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ABSTRACT

Federated learning (FL) as a distributed learning paradigm has a significant advan-
tage in addressing large-scale machine learning tasks. In the Euclidean setting, FL
algorithms have been extensively studied with both theoretical and empirical suc-
cess. However, there exist few works that investigate federated learning algorithms
in the Riemannian setting. In particular, critical challenges such as partial partici-
pation and data heterogeneity among agents are not explored in the Riemannian
federated setting. This paper presents and analyzes a Riemannian FL algorithm,
called RFedAGS, based on a new efficient server aggregation—averaging gradient
streams, which can simultaneously handle partial participation and data heterogene-
ity. We theoretically show that the proposed RFedAGS has global convergence
and sublinear convergence rate under decaying step sizes cases; and converges
sublinearly/linearly to a neighborhood of a stationary point/solution under fixed
step sizes cases. These analyses are based on a vital and non-trivial assumption
induced by partial participation, which is shown to hold with high probability.
Extensive experiments conducted on synthetic and real-world data demonstrate the
good performance of RFedAGS.

1 INTRODUCTION

Modern learning tasks handle massive amounts of data, which are geographically distributed across
heterogeneous devices. Conventional centralized algorithms, e.g., stochastic gradient descent (SGD),
need to collect the data into single device for training, which consumes significant storage and com-
puting resource. Additionally, from the perspective of privacy security, transmitting raw training data
may leak data privacy. A promising distributed learning paradigm—federated learning (FL)—allows
a center server to coordinate with multiple agents (e.g., mobile phones and tablets) to train a desired
model parameter without raw data sharing, which is an ideal solution to the issues aforementioned.

In recent years, with the development of Riemannian optimization, many machine learning problems
have data structures that can be inscribed by low-dimensional smooth manifolds, and thus they can
be modeled on manifolds. There are such examples including but not limited to principal component
analysis (Ye & Zhang, 2021), Fréchet mean computation (Han et al., 2021), hyperbolic structured
prediction (Xiong et al., 2022), low-rank matrix completion (Jawanpuria & Mishra, 2018; Mishra
et al., 2019), multitask feature learning (Jawanpuria & Mishra, 2018; Mishra et al., 2019), and neural
network training (Magai, 2023). This motives us to develop a efficient Riemannian FL algorithm.

This paper focuses on the following Riemannian federated optimization problem

argmin
x∈M

F (x) :=
1

N

N∑
i=1

fi(x), with fi(x) = Eξ∼Di
[fi(x; ξ)], (1.1)

whereM is a d-dimensional Riemannian manifold, N is the number of agents, F :M→ R is the
global objective, and fi :M→ R and Di are local objectives and the data distribution held by agent
i, ∀i ∈ [N ] = {1, 2, . . . , N}. Throughout this paper, we focus on the expected minimization (1.1),
but the resulting conclusions are also true for the finite sum minimization in which the local objective
is defined by fi(x) =

1
Ni

∑Ni

j=1 fi(x; zi,j) with Di = {zi,1, zi,2, . . . , zi,Ni} the local dataset held by
agent i. We may not necessarily assume thatDi, ∀i ∈ [N ], are the independently identical distribution
(I.I.D.), i.e., the data distributions across different agents are non-I.I.D.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A well-known Euclidean FL algorithm is Federated Averaging (FedAvg) (McMahan et al., 2017),
which is adapted from the local stochastic gradient descent (local SGD) method. Specifically, at the
beginning, FedAvg takes an initial guess x1 as input and then sends it to all agents. Subsequently, the
following steps are performed alternately:

(i) agent j updates its the local parameter via performing K-step SGD with xt being the initial
guess and generates the trained local parameter xj

t,K (this is called “local update” or “inner
iteration”), and then the local parameter xj

t,K is uploaded to the server;

(ii) the server at random samples a subset of size S from all agents, denoted by St, and then
averages the received local parameters to generate the next global parameter xt+1, i.e.,

xt+1 ←
1

S

∑
j∈St

xj
t,K , (1.2)

which is called “server aggregation”, and then sends xt+1 to all agents.

The two steps above constitute a round of communication (or outer iteration).

Related works. Early works primarily analyzed the convergence of FedAvg and its variants in
limited settings, typically relying on one or both of the following assumptions: (i) full participation
(i.e., S = N ) and (ii) I.I.D. data distributions; see, e.g., (Zhou & Cong, 2018; Stich, 2019; Yu
et al., 2019; Haddadpour et al., 2019; Wang & Joshi, 2021; Gu et al., 2023) and references therein.
Subsequently, numerous works have studied the convergence of FL algorithms under (iii) partial
participation and (iv) non-I.I.D. data assumption; see e.g., (Li et al., 2020b;a; Rizk et al., 2022) and
references therein. In these works, partial participation is implemented by random sampling—the
server randomly selects a subset of agents to perform local updates in each outer iteration.

Due to heterogeneity in the computational capabilities and the environment conditions across agents,
their availability and response speeds are hardly predictable. This unpredictability makes random
sampling-based approaches unsuitable for such scenarios. Recent works have instead adopted an
arbitrary participation model, where agents may respond to the server in a stochastic and uncontrolled
manner (Gu et al., 2021; Wang & Ji, 2022; Ribero et al., 2023; Xiang et al., 2023; Yan et al., 2023;
Wang & Ji, 2024; Xiang et al., 2025). These works can be roughly divided into three categories:
(i) time-varying statistic, i.e. agent i participates in the t-th outer iteration with probability pit
varying over time (Wang & Ji, 2022; Ribero et al., 2023; Xiang et al., 2023; Wang & Ji, 2024; Xiang
et al., 2025); (ii) time-invariant statistic, i.e., the participation probability for agent i is not varying
over time (meaning pit = pi for all t ≥ 1) (Wang & Ji, 2024); and (iii) periodic participation, i.e.,
each agent i must participate in at least one communication round within a fixed iteration interval (Gu
et al., 2021; Yan et al., 2023).

The FL algorithms mentioned earlier operate solely in Euclidean space and thus cannot directly
handle such problems whose parameters are located in manifolds due to the inherent curvature
effects of manifolds. Only a limited number of studies have explored the design and analysis of FL
algorithms on Riemannian manifolds. (Li & Ma, 2023) proposed a Riemannian counterpart of (1.2)
and thus developed a Riemannian FL algorithm. Their algorithm involves in exponential mapping,
its inverse, and parallel transport. Nevertheless, for some manifolds, e.g., the Stiefel manifold, the
inverse of the exponential mapping and parallel transport have no closed forms, and only iterative
methods can be used to compute them, which brings an extra computation burden. (Huang et al.,
2024) adopted a framework similar to that of (Li & Ma, 2023) but integrate differential privacy to
strengthen privacy guarantees. Under the non-I.I.D. setting, most convergence results in (Li & Ma,
2023; Huang et al., 2024) are established for the case K = 1 and full participation, i.e., all agents
just perform one step local update (notably, for K > 1, the convergence analyses of both algorithms
further assume that only one agent participates in communication). The algorithm proposed in (Zhang
et al., 2024) supports general settings where K > 1 and S > 1, but its convergence analysis relies
on the full participation assumption. Additionally, the algorithm therein involves an orthogonal
projector onto the manifold and requires that this projector is a singleton. Thus, its applicability is
restricted to problems on compact Riemannian submanifolds embedded in Euclidean spaces. The
algorithms in (Xiao et al., 2024; 2025) incorporated the Barzilai-Borwein method into the framework
of (Li & Ma, 2023). Despite the efforts of some, all of the Riemannian FL algorithms above have no
theoretical guarantee under both partial participation and data heterogeneity setting. See Table 1 for
comprehensive comparisons of existing Riemannian FL algorithms and the proposed RFedAGS.
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Table 1: Summary of existing algorithms and the proposed RFedAGS.
Algorithms Manifold Partial Participation Non-I.I.D. Retraction Vector transport

RFedSVRG (Li & Ma, 2023) General 1 ✗ 2 Conditioned 3 Exponential mapping Parallel transport
RPriFed (Huang et al., 2024) General 1 ✗ Conditioned 3 Exponential mapping Parallel transport
RFedProj (Zhang et al., 2024) Compact submanifold ✗ ✔ N/A N/A
RFedSVRG-2BBS (Xiao et al., 2024) General 1 ✗ 2 Conditioned 3 Exponential mapping Parallel transport
RFedSVRG-BB (Xiao et al., 2025) General 1 ✗ 2 Conditioned 3 Exponential mapping Parallel transport

RFedAGS (this paper) General ✔ ✔ General retraction Bounded
1 Although these methods are suitable for general manifolds, due to the usage of exponential mapping and its inverse, they may not work in some manifolds in where

the inverses of exponential mappings have no closed-form expressions, for example, the Stiefel manifold.
2 These algorithms at each outer iteration compute a full gradient at current global iterate and then it is used by agents to perform local SVRG step. Hence, these

algorithms are not suitable for partial participation.
3 We highlight that these methods overcome the non-I.I.D. data challenge only when K = 1 and S = N , i.e., all agents perform one-step local update. For K > 1

cases, the I.I.D. and S = 1 assumptions are indispensable. Hence, these algorithms are suitable for the non-I.I.D. data setting conditioned on K = 1 and S = N .

Challenges. In this paper, we focus on investigating a FL algorithms on general Riemannian
manifolds, which works under arbitrary participation and data heterogeneity setting. In that case,
the challenges of designing and analyzing such an algorithm mainly arise from (i) the curvature
effects of manifolds, (ii) multiple-step local updates at each agent, (iii) stochastic error of arbitrary
participation, and (iv) data heterogeneity across agents. The biggest challenge brought by (i) and
(iii) is how the server generates new global parameters based on the local update information from
multiple agents, which directly affects the design of the algorithm. While (ii) and (iv) will bring local
errors into the global parameter even make algorithms diverge, which is called agent drift effects.
These issues often couple together and make convergence analysis more complicated.

Contributions. The main contributions of this paper are summarized as follows.

1. The server aggregation (SA) proposed in (Li & Ma, 2023) is inspired by the Euclidean weighted
average (2.1). Although this SA is feasible in practice, it has significant challenges in terms
of theory analysis and computation efficiency. This paper present a new SA which can avoid
the issues mentioned above. The idea behind the presented SA is that it does not handle local
parameters but rather averages local gradient information, which retains linearity to some extent.

2. We investigate the availability of the proposed RFedAGS under arbitrary participation and non-
I.I.D. data, where the arbitrary participation setting is based on the time-invariant statistic model
without requiring prior knowledge of the participation probabilities. This model encompasses
many practical scenarios, including random sampling.

3. We establish the convergence guarantees of the proposed RFedAGS under the arbitrary participa-
tion and non-I.I.D data setting with the standard assumptions in FL and Riemannian optimization
except Assumption 3.8 which is important and nontrivial. We also discuss the reasonability of this
assumption when using the frequencies to estimate the true probabilities.

4. Extensive numerical experiments with synthetic/real-world data are conducted to demonstrate the
efficacy of the proposed RFedAGS.

Notations. Throughout this paper, we use R,Rn, and Rm×n to denote the real numbers, the space
real vectors of dimension n, and the space real matrices of size m× n, respectively. We useM to
denote the Riemannian manifold and the equipped Riemannian metric is denoted by ⟨·, ·⟩, whose the
induced norm on the tangent space TxM is denoted by ∥ · ∥x (omitting the subscript sometimes).
Exp, R, T , and gradf denote exponential mapping, retraction, vector transport, and the gradient of
f :M→ R, respectively. Also, ⟨·, ·⟩F, ∥ · ∥F, and∇f denote the Euclidean inner product, the norm
induced by the Euclidean inner product, and the Euclidean gradient of f .

2 RFEDAGS: RIEMANNIAN FEDERATED AVERAGING GRADIENT STREAMS

A basic background in Riemannian geometry and optimization is assumed, and the details can be
found in Appendix B. The proposed RFedAGS (stated in Algorithm 1) are explained as follows.

A new Riemannian SA. Due to the curvature effects of manifolds, the addition of two points in a
manifold is not valid, and thus the SA via the weighted average of local parameters (1.2) does not
work in the Riemannian setting. Li & Ma (2023) proposed a SA, called tangent mean, defined by

xt+1 ← Expxt

(
1

|St|
∑
i∈St

Exp−1
xt

(xi
t,K)

)
, (TM)
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Algorithm 1 Riemannian Federated Learning via Averaging Gradient Streams: RFedAGS
Input: Initial global model x1 ∈M, number of aggregations T , numbers of local iterations K, local

step size sequence {αt}Tt=1, global step size ϖ, batch size sequence {Bt}Tt=1;
Output: {xt}T+1

t=1 .
1: for t = 1, 2, . . . , T do
2: The server broadcasts xt to all agents, i.e., xj

t,0 ← xt, j ∈ N ;
3: for Agent j ∈ N in parallel do
4: Set ζjt,0 ← 0xt

;
5: for k = 0, 1, . . . ,K − 1 do
6: Agent j finds indices of the mini-batch sample Bjt,k by sampling Bt times;
7: Set ηjt,k ←

1
Bt

∑
b∈Bj

t,k
gradfj(x

j
t,k; ξ

j
t,k,b);

8: Set xj
t,k+1 ← Rxj

t,k
(−αtη

j
t,k);

9: Set ζjt,k+1 ← ζjt,k + Tη̃j
t,k−1

(αtη
j
t,k) with η̃jt,k satisfying Rxj

t,k
(η̃jt,k) = xt;

10: end for
11: Upload the gradient stream ζjt,K to the server with an unknown but fixed probability pj ;
12: end for
13: The server computes the approximate probability qjt , ∀j ∈ St;
14: The server updates the new global model xt+1 by (AGS-AP) with qjt replacing pj ;
15: end for

which is an approximate to the weighted average of points on a manifold. On the one hand, (TM)
involves the inverse of exponential mapping, which has no closed-form expression in some manifolds,
e.g., the Stiefel manifold. This limits its scope of availability. Additionally, due to the curvature
effects of manifolds, exponential mapping and its inverse almost are nonlinear. Hence, when agents
perform multiple-step local updates, (TM) involves multiple consecutive exponential mappings,
resulting in that the increment of parameters, Exp−1

xt
(xt+1), is difficult to be bounded in analysis,

which makes convergence analysis fairly challenging. In view of the discussions above, this paper
resorts to another aggregation which can not only implement SA efficiently but also analyze algorithm
convergence conveniently.

Back to the Euclidean setting, the increment of parameters of FedAvg can be expanded as

∆t = xt+1 − xt = −αt
1

|St|
∑
i∈St

K−1∑
k=0

1

Bt

∑
b∈Bi

t,k

∇fi(xi
t,k; ξ

i
t,k,b).

Observing the expression shows that the increment of parameters is given by the average of mini-
batch gradients of active agents. We can adopt the similar idea in the Riemannian setting but require
making some adaptations, since directly combining the mini-batch gradients located in different
tangent spaces is not well defined. With the aid of vector transport, the combination can be defined.
Specifically, we define the the Riemannian “increment of parameters” as

ζt = R−1
xt

(xt+1) = −αt
1

|St|
∑
j∈St

K−1∑
k=0

1

Bt

∑
b∈Bj

t,k

T
η̃
j
t,k

(gradfj(x
k
t,k; ξ

j
t,k,b)).

Specific to agent j, it just need to upload ζjt,K =
∑K−1

k=0
1
Bt

∑
b∈Bj

t,k
Tη̃j

t,k
(gradfj(x

k
t,k; ξ

j
t,k,b)),

called gradient stream, to the server. The resulting new SA is given via averaging gradient streams:

xt+1 = Rxt(ζt) = Rxt

(
−αt

1

|St|
∑
j∈St

ζjt,K

)
. (AGS-RS)

It is worth noting that when the manifold reduces to a Euclidean space, (AGS-RS) is equivalent to
the Euclidean SA (1.2). In our opinion, this aggregation is a more essential generalization from the
Euclidean setting to the Riemannian setting.

