}(\eta_{x_{t,k-1}})) = R_{x_t}^{-1}(x_{t,k}^j), \text{ and} \\ 1581 \quad P_{x_{t,k-1},x_t}(0) &= R_{x_t}^{-1}(R_{x_{t,k-1}}(0)) = R_{x_t}^{-1}(x_{t,k-1}^j) \end{aligned}$$

1582 with $\eta_{x_{t,k-1}} = -\alpha_{t,k-1} \mathcal{G}_F(x_{t,k-1}^j)$, using a Taylor expansion for $P_{x,y}$ yields
 1583

$$\begin{aligned} 1584 \quad R_{x_t}^{-1}(x_{t,k}^j) &= P_{x_{t,k-1},x_t}(-\alpha_{t,k-1} \mathcal{G}_F(x_{t,k-1}^j)) \\ 1585 &= P_{x_{t,k-1},x_t}(0) + DP_{x_{t,k-1},x_t}(0)(-\alpha_{t,k-1} \mathcal{G}_F(x_{t,k-1}^j)) + \alpha_{t,k-1} e_{t,k-1}^j \\ 1586 &= R_{x_t}^{-1}(x_{t,k-1}^j) - \alpha_{t,k-1} (\Lambda_{x_t}^{x_{t,k-1}^j})^{-1}(\mathcal{G}_F(x_{t,k-1}^j)) + \alpha_{t,k-1} e_{t,k-1}^j, \\ 1587 \end{aligned}$$

1588 where $\|e_{t,k-1}^j\| \leq \alpha_{t,k-1} C_3 \|\mathcal{G}_F(x_{t,k-1}^j)\|^2$. Hence, repeatedly, we have
 1589

$$1590 \quad R_{x_t}^{-1}(x_{t,k}^j) = - \sum_{\tau=0}^{k-1} \alpha_{t,\tau} (\Lambda_{x_t}^{x_{t,\tau}^j})^{-1}(\mathcal{G}_F(x_{t,\tau}^j)) + \sum_{\tau=0}^{k-1} \alpha_{t,\tau} e_{t,\tau}^j, \quad (D.8)$$

1591 where we used $R_{x_t}^{-1}(x_t) = 0_{x_t}$. Combining (D.8), $\|(\Lambda_{x_t}^{x_{t,k-1}^j})^{-1}(\mathcal{G}_F(x_{t,k-1}^j))\| \leq C_2 \|\mathcal{G}_F(x_{t,k-1}^j)\|$
 1592 (for all $t = 1, 2, \dots, T-1$ and $k = 1, 2, \dots, K-1$), and $\|\sum_{i=1}^n u_i\|^2 \leq n \sum_{i=1}^n \|u_i\|^2$ yields the
 1593 desired result. \square

1600 When \mathcal{M} reduces into a Euclidean space, e.g., $\mathcal{M} = \mathbb{R}^d$, the constants in Lemma D.2 will be
 1601 become $C_2 = 1$ and $C_3 = 0$. In this case, the results correspondingly becomes $\|x_t - x_{t,k}^j\|^2 \leq$
 1602 $k \sum_{\tau=0}^{k-1} \alpha_{t,\tau}^2 \|\mathcal{G}_F(x_{t,\tau}^j)\|^2$. In Lemma D.2, if one uses $\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j)$ to replace
 1603 $\mathcal{G}_F(x_{t,k}^j)$, then the desired result is obtained in Lemma D.3.

1604 **Lemma D.3.** *Under Assumptions 3.1-3.3, at the k -th inner iteration of the t -th outer iteration of
 1605 Algorithm 1, for each agent $j \in \mathcal{S}_t$ and $k = 1, 2, \dots, K-1$, we have*

$$1606 \quad \|R_{x_t}^{-1}(x_{t,k}^j)\|^2 \leq 2k^2 \alpha_t^2 P^2 (J^2 + \alpha_t^2 P^2 H^2), \quad (D.9)$$

1607 where P is a positive constant such that for all $x \in \mathcal{W}$, $j = 1, 2, \dots, N$ and $\xi \sim \mathcal{D}_j$, it holds that
 1608 $\|\text{grad}F(x)\| \leq P$, $\|\text{grad}f_j(x)\| \leq P$ and $\|\text{grad}f_j(x; \xi)\| \leq P$ by Assumption 3.2.

1609 *Proof of Lemma D.3.* From Algorithm 1, letting $\mathcal{G}_F(x_{t,k}^j) = -\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j)$,
 1610 then, we have

$$1611 \quad \|\mathcal{G}_F(x_{t,k}^j)\| = \left\| -\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j) \right\| \leq \frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \|\text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j)\| \leq P.$$

1612 Hence, combining the inequality above and Lemma D.2 gives rise to the desired result (D.9). \square

1620 Under the same conditions as Lemma D.1, plugging (D.9) into (D.4) yields
 1621

$$\begin{aligned}
 1622 \quad & \mathbb{E}_t[\langle \text{grad}F(x_t), \mathbf{R}_{x_t}^{-1}(x_{t+1}) \rangle] \leq -\frac{\varpi\alpha_t}{2} \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) \right\|^2 \right] \\
 1623 \quad & - \frac{\varpi\alpha_t K}{2} \|\text{grad}F(x_t)\|^2 + \varpi\alpha_t^2 K G P^2 \delta_2^2 + \frac{1}{6} (2K-1) K (K-1) L_f^2 \delta_1^2 P^2 (J^2 + \alpha_t^2 P^2 H^2) \varpi\alpha_t^3. \\
 1624 \quad & \\
 1625 \quad & \\
 1626 \quad & \\
 1627 \quad & \\
 1628 \quad & \\
 1629 \quad & \\
 1630 \quad & \text{The next is to bound the second term } \mathbb{E}_t[\|\mathbf{R}_{x_t}^{-1}(x_{t+1})\|^2]. \\
 1631 \quad & \textbf{Lemma D.4.} \text{ Under Assumptions 3.1-3.8, the iterates } \{x_t\}_{t=1}^T \text{ generated by Algorithm 1 with fixed} \\
 1632 \quad & \text{stepsize } \alpha_t \text{ and fixed batchsize } B_t \text{ within parallel inner iterations satisfies} \\
 1633 \quad & \\
 1634 \quad & \mathbb{E}_t[\|\mathbf{R}_{x_t}^{-1}(x_{t+1})\|^2] \leq \frac{\varpi^2 \alpha_t^2 \Upsilon^2 \sigma_L^2 \delta_3^2 K}{B_t} + \varpi^2 \alpha_t^2 K \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) \right\|^2 \right] \\
 1635 \quad & + \varpi^2 \alpha_t^2 P^2 K^2 \delta_4^2 \\
 1636 \quad & \\
 1637 \quad & \\
 1638 \quad & \\
 1639 \quad & \text{where } \delta_3^2 = \frac{1}{N^2} \sum_{j=1}^N \frac{p_j}{(q_t^j)^2} \text{ and } \delta_4^2 = \frac{1}{N^2} \sum_{j=1}^N \frac{p_j(1-p_j)}{(q_t^j)^2}. \\
 1640 \quad & \\
 1641 \quad & \\
 1642 \quad & \textit{Proof of Lemma D.4.} Let } x_t \text{ denote the } t\text{-th aggregation by the server. Then,} \\
 1643 \quad & \\
 1644 \quad & \mathbb{E}_t[\|\mathbf{R}_{x_t}^{-1}(x_{t,k}^j)\|^2] = \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j \in \mathcal{S}_t} \frac{1}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j) \right) \right\|^2 \right] \\
 1645 \quad & = \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N \mathbb{I}_{\mathcal{S}_t}(j) \frac{1}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j) \right) \right\|^2 \right] \\
 1646 \quad & = \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N \mathbb{I}_{\mathcal{S}_t}(j) \frac{1}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j) - \text{grad}f_j(x_{t,k}^j) \right. \right. \\
 1647 \quad & \left. \left. + \text{grad}f_j(x_{t,k}^j) \right) \right\|^2 \right] \\
 1648 \quad & = \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{\mathbb{I}_{\mathcal{S}_t}(j)}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j) - \text{grad}f_j(x_{t,k}^j) \right) \right\|^2 \right] \\
 1649 \quad & + \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{\mathbb{I}_{\mathcal{S}_t}(j)}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j) \right) \right\|^2 \right] \\
 1650 \quad & = \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{\mathbb{I}_{\mathcal{S}_t}(j)}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j) - \text{grad}f_j(x_{t,k}^j) \right) \right\|^2 \right] \\
 1651 \quad & + \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{\mathbb{I}_{\mathcal{S}_t}(j)}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\text{grad}f_j(x_{t,k}^j) \right) \right\|^2 \right] \\
 1652 \quad & = \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{\mathbb{I}_{\mathcal{S}_t}(j)}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad}f_j(x_{t,k}^j; \xi_{t,k,b}^j) - \text{grad}f_j(x_{t,k}^j) \right) \right\|^2 \right] \\
 1653 \quad & + \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N (\mathbb{I}_{\mathcal{S}_t}(j) - p_j + p_j) \frac{1}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\text{grad}f_j(x_{t,k}^j) \right) \right\|^2 \right] \\
 1654 \quad & \leq \frac{\varpi^2 \alpha_t^2 \Upsilon^2 \sigma_L^2 K}{N^2 B_t} \sum_{j=1}^N \frac{p_j}{(q_t^j)^2} + \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N (\mathbb{I}_{\mathcal{S}_t}(j) - p_j) \frac{1}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} (\text{grad}f_j(x_{t,k}^j)) \right\|^2 \right] \\
 1655 \quad & + \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} (\text{grad}f_j(x_{t,k}^j)) \right\|^2 \right] \\
 1656 \quad & \\
 1657 \quad & \\
 1658 \quad & \\
 1659 \quad & \\
 1660 \quad & \\
 1661 \quad & \\
 1662 \quad & \\
 1663 \quad & \\
 1664 \quad & \\
 1665 \quad & \\
 1666 \quad & \\
 1667 \quad & \\
 1668 \quad & \\
 1669 \quad & \\
 1670 \quad & \\
 1671 \quad & \\
 1672 \quad & \\
 1673 \quad &
 \end{aligned} \tag{D.10}$$

