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ABSTRACT

Multi-source unsupervised domain adaptation (MUDA) is a recently explored
learning framework within UDA, where the goal is to address the challenge of
annotated data scarcity in a target domain via transferring knowledge from multi-
ple source domains with annotated data. When the source domains are distributed,
data privacy and security can become a significant concern, e.g., medical domains,
yet existing MUDA methods overlook this concern. We develop an algorithm to
address MUDA when source domains’ data cannot be shared. Our method is based
on aligning the distributions of the source and target domains indirectly via inter-
nally learned distributions in an intermediate embedding space. Our theoretical
analysis supports our approach and extensive empirical results demonstrate our
algorithm is effective and compares favorably against existing MUDA methods.

1 INTRODUCTION

Advances in deep learning have led to significant performance boost in a wide range of machine
learning (ML) applications (Russakovsky et al., 2015). However, deep learning suffers from limited
performance in domains with scarce labeled data. Even if a deep network can be trained initially,
distributional drifts of data during testing, i.e., domain-shift (Torralba & Efros, 2011), lead to sub-
optimal performance of deep networks. The naive solution to tackle this challenge is to retrain the
models. However, this requires annotating large datasets persistently, which is a time-consuming
and a laborious manual process. Unsupervised Domain Adaptation (UDA) (Long et al., 2016) is a
learning setting to address the challenge of domain-shift in a target domain with unannotated data
through transferring knowledge from a related source domain at which labeled data is accessible.

An effective approach to address UDA is to map data points from a source domain and a target
domain into a latent embedding space at which distributions for both domains are aligned. Since
domain-shift is mitigated in the latent space, a source-trained classifier receiving latent features as
input would generalize well on the target domain. The latent embedding space is usually modeled as
the output-space of a deep encoder network trained to match the source and target distributions. This
process can implemented using adversarial learning (Hoffman et al., 2018; Dou et al., 2019; Tzeng
et al., 2017; Bousmalis et al., 2017), where the distributions are matched indirectly through generator
and discriminator networks. Alternatively, a distributional probability metric can be minimized to
align the two distributions directly (Chen et al., 2019; Sun et al., 2017; Lee et al., 2019).

Recently, single-source unsupervised domain adaptation (SUDA) has been extended to multi-source
unsupervised domain adaptation (MUDA) to benefit from several sources of knowledge (Xu et al.,
2018; Guo et al., 2018; Peng et al., 2019a; Redko et al., 2019; Zhao et al., 2020; Wen et al., 2020b;
Lin et al., 2020; Guo et al., 2020; Tasar et al., 2020; Venkat et al., 2020a). The goal in MUDA is to
benefit from the collective knowledge that is encoded in several distinct annotated source domains to
improve model generalization on an unannotated target domain. Since several source domains exist,
domain-shift and category-shift between pairs of source-domains are new challenges that need to
be addressed. Most existing MUDA algorithms consider the annotated source datasets are centrally
accessible. However, it is natural to assume that in practical settings the source datasets are dis-
tributed among independent entities. The naive solution is to transfer all the datasets to a central
server to address MUDA. However, sharing data in some applications, e.g, medical domains, may
not be feasible due to data privacy as well as communication bandwidth limitations. Additionally,
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sharing the source datasets may be infeasible due to security concerns. We develop an algorithm to
relax the need for centralized processing of data for MUDA. Our contributions include:

• We address the challenge of data privacy for multi-source UDA by maintaining full privacy
between any pair of domains. In our approach, the training datasets for source domains are
not shared and only high-level learned knowledge from sources is shared with the target.

• We propose an efficient distributed optimization process for MUDA to process each dataset
locally and to encode high-level learned knowledge in a latent embedding space.

• We provide theoretical justification for our method by proving our algorithm minimizes an
upper bound on the target error. We also provide extensive experimental results on four
standard benchmark datasets to demonstrate that our method is effective.