Arbitrary partial participation. Now we are ready to extend (AGS-RS) to the arbitrary partial
participation setting under consideration, which is formally modeled in Assumption 2.1.

4
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Assumption 2.1. Assume that each agent i independently participates in any round of communication
with probability pi > 0.

Under Assumption 2.1, when the participation probabilities are not exactly equal to each other, using
(AGS-RS) simply may introduce stochastic participation errors. In that case, the next theorem points
out that the algorithm equipped with (AGS-RS) may work incorrectly since it may solve another
problem different from the original problem.

Theorem 2.1 (Proved in Appendix E.1). Under Assumption 2.1, let St denotes the set of agents
who respond to the server at the t-th round of communication. Then, E

[∑
j∈St

1
|St|gradfj(x)

]
=∑N

i=1 p̃igradfi(x), with p̃i = pi
∫ 1

0

∏N
j ̸=i(1− pj + pjt)dt.

Therefore, if pi ̸= pj for some i, j ∈ [N ], then p̃i ̸= p̃j , and thus there exists no χ > 0 such
that

∑N
i=1 p̃igradfi(x) = χgradF (x). That is, the algorithm may not solve the original problem

minx∈M F (x) since each of its search directions leads the iterate xt to the minimizer of another
problem minx∈M F̃ (x) :=

∑N
i=1 p̃ifi(x).

Back again to Assumption 2.1, at the t-th round of communication, note that

E

[∑
i∈St

1

piN
gradfi(x)

]
= E

[
N∑
i=1

1

piN
ISt(i)gradfi(x)

]
=

N∑
i=1

1

piN
E [ISt(i)gradfi(x)]

=

N∑
i=1

1

piN
(pigradfi(x)) = gradF (x), (2.1)

where ISt(i) = 1 if i ∈ St otherwise ISt(i) = 0. Hence, if the participation probabilities, pi’s, are
known, one of the feasible aggregation patterns can be chosen as

xt+1 ← Rxt

(
−ϖ

∑
i∈St

1

piN
αtζ

i
t,K

)
with ϖ > 0 the global step size, (AGS-AP)

which ensures that the algorithm correctly solves the original problem minx∈M F (x).

On the other hand, in practical applications, the server is actually unaware of the true probabilities.
In this case, what the server can do is to estimate the true probabilities as possible in some ways,
that is, the server computes qit in the t-th round of communication and uses it to serve as the true
probability pi. Summarizing above, this paper proposes a Riemannian FL algorithm, called RFedAGS,
which can address the partial participation setting, as stated in Algorithm 1.

3 CONVERGENCE ANALYSIS

In this section, we establish the convergence properties of RFedAGS (Algorithm 1) on the partial
participation and the non-I.I.D. data settings. All of the proofs can be found in Appendix D.

3.1 ASSUMPTIONS

We first present a set of assumptions as follows that are necessary for the convergence analysis. All
assumptions except Assumption 3.8 have been used in e.g., (Bonnabel, 2013; Tripuraneni et al., 2018;
Sato et al., 2019; Han & Gao, 2021), and their reasonability is discussed in Appendix C.

Assumption 3.1. The retraction R is such that its restriction to TxM for all x ∈ M, Rx, is of
class C2, and the associated vector transport T is continuous and bounded in the sense that there
exists a constant Υ > 0 such that for any x ∈M, ζx, ηx ∈ TxM, it holds that ∥Tηx

(ζx)∥ ≤ Υ∥ζx∥.
Assumption 3.2. For a sequence of the outer iterates {xt}t≥1 and a sequence of the inner iterates
{{{xj

t,k}Nj=1}
K−1
k=0 }t≥1 generated by Algorithm 1, there exists a W -totally retractive setW ⊂ M

such that {xt}t≥1 ⊂ W and {{{xj
t,k}Nj=1}

K−1
k=0 }t≥1 ⊂ W . The minimizers of Problem (1.1) are

insideW . Additionally, there exists a compact and connected set X ⊂M such thatW ⊂ X .

Assumption 3.3. The cost function F is continuously differentiable inW , the local cost functions
f1, . . . , fN are continuously differentiable in W , and their components fj(·, ξ) for ξ ∼ Dj with
j ∈ [N ] are continuously differentiable inW .

5
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Assumption 3.4. The local objective functions fj , j ∈ [N ], are Lf -Lipschitz continuously differen-
tiable inW with the retraction R and the vector transport T (see Definition B.1), implying that F is
also Lf -Lipschitz continuously differentiable.
Assumption 3.5. F is Lg-retraction smooth overW with respect to R (see Definition B.2).1

Assumption 3.6. For any parameter x ∈M, the Riemannian stochastic gradient gradfj(x; ξj) is
an unbiased estimator of the gradient gradfj(x), i.e., Eξj [gradfj(x; ξ

j)] = gradfj(x), ∀j ∈ [N ].
Assumption 3.7. For any fixed parameter x ∈M, there exists a positive constant σL such that for
all j ∈ [N ], it holds that E[∥ 1

B

∑
b∈Bj fj(x; ξ

j
b)− gradfj(x)∥2] ≤ σ2

L

B with |Bj | = B.

The method estimating the probabilities is discussed in Section 3.3. Now we just make an assumption
requiring that the approximate probability qit in each round of communication is not far away from
the true probability pi, formally stated in Assumption 3.8.
Assumption 3.8. There exist constants qmin, qmax ∈ (0, 1] and G ≥ 0 independent of t ≥ 1 and

i ∈ [N ], such that the approximate probabilities qit’s satisfy
∣∣∣ 1
qit
− 1

pi

∣∣∣ ≤ √Gαt, and qmin ≤ qit ≤
qmax,∀t ≥ 1, i ∈ [N ], where αt is the local step size in the t-th round of communication.

Note that the constant G controls the accuracy of the approximate probabilities and when the true
probabilities are available to the server, G can take exactly zero. In Section 3.3, we discuss the
reasonability of Assumption 3.8.
Remark 3.1. In (Wang & Ji, 2024), the authors imposed the following bound on the approximate

probabilities:
∑N

i=1 p
2
i

(
1
qit
− 1

pi

)2

≤ N
81 . This bound essentially requires that | 1

qit
− 1

pi
| is less

than some constant, which is consistent with Assumption 3.8 in fixed step size cases. Note that this
assumption is considered in (Wang & Ji, 2024) only for fixed step size cases, but Assumption 3.8
considers another situation where the bound varies over time t when decaying step sizes are used.

3.2 CONVERGENCE PROPERTIES

In this section, we establish the convergence properties of the proposed RFedAGS.
Theorem 3.1. Let Assumptions 3.1-3.8 hold. Suppose Algorithm 1 is run with a fixed global step size
ϖ > 0 and a decaying local step size sequence {αt} satisfying Conditions

∞∑
t=1

αt =∞,

∞∑
t=1

α2
t <∞. (3.1)

Then, lim inft→∞ E[∥gradF (xt)∥2] = 0.

In what follows, we further characterize the nonasymptotic convergence.
Theorem 3.2. Under the same conditions as Theorem 3.1 except that the local step size sequence {αt}
is determined by αt =

α0

(β+t)p with constants α0, β > 0 and p ∈ (1/2, 1] satisfying ϖα1KLg ≤ 1,

the weighted average norm of the squared gradients satisfy, with AT =
∑T

t=1 αt,

1

AT

T∑
t=1

αtE[∥gradF (xt)∥2] ≤

{
O( 1

ln(β+T )
) p = 1,

O( 1
(β+T )1−p ) p ∈ (1/2, 1).

Remark 3.2. In particular, if the full agent participate in any round of communication and agents
use the full local gradient in local update, i.e., G = 0 and σL = 0, one can relax the step sizes to
αt =

α0

(β+t)p where p = 1/3 + a with a ∈ (0, 2/3). In this case, for large T , the upper bound can be

improved to 1
AT

∑T
t=1 αtE[∥gradF (xt)∥2] ≤ O( 1

(β+T )2/3−a ) (see Appendix D.3).

Theorem 3.3. Under Assumptions 3.1-3.8, suppose that F satisfies RPL condition, i.e., there exists
a constant µ > 0, such that for all x ∈ W , it holds that F (x) − F (x∗) ≤ 1

2µ∥gradF (x)∥2.
If we run Algorithm 1 with the batch size Bt ∈ [Blow, Bup] and the step sizes satisfying αt =
β

γ+t for some γ > 0 and β > 1
µϖK such that α1ϖKLg ≤ 1, then the iterates {xt}t≥1 satisfy

E[F (xt)]− F (x∗) ≤ ν

γ + t
, and E[∥gradF (xt)∥2] ≤

2Lgν

γ + t
, (3.2)

1In general, in the Riemannian setting, a L-Lipschitz continuously differentiable function f :M→ R is not
necessarily L-retraction smooth, which is different from the Euclidean setting.
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where ν = max
{

ϖKβ2Q(K,Blow,α1,ϖ)
βµϖK−1 , (γ + 1)Θ(x1)

}
, Θ(x1) = F (x1) − F (x∗), and

Q(K,Bt, αt, ϖ) = (2K − 1)(K − 1)L2
fδ

2
1P

2(J2 + α2
tP

2H2)αt/6 +GP 2δ22 +Υ2P 2δ24KLgϖ+
Lgδ

2
3σ

2
LΥ2ϖ

2Bt
with P, J , and H being three constants depended on the problem, manifold and the

retraction and δ1, δ2, δ3, δ4 being constants depended on qit, pi,∀i ∈ [N ]. That is, Algorithm 1
converges sublinearly to the minimizer in expectation.

Theorems 3.1-3.3 provide the global convergence of Algorithm 1. Under mild assumptions, the
first theorem states that Algorithm 1 has global convergence in expectation for general objectives
while the other theorems further provide the convergence rate of Algorithm 1. However, all of these
theorems require the usage of the decaying step sizes. When decaying step sizes are used, a large
number of iteration are required for Algorithm 1 to converge. A compromise is to use a fixed step
size of moderate size, the advantage of which is that the convergence rate is sublinear (even linear)
while the disadvantage of which is that it may not converge to the minimizers but to an ϵ-stationary
point/solution (see Definition B.4); see Theorems 3.4 and 3.5.
Theorem 3.4. Suppose that Assumptions 3.1-3.8 hold. We run Algorithm 1 with a fixed global step
size ϖ, a fixed batch size B, and a fixed number of local updates K.

1. If the fixed step sizes α and ϖ satisfy αϖKLg ≤ 1, then
1

T

T∑
t=1

E[∥gradF (xt)∥2] ≤
2Θ(x1)

ϖαKT
+ 2αQ(K,B,α,ϖ). (3.3)

2. If the true probabilities are known, meaning G = 0, and one takes local and global
step sizes α and ϖ such that αϖ =

√
Θ(x1)B

(δ23σ
2
L+2P 2δ24KB)Υ2LgKT

with T satisfying T ≥

max
{

KLgΘ(x1)B

(δ23σ
2
L+2P 2δ24KB)Υ2 ,

Θ(x1)(2K−1)2(K−1)2L4
fδ

4
1P

4(L2
gϖ

2J2K2+P 2H2)2B3

9(δ23σ
2
L+2P 2δ24KB)3Υ6L7

gϖ
6K5

}
, then

1

T

T∑
t=1

E[∥gradF (xt)∥2] ≤ 4Υ

√
LgΘ(x1)

(
δ23σ

2
L

KTB
+

2P 2δ24
T

)
.

Remark 3.3. If the probabilities pi are known, i.e., qit = pi, and pmin = mini{pi} is not too small
and not fairly far away from pmax = maxi{pi}, such that the constants δ21 , δ

2
2 , δ

2
3 , δ

2
4 are δ21 =

1
N

∑N
j=1

(
pj

qjt

)
= 1, δ22 =

∑N
j=1

p2
j

N ≤ 1, δ23 = 1
N2

∑N
j=1

pj

(qjt )
2
≤ 1

Npmin
, δ24 = 1

N2

∑N
j=1

(1−pj)
pj

≤
1

Npmin
, then, Item 2 gives the upper bound as O( 1√

pminNKTB
) +O( 1√

pminNT
).

In particular, if the probabilities are the same across agents, e.g., pi = S
N with S ≤ N , then δ23 = 1

S ,
and δ24 = N−S

NS ≤
1
S . It follows that Item 2 gives the upper bounds as O( 1√

SKTB
) +O( 1√

ST
). The

bound of O( 1√
ST

) matches with the existing result for FedAvg given in (Karimireddy et al., 2020,
Theorem 1) and improves by 1√

K
over that given in (Yang et al., 2021, Corollary 2).

Theorem 3.5. Under Assumptions 3.1-3.8, suppose that F satisfies RPL condition with a constant
µ > 0. If we run Algorithm 1 with batch size Bt ∈ [Blow, Bup] and step sizes αt = α and ϖ
satisfying αϖK ≤ min{1/Lg, 1/µ}, then the resulting iterates {xt}Tt=1 satisfy

E[F (xT )]− F (x∗) ≤ (1− µϖKα)T−1Θ(x1) +
α

µ
Q(K,Blow, α,ϖ)

T→∞−−−−→ α

µ
Q(K,Blow, α,ϖ). (3.4)

From Theorem 3.5, if one lets T → ∞, then the expected optimality gaps {E[F (xT )] − F (x∗)}
are bounded from above by α

µQ(K,Blow, α,ϖ), which implies that any accumulation point of the
sequence of iterates {xt} generated by Algorithm 1 is a ϵ-solution if taking α ≤ ϵµ

Q(K,Blow,α,ϖ) .
Smaller α means smaller upper bound as well as slower convergence speed.
Remark 3.4. Similar to the Euclidean setting, the RPL property is weaker than the strong retraction-
convexity. In fact, if the objective f :M→ R is µ-strongly retraction-convex, then it also satisfies
the RPL property with parameter µ (proved in Appendix E.2). Therefore, Theorems 3.3 and 3.5 also
hold under strong retraction-convexity.

3.3 ESTIMATING THE PARTICIPATION PROBABILITIES

At the t-th round of communication, let St denote the set of participating agents. Then, under
Assumption 2.1, ISt(i) follows the Bernoulli distribution, i.e., ISt(i) ∼ Bernoulli(pi). At each

7
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round of communication, for each agent i, whether it participates in communication can be regarded
as a Bernoulli trial. Therefore, by Bernoulli’s Large Number Theorem, the frequency of agent i
participating in communication goes closely to the true probability pi as the growth of t, the number
of communications. Formally, let qit =

∑t
τ=1 ISτ

(i), and compute the approximate probability by
qjt = qjt/t. Then we have limt→∞ P{|qit − pi| ≤ ϵ} = 1 for any small ϵ > 0. This justifies the use
of frequencies to estimate probabilities. The next theorem shows that Assumption 3.8 holds with
high probability when the step size takes the form of αt = O(t−a) with a ∈ (1/2, 1] ∪ {0}.
Theorem 3.6 (Proved in Appendix D.7). Under Assumption 2.1, for each agent i, we have

P
{∣∣∣∣ 1qit − 1

pi

∣∣∣∣ ≤ Gt− a
2

}
≥ 1−min

{
2e−

tp2i
2 ,

4(1− pi)

tpi

}
−min

{
2e−

G2p4i
2

t1−a

,
4(1− pi)

G2p3i t1−a

}
, (3.5)

where qit =
∑t

τ=1 ISτ (i)/t, and G ≥ 0 and a ≥ 0 are constants.