$$\begin{aligned}
&= \frac{\varpi^2 \alpha_t^2 \Upsilon^2 \sigma_L^2 K}{N^2 B_t} \sum_{j=1}^N \frac{p_j}{(q_t^j)^2} + \frac{\varpi^2 \alpha_t^2}{N^2} \sum_{j=1}^N \frac{p_j(1-p_j)}{(q_t^j)^2} \mathbb{E}_t \left[\left\| \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} (\text{grad} f_j(x_{t,k}^j)) \right\|^2 \right] \\
&\quad + \varpi^2 \alpha_t^2 \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} (\text{grad} f_j(x_{t,k}^j)) \right\|^2 \right] \\
&\leq \frac{\varpi^2 \alpha_t^2 \Upsilon^2 \sigma_L^2 \delta_3^2 K}{B_t} + \varpi^2 \alpha_t^2 \Upsilon^2 P^2 K^2 \delta_4^2 + \varpi^2 \alpha_t^2 K \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j} (\text{grad} f_j(x_{t,k}^j)) \right\|^2 \right]
\end{aligned}$$

where the fourth equality follows that

$$\mathbb{E} \left[\sum_{j=1}^N \sum_{k=0}^{K-1} \frac{\mathbb{I}_{\mathcal{S}_t}(j)}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad} f_j(x_{t,k}^j; \xi_{t,k,b}^j) \right) \right] = \sum_{j=1}^N \sum_{k=0}^{K-1} \frac{\mathbb{I}_{\mathcal{S}_t}(j)}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j} (\text{grad} f_j(x_{t,k}^j))$$

and that $\mathbb{E}[\|u\|^2] = \mathbb{E}[\|u - \mathbb{E}[u]\|^2] + \|\mathbb{E}[u]\|^2$, the first inequality follows that

$$\mathbb{E} \left[\sum_{j=1}^N \sum_{k=0}^{K-1} \frac{\mathbb{I}_{\mathcal{S}_t}(j)}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j} \left(\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad} f_j(x_{t,k}^j; \xi_{t,k,b}^j) - \text{grad} f_j(x_{t,k}^j) \right) \right] = 0$$

and that $\mathbb{E}[\|\sum_{i=1}^n u_i\|^2] = \sum_{i=1}^n \mathbb{E}[\|u_i\|^2]$ with u_i being independent and having zero mean, that $\|\mathcal{T}_\eta(\zeta)\| \leq \Upsilon$ (Assumption 3.1), and Assumption 3.6, the sixth equality follows that

$$\mathbb{E} \left[\sum_{j=1}^N (\mathbb{I}_{\mathcal{S}_t}(j) - p_j) \frac{1}{q_t^j N} \sum_{k=0}^{K-1} \mathcal{T}_{\tilde{\eta}_{t,k}^j} (\text{grad} f_j(x_{t,k}^j)) \right] = 0,$$

and that $\mathbb{E}[(\mathbb{I}_{\mathcal{S}_t}(j) - p_j)^2] = p_j(1 - p_j)$, and the last inequality follows that $\delta_3^2 = \max_{t \geq 1} \left\{ \frac{1}{N^2} \sum_{j=1}^N \frac{p_j}{(q_t^j)^2} \right\}$, $\delta_4^2 = \max_{t \geq 1} \left\{ \frac{1}{N^2} \sum_{j=1}^N \frac{p_j(1-p_j)}{(q_t^j)^2} \right\}$, and $\|\sum_{i=1}^n u_i\|^2 \leq n \sum_{i=1}^n \|u_i\|^2$. \square

Now we can formally state the descent lemma in the Riemannian FL setting.

Lemma D.5. *Under Assumptions 3.1-3.8, we run Algorithm 1 with batch size B_t and step sizes $\varpi > 0$ and $\{\alpha_t\}$ satisfying*

$$1 \geq KL_g \varpi \alpha_t. \quad (\text{D.12})$$

Then, we have

$$\mathbb{E}_t[F(x_{t+1})] - F(x_t) \leq -\frac{\varpi \alpha_t K}{2} \|\text{grad} F(x_t)\|^2 + \varpi \alpha_t^2 K Q(K, B_t, \alpha_t, \varpi), \quad (\text{D.13})$$

where $Q(K, B_t, \alpha_t, \varpi) = (2K - 1)(K - 1)L_f^2 \delta_1^2 P^2 (J^2 + \alpha_t^2 P^2 H^2) \alpha_t / 6 + GP^2 \delta_2^2 + \Upsilon^2 P^2 \delta_4^2 K L_g \varpi + \frac{L_g \delta_3^2 \sigma_L^2 \Upsilon^2 \varpi}{2B_t}$.

Proof of Lemma D.5. By the L_g -retraction smoothness of F , it follows for $t \geq 1$ that

$$F(x_{t+1}) \leq F(x_t) + \langle \text{grad} F(x_t), \mathbf{R}_{x_t}^{-1}(x_{t+1}) \rangle + \frac{L_g}{2} \|\mathbf{R}_{x_t}^{-1}(x_{t+1})\|^2,$$

where the existence of $\mathbf{R}_{x_t}^{-1}(x_{t+1})$ is guaranteed by Assumption 3.2. Taking expectation on both sides over the randomness over the t -th outer iteration yields

$$\mathbb{E}_t[F(x_{t+1})] \leq F(x_t) + \mathbb{E}_t[\langle \text{grad} F(x_t), \mathbf{R}_{x_t}^{-1}(x_{t+1}) \rangle] + \frac{L_g}{2} \mathbb{E}_t[\|\mathbf{R}_{x_t}^{-1}(x_{t+1})\|^2]. \quad (\text{D.14})$$

Inequality equation D.14 together with Lemmas D.1, D.3, and D.4 give rise to

$$\mathbb{E}_t[F(x_{t+1})] - F(x_t) \leq -\frac{\varpi \alpha_t K}{2} \|\text{grad} F(x_t)\|^2 + \frac{1}{6} (2K - 1) K (K - 1) L_f^2 \delta_1^2 P^2 (J^2 + \alpha_t^2 P^2 H^2) \varpi \alpha_t^3$$

$$\begin{aligned}
& -\frac{\varpi\alpha_t}{2}(1-KL_g\varpi\alpha_t) \sum_{k=0}^{K-1} \mathbb{E}_t \left[\left\| \sum_{j=1}^N \frac{p_j}{q_t^j N} \mathcal{T}_{\tilde{\eta}_{t,k}^j}(\text{grad}f_j(x_{t,k}^j)) \right\|^2 \right] \\
& + \varpi\alpha_t^2 KGP^2\delta_2^2 + L_g\varpi^2\alpha_t^2\Upsilon^2P^2K^2\delta_4^2 + \frac{KL_g\sigma_L^2\Upsilon^2\delta_3^2\varpi^2\alpha_t^2}{2B_t}.
\end{aligned} \tag{D.15}$$

Under Condition (D.12), the third term on the right-hand side of (D.15) can be discarded and then we obtain

$$\begin{aligned}
\mathbb{E}_t[F(x_{t+1})] - F(x_t) & \leq -\frac{\varpi\alpha_t K}{2} \|\text{grad}F(x_t)\|^2 + \varpi\alpha_t^2 KGP^2\delta_2^2 + \frac{KL_g\sigma_L^2\Upsilon^2\delta_3^2\varpi^2\alpha_t^2}{2B_t} \\
& + L_g\varpi^2\alpha_t^2\Upsilon^2P^2K^2\delta_4^2 + \frac{1}{6}(2K-1)K(K-1)L_f^2\delta_1^2P^2(J^2 + \alpha_t^2P^2H^2)\varpi\alpha_t^3 \\
& = -\frac{\varpi\alpha_t K}{2} \|\text{grad}F(x_t)\|^2 + \varpi\alpha_t^2 KQ(K, B_t, \alpha_t, \varpi)
\end{aligned}$$

where $Q(K, B_t, \alpha_t, \varpi) = (2K-1)(K-1)L_f^2\delta_1^2P^2(J^2 + \alpha_t^2P^2H^2)\alpha_t/6 + GP^2\delta_2^2 + \Upsilon^2P^2\delta_4^2KL_g\varpi + \frac{L_g\delta_3^2\sigma_L^2\Upsilon^2\varpi}{2B_t}$. \square

Note that $Q(K, B_t, \alpha_t, \varpi)$ in (D.13) consists of four error terms: the first one resulted from the agent drift effect and non-I.I.D. setting, the second one brought by the probability approximating, the third one caused by partial participation, and the fourth one caused by the local stochastic gradient.

D.2 PROOF OF THEOREM 3.1

Now we are ready to prove Theorem 3.1.