2 RELATED WORK

Single-Source Unsupervised Domain Adaptation: The problem of single-source UDA has been
studied extensively. The primary approach for UDA in recent works involves training a deep neural
network jointly on a labeled source domain and an unlabeled target domain to align the distribution
for both domains in a latent space. This has been achieved with generative adversarial networks
(Goodfellow et al., 2014) to encourage domain alignment by optimizing a domain discriminator
tasked with discerning source features from generated target features (Hoffman et al., 2018; Dhouib
et al., 2020; Luc et al., 2016; Tzeng et al., 2017; Sankaranarayanan et al., 2018). Another pri-
mary approach is to directly minimize the distance between the two distributions (Long et al., 2015;
2017b; Morerio et al., 2018). However, SUDA algorithms do not leverage inter-domain relations in
the presence of several source domains and hence, do not generalize well for MUDA.

Multi-Source Unsupervised Domain Adaptation: MUDA methods concomitantly leverage mul-
tiple streams of data for improved generalization on the target domain. Xu et al. (2018) mini-
mize discrepancy between source and target domains by optimizing an adversarial loss. Peng et al.
(2019a) adapt on multiple domains by aligning inter-domain statistics of the source domains in an
embedding space. Guo et al. (2018) learn to combine domain specific predictions via meta-training.
Venkat et al. (2020a) use pseudo-labels to improve domain alignment. Negative transfer across the
source domains is an additional challenge for MUDA. Li et al. (2018) exploit domain similarity
to avoid negative transfer by reasoning about domains in a shared embedding space. Zhu et al.
(2019) achieve domain alignment by adapting deep networks at various levels of abstraction. Zhao
et al. (2020) align target features against source trained features via optimal transport, then combine
source domains proportionally with respect to their Wasserstein distance. Wen et al. (2020a) use a
discriminator to exclude data samples with negative impact on generalization performance.

Privacy in Domain Adaptation: The importance of inter-domain privacy has been recognized and
explored for single-source UDA, as in many important practical settings, privacy regulations limit
possibility of sharing data (Peng et al., 2019b; Li et al., 2020; Liang et al., 2020; 2021b;a). Privacy
preserving for MUDA is a relatively unexplored problem. Only recently, Ahmed et al. (2021) ex-
plored privacy-preserving MUDA via information maximization and pseudo-labeling. Unlike our
approach, Ahmed et al. (2021) require simultaneous access to all the source models during the adap-
tation process and hence only relax sharing source datasets with the target domain. We address
a more constrained setting, where privacy should be preserved both between source domains and
source domains and target domain which is a more practical assumption.

Our approach builds on the idea of probability metric minimization, explored in UDA (Morerio
et al., 2018; Bhushan Damodaran et al., 2018; Chen et al., 2019; Sun et al., 2017; Lee et al., 2019;
Redko et al., 2019). To this end, a suitable probability metric is selected and minimized at the
output-space of a deep encoder to enforce domain alignment. In this work, we used the Sliced
Wasserstein Distance (SWD) (Rabin et al., 2011; Bonneel et al., 2015) for this purpose. SWD is a
metric for approximating the optimal transport metric (Redko et al., 2019). It is a suitable choice for
UDA because: i) It possesses non-vanishing gradients for two high-dimensional distributions with
non-overlapping supports through exploiting the geometry of the embedding space. As a result, it is
a suitable objective function for deep learning optimization which usually is solved using gradient-
based techniques, e.g., stochastic gradient descent. ii) It can be computed efficiently based on a
closed-form solution using only empirical samples, drawn from the two distributions.
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3 PROBLEM FORMULATION

Let S1,S2 . . .Sn denote input distributions that represent n source domains and similarly T be
the data distribution corresponding to an unlabeled target domain. We assume all domains have a
common label-space Y , but not necessarily sharing the same label distribution. For each source
domain k, we observe the labeled samples {(xsk,1,yk,1), . . . , (xsk,ns

k
,yk,ns

k
)}, where xsk ∼ Sk.

Additionally, we assume only unlabeled samples {xt1, . . . ,xtnt} are accessible on the target domain
T . The goal is to train a model fθ : S1 ∪ S2 ∪ . . .Sn ∪ T → Y with learnable parameter θ, e.g., a
deep network with weights θ, that minimizes true risk for the predicted labels on the target domain.