In practice, taking a = 0 leads to fixed step size cases or a ∈ (1/2, 1] to decaying step size cases.
Therefore, it follows from Theorem 3.6 that Assumption 3.8 holds with probability not less than

1 − min{2e−
tp2i
2 , 4(1−pi)

tpi
} − min{2e−

G2p4i
2 t1−a

, 4(1−pi)
G2p3

i t
1−a } with a proper constant G ≥ 0. Large

enough t and properly chosen G make the probability high.

4 EXPERIMENTS

Here we conduct numerical experiments on principal component analysis (PCA) over the Stiefel
manifold, hyperbolic structured prediction (HSP) over the hyperbolic manifold, and the Fréchet mean
computation (FMC) over the SPD manifold such that we can compare RFedAGS with existing RFL
algorithms, including RFedAvg (Li & Ma, 2023), RFedSVRG (Li & Ma, 2023), and RFedProj (Zhang
et al., 2024) (used in PCA). Additionally, we still conduct two experiments on principal eigenvec-
tor computation and low-rank matrix completion shown in Appendices A.1-A.2. The first one
tests the comprehensive performance of RFedAGS, while the second compares RFedAGS with some
existing centralized algorithms showing the comparable availability of RFedAGS with those. The
experiment settings in this section can be found in Appendix A.3.

PCA. The PCA problem has the form of minX∈St(r,d) F (X) := 1
N

∑N
i=1 fi(X), with fi(X) =

− 1
S

∑S
j=1 tr(X

T (ZijZ
T
ij)X), where St(r, d) is the Stiefel manifold, ZijZ

T
ij is the covariance matrix

of local datum Zij ∈ Rd×p. We generate Di = {Zij}Sj=1 in two ways: (i) synthetic data by
sampling from the Gaussian distribution N (0, i

N ) such that Di are non-I.I.D; (ii) real-world data
from CIFAR10 2 dataset. We can observe from Figure 1 that our proposed RFedAGS outperforms
the existing three RFL algorithms under the arbitrary participation setting in terms of accuracy of
solutions and consumed time. This justifies the efficacy of the proposed RFedAGS.

It should be noted that the tools used in our RFedAGS are fairly general (as stated in Assumption 3.1),
however RFedAvg and RFedSVRG require more strict tools (the inverse of exponential and parallel
transport) and RFedProj requires the orthogonal projector onto the manifold. These requirements
limit the application scope of RFedAvg, RFedSVRG, and RFedProj. For instance, RFedProj can not
be used in the HSP and FMC problems below.
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(a) Synthetic data
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(b) Synthetic data

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

10
4

200 250 300 350 400 450 500 550 600

1.5

2

2.5

3

3.5

(c) CIFAR10 dataset

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

RFedAGS

RFedAvg

RFedSVRG

RFedProj

(d) CIFAR10 dataset

Figure 1: PCA: RFedAGS consistently performs better than the competing methods across both
synthetic and real datasets.

2See https://www.cs.toronto.edu/ kriz/cifar.html.
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HSP. Given a set of training pairs D = {Di}Ni=1 = {{(wi,j , yi,j)}Sj=1}Ni=1, where wi,j ∈ Rr is
the feature and yi,j ∈ Hd is the hyperbolic embedding of the class of wi,j . Then for a test sam-
ple w, the task of HPS is to predict its hyperbolic embeddings by solving the following problem
argminx∈Hd F (x) := 1

N

∑N
i=1 fi(x), with fi(x) =

1
S

∑S
i=1 ai,j(ω)dist

2(x, yi,j) where the hyper-
bolic manifoldHd is characterized via the Lorentz hyperbolic model, [a1(w), . . . , aN (w)]T ∈ RN×S

is a parameter matrix. We use the WordNet 3 dataset to test the algorithms. From the reported Figure 2,
we can observe that the proposed RFedAGS outperforms both RFedAGS and RFedSVRG in terms of
distance to the true point. Figure 2(c) directly demonstrates this advantage of RFedAGS.
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0.25
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0.35

0.4

0.45
RFedAGS

RFedAvg

RFedSVRG

(a)

0 200 400 600

10
-1

10
0

10
1

RFedAGS

RFedAvg

RFedSVRG

(b) (c)

Figure 2: HSP with WordNet dataset. Here “primate” is the test sample (true point).

FMC. Given a set of SPD matrices, D = {{Xi,j}Sj=1}Ni=1, the FMC of these SPD matri-
ces is the solution to the problem argminX∈Sn

++
F (X) := 1

N

∑N
i=1 fi(X) with fi(X) =

1
S

∑S
i=1 dist

2(X,Xi,j), where dist(·, ·) is the Riemannian distance. We use the PATHMNIST 4

dataset to test the algorithms. From Figure 3, we still observe that RFedAGS outperforms RFedAvg
and RFedSVRG.
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Figure 3: FMC with PATHMNIST dataset: RFedAGS consistently performs better than RFedAvg
and RFedSVRG.

5 CONCLUSIONS

In this work, we propose a Riemannian FL algorithm, called RFedAGS, that addresses critical chal-
lenges caused by curvature effects of manifolds, the partial participation, and the heterogeneity data.
Unlike the commonly studied random sampling setting, RFedAGS accommodates a more practical
and challenging scenario where agents’ participation statistics may be unknown. Theoretically, we
prove that the proposed RFedAGS, under decaying step sizes, achieves global convergence and
provide sublinear convergence rate. When using a fixed step size, it attains sublinear—or even
linear—convergence near a neighborhood of a stationary point/solution. Numerical experiments we
conducted have confirmed the efficacy of RFedAGS and in particular, it outperforms existing RFL
algorithms methods on PCA, HSP, and FMC with synthetic and real-world data.

Current analyses on partial participation rely on time-invariant statistical assumptions. An important
direction for future research is to analyze more realistic and complex scenarios, such as settings with
time-varying participation probabilities.

3See https://wordnet.princeton.edu/.
4See https://medmnist.com/.

9

https://wordnet.princeton.edu/
https://medmnist.com/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

P.-A. Absil, R. Mahony, and Rodolphe Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princeton, 2008. ISBN 9781400830244.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 15(6):1373–1396, 06 2003. ISSN 0899-7667.

Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

W. M. Boothby. An introduction to differentiable manifolds and Riemannian geometry. 1975.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization
on manifolds. Journal of Machine Learning Research, 15(42):1455–1459, 2014. URL https:
//www.manopt.org.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023.

Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of convergence for nonconvex
optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33, 2019.

Li Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

OP Ferreira and PR Oliveira. Proximal point algorithm on Riemannian manifolds. Optimization, 51
(2):257–270, 2002.

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast federated learning in the
presence of arbitrary device unavailability. In Advances in Neural Information Processing Systems,
2021.

Xinran Gu, Kaifeng Lyu, Longbo Huang, and Sanjeev Arora. Why (and when) does local SGD
generalize better than SGD? In International Conference on Learning Representations (ICLR),
2023.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local
SGD with periodic averaging: Tighter analysis and adaptive synchronization. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Andi Han and Junbin Gao. Improved variance reduction methods for Riemannian non-convex
optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7610–
7623, 2021.

Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. On Riemannian optimization over
positive definite matrices with the Bures-Wasserstein geometry. In Advances in Neural Information
Processing Systems, 2021.

Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Differentially private Riemannian
optimization. Machine Learning, 113(3):1133–1161, 2024.

Wen Huang and Ke Wei. Riemannian proximal gradient methods. Mathematical Programming, 194
(1):371–413, 2022.

Wen Huang, K. A. Gallivan, and P.-A. Absil. A Broyden class of quasi-Newton methods for
Riemannian optimization. SIAM Journal on Optimization, 25(3):1660–1685, 2015. doi: 10.1137/
140955483.

Wen Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian BFGS method without differentiated
retraction for nonconvex optimization problems. SIAM Journal on Optimization, 28(1):470–495,
2018.

10

https://www.manopt.org
https://www.manopt.org


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenwei Huang, Wen Huang, Pratik Jawanpuria, and Bamdev Mishra. Federated learning on
Riemannian manifolds with differential privacy. arXiv, arxiv.org/abs/2404.10029(v1), 2024.

Pratik Jawanpuria and Bamdev Mishra. A unified framework for structured low-rank matrix learning.
In International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2254–2263. PMLR, 10–15 Jul 2018.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Jiaxiang Li and Shiqian Ma. Federated learning on Riemannian manifolds. Applied Set-Valued
Analysis and Optimization, 5(2):213–232, 08 2023.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and
Systems, volume 2, pp. 429–450, 2020a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
FedAvg on non-iid data. In International Conference on Learning Representations, 2020b.

German Magai. Deep neural networks architectures from the perspective of manifold learning. In
2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI),
pp. 1021–1031. IEEE, 2023.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

George A. Miller. WordNet: A lexical database for English. Commun. ACM, 38:39–41, 1995.

Bamdev Mishra, Hiroyuki Kasai, Pratik Jawanpuria, and Atul Saroop. A Riemannian gossip approach
to subspace learning on Grassmann manifold. Machine Learning, 108:1783 – 1803, 2019.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
Advances in Neural Information Processing Systems, 2017.

Mónica Ribero, Haris Vikalo, and Gustavo de Veciana. Federated learning under intermittent client
availability and time-varying communication constraints. IEEE Journal of Selected Topics in
Signal Processing, 17(1):98–111, 2023. doi: 10.1109/JSTSP.2022.3224590.

Elsa Rizk, Stefan Vlaski, and Ali H. Sayed. Federated Learning Under Importance Sampling. IEEE
Transactions on Signal Processing, 70:5381–5396, 2022. ISSN 1053-587X, 1941-0476. doi:
10.1109/TSP.2022.3210365.

Hiroyuki Sato, Hiroyuki Kasai, and Bamdev Mishra. Riemannian stochastic variance reduced gradient
algorithm with retraction and vector transport. SIAM Journal on Optimization, 29(2):1444–1472,
2019. doi: 10.1137/17M1116787.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations (ICLR), 2019.

Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging stochastic
gradient descent on Riemannian manifolds. In Conference On Learning Theory, pp. 650–687.
PMLR, 2018.

Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast descriptor for detection and
classification. In European conference on computer vision, pp. 589–600. Springer, 2006.

Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and analysis of
local-update SGD algorithms. Journal of Machine Learning Research, 22(213):1–50, 2021.

Shiqiang Wang and Mingyue Ji. A unified analysis of federated learning with arbitrary client
participation. In Advances in Neural Information Processing Systems, volume 35, pp. 19124–
19137. Curran Associates, Inc., 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shiqiang Wang and Mingyue Ji. A lightweight method for tackling unknown participation statistics
in federated averaging. In International Conference on Learning Representations, 2024.

Ming Xiang, Stratis Ioannidis, Edmund Yeh, Carlee Joe-Wong, and Lili Su. Towards bias correction
of FedAvg over nonuniform and time-varying communications. In 2023 62nd IEEE Conference on
Decision and Control (CDC), pp. 6719–6724, 2023. doi: 10.1109/CDC49753.2023.10383258.

Ming Xiang, Stratis Ioannidis, Edmund Yeh, Carlee Joe-Wong, and Lili Su. Empowering federated
learning with implicit gossiping: Mitigating connection unreliability amidst unknown and arbitrary
dynamics. IEEE Transactions on Signal Processing, 73:766–780, 2025. doi: 10.1109/TSP.2025.
3526782.

He Xiao, Tao Yan, and Kai Wang. Riemannian SVRG using Barzilai–Borwein method as second-
order approximation for federated learning. Symmetry, 16(9):1101, 2024.

He Xiao, Tao Yan, and Shimin Zhao. Riemannian SVRG with Barzilai-Borwein scheme for federated
learning. Journal of Industrial and Management Optimization, 21(2):1546–1567, 2025.

Bo Xiong, Michael Cochez, Mojtaba Nayyeri, and Steffen Staab. Hyperbolic embedding inference
for structured multi-label prediction. Advances in Neural Information Processing Systems, 35:
33016–33028, 2022.

Yikai Yan, Chaoyue Niu, Yucheng Ding, Zhenzhe Zheng, Shaojie Tang, Qinya Li, Fan Wu, Chengfei
Lyu, Yanghe Feng, and Guihai Chen. Federated optimization under intermittent client availability.
INFORMS Journal on Computing, 36(1):1185–202, 2023.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation
in non-iid federated learning. In International Conference on Learning Representations, 2021.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image
classification. Scientific Data, 10(1):41, 2023.

Haishan Ye and Tong Zhang. DeEPCA: Decentralized exact PCA with linear convergence rate.
Journal of Machine Learning Research, 22(238):1–27, 2021.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 5693–5700, 2019.

Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
Conference on learning theory, pp. 1617–1638. PMLR, 2016.

Jiaojiao Zhang, Jiang Hu, Anthony Man-Cho So, and Mikael Johansson. Nonconvex federated
learning on compact smooth submanifolds with heterogeneous data. In Advances in Neural
Information Processing Systems, volume 37, pp. 109817–109844. Curran Associates, Inc., 2024.

Fan Zhou and Guojing Cong. On the convergence properties of a K-step averaging stochastic gradient
descent algorithm for nonconvex optimization. In International Joint Conference on Artificial
Intelligence, 2018.

Xiaojing Zhu and Hiroyuki Sato. Cayley-transform-based gradient and conjugate gradient algorithms
on Grassmann manifolds. Advances in Computational Mathematics, 47:1–28, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A Experiment settings and additional experiment results 14
A.1 Comprehensive tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.1.1 Comparison of two aggregation patterns . . . . . . . . . . . . . . . . . . . 15
A.1.2 Comparisons of different participation schemes . . . . . . . . . . . . . . . 16
A.1.3 Influence of the level of heterogeneity data on performance . . . . . . . . . 17
A.1.4 Effect of local multiple-step update . . . . . . . . . . . . . . . . . . . . . 17

A.2 Comparisons with some centralized algorithms . . . . . . . . . . . . . . . . . . . 18
A.2.1 Synthetic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2.2 A real-world application . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.3 The details of experiment settings in Section 4 . . . . . . . . . . . . . . . . . . . . 20

B Preliminaries on Riemannian optimization 22

C Additional Discussions 23
C.1 Discussions for Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
C.2 Discussions for Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

D Proofs of Theorems in Section 3 25
D.1 Supporting lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
D.2 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
D.3 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
D.4 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
D.5 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
D.6 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
D.7 Proof of Theorem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

E Supplementary Proofs 34
E.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
E.2 Proof of the claim in Remark 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXPERIMENT SETTINGS AND ADDITIONAL EXPERIMENT RESULTS

In this section, we supplement the numerical experiments conducted to demonstrate the performance
of RFedAGS (Algorithm 1) on non-I.I.D. data setting. We focus on empirical minimization of (1.1).

The decaying local step size is determined by the following formula

αt =

{
α0 if t = 0,
α0

β+ct
if t ≥ 1,

with ct =


0 if t = 0,

ct−1 + 1 if mod(t, d) = 0,

ct−1 otherwise,

where α0 and β are two positive constants, and d is a positive constant integer, which results in
the step size decaying once after each d iterations. Optimality gap defined as F (xt)− F (x∗) with
x∗ ∈ argminx∈W F (x) is a commonly-used measure to evaluate the performance of algorithms. In
all experiments, the global step size is set as 1. The CPU time consists of the server computation time
and the local computation time of active agents, without the communication time between the server
and agents. Unless otherwise specified, frequencies are used in Algorithm 1 to estimate the true
probabilities. All of algorithms involved in our experiments are implemented built on Manopt (Boumal
et al., 2014). All of the experiments are conducted under Windows 11 and MATLAB R2024b running
on a laptop (Intel(R) Core(TM) i7-1165G7 CPU @2.80GHz, 16.0G RAM).