Theorem 3.2. The second condition in (3.1) ensure $\{\alpha_t\} \rightarrow 0$, and thus, without loss of generality, we may assume that $L_gK\varpi\alpha_t \leq 1$ for all $t \in \mathbb{N}_+$. Then, it follows from D.5 that

$$\alpha_t \|\text{grad}F(x_t)\|^2 \leq \frac{2(F(x_{t+1}) - \mathbb{E}_t[F(x_t)])}{K\varpi} + \alpha_t^2 Q(K, B_t, \alpha_t, \varpi).$$

Summing the inequality above over $t = 1, 2, \dots, T$ and taking total expectation yields

$$\begin{aligned}
\sum_{t=1}^T \alpha_t \mathbb{E}[\|\text{grad}F(x_t)\|^2] & \leq \frac{2\mathbb{E}[F(x_0) - F(x_{T+1})]}{K\varpi} + \sum_{t=1}^T \alpha_t^2 Q(K, B_t, \alpha_t, \varpi) \\
& \leq \frac{2(F(x_0) - F(x^*))}{K\varpi} + \sum_{t=1}^T \alpha_t^2 Q(K, B_t, \alpha_t, \varpi).
\end{aligned}$$

Dividing the both side by $A_T = \sum_{t=1}^T \alpha_t$ results in the bound for the weighted average norm of the squared gradients as follows

$$\frac{1}{A_T} \sum_{t=1}^T \alpha_t \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq \frac{2(F(x_0) - F(x^*))}{K\varpi A_T} + \frac{1}{A_T} \sum_{t=1}^T \alpha_t^2 Q(K, B_t, \alpha_t, \varpi), \tag{D.16}$$

which, under Conditions (3.1), implies that

$$\lim_{T \rightarrow \infty} \frac{1}{A_T} \sum_{t=1}^T \alpha_t \mathbb{E}[\|\text{grad}F(x_t)\|^2] = 0.$$

The desired result follows the fact above. \square

1782 D.3 PROOF OF THEOREM 3.2
1783

1784 *Theorem 3.2.* By the definition of α_t , there exists a positive constant $M > 0$ such that
1785 $\sum_{t=1}^T \alpha_t^2, \sum_{t=1}^T \alpha_t^3, \sum_{t=1}^T \alpha_t^4, \sum_{t=1}^T \alpha_t^5 \leq M$ for all $T \geq 1$. Then,
1786

$$1787 \sum_{t=1}^T \alpha_t^2 Q(K, B_{\text{low}}, \alpha_t, \varpi) \leq \frac{1}{6} (2K-1)(K-1) L_f^2 \delta_1^2 P^2 (J^2 + P^2 H^2) M \\ 1788 + GP^2 \delta_2^2 M + P^2 \delta_4^2 K L_g \varpi M + \frac{L_g \delta_3^2 \sigma_L^2 \Upsilon^2 \varpi}{2B_{\text{low}}} M. \quad (\text{D.17})$$

1792 On the other hand,

$$1793 A_T = \sum_{t=1}^T \frac{\alpha_0}{(\beta+t)^p} \geq \int_{t=1}^{T+1} \frac{\alpha_0}{(\beta+t)^p} dt = \begin{cases} \alpha_0 (\ln(T+1+\beta) - \ln(\beta+1)) & p = 1, \\ \frac{\alpha_0}{1-p} ((T+1+\beta)^{1-p} - (b+1)^{1-p}) & p \in (1/2, 1), \end{cases}$$

1794 which gives

$$1795 \frac{1}{A_T} \leq \begin{cases} \frac{1}{\alpha_0 (\ln(T+1+\beta) - \ln(\beta+1))} & p = 1, \\ \frac{1-p}{\alpha_0 ((T+1+\beta)^{1-p} - (b+1)^{1-p})} & p \in (1/2, 1). \end{cases} \quad (\text{D.18})$$

1801 Plugging (D.17) and (D.18) into (D.16) ensures the desired result. \square
1802

1803 In particular, if full agents participate in any round of communication and agents use local full
1804 gradient in local updates, implying $G = 0$, $\delta_4^2 = 0$, and $\sigma_L^2 = 0$, then we have
1805

$$1806 \sum_{t=1}^T \alpha_t^2 Q(K, B_{\text{low}}, \alpha_t, \varpi) = \frac{1}{6} (2K-1)(K-1) L_f^2 \delta_1^2 P^2 (J^2 \sum_{t=1}^T \alpha_t^3 + P^2 H^2 \sum_{t=1}^T \alpha_t^4).$$

1807 Hence, we can relax the condition for α_t as $\sum_{t=1}^{\infty} \alpha_t = \infty$ and $\sum_{t=1}^{\infty} \alpha_t^3 < \infty$. If one takes
1808 $\alpha_t = \frac{\alpha_0}{(\beta+t)^p}$ with constants $\alpha_0, \beta, p = 1/3 + a$ and $a \in (0, 2/3)$ properly small, it follows that
1809

$$1810 \frac{1}{A_T} \sum_{t=1}^T \alpha_t \mathbb{E}_t [\|\text{grad}F(x_t)\|^2] \leq \frac{M(a)}{(\beta+T)^{2/3-a}},$$

1811 where $M(a)$ is a constant depended on a . The smaller a the larger $M(a)$.
1812

1813 D.4 PROOF OF THEOREM 3.3

1814 *Theorem 3.3.* By Lemma D.5 and the RPL condition, we have
1815

$$1816 \mathbb{E}_t [F(x_{t+1})] - F(x^*) + (F(x^*) - F(x_t)) \leq -\mu \varpi K \alpha_t (F(x_t) - F(x^*)) + \varpi \alpha_t^2 K Q(K, B_{\text{low}}, \alpha_t, \varpi). \quad (\text{D.19})$$

1817 Rearranging this inequality yields
1818

$$1819 \mathbb{E}[F(x_{t+1})] - F(x^*) \leq (1 - \mu \varpi K \alpha_t) (\mathbb{E}[F(x_t)] - F(x^*)) + \varpi \alpha_t^2 K Q(K, B_{\text{low}}, \alpha_1, \varpi), \quad (\text{D.19})$$

1820 where we take the total expectation on both sides. Subsequently, we prove the desired result by
1821 induction. For $t = 1$, it follows from the definition of ν . Now assume that (3.2) holds for $t \geq 1$.
1822 Then, from (D.19), it follows that
1823

$$1824 \mathbb{E}[F(x_{t+1})] - F(x^*) \leq \left(1 - \frac{\beta \mu \varpi K}{t}\right) \nu + \frac{\varpi K \beta^2}{t^2} Q(K, B_{\text{low}}, \alpha_1, \varpi) \\ 1825 = \left(\frac{t - \beta \mu \varpi K}{t^2}\right) \nu + \frac{\varpi K \beta^2}{t^2} Q(K, B_{\text{low}}, \alpha_1, \varpi) \\ 1826 = \left(\frac{t-1}{t^2}\right) \nu - \left(\frac{\beta \mu \varpi K - 1}{t^2}\right) \nu + \frac{\varpi K \beta^2}{t^2} Q(K, B_{\text{low}}, \alpha_1, \varpi) \\ 1827 \leq \frac{\nu}{t+1}, \quad (\text{D.20})$$

1836 where $t = \gamma + t$, the last inequality is due to $-\left(\frac{\beta\mu\kappa K-1}{t^2}\right)\nu + \frac{\varpi K\beta^2}{t^2}Q(K, B_{\text{low}}) \leq 0$ by the
 1837 definition of ν and $t^2 \geq (t-1)(t+1)$.
 1838

1839 On the other hand, for any two points $x, y \in \mathcal{W}$, it follows from the L_g -smoothness of F that
 1840

$$1841 F(y) \leq F(x) + \langle \text{grad}F(x), \mathbf{R}_x^{-1}(y) \rangle + \frac{L_g}{2} \|\mathbf{R}_x^{-1}(y)\|^2. \\ 1842$$

1843 Plugging $y = \mathbf{R}_x(-\frac{1}{L_g} \text{grad}F(x))$ into the inequality above yields
 1844

$$1845 F(x^*) \leq F(y) \leq F(x) - \frac{1}{2L_g} \|\text{grad}F(x)\|^2, \\ 1846$$

1847 which gives $\frac{1}{2L_g} \|\text{grad}F(x)\|^2 \leq F(x) - F(x^*)$. Replacing x with x_t and plugging the replaced
 1848 inequality into Inequality (D.20) yields
 1849

$$1850 \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq \frac{2L_g\nu}{\gamma + t}, \\ 1851$$

1852 which completes the proof. □
 1853

1854 D.5 PROOF OF THEOREM 3.4

1855 Here we rewrite Theorem 3.5 as the following more complete statement.

1856 **Theorem D.2.** *Suppose that Assumptions 3.1-3.8 hold. We run Algorithm 1 with a fixed global step
 1857 size ϖ , a fixed batch size B , and a fixed number of local updates K .*

1860 1. *If the fixed step sizes α and ϖ satisfy $\alpha\varpi K L_g \leq 1$, then*

$$1861 \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq \frac{2\Theta(x_1)}{\varpi\alpha K T} + 2\alpha Q(K, B, \alpha, \varpi). \\ 1862 \quad (D.21)$$