In the absence of labeled data in the target domain, we first train models on each source domain via
empirical risk minimization (ERM), i.e., via minimizing cross-entropy loss on the sources’ labeled
datasets: θk = arg minθ

1
ns
k

∑ns
k
i=1 Lce(fθ(xsk,i),yk,i). Since the target domain shares the same la-

bel space with the source domains, these models can be directly used on the target domain as a naive
solution. However, given the distributional discrepancy between the source and target domains, gen-
eralization performance will be poor. The goal in MUDA is to benefit from the unannotated target
dataset and the source-trained models in order to improve upon source model performance.

To this end, we decompose the model fθ into a feature extractor encoder gu(·) : Rd1×d2×3 → Rdh

and a classifier subnetwork hv(·) : Rdh → R|Y| with learnable parameters u and v, such that
f(·) = (h ◦ g)(·). Here, we assumed input data points are images of size d1 × d2 × 3 and the
latent embedding shape is of size dh. In a SUDA setting, we can improve generalization of each
source-specific model on the target domain by aligning the distributions of the source and the target
domain in the latent embedding space. Specifically, we can minimize a distributional discrepancy
metric D(·, ·) across both domains, e.g., SWD loss, to update the learnable parameters: uAk =
arg minuD(gu(Sk), gu(T )). By aligning the two distributions, the source trained classifier hk will
generalize well on the target domain T . In the MUDA setting, the goal is to improve upon SUDA
by benefiting from the collective knowledge of the source domains to make predictions on the target
domain. This can be done via a weighted average of predictions made by each of the domain-
specific models, i.e., models with learnable parameters θAk = (uAk ,vk). Thus, for a sample xti in the
target domain, the model prediction will be

∑n
k=1 wkfθAk (Xt

i ), where wk denotes a set of learnable
weights associated with the source domains. The weights are set according to model reliability.

We note the above general approach requires joint access to source and target data during adaptation.
We consider a more challenging setting, where we lose access to the source domains once training
is finished, as well as forbid interaction between source models during adaptation. This privacy
focused assumption is realistic in applications with sensitive and private data, e.g., medical data.
Hence, the source domain distribution in the embedding space, i.e., g(Sk) will become inaccessible.
To circumvent this challenge, we rely on intermediate distributional estimates.

4 PROPOSED ALGORITHM

Our proposed approach for MUDA with private data is visualized in Figure 1. As it can be seen,
our approach is based on two levels of hierarchies. We first adapt each source-trained model while
preserving privacy (left and middle subfigures). We then combine predictions of the source-specific
models on the target domain according to their reliability (right subfigure). To tackle the challenge
of data privacy, we approximate the distributions of the source domains in the embedding space
as a multi-modal distribution and use these distributional estimates for domain alignment (Figure
1, left). We can benefit from these estimates because once source training is completed, the input
distribution should be mapped into a |Y|−modal distribution to enable the classifier subnetwork
to separate the classes. Note, each separated distributional mode encodes one of the classes (see
Figure 1, left). To approximate these internal distributions we use Gaussian Mixture Models, with
mean and covariance parameters µk,Σk. Since we have access to labeled data points on the source
domains, we can learn µk and Σk in a supervised fashion. Let 1c(x) denotes the indicator function
for x = c, then the maximum likelihood estimates for the GMM parameters would be:

µk,c =

∑ns
k
i=1 1c(yk,i)guk (xsk,i)∑ns

k
i=1 1c(yk,i)

,Σk,c =

∑ns
k
i=1 1c(yk,i)(guk (xsk,i)− µk,c)(guk (xsk,i)− µk,c)T∑ns

k
i=1 1c(yk,i)

(1)
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Learning µk and Σk for each domain k, enables us to sample class conditionally from the GMMs
and approximate g(Sk) in the absence of the source dataset to implement domain alignment.