A.1 COMPREHENSIVE TESTS

Consider the principal eigenvector computation (PEC) problem over the sphere manifold, formulated
as follows

min
x∈Sn−1

F (x) :=
1

N

N∑
i=1

fi(x), with fi(x) = −
1

S

S∑
j=1

xT zi,jz
T
i,jx, (A.1)

where Sn−1 = {x ∈ Rn : xTx = 1} is the sphere manifold, Di = {zi,1, . . . , zi,S} is the local
samples held by agent i. Problem (A.1) is in the form of finite sum minimization of (1.1).

The sphere manifold Sn−1 is viewed as a Riemannian embedded submanifold of Rn, that is, the
Riemannian metric is induced by the Euclidean metric: ⟨ξ, η⟩x = ξT η for all ξ, η ∈ TxSn−1.
The exponential mapping is chosen as the Retraction and the parallel transport along the geodesic
correspondingly is selected as the isometric vector transport. The MNIST dataset (Deng, 2012) 5

consists of 60000 hand-written gray images of size 28× 28 each of which is associated with a label
taking values from 0 to 9. In our experiments, each image is concatenated into a 784-dimensional
column vector by column. In addition, to test the effectiveness of the proposed RFedAGS under
the heterogeneity data setting, according to the FL setting, the MNIST dataset is shuffled into
different levels of heterogeneity following the way in (McMahan et al., 2017). Figure 4 demonstrates
histograms of the MNIST dataset with three different levels of heterogeneity.
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Figure 4: Sample distributions across different agents on MNIST dataset. x-axis is the ID of each
agents and y-axis is the number of local samples.

5See https://yann.lecun.com/exdb/mnist/.
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A.1.1 COMPARISON OF TWO AGGREGATION PATTERNS

First we demonstrate the importance of the aggregation pattern (AGS-AP). As shown in (2.1),
the aggregation of RFedAGS in Line 14 of Algorithm 1 actually is unbiased in the sense of
E
[∑

i∈St

1
piN

gradfi(x)
]
= gradF (x). Nevertheless, if the participation probabilities are not

considered and the usual aggregation, xt+1 ← Rxt

(
−ϖ

∑
j∈St

1
|St|ζ

j
t,K

)
, is used, then the output

of the algorithm equipped with this aggregation will tend towards a minimizer of another objective
function different from the original objective when there exist i, j ∈ [N ] such that pi ̸= pj , which
exactly is what Theorem 2.1 points out.
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(b) Decaying step size

Figure 5: PEC with non-I.I.D. (slight) MNIST dataset: comparisons of the two aggregations pat-
terns (AGS-RS) and (AGS-AP).

Figure 5 reports the experiment results, where the two curves “True” and “Approximating” adopt the
aggregation pattern (AGS-AP), the curve “Approximating” uses the frequency to estimate the true
probability, and the curve “Biased” uses the usual aggregation (AGS-RS). Besides, the participation
probabilities pi’s are uniformly and randomly generated (i.e., pi, i ∈ [N ], follows the uniform
distribution U(0, 1)), the fixed step size is set as α = 8.0 × 10−5, the parameters for decaying
steps sizes are set as (α0, β, d) = (3.5 × 10−4, 0.1, 20), batch size is B = 0.5S, and the number
of local updates is set as K = 5. It is observed from Figure 5 that RFedAGS equipped with
the aggregation pattern (AGS-AP) gives a better solution to Problem (A.1) than that generated
by RFedAGS equipped with the usual aggregation pattern (AGS-RS). The reason lies on that the
usual aggregation pattern (AGS-RS) leads the iterates to the minimizer of F̃ :=

∑N
i=1 p̃ifi with

p̃i = pi
∫ 1

0

∏N
j ̸=i(1− pj + pjt)dt, as stated by Theorem 2.1. Meanwhile, due to pi ̸= pj for some

i, j ∈ [N ], it follows that there exists no χ > 0 such that F̃ = χ · F . Hence, the minimizers of F̃
may be not consistent with those of F .
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Figure 6: PEC with non-I.I.D. (slight) MNIST dataset: RFedAGS with the two aggregations solve
the re-weighted problem argminx∈M F̃ (x).
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Furthermore, Figure 6 shows the curves of optimality gap v.s. iterations for the re-weighted ob-
jective F̃ valued at the iterates given in Figure 5. Combining Figures 5 and 6, we conclude that
RFedAGS equipped with the aggregation pattern (AGS-RS) does solve the re-weighted problem
argminx∈M F̃ (x) rather than the original problem.

A.1.2 COMPARISONS OF DIFFERENT PARTICIPATION SCHEMES

Here we consider the special case where each agents participates in any round of communication with
the same participation probability, i.e., pi = pj with i, j ∈ [N ]. In this case, the random sampling
scheme is denoted by Scheme I, while our arbitrary participation scheme is denoted by Scheme II,
where we use frequencies to estimate the true probabilities. For Scheme I, the sampling rate (the
ratio of the number of sampled agents to the number of total agents) is as ρ = 0.3 (0.5, or 0.7). For
Scheme II, the participation probability agent i is respectively set as pi = 0.3 (0.5, or 0.7) for all
i ∈ [N ] such that the number of participating agents in Scheme II is equivalent to that of Scheme I in
expectation, which means

∑N
i=1 pi = ρN . The fixed step size is set α = 8× 10−5, the parameters

for decaying step sizes are set as (α0, β, d) = (3.5 × 10−4, 0.1, 20), batch size is B = 0.5S, and
the number of local updates is set as K = 5. As demonstrated in Figure 7, the performance of
two participation schemes are extremely the same. This indicates that Scheme I can be viewed as a
special case of our participation scheme and that using frequencies to estimate the true probabilities
is sufficient to ensure convergence.
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Figure 7: PEC with non-I.I.D. (slight) MNIST dataset: comparisons of the two participation schemes.

Next, we simulate the scenario of straggling agent participation. Suppose that the first three agents
are stragglers and make their local computation time become 10 times as much as that under normal
conditions. Specifically, for Scheme I, if one of the three stragglers are chosen, then its local
computational time becomes 10 times as much as that under normal conditions; for Scheme II, setting
the stragglers’ participation probabilities as 0.05 ensures that they rarely participate in local updates,
and when one of the stragglers responds to the server, its local computational also becomes 10 times
as much as that under normal conditions. The participation probabilities of the other agents are
properly set such that

∑N
i=1 pi ≈ ρN . The fixed step size is set α = 8× 10−5, the parameters for

decaying step sizes are set as (α0, β, d) = (2.8 × 10−4, 0.1, 20), batch size is B = 0.5S, and the
number of local updates is set as K = 5. The experiment results are shown in Figure 8.
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Figure 8: PEC with non-I.I.D. (slight) MNIST dataset: the situation where the FL system has three
stragglers. Here in the legends, Scheme-II-True (or Scheme-II-Freq) means that the Scheme II is
equipped with the true probabilities (or frequencies serving as the true probabilities).
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By the definition of Scheme I, each agent is sampled with probability ρ (e.g., 0.3 and 0.5 in our
experiments), which is much greater than 0.05 in Scheme II for the three stragglers. Hence, the
number of stragglers participating local updates of Scheme I is greater than the one of Scheme II,
leading to the CPU time of Scheme I are greater than the one of Scheme II. The results in Figure 8 is
consistent with our analysis. Meanwhile we note that the performance of using the true probabilities
and frequencies is extremely the same, which indicates again the validity of using frequencies serving
as the true probabilities.

It should be noted that in a practical situation, if some agents do not respond to the server in a certain
round of communication, then scheme I may not work in this case, because one of these agents
may be sampled by the server, but it will not respond to the server. This will cause the algorithm to
stagnate. Nevertheless, Scheme II does not encounter this issue since the server does not choose the
agents which do not respond.

A.1.3 INFLUENCE OF THE LEVEL OF HETEROGENEITY DATA ON PERFORMANCE

Next we test the impact of the heterogeneity level of the MNIST dataset on the performance of
RFedAGS. Here the participation probabilities pi’s are uniformly and randomly generated, that is,
pi ∼ U(0, 1) for i ∈ [N ]. The fixed step size is set α = 8 × 10−5, the parameters for decaying
step sizes are set as (α0, β, d) = (2.8× 10−4, 0.1, 20), batch size is B = 0.5S, and the number of
local updates is set as K = 5. The experiment results are reported in Figure 9, where we observe
that the quality of the solution generated by Algorithm 1 gets worse as the growth of the levels of
heterogeneity of the training data across agents. Additionally, Theorems 3.1 and 3.2 point out that if
decaying step sizes satisfying equation 3.1 are used, Algorithm 1 has global convergence. Hence, it is
expected that the higher-quality solutions may be found when using decaying step sizes and running
more rounds of communication compared with the case using a fixed step size. This is consistent
with the experiment results as shown in Figure 7-Figure 9.
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Figure 9: PEC with different non-I.I.D. datasets: impact of heterogeneity level.

A.1.4 EFFECT OF LOCAL MULTIPLE-STEP UPDATE

In addition, we test the impact of different number of local updates K on the performance of
Algorithm 1. The participation probabilities pi’s are uniformly and randomly generated, that is,
pi ∼ U(0, 1) for i ∈ [N ]. The fixed step size is set α = 8× 10−5 and batch size is B = 0.5S. The
experiment results are shown in Figure 10.

When using a fixed step size, Item 1 of Theorem 3.4 states that the convergence upper bound consists
of two terms: a decaying term 2Θ(x1)

ϖαKT as K (or T ) increases, and a increasing (or constant) term
2αQ(K,B,α,ϖ) with respect to K (or T ). The initial guess x1 is usually generated at random such
that Θ(x1) is relatively large, and thus the first term dominates at the initial stage. As a result, at
the initial stage, the convergence speed is accelerated when using larger K. Subsequently, due to
the growth of T , the second term begins to dominate and thus when using larger K the error of
solution generated by Algorithm 1 to the minimizer get larger. This analysis is verified by Figure 10.
Additionally, we note that in fixed step size cases, Algorithm 1 numerically demonstrates linear
convergence as seen in Figures 5-10.
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Figure 10: PEC with non-I.I.D. (slight) MNIST dataset: impact of number of local updates.

A.2 COMPARISONS WITH SOME CENTRALIZED ALGORITHMS

Low-rank matrix completion (LRMC) aims to recover the missing entries of an unknown matrix from
a small account of accesible entries with low-rank constraint for the matrix. Mishra et al. (Mishra
et al., 2019) formulate LRMC in the form of finite sum, which can be extended to the FL setting with
finite sum minimization as follows:

min
U∈Gr(r,m)

F (U) := 1

N

N∑
i=1

fi(U),with fi(U) =
1

S

S∑
j=1

0.5∥PΩij (UWT
ijU)− PΩij (Y

∗
ij)∥2F

+ λ∥UWT
ijU − PΩij (UWT

ijU)∥2F

(A.2)

where Gr(r,m) is the Grassmann manifold, i.e, the set of all the r-dimension subspaces of
Rm, U ∈ St(r,m) is the matrix characterization of U ∈ Gr(r,m), WijU ∈ Rnij×r with∑N

i=1

∑S
j=1 nij = n is the least-squares solution to argminWij∈Rnij×r 0.5∥PΩij

(UWT
ij) −

PΩij (Y
∗
ij)∥2F + λ∥UWT

ij − PΩij (UWT
ij)∥2F , Y∗ ∈ Rm×n is the known matrix and is partitioned

into Y∗ = [Y∗
1,1, . . . ,Y

∗
1,S , . . . ,Y

∗
N,1, . . . ,Y

∗
N,S ] with Y∗

ij ∈ Rm×nij , Ω is the indices set of
elements of Y∗: the (l, k)-element of Y∗ is nonzero if and only if its index belongs to Ω and is
also partitioned similar to the way of Y: Ω = {Ω1,1, . . . ,Ω1,S , . . . ,ΩN,1, . . . ,ΩN,S}, and opera-
tor PΩij

is the orthogonal sampling operator defined by [PΩij
(Y)]lk = the (l, k)-element of Y

if (l, k) ∈ Ωi,j and [PΩij (Y)]lk = 0 otherwise. It is worthy mentioned that Problem (A.2) is
defined on Gr(r,m) but the computation can be implemented with matrices U in St(r,m). The
over-sampling ratio (OS) is the ratio of number of entries of Ω and the freedom degree of Y∗, i.e.,
OS = |Ω|/((m+ n− r)r).

The Grasssmann manifold Gr(r,m) is equipped with the quotient structure Gr(r,m) =
St(r,m)/O(r) = {[U] : U ∈ St(r,m)} with O(r) the orthogonal group of the order r. The
Riemannian metric on Gr(r,m) is induced by the inner product, i.e., ⟨ηU , ξU ⟩U = trace(ηTU↑

ξU↑),
where ξU↑ is the horizontal lift of ξU . The retraction via Cayley transform (CT) (Zhu & Sato, 2021)
is given by

RCay
U (ξU ) =

[
U+ ξU↑ −

(
1

2
U+

1

4
ξU↑

)(
Ir +

1

4
ξTU↑

ξU↑

)−1

ξTU↑
ξU↑

]
,

and the inverse of RCay (Zhu & Sato, 2021) is computed by((
RCay

U

)−1

(V)
)

U↑

= 2(V −UUTV)(Ir +UTV)−1.

Correspondingly, the isometric vector transport associated with RCay (Zhu & Sato, 2021) is given by(
T Cay
ηU

(ξU )
)
V↑

= ξU↑ −
(
U+

1

2
ηU↑

)(
Ir +

1

4
ηTU↑

ηU↑

)−1

ηTU↑
ξU↑

with V = RCay
U (ηU ). We point out that Algorithm 1 does not require the usage of the inverse of

retraction. Here, what we use the inverse of retraction is just to assist in the implementation of
the vector transport. Moreover, if one uses the vector transport by projection, then the inverse of
retraction does not need.
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A.2.1 SYNTHETIC CASE

Sample at random two matrices A ∈ Rm×r and B ∈ Rn×r. Let Y∗ = ABT . mn− |Ω| entries are
randomly removed with uniform probability. Each of the rest entries is perturbed by noise obeying
the Gaussian distribution with mean zero and standard deviation 10−6. In the experiment, the rank is
set as r = 5, the OS is set as OS = 6, and (m,n) = (100, 2000). The other parameters are set as
λ = 0, (N,S) = (20, 100), pi ∼ U(0, 1),∀i ∈ [N ], B = 0.5S, and α = 2× 10−3,

Let Ũ be the solution given by Algorithm 1. Then WŨ = [W11Ũ, . . . ,W1SŨ, . . . ,WN1Ũ, . . . ,

WNSŨ], and thus the approximation to Y∗ is given by Ỹ = ŨWT
Ũ

. Relative error (lower is better)
between Ỹ and Y∗, computed by

rel_err(Ỹ) =
∥Ỹ −Y∗∥F
∥Y∗∥F

,

is used to measure the performance of Algorithm 1. From Figure 11, we also observe a similar result:
the number of inner iterations significantly affects the convergence. It is worth mentioning that the
results demonstrate Algorithm 1 has a linear convergence rate.
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Figure 11: LRMC with synthetic data: performance of RFedAGS with different K.

A.2.2 A REAL-WORLD APPLICATION

We use MovieLens 1M 6 dataset which consists of 1000209 ratings with 6040 users rating 3952
movies. In LRMC setting, Y∗ ∈ Rm×n, with m = 3952, n = 6040, and |Ω| = 1000209, whose
nonzero elements are the ratings. We randomly sample 80% ratings for each column of Y∗ as
the training samples, denoted by Ytr, and the testing dataset, denoted by Yte, is consisted of the
remainder. In terms of the FL setting, Ytr is equally divided into N = 40 agents by column at
order, i.e., Ytr = [Ytr

1 , . . . ,Y
tr
N ], and each agent has S = 151 columns, i.e., Ytr

i = [Ytr
i,1, . . . ,Y

tr
i,S ]

where Ytr
i,j ∈ Rm. The other parameters are set as λ = 10−2, pi ∼ U(0, 1),∀i ∈ [N ], B = 0.5S,

and α = 6× 10−4.