1863 2. *If local full gradient descent step is performed in local updates, i.e., $\sigma_L = 0$, and one takes
 1864 a local fixed step size $\alpha > 0$ such that $\alpha = \sqrt{\frac{\Theta(x_1)}{2\varpi P^2(G\delta_2^2 + \Upsilon^2\delta_4^2 K L_g \varpi) K T}}$ with T satisfying
 1865 $T \geq \max \left\{ \frac{\varpi K L_g^2 \Theta(x_1)}{2P^2(G\delta_2^2 + K L_g \varpi \Upsilon^2 \delta_4^2)}, \frac{\Theta(x_1)(2K-1)^2(K-1)^2 L_f^4 \delta_f^4 (\varpi^2 L_g^2 J^2 K^2 + P^2 H^2)^2}{72P^2 L_g^4 K^4 \varpi^5 (G\delta_2^2 + K L_g \varpi \Upsilon^2 \delta_4^2)^3} \right\}$, then*

$$1866 \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq 4P \sqrt{2\Theta(x_1) \left(\frac{G\delta_2^2}{\varpi K T} + \frac{L_g \Upsilon^2 \delta_4^2}{T} \right)}. \\ 1867$$

1868 3. *If the true probabilities are known, meaning $G = 0$, and one takes local and global
 1869 step sizes α and ϖ such that $\alpha\varpi = \sqrt{\frac{\Theta(x_1)B}{(\delta_3^2\sigma_L^2 + 2P^2\delta_4^2 K B)\Upsilon^2 L_g K T}}$ with T satisfying $T \geq$
 1870 $\max \left\{ \frac{K L_g \Theta(x_1) B}{(\delta_3^2\sigma_L^2 + 2P^2\delta_4^2 K B)\Upsilon^2}, \frac{\Theta(x_1)(2K-1)^2(K-1)^2 L_f^4 \delta_f^4 P^4 (L_g^2 \varpi^2 J^2 K^2 + P^2 H^2)^2 B^3}{9(\delta_3^2\sigma_L^2 + 2P^2\delta_4^2 K B)^3 \Upsilon^6 L_g^7 \varpi^6 K^5} \right\}$, then*

$$1871 \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq 4\Upsilon \sqrt{L_g \Theta(x_1) \left(\frac{\delta_3^2\sigma_L^2}{K T B} + \frac{2P^2\delta_4^2}{T} \right)}. \\ 1872$$

1873 *Proof.* Item 1. Using $\alpha_t = \alpha$ and $B_t = B$ in Lemma D.5, we have

$$1874 \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq \frac{2\mathbb{E}[F(x_t) - F(x_{t+1})]}{\varpi\alpha K} + 2\alpha Q(K, B, \alpha_t, \varpi). \\ 1875$$

1876 Summing the inequality above over $t = 1, 2, \dots, T$ gives rise to

$$1877 \frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\text{grad}F(x_t)\|^2] \leq \frac{2\mathbb{E}[F(x_0) - F(x_{T+1})]}{\varpi\alpha K T} + 2\alpha Q(K, B, \alpha, \varpi) \\ 1878 \\ 1879 \leq \frac{2(F(x_0) - F(x^*))}{\varpi\alpha K T} + 2\alpha Q(K, B, \alpha, \varpi), \\ 1880$$

1890 where the last inequality follows $F(x^*) \leq F(x_{T+1})$.
1891 Item 2. In particular, suppose that let α and ϖ satisfy
1892
$$\frac{1}{6}(2K-1)(K-1)L_f^2\delta_1^2P^2(J^2+\alpha^2P^2H^2)\alpha \leq GP^2\delta_2^2+\Upsilon^2P^2\delta_4^2KL_g\varpi. \quad (\text{D.22})$$

1893 Define $h(\alpha) = \frac{2\Theta(x_1)}{\varpi\alpha KT} + 4\alpha GP^2\delta_2^2 + 4\Upsilon^2P^2\delta_4^2KL_g\varpi\alpha$. Solving $\alpha^* = \arg \min_{\alpha>0} h(\alpha)$ results in
1894
$$\alpha^* = \sqrt{\frac{\Theta(x_1)}{2\varpi P^2(G\delta_2^2+\Upsilon^2\delta_4^2KL_g\varpi)KT}}, \text{ and } h(\alpha^*) = 4P\sqrt{2\Theta(x_1)\left(\frac{G\delta_2^2}{\varpi KT} + \frac{L_g\Upsilon^2\delta_4^2}{T}\right)}.$$

1895

1896 Taking
1897
$$T \geq \max\left\{\frac{\varpi KL_g^2\Theta(x_1)}{2P^2(G\delta_2^2+KL_g\varpi\Upsilon^2\delta_4^2)}, \frac{\Theta(x_1)(2K-1)^2(K-1)^2L_f^4\delta_1^4(\varpi^2L_g^2J^2K^2+P^2H^2)^2}{72P^2L_g^4K^4\varpi^5(G\delta_2^2+KL_g\varpi\Upsilon^2\delta_4^2)^3}\right\}$$

1898 can ensure that $\alpha^*\varpi KL_g \leq 1$ and that (D.22) holds. Hence, the left-hand side of (D.21) is not
1899 greater than $h(\alpha^*)$. The proof for Item 3 is similar to that for Item 2. \square

1900 **Remark D.1.** Continuing with Remark 3.3, If the probabilities p_i are known, i.e., $q_t^i = p_i$, and
1901 $p_{\min} = \min_i\{p_i\}$ is not too small and not fairly far away from $p_{\max} = \max_i\{p_i\}$, Item 2 gives the
1902 upper bound as $\mathcal{O}(\frac{1}{\sqrt{\varpi KT}}) + \mathcal{O}(\frac{1}{\sqrt{p_{\min}NT}})$. In particular, if $p_i = \frac{S}{N}$ with $S \leq N$, the upper bound
1903 becomes $\mathcal{O}(\frac{1}{\sqrt{\varpi KT}}) + \mathcal{O}(\frac{1}{\sqrt{ST}})$.
1904

1910 D.6 PROOF OF THEOREM 3.5

1911 **Theorem 3.5.** Using a fixed stepsize $\alpha_t = \alpha \leq 1/(\mu\varpi K)$ satisfying Condition (D.12) and batchsize
1912 $B_{t,k} \in [B_{\text{low}}, B_{\text{up}}]$, it follows from (D.19) that

$$1913 \mathbb{E}[F(x_{t+1})] - F(x^*) \leq (1 - \mu\varpi K\alpha)\mathbb{E}[F(x_t)] - F(x^*) + \varpi\alpha^2 K Q(K, S, B_{\text{low}}, \alpha, \varpi),$$

1914 which implies that

$$\begin{aligned} 1915 \mathbb{E}[F(x_T)] - F(x^*) &\leq (1 - \mu\varpi K\alpha)\mathbb{E}[F(x_{T-1})] - F(x^*) + \varpi\alpha^2 K Q(K, B_{\text{low}}, \alpha, \varpi) \\ 1916 &\leq (1 - \mu\varpi K\alpha)^2(\mathbb{E}[F(x_{T-2})] - F(x^*)) + ((1 - \mu\varpi K\alpha) + 1)\varpi\alpha^2 K Q(K, B_{\text{low}}, \varrho, \varpi) \\ 1917 &\quad \dots \\ 1918 &\leq (1 - \mu\varpi K\alpha)^{T-1}(\mathbb{E}[F(x_1)] - F(x^*)) + \sum_{\tau=0}^{T-1} (1 - \mu\varpi K\alpha)^{\tau} \varpi\alpha^2 K Q(K, B_{\text{low}}, \alpha, \varpi) \\ 1919 &= (1 - \mu\varpi K\alpha)^{T-1}\Theta(x_1) + \frac{1 - (1 - \mu\varpi K\alpha)^T}{\mu\varpi K\alpha} \varpi\alpha^2 K Q(K, B_{\text{low}}, \alpha, \varpi) \\ 1920 &\leq (1 - \mu\varpi K\alpha)^{T-1}\Theta(x_1) + \frac{\alpha}{\mu} Q(K, B_{\text{low}}, \alpha, \varpi), \end{aligned}$$

1921 which completes the proof. \square

1922 D.7 PROOF OF THEOREM 3.6

1923 **Theorem 3.6.** Restricting $q_t^i \in [p_i/2, 3p_i/2]$ yields $\mathbb{P}\{|q_t^i - p_i| \leq p_i/2\} \geq 1 - \min\{2e^{-tp_i^2/2}, 4(1 - p_i)/(tp_i)\}$ by the Hoeffding's and Chebyshev's inequalities. Then

$$1924 \left| \frac{1}{q_t^i} - \frac{1}{p_i} \right| = \left| \frac{q_t^i - p_i}{q_t^i p_i} \right| \leq \frac{2}{p_i^2} |q_t^i - p_i|$$

1925 holds with probability not less than $1 - \min\{2e^{-tp_i^2/2}, 4(1 - p_i)/(tp_i)\}$. Noting that under $q_t^i \in [p_i/2, 3p_i/2]$, $\frac{2}{p_i^2} |q_t^i - p_i| \leq \mathcal{G}t^{-a/2}$ (i.e., $|q_t^i - p_i| \leq \frac{\mathcal{G}}{2}p_i^2t^{-a/2}$) implies $|(q_t^i)^{-1} - p_i^{-1}| \leq \mathcal{G}t^{-a/2}$,
1926 and that

$$1927 \mathbb{P}\left\{|q_t^i - p_i| \leq \frac{\mathcal{G}}{2}p_i^2t^{-a/2}\right\} \geq 1 - \min\left\{2e^{-\frac{\mathcal{G}^2p_i^4}{2}t^{1-a}}, \frac{4(1 - p_i)}{\mathcal{G}^2p_i^3t^{1-a}}\right\},$$