Figure 1: Block-diagram of the proposed approach: (a) source-specific model training is done in-
dependently for each source domain, potentially using different data storage (b) each latent source
domain distribution is estimated via a GMM, (c) the source-trained network is adapted on the target
domain by performing pairwise domain alignment between the GMM distribution and the unlabeled
target data, and by minimizing conditional-entropy for the model target predictions (d) the final
target domain predictions are obtained via a convex combinations of logits for each adapted model

We adapt the source-trained model by aligning the target distribution with the GMM distribution
in the embedding space. To preserve privacy, for each source domain k we generate intermedi-
ate pseudo-domains Ak with pseudo-samples {zak,1, . . . ,zak,na

k
} by drawing random samples from

the estimated GMM distribution. The pseudo-domain is used as an approximation of the corre-
sponding source domain. To align the two distribution, we need to select a suitable distance metric
D(·, ·). We rely on the SWD for this purpose due to its mentioned appealing properties. Since the
prior probabilities on classes are not known in the target domain, optimizing the SWD may lead to
clustering samples from different classes together, depending on the discrepancy between the label
distributions. To compensate for this challenge, we take advantage of the conditional entropy loss
(Grandvalet & Bengio, 2004) as a regularization term based on information maximization. The con-
ditional entropy Lent(fθ(T )) = LCE(fθ(T ), fθ(T )) acts as a soft clustering objective to enhance
domain alignment. To ensure the feature extractor benefits from this added loss, the classifier is
frozen during model adaptation. Our final loss used for source-specific adaptation is:

D(g(T ), A) + γLent(fθ(T )). (2)

Once the source-specific adaptation is completed across all domains, the final model predictions
on the target domain are obtained by combining probabilistic predictions returned by each of the n
domain-specific models. The mixing weights are chosen as a convex vector w = (w1 . . . wn), i.e.,
wi > 0 and

∑
i wi = 1. We use weighted averages to account for different levels of similarities

between the target domain and each source domain. The choice of w is critical, as assigning large
weights to a model which does not generalize well will harm MUDA performance on the target
domain. We use the source-specific model prediction confidence on the target domain as a proxy
for determining the weight according to pairwise domain similarities. We have provided empirical
evidence for this choice in Section 6. We thus set a confidence threshold λ and assign wk:

w̃k ∼
nt∑
i=1

1(fθk (xti) > λ), wk = w̃k/
∑

w̃k. (3)

Note the only cross-domain information transfer in our framework is communicating the latent
means and covariance matrices of the estimated GMMs plus the domain-specific model weights that
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provide a warm start for adaptation. Throughout the whole pretraining and adaptation processes,
data samples are never transferred between any two domains. As a result, our approach preserves
data privacy for scenarios at which the source datasets are distributed across several entities. Ad-
ditionally, the adaptation process for each source domain is performed independently. As a result,
our approach can be used to incorporate new source domains as they become available over time
without requiring end-to-end retraining from scratch. We will only require to update the normalized
mixing weights via Equation 3, which takes negligible runtime compared to model training. Our
proposed privacy preserving approach to address MUDA is presented in Algorithm 1 .

5 THEORETICAL ANALYSIS

Algorithm 1 Secure Multi-source Unsupervised
Domain Adaptation (SMUDA)

1: procedure SMUDA(S1 . . .Sn, T , L, γ)
2: for k ← 1 to n do
3: µk,Σk, θk = Train(Sk)
4: Generate Ak based on µk,Σk
5: Compute wk via Equation 3
6: θAk = Adapt(θk, Ak, T , L, γ)

7: return w1 . . . wn, θ
A
1 . . . θ

A
n

8: procedure TRAIN(Si)
9: Learn θk = (uk, vk) by minimizing
LCE(fθk(Sk), ·)

10: Learn parameters µk,Σk following Equa-
tion 1

11: return µk,Σk, θk
12: procedure ADAPT(θk, Ak, T , L, γ)
13: Initialize network with weights θk
14: θAk = arg minθD(gu(T ), Ak) +

γLent(fθ(T )) via Equation 2
15: return θAk

We provide an analysis to demonstrate that our
algorithm minimizes an upperbound for the tar-
get domain error. We adopt the framework
developed by Redko et al. Redko & Sebban
(2017) for single source UDA using Wasser-
stein distance to provide a theoretical justifi-
cation for the Algorithm 1. Our analysis is
performed in the latent embedding space. Let
H represent the hypothesis space of all classi-
fier subnetworks. Let hk(·) denote the model
learnt by each domain-specific model. We
also set eD(·), where D ∈ {S1 . . .Sn, T }, to
be the true expected error returned by some
model h(·) ∈ H in the hypothesis space
on the domain D. Additionally, let µ̂Sk =
1
ns
k