In order to evaluate the performance of those methods, the root mean square error (RMSE) is used
and is computed by

RMSE(Ỹ) =

√√√√ 1

|Ωte|
∑

(i,j)∈Ωte

|Ỹij −Yte
ij |2

with Ỹ, Yte, and Ωte being the approximation to Yte, the testing matrix, and the indices set of
known entries of Yte, respectively. We observe in Figure 12 and Table 2 that the proposed RFedPP
is comparable to these centralized methods in solving LRMC in terms of RMSE when choosing an
appropriate K.

6See https://grouplens.org/datasets/movielens/1m/.
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Figure 12: LRMC with MovieLens 1M dataset: comparisons of RFedAGS (with different K) with
RSD, RCG, and LRBFGS.

Table 2: The best RMSE scores (lower is better) on testing set for different subspace dimension r and
different number of local update K. Here the scalar a.bcdk denotes a.bcd× 10k.

RFedPP RSD RCG LRBFGS

K = 2 K = 4 K = 8 K = 12 K = 16

r = 3 8.260−1 8.101−1 8.023−1 7.968−1 7.948−1 7.925−1 7.925−1 7.925−1

r = 5 8.095−1 7.902−1 7.757−1 7.679−1 7.654−1 7.616−1 7.614−1 7.614−1

r = 7 7.966−1 7.743−1 7.577−1 7.507−1 7.468−1 7.392−1 7.384−1 7.382−1

A.3 THE DETAILS OF EXPERIMENT SETTINGS IN SECTION 4

In this section, we detail the experiment settings in Section 4.

PCA. We restate the PCA problem as follows for convenience:

min
X∈St(r,d)

F (X) :=
1

N

N∑
i=1

fi(X), with fi(X) = − 1

S

N∑
j=1

tr(XT (ZijZ
T
ij)X), (A.3)

where St(r, d) = {X ∈ Rd×r : XTX = Ir} is the Stiefel manifold, Di = {Zi1, . . . , ZiS} ⊆ Rd×p

is the local dataset held by agent i, ∀i ∈ [N ].

For the Stiefel manifold St(r, d), we view it as a Riemannian manifold embedded in Rd×r. Thus the
Riemannian metric is chosen as ⟨U, V ⟩X = ⟨U, V ⟩F for all X ∈ St(r, d) and U, V ∈ TXSt(r, d).
The retraction is the qr-retraction (Absil et al., 2008) and the vector transport is given via the
projection, i.e., TV U = PRqr

X (V )(U). In theory, RFedAvg and RFedSVRG (Li & Ma, 2023) require
the exponential mapping, its inverse, and parallel transport. But on the Stiefel manifold, the last two
operators have no closed-form expressions. Thus we use retraction, its inverse, and vector transport
to replace them.

For the synthetic data, we set p = 1 and generate the local datesets by setting [Zi1, . . . , ZiS ] = Zi

drawn from the Gaussian distribution Zi ∼ N (0, i
N ). In experiment, all parameters are set as

(r, d) = (5, 100), (N,S) = (40, 100), α = 6× 10−3, B = 0.5S, K = 5, and pi ∼ U(0, 1).

For CIFAR10 dataset, whose training dataset contains 50000 RGB images with size 32× 32 of each
channel, it is also shuffled following the way of McMahan et al. (2017) such that the local datasets
are non-I.I.D. (see Figure 13 below). In experiment, we flatten each image into a vector in R3072,
and thus each local data point Zij is inside R3072. The other parameters are set as (r, d) = (4, 3072),
(N,S) = (50, 1000), α = 3× 10−5, B = 0.5S, K = 5, and pi ∼ U(0, 1).

HSP. Given a set of training pairs D = {Di}Ni=1 = {{(wi,j , yi,j)}Sj=1}Ni=1, where wi,j ∈ Rr is the
feature and yi,j ∈ Hd is the hyperbolic embedding of the class of wi,j . Then for a test sample w, the
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Figure 13: Local dataset distributions of the CIFAR10 dataset

task of HPS is to predict its hyperbolic embeddings by solving the following problem

argmin
x∈Hd

F (x) :=
1

N

N∑
i=1

fi(x), with fi(x) =
1

S

S∑
i=1

ai,j(ω)dist
2(x, yi,j)

where the hyperbolic manifoldHd is characterized via the Lorentz hyperbolic modelHd := {x ∈
Rd+1 : ⟨x, y⟩L = −1} with ⟨x, x⟩L = xT y − 2x1y1, a1(w)T = (ai,1(w), . . . , ai,S(w))

T ∈ RS is
a pre-given constant vector related to w, and dist(·, ·) :M×M→ R is the Riemannian distance.
A commonly used option of ai(w) is computed by ai(w) = (Ki + γI)−1Ki,w, where γ is the
regularization parameter, and Ki ∈ RS×S and Ki,w ∈ RS are given by (Ki)l,h = k(wi,l, wi,h) and
(Ki,w)j = k(wi,j , w) for a raial basis function (RBF) kernel k(w,w′) = exp(−∥w − w′∥22/(2ν)2)
with a constant ν > 0.

The WordNet dataset (Miller, 1995) is used to conduct the experiment of inferring hyperbolic
embeddings. Following (Nickel & Kiela, 2017), the pretrained hyperbolic embeddings on H2 of
the mammals subtree with the transitive closure containing n = 1180 nodes (words) and 6540
edges (hierarchies) are used. 7 The features are stemmed from Laplacian eigenmap (Belkin &
Niyogi, 2003) to dimension r = 3 of the adjacency matrix formed by the edges. In other words,
we obtained {(wi, yi)}ni=1 ⊂ R3 ×H2. This setting is in line with the work in (Han et al., 2024).
In the experiments, the word “primate” is selected as the test sample, and the remainder is used to
train. Therefore, the hyperbolic embedding of the word “primate” is known and is viewed as the
true embedding, i.e., xtrue. For other parameters, they are set as (N,S) = (9, 131), α = 6× 10−2,
B = 0.5S, K = 5, pi ∼ U(0, 1), and (γ, ν) = (10−5, 0.3).

FMC. Given a set of training SPD matricesD := {Di}Ni=1 = {{Xi,j}Sj=1}Ni=1, where {Xi,j}Sj=1 ⊆
SN++ := {X ∈ RN×N : XT = X,X ≻ 0}, the FMC of these SPD matrices is the solution to the
following problem

argmin
X∈SN

++

F (X) :=
1

N

N∑
i=1

fi(X), with fi(X) =
1

S

S∑
j=1

dist2(X,Xi,j),

where dist(X,Y ) = ∥logm(X−1/2Xi,jX
−1/2)∥F with logm(·) the principal matrix logarithm is

the Riemannian distance.

The PATHMNIST dataset (Yang et al., 2023) consists of 89996 RGB images and we transform each
image into a 9× 9 SPD matrix by the covariance descriptor (Tuzel et al., 2006). In the experiment,
we randomly selects 20000 images to construct the training dataset. The parameters are set as
(N,S) = (50, 400), α = 0.01, B = 0.5S, K = 5, and pi ∼ U(0, 1).

7It is referred to website https://github.com/facebookresearch/poincare-embeddings.
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B PRELIMINARIES ON RIEMANNIAN OPTIMIZATION

In this section, we briefly review the basic ingredients for Riemannian optimization, which are drawn
from the standard literature, e.g., (Boothby, 1975; Absil et al., 2008). LetM be a d-dimensional
Riemannian manifold equipped with a Riemannian metric ⟨·, ·⟩ : (ηx, ζx) 7→ ⟨ηx, ζx⟩x ∈ R for any
x ∈ M, ηx, ζx ∈ TxM (when it is clear in the context, we omit the subscript and write ⟨η, ζ⟩ for
short). For all x ∈M, the tangent space TxM is a d-dimensional linear space. The norm induced by
the Riemannian metric in the tangent space TxM is ∥η∥ =

√
⟨η, η⟩ for all η ∈ TxM. An open ball

centered at η ∈ TxM with radius r in TxM is denoted by B(η, r) = {ζ ∈ TxM : ∥ζ − η∥ < r}.
The union of all tangent spaces is tangent bundle, denoted by TM. A vector field is a mapping
which maps fromM to TM, formally defined by η : M → TM : x 7→ ηx ∈ TxM. Given a
differentiable function f :M→ R, the Riemannian gradient of f , denoted by gradf , is a vector
field such that for any x ∈M, gradf(x) is the unique vector satisfying Df(x)[η] = ⟨gradf(x), η⟩
for any η ∈ TxM, where Df(x)[η] is the directional derivative of f at x along η.

A critical concept in Riemannian optimization is retraction, which defines a smooth mapping, denoted
by R, from the tangent bundle to the manifold, i.e., R : TM→M, satisfying

1. R(0x) = x for all x ∈M, where 0x is the origin of TxM;

2. DR(0x)[η] = η for all η ∈ TxM, which implies that DR(0x) = idTxM with idTxM being
the identity in TxM.

When restricted to TxM, we denote R by Rx, i.e., Rx = R |TxM. Note that the domain of R does
not need to be the whole tangent bundle. In practice, it is usually the case. In this paper, we always
assume that R is well-defined whenever needed. A special retraction is the exponential mapping,
dented by Exp, satisfying Expx(ηx) = γ(1) where γ is the geodesic such that γ(0) = x and
γ′(0) = ηx. Geodesic is the generalization of straight line in the Euclidean setting to the Riemannian
setting, and naturally the exponential mapping is the generalization of addition to the Riemannian
setting. Additionally, retraction is a first-order approximation to the exponential mapping. A r-totally
retractive setW is a subset ofM such that for any y ∈ W , it holds thatW ⊆ Ry(B(0y, r)) and Ry

is a diffeomorphism on B(0y, r). Hence, R−1
x (y) is well-defined, whenever x, y ∈ W .

For our RFedPP, another essential concept is vector transport, denoted by T , which is usually
associated with a retraction R. Given a retraction R, a vector transport associated with R maps from
TM⊕ TM, the Whitney sum, to TM, i.e., T : TM⊕ TM → TM, and satisfies that for any
(x, ηx) ∈ domain(R) and all ζx ∈ TxM, the followings hold that

1. Tηx
(ζx) ∈ TR(ηx)M;

2. T0xζx = ζx;

3. Tηx
is linear, i.e., for all a1, a2 ∈ R and ξx, ζx ∈ TxM, it holds that Tηx

(a1ξx + a2ζx) =
a1Tηx(ξx) + a2Tηx(ζx).

We say T is isometric if for any (x, ηx) ∈ domain(R), ξx, ζx ∈ TxM, it satisfies
⟨Tηx

(ξx), Tηx
(ζx)⟩R(ηx)

= ⟨ξx, ζx⟩x, which implies that ∥Tηx
(ζx)∥ = ∥ζx∥. An important vec-

tor transport is the parallel transport, which is isometric; refer to (Absil et al., 2008; Boumal, 2023)
for the rigorous definition.

In the Euclidean setting, the convergence analyses of FedAvg are established under the assumption
that F is L-smooth, where a continuously differentiable function f : Rn → R is said L-smooth if

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ ∀x, y ∈ Rn,

in which case we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.

Both properties above are critical in the analyses of FedAvg. Similar assumptions are made in the
Riemannian setting for the analysis of the proposed RFedAGS; see Definitions B.1 (Huang et al.,
2018) and B.1 (Huang & Wei, 2022). The first one is called L-Lipschitz continuously differentiable
(Definitions B.1) and the second one is called L-retraction-smooth (Definitions B.2).
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Definition B.1 (L-Lipschitz continuous differentiability). Let T be a vector transport associated
with a retraction R. A function f :M→ R is said L-Lipschitz continuous differentiable with respect
to T on U ⊆M if there exists a constant L > 0 such that

∥Tη(gradf(y))− gradf(x)∥ ≤ L∥η∥

for all x ∈ U and η ∈ TxM satisfying y = Rx(η).
Definition B.2 (L-retracton-smoothness). A function f :M→ R is called L-retraction-smooth with
respect to a retraction R inN ⊆M if for any x ∈ N and anyNx ⊆ TxM satisfying Rx(Nx) ⊆ N ,
it holds that

f(Rx(η)) ≤ f(x) + ⟨gradf(x), η⟩+ L

2
∥η∥2,

for all η ∈ Nx.

A function which is L-Lipschitz continuously differentiable is not necessarily L-retraction-smoooth,
however it is the case in the Euclidean setting. It should be highlighted that there exist some cases
where L-Lipschitz continuous differentiability implies also L-retraction smoothness (Huang et al.,
2018; Boumal et al., 2019; Boumal, 2023).

We end this section with reviewing convexity and strongly convexity in the Riemannian setting (Huang
& Wei, 2022).
Definition B.3 (Strongly retraction-convex, retraction-convex). A function f :M → R is called
µ-strongly retraction-convex with respect to a retraction R in N ⊆ M if for any x ∈ N and any
Nx ⊆ TxM satisfying Rx(Nx) ⊆ N , there exist a constant µ > 0 and a tangent vector ζ ∈ TxM
such that fx = f ◦ Rx satisfies

fx(η) ≥ fx(ξ) + ⟨ζ, η − ξ⟩+ µ

2
∥η − ξ∥2 ∀η, ξ ∈ Nx.

In particular, if µ = 0, we call f retraction-convex with respect to R in N .

Note that ζ = gradfx(ξ) if f is differentiable; otherwise, ζ is any Riemannian subgradient of fx at
ξ. In literature, convexity has been studied based on geodesic; see, e.g., (Ferreira & Oliveira, 2002;
Zhang & Sra, 2016), in which case a function f : M → R is called geodesic convex, if for any
x, y ∈ M, there exists a tangent vector ζx ∈ TxM such that f(y) ≥ f(x) +

〈
ζx,Exp

−1
x (y)

〉
. It

can be verified if taking ξ = 0 and exponential mapping as the retraction in Definition B.3, then
retraction-convexity reduces to geodesic convexity.

We end this section with an introduction to the concept of ϵ-stationary points/solutions.
Definition B.4. We say that xT ∈ M, the output from Algorithm 1, is an ϵ-stationary point of
Problem (1.1) if it holds that E[∥gradF (xT )∥2] ≤ ϵ, or is an ϵ-solution if it holds that E[F (xT )]−
F (x∗) ≤ ϵ, where x∗ ∈ argminx∈M F (x).

C ADDITIONAL DISCUSSIONS

C.1 DISCUSSIONS FOR ASSUMPTIONS

Assumptions 3.1-3.7 are standard for Riemannian stochastic gradient-based methods. Assumptions 3.1
imposes requirements for the retraction under consideration to be C2 and the vector transport under
consideration to be continuous and bounded from above. These requirements are fairly standard in
Riemannian optimization. Note that the boundedness for vector transport can be achieved by requiring
isometricness, in which case we have ∥Tηx

(ζx)∥ = ∥ζx∥, implying Υ = 1. In fact, a lots of papers
do have such requirements, e.g., (Sato et al., 2019; Li & Ma, 2023). Additionally, if the Riemannian
manifoldM is a submanifold embedded in a Euclidean space and equipped with the inner product as
its Riemannian metric, then an option for vector transport is based on the orthogonal operation onto
the tangent space, i.e., Tηx

(ζx) = PR(ηx)(ζx) with Px(u) = argminv∈TxM ∥v − u∥2F, in which
case by the nonexpansivity of the orthogonal projection we have ∥Tηx

(ζx)∥ ≤ ∥ζx∥, also implying
Υ = 1.