1928 where we use the Hoeffding's and Chebyshev's inequalities again. Let $\mathcal{A} := \{|(q_t^i)^{-1} - p_i^{-1}| \leq \mathcal{G}t^{-a/2}\}$, $\mathcal{B} := \{q_t^i \in [p_i/2, 3p_i/2]\}$, and $\mathcal{C} := \{|q_t^i - p_i| \leq \frac{\mathcal{G}}{2}p_i^2t^{-a/2}\}$. The desired result follows
1929 $\mathcal{B} \cap \mathcal{C} \subseteq \mathcal{A}$ and $\mathbb{P}\{\mathcal{B} \cap \mathcal{C}\} \geq 1 - \mathbb{P}\{\mathcal{B}^c\} - \mathbb{P}\{\mathcal{C}^c\}$. \square

1944 **E SUPPLEMENTARY PROOFS**

1945 **E.1 PROOF OF THEOREM 2.1**

1946 **Lemma E.1.** *Let x_1, x_2, \dots, x_N be independent Bernoulli random variables with $p_i > 0$, i.e.,*

1947 *$x_i \sim \text{Bernoulli}(p_i)$. Then,*

$$1950 \quad \mathbb{E} \left[\frac{1}{1 + \sum_{i=1}^N x_i} \right] = \int_0^1 \prod_{i=1}^N (1 - p_i + p_i t) dt.$$

1951 *Proof.* Let $S = \sum_{i=1}^N x_i$. Considering that for any $a > 0$, it follows $\frac{1}{a} = \int_0^\infty e^{-at} dt$. Picking

1952 $\alpha = 1 + S > 0$ yields

$$1953 \quad \frac{1}{1 + \sum_{i=1}^N x_i} = \frac{1}{1 + S} = \int_0^\infty e^{-t} e^{-St} dt.$$

1954 Taking expectation for both sides of the equality above, we have

$$1955 \quad \mathbb{E} \left[\frac{1}{1 + \sum_{i=1}^N x_i} \right] = \mathbb{E} \left[\int_0^\infty e^{-t} e^{-St} dt \right] = \int_0^\infty e^{-t} \mathbb{E}[e^{-St}] dt,$$

1956 where the second equality is due to that e^{-St} is a discrete random variable. Since x_i is independent

1957 and $S = \sum_{i=1}^N x_i$, it follows $\mathbb{E}[e^{-St}] = \prod_{i=1}^N \mathbb{E}[e^{-x_i t}]$. Noting that $\mathbb{E}[e^{-x_i t}] = p_i e^{-t} + (1 - p_i)$,

1958 we obtain $\mathbb{E}[e^{-St}] = \prod_{i=1}^N (p_i e^{-t} + (1 - p_i))$. Finally, let $u = e^{-t}$. Then $du = -e^{-t} dt$, $u \rightarrow 1$ as

1959 $t \rightarrow 0$, and $u \rightarrow 0$ as $t \rightarrow \infty$. Hence,

$$1960 \quad \int_0^\infty e^{-t} \mathbb{E}[e^{-St}] dt = \int_0^1 \prod_{i=1}^N (1 - p_i + p_i u) du,$$

1961 which completes the proof. \square

1962 Now we are ready to prove Theorem 2.1.

1963 *Proof of Theorem 2.1.* At the t -th outer iteration, \mathcal{S}_t denotes the indices set of agents who send their

1964 gradient streams to the server. Let $x_i = \begin{cases} 1 & i \in \mathcal{S}_t, \\ 0 & i \notin \mathcal{S}_t. \end{cases}$ Then

$$1965 \quad \mathbb{E} \left[\sum_{i \in \mathcal{S}_t} \frac{1}{|\mathcal{S}_t|} \text{grad} f_i(x) \right] = \sum_{i=1}^N \text{grad} f_i(x) \mathbb{E} \left[\frac{x_i}{\sum_{i=1}^N x_i} \right]. \quad (\text{E.1})$$

1966 Noting that $\mathbb{E} \left[\frac{x_i}{\sum_{i=1}^N x_i} \right] = \mathbb{E} \left[\mathbb{E} \left[\frac{x_i}{\sum_{i=1}^N x_i} \right] \middle| x_i \right] = p_i \mathbb{E} \left[\frac{1}{1 + \sum_{j \neq i} x_j} \right]$. Since $x_j \sim \text{Bernoulli}(p_j)$ is

1967 independent, by Lemma E.1, we have $\mathbb{E} \left[\frac{1}{1 + \sum_{j \neq i} x_j} \right] = \int_0^1 \prod_{j \neq i}^N (1 - p_j + p_j t) dt$. Plugging these

1968 intermediate results into (E.1) leads to the desired result. \square

1969 **E.2 PROOF OF THE CLAIM IN REMARK 3.4**

1970 In general, it is difficult to verify directly whether the objective function satisfies the PL (in the

1971 Euclidean setting) or RPL (in the Riemannian setting) property. There are some stronger but useful

1972 sufficient conditions that imply PL or RPL condition. Specifically, in the Euclidean setting, a strongly

1973 convex function satisfies the PL condition (Bottou et al., 2018). Similarly, in the Riemannian setting,

1974 the geodesic strong convexity of real-valued functions implies the RPL property (Boumal, 2023).

1975 However, geodesic strong convexity usually requires the use of exponential mapping and its inverse,

1976 whose the closed-form expression is not available in some manifolds, e.g., the Stiefel manifold. In the

1977 next theorem, we use a more general notion of the strong convexity of real-valued functions—strong

1978 retraction-convexity, in the Riemannian setting than geodesic strong convexity and claim that a

1979 strongly retraction-convex function also satisfies RPL condition.

1998 **Theorem E.1.** Suppose that function $q : \mathcal{M} \rightarrow \mathbb{R}$ is twice continuously differentiable and μ -
 1999 strongly retraction-convex with respect to the retraction R on $\mathcal{W} \subseteq \mathcal{M}$, which is a totally retractive
 2000 neighborhood of x^* , a minimizer of q on \mathcal{W} . Then,
 2001

$$2002 \quad q(x) - q(x^*) \leq \frac{1}{2\mu} \|\text{grad}q(x)\|^2, \\ 2003$$

2004 that is, q satisfies the RPL condition on \mathcal{W} .
 2005

2006 *Proof.* From the proof of Huang et al. (2015, Lemma 3.2), the μ -strongly retraction-convexity of q
 2007 implies that

$$2008 \quad q(y) - q(x) \geq \langle \text{grad}q(x), \eta \rangle + \frac{\mu}{2} \|\eta\|^2, \quad (\text{E.2}) \\ 2009$$

2010 for any $x \in \mathcal{W}$, $\eta \in T_x \mathcal{M}$, and $y = R_x(\eta) \in \mathcal{W}$. Define $q_x(\eta) = q(x) + \langle \text{grad}q(x), \eta \rangle + \frac{\mu}{2} \|\eta\|^2$
 2011 with $\eta \in T_x \mathcal{M}$, which is μ -strongly convex with respect to η (in classical), implying that the
 2012 unique minimizer of q_x is given by $\eta^* = -\frac{1}{\mu} \text{grad}q(x)$. Thus, $\min_{\eta \in T_x \mathcal{M}} q_x(\eta) = q_x(\eta^*) =$
 2013 $q(x) - \frac{1}{2\mu} \|\text{grad}q(x)\|^2$. It follows from (E.2) that
 2014

$$2015 \quad q(x^*) \geq q(x) + \langle \text{grad}q(x), \eta \rangle + \frac{\mu}{2} \|\eta\|^2 \geq q_x(\eta^*) = q(x) - \frac{1}{2\mu} \|\text{grad}q(x)\|^2, \\ 2016$$

2017 which completes the proof. □
 2018

2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051

2052
2053

RESPONSE TO REVIEWERS

2054

2055

1# REVIEWER ZBLO: RATING 6, CONFIDENCE 3

2056

2057

W1. While I understand the reasonableness of G , I am wondering what the value of G would be when the true probabilities are not available to the server in the experiments.

2060

2061

2062

2063

2064

2065

A1. The precise value of G is not easily available if the true probabilities are not available. However, we want to emphasize that the constant G is **only used in theory**, but not used as an input of the proposed algorithm. We are more concerned with the existence of this constant than with obtaining its precise value. Theorem 3.6 **guarantees** the existence of G under some reasonable assumptions. In the experiments, we did not need the precise value of G and the proposed algorithm RFedAGS works well in various scenarios.

2066

2067

W2. How are the data partitioned across clients? How many total clients are included in the experiments, and what is the client participation ratio?

2068

2069

2070

2071

2072

A2. In Appendix A.3, we give the details of the experiment settings. Specifically, for the MNIST and CIFRA10 datasets, we partition the data for clients following the way (Pathological Non-IID) in [1]. Doing so makes the number of each tag different for clients, and thus the local datasets are non-I.I.D across clients. For PCA problem, the number of clients is 40 in the synthetic data case, and that is 50 in the MNIST data case.

2073

2074

2075

For the HSP problem, due to the nature of the dataset of mammals subtree of WordNet itself (total 1180 samples), the number of clients is set as 9.

2076

2077

2078

For the FMC problem, the number of clients is set as 50. For all of the experiments in Section 4, we set the true probability p_i following uniformly distribution $U(0, 1)$. Thus, the client participation ratio is 0.5 in expectation since $\frac{\sum_{i=1}^N \mathbb{E}[p_i]}{N} = \frac{1}{2}$.

2079

2080

2081

W3. The ablation study is somewhat limited, and the sensitivity of several important parameters is missing—for example, different participation ratios, varying numbers of local steps, and comparisons between using approximate probabilities and true probabilities.