∑ns
k
i=1 f(g(xsk,i)), µ̂Pk

= 1
na
k

∑na
k
i=1 x

a
k,i,

and µ̂T = 1
nt

∑ns
k
i=1 f(g(xti)) denote the em-

pirical distributions that are built using the sam-
ples for the source domain, the intermediate
pseudo-domain, and the target domain in the
latent space, respectively. Then the following
theorem holds for the MUDA setting:
Theorem 5.1. Consider Algorithm 1 for MUDA under the explained conditions, then

eT (h) ≤
n∑
k=1

wk(eSk (hk) +D(µ̂T , µ̂Pk ) +D(µ̂Pk , µ̂Sk ) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

Nk
+

√
1

M

)
+ eCk (h∗k))

(4)

where Ck is the combined error loss with respect to domain k, and h∗k is the optimal model with
respect to this loss when the model is trained jointly on annotated datasets from all domains.

Proof. due to space limitations, the complete proof is included in the Appendix.

We see the target domain error is upperbounded by the convex combination of the domain-specific
adaptation errors. Algorithm 1 minimizes the right-hand side of Equation 4 as follows: for each
source domain, our method minimizes the source expected error by training the models on each
domain using ERM. The second term is minimized because the distance between the distributions of
the intermediate pseudo-domain and the target domain is directly minimized in the latent space. The
third term corresponds to how well the GMM distribution approximates the latent source samples.
Our algorithm does not minimize this term but if the model performs well on the source domain (a
prerequisite for domain adaptation) and a multi-modal distribution is formed in the embedding space
(necessary for good performance), this term will be small. The second to last term is dependent on
the number of available samples in the adaptation problem, and becomes negligible when sufficient
number of samples are accessible. The final term measures the difficulty of the optimization, and is
dependent only on the structure of the data. For related domains, this term will be small.
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6 EXPERIMENTAL VALIDATION

Datasets We validate our algorithm on four standard domain adaptation benchmark datasets: Office-
31, Office-Home, Office-Caltech and Image-Clef.

Office-31 (Saenko et al., 2010) is a dataset consisting of 4110 images from an office environment
pertaining to three domains: Amazon, Webcam and DSLR. Domains differ in image quality, back-
ground, number of samples, class distributions etc. Images in all three domains are categorized
under 31 different categories. Office-Home (Venkateswara et al., 2017) contains 30475 from four
different domains: Art (stylized images), Clipart (clipart sketches), Product (images with no back-
ground) and Real-World (realistic images). Each domain contains images from 65 shared classes.
Office-Caltech (Gong et al., 2012) contains 2533 office related images from four domains: Ama-
zon, Webcam, DSLR, Caltech, falling under 10 categories. Image-Clef (Long et al., 2017a) contains
1800 images under 12 categories from three domains: Caltech, Imagenet and Pascal.

Preprocessing & Network structure: we follow the literature for a fair comparison. For each
domain we re-scale images to a standard size of (224, 224, 3). We use a ResNet50 (He et al., 2016)
network as a backbone for the feature extractor, followed by fully connected layers. The network
classification head consists of a linear layer, and source-training is performed using cross-entropy
loss. The ResNet layers of the feature extractor are frozen during adaptation. We use classification
accuracy for comparison and report average performance across five random runs. Experiments
were run on a NVIDIA Titan Xp GPU. Our code is available at redacted (check Supplemntary).

To test the effectiveness of our privacy preserving approach for MUDA, we compare our method
against state-of-the art SUDA and MUDA approaches. Benchmarks for single-best and source-
combined performance are reported based on DAN (Long et al., 2015), D-CORAL (Sun & Saenko,
2016), RevGrad (Ganin & Lempitsky, 2015). We include most existing MUDA algorithms: DCTN
(Xu et al., 2018), FADA (Peng et al., 2019b), MFSAN (Zhu et al., 2019), MDDA (Zhao et al.,
2020), SimpAl (Venkat et al., 2020b), JAN (Long et al., 2017b), MEDA (Wang et al., 2018), MCD
(Saito et al., 2018), M3SDA (Peng et al., 2019a), MDAN (Zhao et al., 2018), MDMN (Li et al.,
2018), DARN (Wen et al., 2020a), DECISION (Ahmed et al., 2021), SHOT-Ens (Liang et al., 2021a;
Ahmed et al., 2021). Note that we maintain full domain privacy throughout training and adaptation
and hence most of the above works should be considered an upperbound for our performance as
they address a less constrained problem by directly processing the source samples. Despite the
privacy constraint, our results indicate our algorithm is competitive and at times outperforms the
above approaches. We next present quantitative and qualitative analysis of our work.