In the deterministic optimization, the compactness of the sublevel set of the objective function is
required to ensure that the iterates generated by the algorithms which are monotonically decreasing
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are still located in that compact set. However, in the stochastic setting, it is difficult to ensure that
the iterates generated by the algorithms all fall within the sublevel set since the algorithms are
not necessarily monotonically decreasing, and thus, it is not sufficient to require the sublevel set
to be compact under stochastic optimization. In this case, Assumption 3.2 becomes a commonly
used choice in Riemannian stochastic optimization; see, e.g., (Bonnabel, 2013; Zhang & Sra, 2016;
Tripuraneni et al., 2018; Sato et al., 2019; Han & Gao, 2021; Li & Ma, 2023). For some manifolds
that are compact themself, e.g., the Stiefel manifold and the Grassmann manifold, the compactness
assumption naturally holds. Moreover, in all experiments we conducted, it is observed that the
generated iterates xt, with t ≥ 1, fall into the sublevel set {x ∈M : f(x) ≤ f(x1)}.
Assumptions 3.6 and 3.7 impose requirements on the first- and second-order moments for the local
stochastic gradient estimator, which are necessary for Riemannian/Euclidean stochastic gradient-
based methods. In the analyses for Euclidean federated learning algorithms, majority of works make
extra assumptions for addressing the heterogeneity data. These assumptions essentially require that
the divergence between local and global gradients is bounded, i.e., there exists a constant σ > 0 such
that for all x,

∥∇fi(x)−∇F (x)∥2 ≤ σ2.

In our analyses for the proposed RFedAGS, we do not explicitly make the similar assumption, since
Assumption 3.2 implies the counterpart requirement. Indeed, under Assumption 3.2, there exists
a constant P > 0, such that ∥gradfi(x)∥ ≤ P and ∥gradF (x)∥ ≤ P for all i ∈ [N ] and x ∈ W .
Hence, it holds that

∥gradfi(x)− gradF (x)∥2 ≤ 2∥gradfi(x)∥2 + 2∥gradF (x)∥2 ≤ 4P 2.

Assumption 3.8 imposes the requirement that the approximate probabilities are how close to the
true probabilities. As discussed in Section 3.3, when using frequencies as the approximation, this
assumption holds with high probability. Numerically, the reported results show that the performance
using frequencies is comparable to the case using true probabilities. We note that in the fixed step
size case, existing work (Wang & Ji, 2024) also makes an equivalent assumption. The difference lies
in that the assumption in (Wang & Ji, 2024) only considers fixed step size cases, but Assumption 3.8
more finely encompasses the cases of decaying step sizes.

In summary, except Assumption 3.8 that aims to address the arbitrary partial participation, there exists
no assumption beyond those made for Riemannian (stochastic) optimization and federated learning.
In theory, the proposed RFedAGS is the first algorithm that can simultaneously address the challenges
caused by the partial participation and the heterogeneity data settings. The partial participation under
consideration allows arbitrary participation which is more practical than the commonly-countered
participation scheme based on random sampling. Even without the Riemannian manifold constraint,
i.e.,M = Rn, the proposed RFedAGS can reduce to one proposed in (Wang & Ji, 2024). This paper
establishes the convergence propoerties of RFedAGS under both the decaying (see Theorems 3.1, 3.2,
and 3.3) and fixed (see Theorems 3.4 and 3.5) step size cases. Under the decaying step size case,
global convergence is guaranteed. These analyses depend on a vital and non-trivial observation (see
Assumption 3.8). However, (Wang & Ji, 2024) only considered the assumption of the fixed step case,
and thus only established convergence under the fixed step size case, which does not ensure global
convergence rather only converges to a ϵ-stationary point.

C.2 DISCUSSIONS FOR IMPLEMENTATIONS

In Algortihm 1, there exists a scenario (called NA) where in certain round of communication no agent
participates in communication. We emphasize that this scenario happens with fairly low probability.
For example, considering a FL system where 20 agents participate in communication with probability
pi = 0.1, i = 1, 2, . . . , 20, and 5 agents participate with probability pi = 0.5, i = 21, 22, . . . , 25.
Then the scenario NA happens only with probability not greater than 0.38%. For the purpose of
robustness, when the scenario NA happens, one option is set xt+1 ← xt to restart the next round of
local updates.
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D PROOFS OF THEOREMS IN SECTION 3

D.1 SUPPORTING LEMMAS

If the objective F in Problem (1.1) is Lg-retraction smooth (Assumption 3.5), under Assumption 3.1,
it follows that

Et[F (xt+1)]− F (xt) ≤ Et[
〈
gradF (xt),R

−1
xt

(xt+1)
〉
] +

Lg

2
Et[∥R−1

xt
(xt+1)∥2]. (D.1)

Without considering the arbitrary participation, recalling (TM) and (AGS-RS), we have

Exp−1
xt

(xt+1) =
1

S

∑
j∈St

Exp−1
xt

(xj
t,K), and (D.2)

R−1
xt

(xt+1) = −αt
1

S

∑
j∈St

K−1∑
k=0

Tη̃j
t,k

 1

Bt

∑
b∈Bj

t,k

fj(x
j
t,k; ξ

j
t,k,b)

 . (D.3)

When K > 1 and S > 1, from the increment of parameters of (TM) it follows that analyzing the upper
bounds of the two terms in the right-hand side of (D.1) is fairly challenging, since the nonlinearity
of exponential and its inverse leads to difficulty expand (D.2) into the desired one involved gradient
information. However, the form of (D.3) is very similar to the Euclidean version and thus significantly
address the issue.

Lemmas D.1 together with D.3 have provided an upper bound for the first term in the right-hand side
of (D.1).
Lemma D.1. Under Assumptions 3.1-3.5, at the t-th outer iteration of Algorithm 1 with a stepsize αt

and a batchsize Bt, we have that

Et[
〈
gradF (xt),R

−1
xt

(xt+1)
〉
] ≤ −ϖαtK

2
∥gradF (xt)∥2 +ϖαtL

2
fδ

2
1

K−1∑
k=0

Et[∥R−1
xt

(xj
t,k)∥

2]

+ϖα2
tKGP 2δ22 −

ϖαt

2

K−1∑
k=0

E


∥∥∥∥∥∥

N∑
j=1

pj

qjtN
Tη̃j

t,k
(gradfj(x

j
t,k))

∥∥∥∥∥∥
2
 , (D.4)

where δ21 = maxt≥1

{
1
N

∑N
j=1

(
pj

qjt

)2
}

and δ22 =
∑N

j=1

p2
j

N .

Proof of Lemma D.1. On the one hand, we have

Et[
〈
gradF (xt),R

−1
xt

(xt+1)
〉
] = Et[

〈
gradF (xt),R

−1
xt

(xt+1) +ϖαtKgradF (xt)−ϖαtKgradF (xt)
〉
]

= −ϖαtK∥gradF (xt)∥2 + Et[
〈
gradF (xt),R

−1
xt

(xt+1) +ϖαtKgradF (xt)
〉
], (D.5)

where for the second term of the equality on the right-hand side, we have

Et[
〈
gradF (xt),R

−1
xt

(xt+1) +ϖαtKgradF (xt)
〉
]

= Et

[〈
gradF (xt),−

∑
j∈St

ϖαt

qjtN

K−1∑
k=0

1

Bt

∑
b∈Bj

t,k

Tη̃j
t,k
(gradfj(x

j
t,k; ξ

j
t,k,b)) +ϖαtKgradF (xt)

〉]

= Et

[〈
gradF (xt),−

K−1∑
k=0

( ∑
j∈St

ϖαt

qjtNBt

∑
b∈Bj

t,k

Tη̃j
t,k
(gradfj(x

j
t,k; ξ

j
t,k,b)) + gradF (xt)

)〉]

=

K−1∑
k=0

Et

[〈
gradF (xt),−ϖαt

∑
j∈St

(
1

qjtN
Tη̃j

t,k
(gradfj(x

j
t,k))−

1

pjN
gradfj(xt)

)〉]

=

K−1∑
k=0

Et

[〈
√
ϖαtgradF (xt),−

∑
j∈St

√
ϖαt

N

(
1

qjt
Tη̃j

t,k
(gradfj(x

j
t,k))−

1

pj
gradfj(xt)

)〉]
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=

K−1∑
k=0

Et

[〈
√
ϖαtgradF (xt),−

N∑
j=1

ISt(j)

√
ϖαt

N

(
1

qjt
Tη̃j

t,k
(gradfj(x

j
t,k))−

1

pj
gradfj(xt)

)〉]

=

K−1∑
k=0

Et

[〈
√
ϖαtgradF (xt),−

N∑
j=1

pj
√
ϖαt

N

(
1

qjt
Tη̃j

t,k
(gradfj(x

j
t,k))−

1

pj
gradfj(xt)

)〉]

=
ϖαtK

2
∥gradF (xt)∥2 +

ϖαt

2

K−1∑
k=0

Et

[∥∥∥∥ N∑
j=1

pj
N

(
1

qjt
Tη̃j

t,k
(gradfj(x

j
t,k))−

1

pj
gradfj(xt)

)∥∥∥∥2]

− ϖαt

2

K−1∑
k=0

Et

[∥∥∥∥ N∑
j=1

pj

qjtN
Tη̃j

t,k
(gradfj(x

j
t,k))

∥∥∥∥2], (D.6)

where the third equality follows (2.1), the sixth equality follows E[ISt
(j)] = pj , and the last equality

is due to ⟨u, v⟩ = 1
2 (∥u∥

2 + ∥v∥2 − ∥u− v∥2). Moreover, we note that

ϖαt

2

K−1∑
k=0

Et

[∥∥∥∥ N∑
j=1

pj
N

(
1

qjt
Tη̃j

t,k
(gradfj(x

j
t,k))−

1

pj
gradfj(xt)

)∥∥∥∥2]

=
ϖαt

2

K−1∑
k=0

Et

[∥∥∥∥ N∑
j=1

pj
N

(
1

qjt

(
Tη̃j

t,k
(gradfj(x

j
t,k))− gradfj(xt)

)
+

(
1

qjt
− 1

pj

)
gradfj(xt)

)∥∥∥∥2]

≤ ϖαt

K−1∑
k=0

Et

[∥∥∥∥ N∑
j=1

pj

qjtN

(
Tη̃j

t,k
(gradf(xj

t,k))− gradfj(xt)
)∥∥∥∥2]

+ϖαt

K−1∑
k=0

Et

[∥∥∥∥ N∑
j=1

pj
N

(
1

qjt
− 1

pj

)
gradfj(xt)

∥∥∥∥2]

≤
ϖαtL

2
f

N

N∑
j=1

(
pj

qjt

)2 K−1∑
k=0

Et[∥R−1
xt

(xj
t,k)∥

2] +

N∑
j=1

p2j
N

KGP 2ϖα2
t

≤ ϖαtδ
2
1L

2
f

K−1∑
k=0

Et[∥R−1
xt

(xj
t,k)∥

2] +ϖα2
tKGP 2δ22 , (D.7)

where the first inequality follows ∥u + v∥2 ≤ 2∥u∥2 + 2∥v∥2, the second inequality is due to the
Lf -retraction smoothness of gradfj for j = 1, 2, . . . , N , Assumption 3.2 (which implies that there
exists P > 0 such that ∥gradfi(xt)∥ ≤ P ), 3.4, and 3.8, and the third inequality follows that

δ21 = maxt≥1

{
1
N

∑N
i=1

(
pi

qit

)2
}

and δ22 =
∑N

i=1
p2
i

N . Combining (D.5), (D.6), and (D.7) yields the

desired result.

In order to further bound Et[
〈
gradF (xt),R

−1
xt

(xt+1)
〉
] for K > 1, from Lemma D.1, it is necessary

to estimate the bounds for Et[∥R−1
xt

(xj
t,k)∥2], as theoretically discussed in Lemma D.3 which states

that for agent j, the “distance” between the k-th local update xj
t,k and the the t-th outer iterate xt are

controlled by the sum of squared step sizes. Intuitively, the “distance” increases as the number of
local iterations grows, which is shown in Lemma D.4. Meanwhile, it also reflects the drift between
an agent’s local update parameter xj

t,k and the global parameter xt. A general result is provided in
Lemma D.2.

Lemma D.2. Under Assumptions 3.1-3.3, let F :M → R be a smooth function. If consider the
following update formulation

xt,k+1 = Rxt,k
(−αt,kGF (xt,k)),
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where GF (xt,k) is an estimator of gradF (xt,k), xt = xt,0, and αt,τ is the step size, then it follows
that

∥R−1
xt

(xt,k)∥2 ≤ 2k

k−1∑
τ=0

α2
t,τ (J

2 + α2
t,τH

2∥GF (xt,τ )∥2)∥GF (xt,τ )∥2,

where J and H are two positive constants related with the manifold and retraction.

The proof of Lemma D.2 needs the following inverse function theorem on manifolds.

Theorem D.1 (Inverse function theorem). Given a smooth mapping P :M→M′ defined between
two manifolds, if DP (x) is invertible at some point x ∈M, then there exist neighborhoods Ux ⊆M
of x and VP (x) ⊆ M′ of P (x) such that P |Ux

: Ux → VP (x) is a diffeomorphism. Meanwhile, if
P−1 is the inverse of P in Ux, then we have (DP (x))−1 = DP−1(P (x)).

Now we are ready to prove Lemma D.2.

Proof of Lemma D.2. For two points x, y ∈ W , consider the map Px,y = R−1
y ◦ Rx : TxM →

TyM : ηx 7→ R−1
y (Rx(ηx)), which is defined between two vector spaces. According to the chain

rule for the differential of a map and the first-order property of the retraction, i.e., DRx(0x) = ITxM,
we have

DPx,y(0x) = D(R−1
y ◦ Rx)(0x) = DR−1

y (Rx(0x)) ◦DRx(0x)

= (DRy(R
−1
y (Rx(0x))))

−1 ◦ ITxM = (DRy(R
−1
y (x)))−1 = (Λx

y)
−1,

where the third equality is due to the inverse function Theorem D.1. Noting that the map P·,·(·) is
defined in TW = {(x, y, η) : x, y ∈ W, η ∈ R−1

x (W)}, which is inside a compact set, according to
Assumption 3.2, thus, smoothness of the retraction implies that the Jacobin and Hessian of P·,·(·)
with respect to the third variable is uniformly bounded in norm on the compact set. We, thus, use
C2, C3 > 0 to denote bounds on the operator norms of the Jacobin and Hessian of P·,·(·) with respect
to the third variable in the compact set. Noting that

Pxj
t,k−1,xt

(ηxj
t,k−1

) = R−1
xt

(Rxj
t,k−1

(ηxj
t,k−1

)) = R−1
xt

(xj
t,k), and

Pxj
t,k−1,xt

(0) = R−1
xt

(Rxj
t,k−1

(0)) = R−1
xt

(xj
t,k−1)

with ηxj
t,k−1

= −αt,k−1GF (xj
t,k−1), using a Taylor expansion for Px,y yields

R−1
xt

(xj
t,k) = Pxj

t,k−1,xt
(−αt,k−1GF (xj

t,k−1))

= Pxj
t,k−1,xt

(0) + DPxj
t,k−1,xt

(0)(−αt,k−1GF (xj
t,k−1)) + αt,k−1e

j
t,k−1

= R−1
xt

(xj
t,k−1)− αt,k−1(Λ

xj
t,k−1

xt )−1(GF (xj
t,k−1)) + αt,k−1e

j
t,k−1,

where ∥ejt,k−1∥ ≤ αt,k−1C3∥GF (xj
t,k−1)∥2. Hence, we have

R−1
xt

(xj
t,k) = −

k−1∑
τ=0

αt,τ (Λ
xj
t,τ

xt )−1(GF (xj
t,τ )) +

k−1∑
τ=0

αt,τe
j
t,τ , (D.8)

where we used R−1
xt

(xt) = 0xt
. Combining (D.8), ∥(Λ

xj
t,k−1

xt )−1(GF (xj
t,k−1)∥ ≤ C2∥GF (xj

t,k−1)∥
(for all t = 1, 2, . . . , T − 1 and k = 1, 2, . . . ,K − 1), and ∥

∑n
i=1 ui∥2 ≤ n

∑n
i=1 ∥ui∥2 yields the

desired result.