2082

2083

A3.

2084

In Appendix A, we already show a number of ablation studies. Below, we reproduce those again.

2085

2086

2087

2088

2089

- *different participation ratio:* In Appendix A1.2, we conduct experiments to test if frequencies approximating probabilities is workable, and the impact of different participation ratio. Here we let each agent has the same true probability $p_i = \rho$. This case indeed reduces to the random sampling case, and it is expected that the performance is consistent with that of random sampling. The results are indeed so.

2090

2091

2092

2093

- *varying numbers of local steps:* In Appendix A1.4, we test the impact of different number of local updates K on the performance of RFedAGS. The results show that more K leads to faster convergence at the initial stage and introduces more noise to the final solutions, which is consistent with the theoretical finding (Theorem 3.4).

2094

2095

2096

- *comparisons between using approximate probabilities and true probabilities:* In Appendix A1.1, the results shows the performance of using frequencies is very close to that of using true probabilities.

2097

2098

2099

W4. The assumption of Lipschitz continuity for each f_i seems a bit strong, although it may be necessary for the Riemannian SGD convergence analysis. I am also curious whether this Lipschitz continuity can be empirically verified in the experiments.

2100

2101

2102

2103

2104

2105

A4. The assumption of Lipschitz continuity is a **standard requirement** for Euclidean/Riemannian optimization [2-5]. The commonly encountered problems are smooth and thus satisfy the assumption when restricted on a compact subset, which naturally hold for compact manifolds such as the Stiefel manifold. Therefore, in experiments, if the generated iterates stay in a compact subset of the manifold and the objective function is smooth, then we can empirically claim that the function is Lipschitz continuity in the compact subset. Moreover, in [4], an upper bound of Lipschitz constant is obtained for some problems under reasonable assumptions, e.g., principal eigenvector computation

2106 over sphere manifold, Frechet mean computation over SPD manifold, Wasserstein barycenter over
 2107 SPD manifold, and hyperbolic structured prediction.

2108 [1] McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks
 2109 from decentralized data. Artificial intelligence and statistics. PMLR, 2017.

2110 [2] Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
 2111 on Learning Representations (ICLR), 2019.

2112 [3] Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis
 2113 of local-update SGD algorithms. Journal of Machine Learning Research, 2021.

2114 [4] Han, A., Mishra, B., Jawanpuria, P. et al. Differentially private Riemannian optimization. Mach
 2115 Learn 113, 1133-1161 (2024).

2116 [5] Hosseini, R., Sra, S. An alternative to EM for Gaussian mixture models: batch and stochastic
 2117 Riemannian optimization. Math. Program, 2020.

2120 2# REVIEWER MU3X: RATING 4, CONFIDENCE 3

2123 *W1.* Limited novelty. The key idea—aggregating gradient flows in tangent space—is conceptually
 2124 straightforward once the FedAvg update is projected to a manifold setting.

2125 *A1.* Although our key idea builds up from FedAvg (Euclidean), it is **not a trivial generalization**
 2126 of the Euclidean counterpart.

2127 The proposed aggregation (AGS) is not simply projecting the FedAvg update, but drawing insight on
 2128 the nature of the update of FedAvg—averaging all of local stochastic gradients. To achieve this goal,
 2129 the AGS uses the standard Riemannian optimization tool—vector transport instead of projection.

2130 In fact, there exists different versions of Riemannian generalization of the aggregation. See also our
 2131 Table 1 in the paper for comparisons. However, we emphasize that **not all of them** can yield
 2132 nice theoretical results and convincing numerical performance. Our contribution to the best of our
 2133 knowledge provides the most general (relaxed) take, e.g., partial participation, non-iid data, use of
 2134 retraction, and use of bounded vector transport.

2135 *W2.* The paper lacks an argument for why RFedAGS offers a distinct or superior geometric
 2136 interpretation.

2137 *A2.* Due to the limitations of space, in the last manuscript we did not present the geometric
 2138 interpretation. We have now added the part in the revision; see Figure 1 (in the revised version). For
 2139 convenience, we restate that here.

2140 From the perspective of geometry, the (TM) “projects” the final inner iterates $x_{t,K}^j$ back to the tangent
 2141 space at x_t , then averages them and finally retracts the average into the manifold. While, in (AGS),
 2142 the intermediary negative mini-batch gradients $-\frac{1}{B_t} \sum_{b \in \mathcal{B}_{t,k}^j} \text{grad} f_i(x_{t,k}^j; \xi_{t,k,b}^j)$ are transported to
 2143 the tangent space at x_t in some way, then averages them and finally retracts the average into the
 2144 manifold.

2145 The (TM) actually is an approximation of the weighted averages of inner iterates $x_{t,K}^j$. When the
 2146 degree of heterogeneity across clients are large, the inner $x_{t,K}^j$ is closer to the minimizer of local
 2147 function f_j , and their average may be far away from the minimizer of the global function. While the
 2148 proposed (AGS) leverages the gradient information drawn from clients to generate global direction
 2149 and thus helps to alleviate this bias.

2150 *W3.* Some results tied too closely to specific manifolds. Experiments and implementation notes
 2151 (Appendix A.3) are mostly focused specific manifolds. Broader applicability to more exotic or
 2152 high-dimensional manifolds remains an open question.

2153 *A3.* We have already conducted experiments on **5 problems**, which are over the **Stiefel**
 2154 manifold (Section 4, PCA), the **hyperbolic** manifold (Section 4, HSP), the **SPD** manifold
 2155 (Section 4, FMC), the **sphere** manifold (Appendix A.1), and the **Grassmann** manifold
 2156 (Appendix A.2). Those five manifolds are commonly-encountered and widely-used in many important
 2157 applications.

Q1. Can the authors provide empirical or theoretical discussion regarding the scalability of the method as the number of agents, local dataset size, or manifold dimension increases?

A1. Thanks for your comment. We have conducted a new experiment to explore the scalability of the RFedAGS as the number of agents, local dataset size, or manifold dimension increases; see the table provided below or **Figure 16** in Appendix A.3.1 of the revision.

In the second row of the table below, we fix the local dataset size and the manifold dimension and enlarge the number of agents. In the fourth row, we enlarge local dataset size and fixed the other two factors. In the last row, we enlarge the manifold dimension and fix the other two factors. In summary, it can be observed from the table that the RFedAGS can all solve these problems of such scale, showing the scalability of RFedAGS. We would like to point out that as shown by Table 2 in the revision, number of agents, local dataset size, and manifold dimension have a linear relationship with the total computation complexity, so their increase will not cause the total computation complexity to increase sharply.

- (d, r) = (100, 5) N = 60 N = 80 N = 100 N = 150 N = 200
----- ----- ----- ----- -----
- ----- ----- S = 1000 rel_error($\times 10^{-3}$)/CPU time (s) 2.80/10.30
1.81/12.12 1.21/12.99 1.25/14.06 0.58/15.18 - (d, r) = (100, 5) S = 400 S = 800
S = 1200 S = 1600 S = 2000 N = 100 rel_error($\times 10^{-3}$)/CPU time (s) 3.44/6.59
4.31/10.79 6.57/14.83 6.69/18.34 5.40/21.03 - (d, r) = (1000, 5) (d, r) = (2000, 5)
(d, r) = (2000, 10) (d, r) = (4000, 5) (d, r) = (4000, 10) (N, S) = (50, 1000)
rel_error($\times 10^{-2}$)/CPU time (s) 1.74/13.31 1.56/24.14 1.27/49.80 1.61/41.06 1.40/101.83

Note: relative error is defined as $(F(x_t) - F^*)/F^*$ and the CPU time is equal to $\sum_{t=1}^T (S_t + \max_i A_{i,t})$ with S_t and $A_{i,t}$ being the time consumed by the server and agent i at the t -th round.

Q2. Could the method be efficiently applied to other manifolds? Are there limitations?

A2. Appendix discusses experiments on a number of applications/manifolds (5). The proposed method can efficiently work in general manifolds, not limited to Riemannian submanifolds embedded in Euclidean spaces, e.g., the Grassmann manifold. Our numerical experiments include various manifolds, including sphere manifold, Stiefel manifold, hyperbolic manifold, SPD manifold, and Grassmann manifold.

Q3. Could the method be compared with recent or advanced Riemannian federated learning algorithms (e.g., Wang et al., 2025 [1])?

A3. We were not aware of this paper at the submission time (Wang et al. paper was in arXiv in July and the ICLR deadline was in Sep). Thank you for bringing this to attention.

In the revision, we have now added the comparison of RFedAGS with the algorithm in Wang et al., 2025 [1] (called ZO-RFedProj); see Figure 2 or the table below. We point out that in our work, the problems we encounter are first-order accessible, while ZO-RFedProj is designed to the situation where the exact first-order information (i.e., gradient) is not available. In the latter case, the authors of [1] proposed an estimator to approximate the gradient and integrate the estimator into the RFedProj [2]. Due to the existence of the estimator error, it can be expected that the performance of ZO-RFedProj is poorer than that of RFedProj. Therefore, as expected, ZO-RFedProj does not perform as good as our algorithm and actually is the worst one compared to other algorithms that uses first-order information.