6.1 PERFORMANCE RESULTS

Our performance results are presented in Table 1. In the case of Office-31, we observe state-of-the-
art performance (SOTA) on the→ A task with competitive performance on the other two tasks. Note
that the domains DSLR and Webcam share similar distributions, as exemplified through the Source-
Only performance, and hence there is small room to improve upon the Source-Only results. In the
case of Image-clef, we obtain SOTA performance on the→ C task and nearly SOTA on the→ P
task, and competitive performance on the last task. On the Office-caltech dataset, we obtain SOTA
performance on the→ A task, with close to SOTA performance on the three other tasks. Finally, we
note the domains of the Office-home dataset have larger domain gaps with more classes, meaning
this dataset is arguably the most challenging dataset of the four. Our approach obtains near SOTA
performance on the→ P and→ R tasks and competitive performance on the remaining tasks. We
reiterate most other MUDA algorithms should serve as upperbounds, as they either access source
data directly, simultaneously use models from all sources for adaptation, or both. Our results across
all tasks demonstrate that not only are we able to generate performance similar to these methods
while preserving data privacy, but also obtain SOTA results on several of the tasks.

6.2 ABLATIVE STUDIES

We perform ablative experiments by investigating the effect of each of the two loss terms on perfor-
mance in our combined loss in Eq. 2. Our ablative experiments are presented in Table 2. We observe
that except for the Office-caltech dataset, combining the two terms yields improved performance for
the rest of the datasets. Note however, the effect in the Office-caltech dataset is negligible. On the
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Method →D →W →A Avg.

SB

Source Only 99.3 96.7 62.5 86.2
DAN 99.7 98.0 65.3 87.7

D-CORAL 99.7 98.0 65.3 87.7
RevGrad 99.1 96.9 66.2 87.5

SC
DAN 99.6 97.8 67.6 88.3

D-CORAL 99.3 98.0 67.1 88.1
RevGrad 99.7 98.1 67.6 88.5

M
S

MDDA 99.2 97.1 56.2 84.2
DCTN 99.3 98.2 64.2 87.2

MFSAN 99.5 98.5 72.7 90.2
SImpAl 99.2±0.2 97.4±0.1 70.6±0.6 89.0

SHOT-Ens 99.6 94.9 75 89.3
DECISION 99.6 98.4 75.4 91.1

SMUDA (ours) 99.4±0.1 97.3±0.4 76±0.6 90.9

(a) Office-31

Method →W →D →C → A Avg.

SB

Source Only 99.0 98.3 87.8 86.1 92.8
DAN 99.3 98.2 89.7 94.8 95.5

M
S

FADA 88.1 87.1 88.7 84.2 87.1
DAN 99.5 99.1 89.2 91.6 94.8

DCTN 99.4 99.0 90.2 91.6 94.8
JAN 99.4 99.4 91.2 91.8 95.5

MEDA 99.3 99.2 91.4 92.9 95.7
MCD 99.5 99.1 91.5 92.1 95.6

M3SDA 99.4 99.2 91.5 94.1 96.1
SImpAl 99.3±0.1 99.8±0.1 92.2±0.1 95.3±0.2 96.7

SHOT-Ens 99.6 96.8 95.8 95.7 97.0
DECISION 99.6 100 95.9 95.9 98.0

SMUDA (ours) 99.3±0.3 97.6±0.3 93.9±0.1 95.9±0.1 96.6

(b) Office-caltech

Method →P →C →I Avg.