When M reduces into a Euclidean space, e.g., M = Rd, the constants in Lemma D.2 will be-
come C2 = 1 and C3 = 0. In this case, the results correspondingly becomes ∥xt − xj

t,k∥2 ≤
k
∑k−1

τ=0 α
2
t,τ∥GF (x

j
t,τ )∥2. In Lemma D.2, if one uses 1

Bt

∑
b∈Bj

t,k
gradfj(x

j
t,k; ξ

j
t,k,b) to replace

GF (xj
t,k), then the desired result is obtained in Lemma D.3.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Lemma D.3. Under Assumptions 3.1-3.3, at the k-th inner iteration of the t-th outer iteration of
Algorithm 1, for each agent j ∈ St and k = 1, 2, . . . ,K − 1, we have

∥R−1
xt

(xj
t,k)∥

2 ≤ 2k2α2
tP

2(J2 + α2
tP

2H2), (D.9)

where P is a positive constant such that for all x ∈ W , j = 1, 2, . . . , N and ξ ∼ Dj , it holds that
∥gradF (x)∥ ≤ P , ∥gradfj(x)∥ ≤ P and ∥gradfj(x; ξ)∥ ≤ P by Assumption 3.2.

Proof of Lemma D.3. From Algorithm 1, letting GF (xj
t,k) = − 1

Bt

∑
b∈Bj

t,k
gradfj(x

j
t,k; ξ

j
t,k,b),

then, we have

∥GF (xj
t,k)∥ =

∥∥∥∥∥∥∥−
1

Bt

∑
b∈Bj

t,k

gradfj(x
j
t,k; ξ

j
t,k,b)

∥∥∥∥∥∥∥ ≤
1

Bt

∑
b∈Bj

t,k

∥gradfj(xj
t,k; ξ

j
t,k,b)∥ ≤ P.

Hence, combining the inequality above and Lemma D.2 gives rise to the desired result (D.9).

Under the same conditions as Lemma D.1, plugging (D.9) into (D.4) yields

Et[
〈
gradF (xt),R

−1
xt

(xt+1)
〉
] ≤ −ϖαt

2

K−1∑
k=0

Et


∥∥∥∥∥∥

N∑
j=1

pj

qjtN
Tη̃j

t,k
(gradfj(x

j
t,k))

∥∥∥∥∥∥
2


− ϖαtK

2
∥gradF (xt)∥2 +ϖα2

tKGP 2δ22 +
1

6
(2K − 1)K(K − 1)L2

fδ
2
1P

2(J2 + α2
tP

2H2)ϖα3
t .

(D.10)

The next is to bound the second term Et[∥R−1
xt

(xt+1)∥2].
Lemma D.4. Under Assumptions 3.1-3.8, the iterates {xt}Tt=1 generated by Algorithm 1 with fixed
stepsize αt and fixed batchsize Bt within parallel inner iterations satisfies

Et[∥R−1
xt

(xt+1)∥2] ≤
ϖ2α2

tΥ
2σ2

Lδ
2
3K

Bt
+ϖ2α2

tK

K−1∑
k=0

Et


∥∥∥∥∥∥

N∑
j=1

pj

qjtN
Tη̃j

t,k
(gradfj(x

j
t,k))

∥∥∥∥∥∥
2


+ϖ2α2
tP

2K2δ24 (D.11)

where δ23 = 1
N2

∑N
j=1

pj

(qjt )
2

and δ24 = 1
N2

∑N
j=1

pj(1−pj)

(qjt )
2

.

Proof of Lemma D.4. Let xt denote the t-th aggregation by the server. Then,

Et[∥R−1
xt

(xj
t,k)∥

2] = ϖ2α2
tEt

[∥∥∥∥ ∑
j∈St

1

qjtN

K−1∑
k=0

Tη̃j
t,k

(
1

Bt

∑
b∈Bj

t,k

gradfj(x
j
t,k; ξ

j
t,k,b)

)∥∥∥∥2]

= ϖ2α2
tEt

[∥∥∥∥ N∑
j=1

ISt
(j)

1

qjtN

K−1∑
k=0

Tη̃j
t,k

(
1

Bt

∑
b∈Bj

t,k

gradfj(x
j
t,k; ξ

j
t,k,b)

)∥∥∥∥2]

= ϖ2α2
tEt

[∥∥∥∥ N∑
j=1

ISt
(j)

1

qjtN

K−1∑
k=0

Tη̃j
t,k

(
1

Bt

∑
b∈Bj

t,k

gradfj(x
j
t,k; ξ

j
t,k,b)− gradfj(x

j
t,k)

+ gradfj(x
j
t,k)

)∥∥∥∥2]
= ϖ2α2

tEt

[∥∥∥∥ N∑
j=1

ISt
(j)

qjtN

K−1∑
k=0

Tη̃j
t,k

(
1

Bt

∑
b∈Bj

t,k

gradfj(x
j
t,k; ξ

j
t,k,b)− gradfj(x

j
t,k)

)∥∥∥∥2]
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+ϖ2α2
tEt

[∥∥∥∥ N∑
j=1

ISt
(j)

1

qjtN

K−1∑
k=0

Tη̃j
t,k

(
gradfj(x

j
t,k)

)∥∥∥∥2]

= ϖ2α2
tEt

[∥∥∥∥ N∑
j=1

ISt
(j)

qjtN

K−1∑
k=0

Tη̃j
t,k

(
1

Bt

∑
b∈Bj

t,k

gradfj(x
j
t,k; ξ

j
t,k,b)− gradfj(x

j
t,k)

)∥∥∥∥2]

+ϖ2α2
tEt

[∥∥∥∥ N∑
j=1

(ISt
(j)− pj + pj)

1

qjtN

K−1∑
k=0

Tη̃j
t,k

(
gradfj(x

j
t,k)

)∥∥∥∥2]

≤ ϖ2α2
tΥ

2σ2
LK

N2Bt

N∑
j=1

pj

(qjt )
2
+ϖ2α2

tEt

[∥∥∥∥ N∑
j=1

(ISt
(j)− pj)

1

qjtN

K−1∑
k=0

Tη̃j
t,k
(gradfj(x

j
t,k))

∥∥∥∥2]

+ϖ2α2
tEt

[∥∥∥∥ N∑
j=1

pj

qjtN

K−1∑
k=0

Tη̃j
t,k
(gradfj(x

j
t,k))

∥∥∥∥2]

=
ϖ2α2

tΥ
2σ2

LK

N2Bt

N∑
j=1

pj

(qjt )
2
+

ϖ2α2
t

N2

N∑
j=1

pj(1− pj)

(qjt )
2

Et

[∥∥∥∥K−1∑
k=0

Tη̃j
t,k
(gradfj(x

j
t,k))

∥∥∥∥2]

+ϖ2α2
tEt

[∥∥∥∥ N∑
j=1

pj

qjtN

K−1∑
k=0

Tη̃j
t,k
(gradfj(x

j
t,k))

∥∥∥∥2]

≤ ϖ2α2
tΥ

2σ2
Lδ

2
3K

Bt
+ϖ2α2

tΥ
2P 2K2δ24 +ϖ2α2

tK

K−1∑
k=0

Et

[∥∥∥∥ N∑
j=1

pj

qjtN
Tη̃j

t,k
(gradfj(x

j
t,k))

∥∥∥∥2]
where the fourth equality follows that

E

 N∑
j=1

K−1∑
k=0

ISt(j)

qjtN
Tη̃j

t,k

(
1

Bt

∑
b∈Bj

t,k

gradfj(x
j
t,k; ξ

j
t,k,b)

) =

N∑
j=1

K−1∑
k=0

ISt(j)

qjtN
Tη̃j

t,k
(gradfj(x

j
t,k))

and that E[∥u∥2] = E[∥u− E[u]∥2] + ∥E[u]∥2, the first inequality follows that

E
[ N∑

j=1

K−1∑
k=0

ISt(j)

qjtN
Tη̃j

t,k

(
1

Bt

∑
b∈Bj

t,k

gradfj(x
j
t,k; ξ

j
t,k,b)− gradfj(x

j
t,k)

)]
= 0

and that E[∥
∑n

i=1 ui∥2] =
∑n

i=1 E[∥ui∥2] with ui being independent and having zero mean, that
∥Tη(ζ)∥ ≤ Υ (Assumption 3.1), and Assumption 3.6, the sixth equality follows that

E

 N∑
j=1

(ISt(j)− pj)
1

qjtN

K−1∑
k=0

Tη̃j
t,k
(gradfj(x

j
t,k))

 = 0,

and that E[(ISt(j) − pj)
2] = pj(1 − pj), and the last inequality follows that δ23 =

maxt≥1

{
1

N2

∑N
j=1

pj

(qjt )
2

}
, δ24 = maxt≥1

{
1

N2

∑N
j=1

pj(1−pj)

(qjt )
2

}
, and ∥

∑n
i=1 ui∥2 ≤

n
∑n

i=1 ∥ui∥2.

Now we can formally state the descent lemma in the Riemannian FL setting.
Lemma D.5. Under Assumptions 3.1-3.8, we run Algorithm 1 with batch size Bt and step sizes
ϖ > 0 and {αt} satisfying

1 ≥ KLgϖαt. (D.12)
Then, we have

Et[F (xt+1)]− F (xt) ≤ −
ϖαtK

2
∥gradF (xt)∥2 +ϖα2

tKQ(K,Bt, αt, ϖ), (D.13)

where Q(K,Bt, αt, ϖ) = (2K − 1)(K − 1)L2
fδ

2
1P

2(J2 + α2
tP

2H2)αt/6 + GP 2δ22 +

Υ2P 2δ24KLgϖ +
Lgδ

2
3σ

2
LΥ2ϖ

2Bt
.
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Proof of Lemma D.5. By the Lg-retraction smoothness of F , it follows for t ≥ 1 that

F (xt+1) ≤ F (xt) +
〈
gradF (x),R−1

xt
(xt+1)

〉
+

Lg

2
∥R−1

xt
(xt+1)∥2,

where the existence of R−1
xt

(xt+1) is guaranteed by Assumption 3.2. Taking expectation on both
sides over the randomness over the t-th outer iteration yields

Et[F (xt+1)] ≤ F (xt) + Et[
〈
gradF (xt),R

−1
xt

(xt+1)
〉
] +

Lg

2
E[∥R−1

xt
(xt+1)∥2]. (D.14)

Inequality equation D.14 together with Lemmas D.1, D.3, and D.4 give rise to

Et[F (xt+1)]− F (xt) ≤ −
ϖαtK

2
∥gradF (xt)∥2 +

1

6
(2K − 1)K(K − 1)L2

fδ
2
1P

2(J2 + α2
tP

2H2)ϖα3
t

− ϖαt

2
(1−KLgϖαt)

K−1∑
k=0

Et


∥∥∥∥∥∥

N∑
j=1

pj

qjtN
Tη̃j

t,k
(gradfj(x

j
t,k))

∥∥∥∥∥∥
2


+ϖα2
tKGP 2δ22 + Lgϖ

2α2
tΥ

2P 2K2δ24 +
KLgσ

2
LΥ

2δ23ϖ
2α2

t

2Bt
. (D.15)

Under Condition (D.12), the third term on the right-hand side of (D.15) can be discarded and then we
obtain

Et[F (xt+1)]− F (xt) ≤ −
ϖαtK

2
∥gradF (xt)∥2 +ϖα2

tKGP 2δ22 +
KLgσ

2
LΥ

2δ23ϖ
2α2

t

2Bt

+ Lgϖ
2α2

tΥ
2P 2K2δ24 +

1

6
(2K − 1)K(K − 1)L2

fδ
2
1P

2(J2 + α2
tP

2H2)ϖα3
t

= −ϖαtK

2
∥gradF (xt)∥2 +ϖα2

tKQ(K,Bt, αt, ϖ)

where Q(K,Bt, αt, ϖ) = (2K − 1)(K − 1)L2
fδ

2
1P

2(J2 + α2
tP

2H2)αt/6 + GP 2δ22 +

Υ2P 2δ24KLgϖ +
Lgδ

2
3σ

2
LΥ2ϖ

2Bt
.

Note that Q(K,Bt, αt, ϖ) in (D.13) consists of four error terms: the first one resulted from the agent
drift effect and non-I.I.D. setting, the second one brought by the probability approximating, the third
one caused by partial participation, and the fourth one caused by the local stochastic gradient.

D.2 PROOF OF THEOREM 3.1

Now we are ready to prove Theorem 3.1.

Theorem 3.2. The second condition in (3.1) ensure {αt} → 0, and thus, without loss of generality,
we may assume that LgKϖαt ≤ 1 for all t ∈ N+. Then, it follows from D.5 that

αt∥gradF (xt)∥2 ≤
2(F (xt+1)− Et[F (xt)])

Kϖ
+ α2

tQ(K,Bt, αt, ϖ).

Summing the inequality above over t = 1, 2, . . . , T and taking total expectation yields
T∑

t=1

αtE[∥gradF (xt)∥2] ≤
2E[F (x0)− F (xT+1)]

Kϖ
+

T∑
t=1

α2
tQ(K,Bt, αt, ϖ)

≤ 2(F (x0)− F (x∗))

Kϖ
+

T∑
t=1

α2
tQ(K,Bt, αt, ϖ).

Dividing the both side by AT =
∑T

t=1 αt results in the bound for the weighted average norm of the
squared gradients as follows

1

AT

T∑
t=1

αtE[∥gradF (xt)∥2] ≤
2(F (x0)− F (x∗))

KϖAT
+

1

AT

T∑
t=1

α2
tQ(K,Bt, αt, ϖ), (D.16)
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which, under Conditions (3.1), implies that

lim
T→∞

1

AT

T∑
t=1

αtE[∥gradF (xt)∥2] = 0.

The desired result follows the fact above.

D.3 PROOF OF THEOREM 3.2

Theorem 3.2. By the definition of αt, there exists a positive constant M > 0 such that∑T
t=1 α

2
t ,
∑T

t=1 α
3
t ,
∑T

t=1 α
4
t ,
∑T

t=1 α
5
t ≤M for all T ≥ 1. Then,

T∑
t=1

α2
tQ(K,Blow, αt, ϖ) ≤ 1

6
(2K − 1)(K − 1)L2

fδ
2
1P

2(J2 + P 2H2)M

+GP 2δ22M + P 2δ24KLgϖM +
Lgδ

2
3σ

2
LΥ

2ϖ

2Blow
M. (D.17)

On the other hand,

AT =

T∑
t=1

α0

(β + t)p
≥

∫ T+1

t=1

α0

(β + t)p
dt =

{
α0(ln(T + 1 + β)− ln(β + 1)) p = 1,
α0

1−p ((T + 1 + β)1−p − (b+ 1)1−p) p ∈ (1/2, 1),

which gives

1

AT
≤

{
1

α0(ln(T+1+β)−ln(β+1)) p = 1,
1−p

α0((T+1+β)1−p−(b+1)1−p) p ∈ (1/2, 1).
(D.18)

Plugging (D.17) and (D.18) into (D.16) ensures the desired result.