- RFedAGS RFedAvg RFedSVRG RFedProj ZO-RFedProj -----
----- ----- ----- ----- -----
rel_error($\times 10^{-3}$)/CPU time (s) 8.66/0.62 74.66/1.90 118.29/2.34 47.30/0.55 248.44/7.07
CIFAR10 rel_error($\times 10^{-3}$)/CPU time (s) 0.49/15.28 0.87/16.17 1.00/34.653 0.76/20.21

Q4. The paper claims computational efficiency due to the removal of exponential/logarithmic maps, yet provides no quantitative analysis. Could the authors offer detailed communication and computation cost metrics per round, beyond total CPU time, to support this claim?

2214 *A4.* Thank you for your suggestion. We would like to emphasize that the baselines RFedAvg
 2215 and RFedSVRG require the **exponential** mapping, its inverse, and parallel translation. In the
 2216 Stiefel manifold, for instance, the exponential mapping involves matrix exponential calculation
 2217 which is computationally expensive, and the inverse of exponential mapping has not a closed-form
 2218 expression and only iterative methods are developed to compute it, which makes the computational
 2219 cost unacceptable. Instead, our RFedAGS requires **retraction and vector transport**. For most of
 2220 commonly encountered manifolds, the two tools are computationally cheap.

2221 For the purpose of comparison, we provide a table below (which is added into the revision; see
 2222 Table 2) to quantitatively demonstrate the computation and communication cost per round taking the
 2223 compact Riemannian submanifold embedded in $\mathbb{R}^{d \times p}$ as an example, where we use retraction, its
 2224 inverse, and vector transport to replace exponential mapping, its inverse, and parallel translation. The
 2225 communication complexity of RFedAGS, RFedAvg, and RFedProj is the same, and a half of that of
 2226 RFedSVRG. In terms of computational complexity, as shown in the table, the servers in RFedAvg
 2227 and RFedSVRG require an additional $ir \times N$ flops compared to RFedAGS and RFedProj since $r \approx p$
 2228 in our experiments. Meanwhile, RFedAGS has approximately the same LICpA as RFedSVRG but
 2229 requires K additional vector transport evaluations compared to RFedAvg. Consequently, the CPU
 2230 time of RFedSVRG is expected to be consistently higher than those of RFedAGS and RFedAvg,
 2231 regardless of the value of N . When K is small and N is large, RFedAvg may require more CPU
 2232 time than RFedAGS. Compared to RFedProj, the proposed RFedAGS requires K additional vector
 2233 transport evaluations in local updates. When a lower-complexity vector transport (e.g., vector
 2234 transport by projection) is used, RFedAGS may require less CPU time than RFedProj in each outer
 2235 iteration even if p is not large. This is verified by Figure 2.

LICpA	SCC	CC	TCC
RFedAGS $rK + v(K-1) + gBK + 2dpK$	$r + dpN$	$2dpN$	$r(K+1) + v(K-1) + gBK + dp(2K+N)$
$ $	$ $	$ $	$ $
RFedAvg $rK + gBK + dpK$	$ (ir + dp)N + r $	$2dpN$	$ (ir + dp)N + r $
$ $	$ $	$ $	$ $
RFedSVRG $rK + vK + gBK + gS + 3dpK$	$ (ir + 2dp)N + r $	$4dpN$	$ (ir + 2dp)N + r(K+1) + vK + g(BK+S) + 3dpK $
$ $	$ $	$ $	$ $
RFedProj $p(K+2) + gBK + dp(4K+3)$	$ p + dp(N+2) $	$ $	$ $
$ $	$ $	$ $	$ $
2dpN $p(K+3) + gBK + dp(4K+N+5)$	$ $	$ $	$ $

2236 In the table above, LICpA, SCC, CC, and TCC denote the local iteration complexity per agent,
 2237 server computational complexity, communication complexity, and total computational complexity,
 2238 respectively. Note that TCC=LICpA+SCC.

2239 [1] Wang H, Pan Z, He C, et al. Federated Learning on Riemannian Manifolds: A Gradient-Free
 2240 Projection-Based Approach[J]. arXiv preprint arXiv:2507.22855, 2025.

2241 [2] Jiaxiang Li and Shiqian Ma. Federated learning on Riemannian manifolds[J]. Applied Set-Valued
 2242 Analysis and Optimization, 2023.

2243 [3] Zhang J, Hu J, So A M C, et al. Nonconvex federated learning on compact smooth submanifolds
 2244 with heterogeneous data[J]. Advances in Neural Information Processing Systems, 2024.

2245 3# REVIEWER MABS: RATING 4, CONFIDENCE 2

2246 *W1.* Theoretical clarity and novelty: While the proposed framework claims to generalize existing
 2247 Riemannian FL methods by relaxing the requirements on retraction and vector transport, the
 2248 theoretical advancement remains unclear. Specifically, the main difficulty in proving convergence
 2249 under assumptions like 3.1, 3.2, and 3.5 is not explicitly articulated. The authors should clarify why
 2250 convergence analysis becomes more challenging under generalized retraction and bounded vector
 2251 transport, and in what way their proof techniques go beyond those established in prior works. In
 2252 other words, the paper should highlight which parts of the analysis cannot be handled by the existing
 2253 Riemannian FL theoretical tools and why this generalization is nontrivial.

2254 *A1.* Existing Riemannian FL algorithms can be divided into two categories: (1) ones based on
 2255 orthogonal projection [1-2] and (2) ones based (TM) [3-6]. (1) the first class algorithms are restricted
 2256 on the compact Riemannian submanifolds embedded in Euclidean spaces, however our framework
 2257 proposed in this paper is designed for general manifolds. Thus the analysis therein is not suitable
 2258 for our proposed RFedAGS. (2) whether it is the second class algorithms or our algorithm, the two
 2259 key steps in analysis are bounding the two terms $\mathbb{E}[\langle \text{grad}F(x_t), R_{x_t}^{-1}(x_{t+1}) \rangle]$ and $\mathbb{E}[\|R_{x_t}^{-1}(x_{t+1})\|^2]$

(retraction R is replaced with exponential mapping Exp in the second class algorithms). For the second class algorithms, it follows from (TM) that $\text{Exp}_{x_t}^{-1}(x_{t+1}) = \frac{1}{S} \sum_{j \in \mathcal{S}_t} \text{Exp}_{x_t}^{-1}(x_{t,K}^j)$, which still makes these two terms difficult to be bounded when $K > 1$ due to the effects of curvature of manifolds. Beyond that, to bound the first term mentioned above, a consequent key step is to bound $\mathbb{E}[\|\mathbf{R}_{x_t}^{-1}(x_{t,k}^j)\|^2]$ which states the "distance" between the k -th local update $x_{t,k}^j$ and the t -th outer iterate x_t . Existing Riemannian FL theoretical tools all do not address these issues for $K > 1$. Instead, our proposed (AGS) makes use of vector transport to avoid the computation of Exp^{-1} (even R^{-1}) in (TM), maintains linearity with respect to local stochastic gradients (which is consistent with that in the Euclidean setting), and thus enables analysis for $K > 1$.

W2. Significance of AGS-AP extension: The transition from AGS-RS to AGS-AP appears to be a relatively straightforward correction that compensates for non-uniform participation probabilities by reweighting expectations. While this adjustment enables handling arbitrary participation, it is not evident that it introduces fundamentally new theoretical challenges. The proposed fix seems more like an incremental adaptation rather than a substantial methodological contribution. The authors should therefore elaborate on why the treatment of partial participation in the Riemannian context poses unique analytical obstacles that cannot be addressed by simply adapting existing Euclidean analyses with weighted expectations.

A2. We would like to emphasize that such a situation where agents' availability and response speeds are hardly predictable is more practical in the FL setting. Existing Riemannian FL algorithms do not have theoretical guarantees in this setting (even in the random sampling setting). Our (AGS-AP) extension enables proposed RFedAGS to be the **first one** in such a setting. It is noted that the theoretical challenges of this paper do not lie in introducing this extension, but in analyzing under the algorithm with (AGS), as pointed out in **A1**. Once the analysis challenges (mentioned in **A1**) are overcome, the analysis using the (AGS-AP) extension becomes relatively easy.

Q1. In A.1.4 it seems like the effect of heterogeneity is almost unseen as the convergence improves consistently when K increases. Is it possible to show results for $K > 10$? Since the algorithm is not designed to mitigate heterogeneity, there should be a certain level of performance degradation observed with extremely large K .

A1. Thank you for your comment. We have performed new experiments with $K = 14, 20$; see updated Figures 11 and 13, or tables provided below. As stated in Item 1 of Theorem 3.4, at the initial state, the larger K is the faster RFedAGS converges. But for larger K since more noises are introduced, the second term (constant with respect to T) at the right-hand side of (3.3) is larger, which may lead to the more inaccuracy of the solutions. From the tables provided below or Figures 11 and 13, we can observe the consistent results with theoretical analysis.