SB

Source Only 74.8 91.5 83.9 83.4
DAN 75.0 93.3 86.2 84.8

D-CORAL 76.9 93.6 88.5 86.3
RevGrad 75.0 96.2 87.0 86.1

SC

DAN 77.6 93.3 92.2 87.7
D-CORAL 77.1 93.6 91.7 87.5
RevGrad 77.9 93.7 91.8 87.8

M
S

DCTN 75.0 95.7 90.3 87.0
MFSAN 79.1 95.4 93.6 89.4
SImpAl 77.5±0.3 93.3±0.3 91.0±0.4 87.3

SMUDA (ours) 79±0.5 95.9±0.1 91.8±0.5 88.9

(c) Image-clef

Method →A →C →P → R Avg.

SB

Source Only 65.3 49.6 79.7 75.4 67.5
DAN 68.2 56.5 80.3 75.9 70.2

D-CORAL 67.0 53.6 80.3 76.3 69.3
RevGrad 67.9 55.9 80.4 75.8 70.0

SC

DAN 68.5 59.4 79.0 82.5 72.4
D-CORAL 68.1 58.6 79.5 82.7 72.2
RevGrad 68.4 59.1 79.5 82.7 72.4

M
S

MFSAN 72.1 62.0 80.3 81.8 74.1
M3SDA 64.1±0.6 62.8±0.4 76.2±0.3 78.6±0.2 70.4
SImpAl 70.8±0.2 56.3±0.2 80.2±0.3 81.5±0.3 72.2
MDAN 68.1±0.6 67.0±0.2 81.0±0.2 82.8±0.1 74.8
MDMN 68.7±0.6 67.6±0.2 81.4±0.2 83.3±0.1 75.3
DARN 70.0±0.4 68.4±0.1 82.8±0.2 83.9±0.2 76.26

SHOT-Ens 72.2 59.3 82.8 82.9 74.3
DECISION 74.5 59.4 84.4 83.6 75.5

SMUDA (ours) 69.1±0.3 61.5±0.3 83.5±0.2 83.4±0.2 74.4

(d) Office-home

Table 1: Main results, on the four considered datasets.

other hand, we see minimizing the SWD loss plays a more dominant role in performance improve-
ments on the Office-31 and Office-home datasets. In contrast, the conditional entropy contributes
more on the Image-clef and Office-caltech datasets. Our insight is that the conditional entropy term
performs better when the source trained models have higher performance on the target domain prior
to the source-level adaptation, while the SWD term is more vital when there is a larger discrepancy
between the source domains and the target domain. Ablative experiments conclude that both loss
terms contribute in improving our performance.

Method →D →W →A Avg.
SWD only 95.8 95.3 72.6 87.9
Lent only 99.6 97.6 63.7 87
SMUDA 99.4 97.3 76 90.9

(a) Office-31

Method →W →D →C → A Avg.
SWD only 98.1 97.8 92.1 95.5 95.9
Lent only 99.4 97.7 94 96 96.8
SMUDA 99.3 97.6 93.9 95.9 96.6

(b) Office-caltech

Method →P →C →I Avg.
SWD only 78.1 94.6 90.8 87.8
Lent only 78 95.6 91.3 88.3
SMUDA 79 95.9 91.8 88.9

(c) Image-clef

Method →A →C →P → R Avg.
SWD only 66.6 59.1 80.9 82.2 72.2
Lent only 64.5 49.4 77.8 72.2 66
SMUDA 69.1 61.5 83.5 83.4 74.4

(d) Office-home

Table 2: Performance when using the SWD objective, the entropy objective or both (SMUDA).

6.3 EMPIRICAL ANALYSIS

In our empirical analysis we study the effect of hyperparameters on the performance of our method
to provide a better understanding of the algorithm.

We first validate empirically our choice for computing the mixing parameters wk. We consider four
mixing scenarios for combining the models’ prediction: (i) Eq. 3, (ii) setting weights proportional to
Sliced Wasserstein Distance between the intermediate and the target domains (a cross-domain mea-
sure of distributional similarity), (iii) using a uniform average, and (iv) assigning all mixing weight
to the model with best target performance. Average performances for tasks of each dataset are re-
ported in Table 3. We observe that our choice leads to maximum performance. We note the single
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best performance is able to slightly outperform our method on two of the tasks, however suffers on
datasets where domains have significant pairwise domain gap. This observation is expected, as using
several domains is beneficial when they complement each other in terms of available information.
Assigning weights proportional toD(g(T ), Ak) may seem a reasonable choice, given that similarity
between the pseudo-datasets and the target latent features indicates better classifier generalization.
However, this method performs better only than the uniform averaging. We conclude that model re-
liability is a better criterion to combine models. The uniform averaging leads to poor generalization
on the target domain because it treats all the models similarly. As a results, models with the least
generalization ability on the target domain harm the collective performance.