In particular, if full agents participate in any round of communication and agents use local full
gradient in local updates, implying G = 0, δ24 = 0, and σ2

L = 0, then we have

T∑
t=1

α2
tQ(K,Blow, αt, ϖ) =

1

6
(2K − 1)(K − 1)L2

fδ
2
1P

2(J2
T∑

t=1

α3
t + P 2H2

T∑
t=1

α4
t ).

Hence, we can relax the condition for αt as
∑∞

t=1 αt = ∞ and
∑∞

t=1 α
3
t < ∞. If one takes

αt =
α0

(β+t)p with constants α0, β, p = 1/3 + a and a ∈ (0, 2/3) properly small, it follows that

1

AT

T∑
t=1

αtEt[∥gradF (xt)∥2] ≤
M(a)

(β + T )2/3−a
,

where M(a) is a constant depended on a. The smaller a the larger M(a).

D.4 PROOF OF THEOREM 3.3

Theorem 3.3. By Lemma D.5 and the RPL condition, we have

Et[F (xt+1)]−F (x∗)+(F (x∗)−F (xt)) ≤ −µϖKαt(F (xt)−F (x∗))+ϖα2
tKQ(K,Blow, αt, ϖ).

Rearranging this inequality yields

E[F (xt+1)]− F (x∗) ≤ (1− µϖKαt)(E[F (xt)]− F (x∗)) +ϖα2
tKQ(K,Blow, α1, ϖ), (D.19)

where we take the total expectation on both sides. Subsequently, we prove the desired result by
induction. For t = 1, it follows from the definition of ν. Now assume that (3.2) holds for t ≥ 1.
Then, from (D.19), it follows that

E[F (xt+1)]− F (x∗) ≤
(
1− βµϖK

t

)
ν

t
+

ϖKβ2

t2
Q(K,Blow, α1, ϖ)
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=

(
t− βµϖK

t2

)
ν +

ϖKβ2

t2
Q(K,Blow, α1, ϖ)

=

(
t− 1

t2

)
ν −

(
βµϖK − 1

t2

)
ν +

ϖKβ2

t2
Q(K,Blow, α1, ϖ)

≤ ν

t+ 1
, (D.20)

where t = γ + t, the last inequality is due to −
(

βµκK−1
t2

)
ν + ϖKβ2

t2 Q(K,Blow) ≤ 0 by the

definition of ν and t2 ≥ (t− 1)(t+ 1).

On the other hand, for any two points x, y ∈ W , it follows from the Lg-smoothness of F that

F (y) ≤ F (x) +
〈
gradF (x),R−1

x (y)
〉
+

Lg

2
∥R−1

x (y)∥2.

Plugging y = Rx(− 1
Lg

gradF (x)) into the inequality above yields

F (x∗) ≤ F (y) ≤ F (x)− 1

2Lg
∥gradF (x)∥2,

which gives 1
2Lg
∥gradF (x)∥ ≤ F (x) − F (x∗). Replacing x with xt and plugging the replaced

inequality into Inequality (D.20) yields

E[∥gradF (xt)∥2] ≤
2Lgν

γ + t
,

which completes the proof.

D.5 PROOF OF THEOREM 3.4

Here we rewrite Theorem 3.5 as the following more complete statement.
Theorem D.2. Suppose that Assumptions 3.1-3.8 hold. We run Algorithm 1 with a fixed global step
size ϖ, a fixed batch size B, and a fixed number of local updates K.

1. If the fixed step sizes α and ϖ satisfy αϖKLg ≤ 1, then

1

T

T∑
t=1

E[∥gradF (xt)∥2] ≤
2Θ(x1)

ϖαKT
+ 2αQ(K,B,α,ϖ). (D.21)

2. If local full gradient descent step is performed in local updates, i.e., σL = 0, and one takes

a local fixed step size α > 0 such that α =
√

Θ(x1)
2ϖP 2(Gδ22+Υ2δ24KLgϖ)KT

with T satisfying

T ≥ max
{

ϖKL2
gΘ(x1)

2P 2(Gδ22+KLgϖΥ2δ24)
,
Θ(x1)(2K−1)2(K−1)2L4

f δ
4
1(ϖ

2L2
gJ

2K2+P 2H2)2

72P 2L4
gK

4ϖ5(Gδ22+KLgϖΥ2δ24)
3

}
, then

1

T

T∑
t=1

E[∥gradF (xt)∥2] ≤ 4P

√
2Θ(x1)

(
Gδ22
ϖKT

+
LgΥ2δ24

T

)
.

3. If the true probabilities are known, meaning G = 0, and one takes local and global
step sizes α and ϖ such that αϖ =

√
Θ(x1)B

(δ23σ
2
L+2P 2δ24KB)Υ2LgKT

with T satisfying T ≥

max
{

KLgΘ(x1)B

(δ23σ
2
L+2P 2δ24KB)Υ2 ,

Θ(x1)(2K−1)2(K−1)2L4
fδ

4
1P

4(L2
gϖ

2J2K2+P 2H2)2B3

9(δ23σ
2
L+2P 2δ24KB)3Υ6L7

gϖ
6K5

}
, then

1

T

T∑
t=1

E[∥gradF (xt)∥2] ≤ 4Υ

√
LgΘ(x1)

(
δ23σ

2
L

KTB
+

2P 2δ24
T

)
.

Proof. Item 1. Using αt = α and Bt = B in Lemma D.5, we have

E[∥gradF (xt)∥2] ≤
2E[F (xt)− F (xt+1)]

ϖαK
+ 2αQ(K,B,αt, ϖ).
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Summing the inequality above over t = 1, 2, . . . , T gives rise to

1

T

T∑
t=1

E[∥gradF (xt)∥2] ≤
2E[F (x0)− F (xT+1)]

ϖαKT
+ 2αQ(K,B,α,ϖ)

≤ 2(F (x0)− F (x∗))

ϖαKT
+ 2αQ(K,B,α,ϖ),

where the last inequality follows F (x∗) ≤ F (xT+1).
Item 2. In particular, suppose that let α and ϖ satisfy

1

6
(2K − 1)(K − 1)L2

fδ
2
1P

2(J2 + α2P 2H2)α ≤ GP 2δ22 +Υ2P 2δ24KLgϖ. (D.22)

Define h(α) = 2Θ(x1)
ϖαKT +4αGP 2δ22 +4Υ2P 2δ24KLgϖα. Solving α∗ = argminα>0 h(α) results in

α∗ =

√
Θ(x1)

2ϖP 2(Gδ22 +Υ2δ24KLgϖ)KT
, and h(α∗) = 4P

√
2Θ(x1)

(
Gδ22
ϖKT

+
LgΥ2δ24

T

)
.

Taking

T ≥ max

{
ϖKL2

gΘ(x1)

2P 2(Gδ22 +KLgϖΥ2δ24)
,
Θ(x1)(2K − 1)2(K − 1)2L4

fδ
4
1(ϖ

2L2
gJ

2K2 + P 2H2)2

72P 2L4
gK

4ϖ5(Gδ22 +KLgϖΥ2δ24)
3

}
can ensure that α∗ϖKLg ≤ 1 and that (D.22) holds. Hence, the left-hand side of (D.21) is not
greater than h(α∗). The proof for Item 3 is similar to that for Item 2.

Remark D.1. Continuing with Remark 3.3, If the probabilities pi are known, i.e., qit = pi, and
pmin = mini{pi} is not too small and not fairly far away from pmax = maxi{pi}, Item 2 gives the
upper bound as O( 1√

ϖKT
) +O( 1√

pminNT
). In particular, if pi = S

N with S ≤ N , the upper bound
becomes O( 1√

ϖKT
) +O( 1√

ST
).

D.6 PROOF OF THEOREM 3.5

Theorem 3.5. Using a fixed stepsize αt = α ≤ 1/(µϖK) satisfying Condition (D.12) and batchsize
Bt,k ∈ [Blow, Bup], it follows from (D.19) that

E[F (xt+1)]− F (x∗) ≤ (1− µϖKα)E[F (xt)]− F (x∗) +ϖα2KQ(K,S,Blow, α,ϖ),

which implies that

E[F (xT )]− F (x∗) ≤ (1− µϖKα)E[F (xT−1)]− F (x∗) +ϖα2KQ(K,Blow, α,ϖ)

≤ (1− µϖKα)2(E[F (xT−2)]− F (x∗)) + ((1− µϖKα) + 1)ϖα2KQ(K,Blow, ϱ,ϖ)

. . .

≤ (1− µϖKα)T−1(E[F (x1)]− F (x∗)) +

T−1∑
τ=0

(1− µϖKα)τϖα2KQ(K,Blow, α,ϖ)

= (1− µϖKα)T−1Θ(x1) +
1− (1− µϖKα)T

µϖKα
ϖα2KQ(K,Blow, α,ϖ)

≤ (1− µϖKα)T−1Θ(x1) +
α

µ
Q(K,Blow, α,ϖ),

which completes the proof.

D.7 PROOF OF THEOREM 3.6

Theorem 3.6. Restricting qit ∈ [pi/2, 3pi/2] yields P{|qit−pi| ≤ pi/2} ≥ 1−min{2e−tp2
i /2, 4(1−

pi)/(tpi)} by the Hoeffding’s and Chebyshev’s inequalities. Then∣∣∣∣ 1qit − 1

pi

∣∣∣∣ = ∣∣∣∣qit − pi
qitpi

∣∣∣∣ ≤ 2

p2i
|qit − pi|
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holds with probability not less than 1 −min{2e−tp2
i /2, 4(1 − pi)/(tpi)}. Noting that under qjt ∈

[pi/2, 3pi/2], 2
p2
i
|qit − pi| ≤ Gt−a/2 (i.e., |qit − pi| ≤ G

2 p
2
i t

−a/2) implies |(qit)−1 − p−1
i | ≤ Gt−a/2,

and that

P
{
|qit − pi| ≤

G
2
p2i t

−a/2

}
≥ 1−min

{
2e−

G2p4i
2 t1−a

,
4(1− pi)

G2p3i t
1−a

}
,

where we use the Hoeffding’s and Chebyshev’s inequalities again. Let A := {|(qit)−1 − p−1
i | ≤

Gt−a/2}, B := {qit ∈ [pi/2, 3pi/2]}, and C := {|qit − pi| ≤ G
2 p

2
i t

−a/2}. The desired result follows
B ∩ C ⊆ A and P{B ∩ C} ≥ 1− P{Bc} − P{Cc}.

E SUPPLEMENTARY PROOFS

E.1 PROOF OF THEOREM 2.1

Lemma E.1. Let x1, x2, . . . , xN be independent Bernoulli random variables with pi > 0, i.e.,
xi ∼ Bernoulli(pi). Then,

E

[
1

1 +
∑N

i=1 xi

]
=

∫ 1

0

N∏
i=1

(1− pi + pit)dt.

Proof. Let S =
∑N

i=1 xi. Considering that for any a > 0, it follows 1
a =

∫∞
0

e−atdt. Picking
α = 1 + S > 0 yields

1

1 +
∑N

i=1 xi

=
1

1 + S
=

∫ ∞

0

e−te−Stdt.

Taking expectation for both sides of the equality above, we have

E
[

1

1 +
∑

i=1 xi

]
= E

[∫ ∞

0

e−te−Stdt

]
=

∫ ∞

0

e−tE[e−St]dt,

where the second equality is due to that e−St is a discrete random variable. Since xi is independent
and S =

∑N
i=1 xi, it follows E[e−St] =

∏N
i=1 E[e−xit]. Noting that E[e−xit] = pie

−t + (1− pi),
we obtain E[e−St] =

∏N
i=1(pie

−t + (1− pi)). Finally, let u = e−t. Then du = −e−tdt, u→ 1 as
t→ 0, and u→ 0 as t→∞. Hence,∫ ∞

0

e−tE[e−St]dt =

∫ 1

0

N∏
i=1

(1− pi + piu)du,

which completes the proof.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. At the t-th outer iteration, St denotes the indices set of agents who send their

gradient streams to the server. Let xi =

{
1 i ∈ St,
0 i /∈ St.

Then

E

[∑
i∈St

1

|St|
gradfi(x)

]
=

N∑
i=1

gradfi(x)E

[
xi∑N
i=1 xi

]
. (E.1)

Noting that E
[

xi∑N
i=1 xi

]
= E

[
E
[

xi∑
i=1 xi

] ∣∣∣∣xi

]
= piE

[
1

1+
∑N

j ̸=i xj

]
. Since xj ∼ Bernoulli(pj) is

independent, by Lemma E.1, we have E
[

1
1+

∑N
j ̸=i xi

]
=

∫ 1

0

∏N
j ̸=i(1− pj + pjt)dt. Plugging these

intermediate results into (E.1) leads to the desired result.
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E.2 PROOF OF THE CLAIM IN REMARK 3.4

In general, it is difficult to verify directly whether the objective function satisfies the PL (in the
Euclidean setting) or RPL (in the Riemannian setting) property. There are some stronger but useful
sufficient conditions that imply PL or RPL condition. Specifically, in the Euclidean setting, a strongly
convex function satisfies the PL condition (Bottou et al., 2018). Similarly, in the Riemannian setting,
the geodesic strong convexity of real-valued functions implies the RPL property (Boumal, 2023).
However, geodesic strong convexity usually requires the use of exponential mapping and its inverse,
whose the closed-form expression is not available in some manifolds, e.g., the Stiefel manifold. In the
next theorem, we use a more general notion of the strong convexity of real-valued functions—strong
retraction-convexity, in the Riemannian setting than geodesic strong convexity and claim that a
strongly retraction-convex function also satisfies RPL condition.
Theorem E.1. Suppose that function q : M → R is twice continuously differentiable and µ-
strongly retraction-convex with respect to the retraction R onW ⊆M, which is a totally retractive
neighborhood of x∗, a minimizer of q onW . Then,

q(x)− q(x∗) ≤ 1

2µ
∥gradq(x)∥2,

that is, q satisfies the RPL condition onW .

Proof. From the poof of Huang et al. (2015, Lemma 3.2), the µ-strongly retraction-convexity of q
implies that

q(y)− q(x) ≥ ⟨gradq(x), η⟩+ µ

2
∥η∥2, (E.2)

for any x ∈ W , η ∈ TxM, and y = Rx(η) ∈ W . Define qx(η) = q(x) + ⟨gradq(x), η⟩ + µ
2 ∥η∥

2

with η ∈ TxM, which is µ-strongly convex with respect to η (in classical), implying that the
unique minimizer of qx is given by η∗ = − 1

µgradq(x). Thus, minη∈TxM qx(η) = qx(η
∗) =

q(x)− 1
2µ∥gradq(x)∥

2. It follows from (E.2) that

q(x∗) ≥ q(x) + ⟨gradq(x), η⟩+ µ

2
∥η∥2 ≥ qx(η

∗) = q(x)− 1

2µ
∥gradq(x)∥2,

which completes the proof.

35


	Introduction
	RFedAGS: 
	Convergence Analysis
	Assumptions
	Convergence properties
	Estimating the participation probabilities

	Experiments
	Conclusions
	Experiment settings and additional experiment results
	Comprehensive tests
	Comparison of two aggregation patterns
	Comparisons of different participation schemes
	Influence of the level of heterogeneity data on performance
	Effect of local multiple-step update

	Comparisons with some centralized algorithms
	Synthetic case
	A real-world application

	The details of experiment settings in Section 4

	Preliminaries on Riemannian optimization
	Additional Discussions
	Discussions for Assumptions
	Discussions for Implementations

	Proofs of Theorems in Section 3
	Supporting lemmas
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6

	Supplementary Proofs
	Proof of Theorem 2.1
	Proof of the claim in Remark 3.4