Table for **Figure 11**

Figure 11	IID	NIID-slight	NIID-heavy	Iter	K	18	18	18																																																																												
10	10	10	14	14	14	20	20	20	0	37.99	37.99	37.99	37.99	37.99	37.99	37.99	37.99	37.99	37.99	37.99																																																																
37.99	37.99	37.99	37.99	37.99	50	34.48	34.48	34.45	29.15	29.14	29.11	19.68	9.65	9.45	3.66	3.66×10^{-1}	3.66×10^{-1}	3.55×10^{-1}	100	2.82	2.81	2.77	2.80×10^{-1}	2.80×10^{-1}	2.79	2.79×10^{-1}	3.00×10^{-3}	5.25×10^{-3}	8.57×10^{-3}	2.02×10^{-4}	4.23×10^{-3}	1.24×10^{-2}	150	2.37×10^{-2}	2.50×10^{-2}	2.56×10^2	7.33×10^{-4}	1.71×10^{-3}	4.45×10^{-3}	1.24×10^{-4}	2.41×10^{-3}	9.19×10^{-3}	1.38×10^{-4}	3.14×10^{-3}	6.66×10^{-3}	200	2.56×10^{-4}	1.80×10^{-3}	2.65×10^{-3}	8.96×10^{-5}	1.63×10^{-3}	4.00×10^{-3}	9.99×10^{-5}	1.77×10^{-3}	4.25×10^{-3}	1.40×10^{-4}	2.50×10^{-3}	7.00×10^{-3}	250	5.94×10^{-5}	1.67×10^{-3}	3.63×10^{-3}	7.09×10^{-5}	1.36×10^{-3}	3.58×10^{-3}	1.11×10^{-4}	1.91×10^{-3}	4.29×10^{-3}	1.21×10^{-4}	2.20×10^{-3}	4.14×10^{-3}	300	6.02×10^{-5}	9.55×10^{-4}	2.43×10^{-3}	8.79×10^{-5}	1.84×10^{-3}	3.31×10^{-3}	1.16×10^{-4}	2.88×10^{-3}	6.38×10^{-3}	1.81×10^{-4}	3.70×10^{-3}	1.10×10^{-2}

Table for **Figure 13**

K	Iter	10	30	60	90	100
14	10	70.17	4.50×10^{-4}	1.30×10^{-9}	1.47×10^{-13}	3.09×10^{-13}
14	70.17	7.34×10^{-6}	2.53×10^{-12}	8.76×10^{-13}	4.05×10^{-13}	20

2322 2.40×10^{-13} | 2.59×10^{-13} | 3.09×10^{-13} || 30 | 70.17 | 7.13×10^{-12} | 5.44×10^{-13} | 3.16×10^{-13}
 2323 | 2.47×10^{-12} |

2324 [1] Zhang J, Hu J, So A M C, et al. Nonconvex federated learning on compact smooth submanifolds
 2325 with heterogeneous data[J]. Advances in Neural Information Processing Systems, 2024.

2326 [2] Wang H, Pan Z, He C, et al. Federated Learning on Riemannian Manifolds: A Gradient-Free
 2327 Projection-Based Approach[J]. arXiv, 2025.

2328 [3] Jiaxiang Li and Shiqian Ma. Federated learning on Riemannian manifolds[J]. Applied Set-Valued
 2329 Analysis and Optimization, 2023.

2330 [4] Zhenwei Huang, Wen Huang, Pratik Jawanpuria, and Bamdev Mishra. Federated learning on
 2331 Riemannian manifolds with differential privacy. arXiv, 2024.

2332 [5] He Xiao, Tao Yan, and Kai Wang. Riemannian SVRG using Barzilai-Borwein method as
 2333 second-order approximation for federated learning. Symmetry, 2024.

2334 [6] He Xiao, Tao Yan, and Shimin Zhao. Riemannian SVRG with Barzilai-Borwein scheme for
 2335 federated learning. Journal of Industrial and Management Optimization, 2025.

2336

2337

2338

2339

2340

2341 4# REVIEWER IW4M: RATING 6, CONFIDENCE 3

2342

2343 *W1.* While the paper is theoretically rigorous, its dense and mathematically demanding nature may
 2344 hinder its accessibility to a broader audience at ICLR. Consequently, many critical ideas, such as the
 2345 geometric intuition behind averaging gradient streams and how vector transport preserves consistency,
 2346 are primarily presented in formal notation.

2347 *A1.* Thank you for your comment. To ensure the rigor and completeness of this paper, we have
 2348 reviewed the necessary basic knowledge about Riemannian geometry and optimization in Appendix
 2349 B. Besides, in the main body (see Section 2.1), we show the geometry interpretation of (TM) and our
 2350 proposed (AGS) to conveniently understand.

2351 *Q1.* The convergence proofs rely heavily on Assumption 3.8, which bounds the deviation between
 2352 estimated and true participation probabilities. However, it remains unclear how $q_{i,t}$ is actually
 2353 computed during training.

2354 - *Q1.1.* Are these probabilities updated as empirical participation frequencies over rounds, or are
 2355 they fixed a priori?

2356 *A1.1.* $q_{i,t}$ is updated as empirical participation frequencies over rounds. In Assumption 2.1,
 2357 we assume that each agent independently participates in communication with a fixed probability
 2358 independent of other agent. This enable us to approximate the true probability by frequency as
 2359 discussed in Section 3.4.

2360 - *Q1.2.* How sensitive is RFedAGS to inaccurate or time-varying participation estimates (e.g., if
 2361 some clients drop out permanently)?

2362 *A1.2.* Empirically, we observe that the performance of our RFedAGS using frequencies is very
 2363 close to that of using true probabilities even early iteration. This is observed from Figures 6 and
 2364 7 (in Appendix A.1.1), where the curves **Scheme II-True-0.3** and **Scheme II-True-0.5**
 2365 exactly use true probabilities while the curves **Scheme II-Freq-0.3** and **Scheme II-Freq-0.5**
 2366 use frequencies to estimate the probabilities. We observe that the **red** and **yellow** curves
 2367 (corresponding to using true probabilities and frequencies, respectively) behave similarly. This
 2368 also highlights the robustness of our method. For time-varying participation probabilities case, it
 2369 is an interesting and more challenging work. The theoretical convergence of Euclidean FL with
 2370 time-varying participation probabilities is still not well understood.

2371 *Q2.* While the theory emphasizes arbitrary participation and heterogeneous data, the experiments
 2372 do not explicitly test these conditions.

2373 - *Q2.1.* Could the authors provide additional experiments that vary (a) the proportion of participating
 2374 clients per round and (b) the degree of data heterogeneity across clients?

A2.1. We provide a new experiment where we enlarge the level of data heterogeneity and the participation sparsity, respectively. See the table below or Figure 12 in the revision for details.

- *Q2.2.* How does RFedAGS perform compared to baselines as participation becomes sparse or data distributions diverge?

A2.2. It follows from the table below (or, see Figure 12 in the revision) that (i) for all of algorithms, as data distributions diverge, the performance becomes poor; besides, at the same level of data heterogeneity, RFedAGS consistently outperforms compared to the other algorithms. (ii) as participation becomes sparse, the performance of all algorithms becomes poor; on the other hand, at the same participation ratio, our RFedAGS consistently performs compared to other algorithms.

Algorithms	heterogeneity	ratio	iid	niid-slight	niid-heavy	0.5	0.4	0.3
RFedAGS	4.45×10^{-5}	7.92×10^{-4}	2.34×10^{-3}					
RFedAvg	1.758×10^{-4}	1.00×10^{-3}	1.04×10^{-3}	4.06×10^{-4}	1.20×10^{-2}	1.87×10^{-2}		
RFedSVRG	1.16×10^{-2}	1.13×10^{-2}	1.33×10^{-2}	1.17×10^{-3}	1.40×10^{-2}	1.67×10^{-2}		
RFedProj	1.49×10^{-2}	4.43×10^{-2}	1.00	1.74×10^{-4}	1.88×10^{-3}	7.01×10^{-3}	1.59×10^{-3}	
	1.317×10^{-3}	7.20×10^{-3}						

Q3. The proposed AGS framework involves transporting and averaging gradients in the manifold’s tangent space, which may introduce additional computational overhead compared to standard Riemannian FedAvg.

- *Q3.1.* How does this affect runtime and communication efficiency when the number of clients or model dimensionality scales up?

A3.1 We provide table below (which also is added in the revision; see Table 2), which shows the computation and communication complexity when the manifolds are compact Riemannian submanifolds embedded in $\mathbb{R}^{d \times p}$. As shown in the table, the server in RFedAvg requires an additional $ir \times N$ flops compared to RFedAGS. Meanwhile, RFedAGS requires K additional vector transport evaluations compared to RFedAvg. When K is small and N is large, RFedAvg may require more CUP time than RFedAGS. These discussions are verified by Figure 2. On the other hand, we would like to point out that number of clients, local dataset size, and manifold dimension have a linear relationship with the total computation complexity, so their increase will not cause the total computation complexity to increase sharply.

LICpA	SCC	CC	TCC
RFedAGS	$rK + v(K-1) + gBK + 2dpK$	$r + dpN$	$2dpN$
RFedAvg	$rK + gBK + dpK$	$(ir + dp)N + r$	$2dpN$
RFedSVRG	$rK + vK + gBK + gS + 3dpK$	$(ir + 2dp)N + r$	$4dpN$
RFedProj	$p(K+2) + gBK + dp(4K+3)$	$p + dp(N+2)$	$2dpN$
	$p(K+3) + gBK + dp(4K+N+5)$		

Note: LICpA, SCC, CC, and TCC denote the local iteration complexity per agent, server computational complexity, communication complexity, and total computational complexity, respectively. Note that TCC=LICpA+SCC.

- *Q3.2.* Are there specific manifolds (e.g., Stiefel or SPD) where vector transport becomes a bottleneck?

A3.2. For Riemannian submanifolds embedded in Euclidean spaces, there is a **cheap** vector transport, i.e., vector transport by projection. In these cases, vector transport is not the bottleneck; see Figure 2 for example, where RFedAGS costs less time than others. Obviously, there are some manifolds, whose vector transport is relatively expensive. See Figure 4, for example, where the manifold is the SPD manifold, we use parallel translation as the vector transport, and but ever here as well RFedAGS performed similarly to RFedAvg in time but gave better optimality gap.