Dataset High confidence W2 Uniform Single Best
office-31 90.9 87.1 87.2 91

image-clef 88.9 88.8 88.8 88.4
office-caltech 96.6 96.6 96.6 97
office-home 74.4 74.2 74.2 72.8

total avg. 87.6 86.6 86.6 87.3

Table 3: Analytic experiments to study four strategies
for combining the individual model predictions.

We study the effect of the SWD projec-
tion hyperparameter. SWD utilizes L ran-
dom projections, as detailed in Equation 9
in the Appendix. We analyze the impact
of this parameter on the adaptation perfor-
mance using the Office-31 dataset. In Fig-
ure 2, we reported performance results for
L ∈ {1, 10, 50, 100, 200, 350, 500}. The
SWD approximation becomes tighter with
an increased number of projections, which we see translating on all three tasks.

Figure 2: Performance of our algorithm under different numbers of latent projections used in the
computation of the Sliced Wasserstein Distance. Results reported on the Office-31 tasks.

Next, we study the effect of the adaptation process using our algorithm on the target domain per-
formance. Figure 3 presents the effect of adaptation process on an Office-home task. We note an
increase in the target domain accuracy once adaptation commences, observation which is in line
with the metrics reported so far. We also observe that MUDA performance using the three source
domains outperforms the three SUDA performances, with the biggest discrepancy being observable
for the Clipart trained model which is the most different domain from the target domain Real World.

Figure 3: Effect of the adaptation process on the Office-home dataset: from left to right, we consider
Art, Clipart and Product as the source domains, and Real World as the target domain.

Figure 4: Prediction accuracy on the target domain for different levels of source model confidence,
and our choice of λ. Tasks from the Office-home dataset are used in this experiments.

8
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Another primary hyperparanter for our algorithm is the confidence parameter λ. Figure 4 provides
the prediction accuracy for the high-confidence target domain samples based on the source-only
models using the Office-home dataset. We observe low-confidence predictions offer poor accuracy
for the target domain. For example, we see that when the confidence is less than 0.2, prediction
accuracy is around 40%. On the other hand, for target samples with confidence-level above .6, we
have an accuracy around 90% on all the three tasks of Office-home. This experiments supports our
intuition that the mixing weights wk can be determined based on the share of the high confidence
target samples as a measure of reliability for the source-trained models.

Figure 5: UMAP visualization of data representations in the embedding space for Office-caltech with
Amazon as the target domain. From left to right: Caltech, DSLR, and Webcam as source domains.

We also assess the impact of domain adaptation on data representations in the latent embeddings
in Figure 5. For data visualization, we reduced the data representation dimension to two using
UMAP (McInnes et al., 2018). We display the GMM samples, the target latent embeddings be-
fore adaptation, and target latent embeddings post-adaptation in Figure 5. We observe that for each
source domain, data representations for the target domains are shifted towards the GMM distribution
throughout the adaptation process. This observation empirically validates the theoretical justifica-
tion for our algorithm. Given the classification heads trained on the source domains are able to
generalize well on the GMM samples as a result of pretraining, we conclude that source-specific
domain alignment translate into an improved collective generalization performance.

Figure 6: Source and GMM embeddings for
the Image-clef dataset with Imagenet as the
target and Pascal and Caltech as sources.

Finally, we investigate the representation qual-
ity of the intermediate GMM distribution as a
surrogate for the source data distribution, which
is the backbone of our method. In Figure 6, we
have visualized the data representations for the
estimated GMMs and the source domain dis-
tributions for the Image-clef dataset. We note
that for both source domains, their latent space
distributions after pretraining are multi-modal
distributions with 12 modes, each correspond-
ing to one of the 12 classes. This observation confirms that we can approximate the source domain
distribution with a GMM. We also observe that for both source domains the estimated GMM dis-
tribution approximates the source domain distribution in the embedding space with high accuracy.
This experiment validates empirically that the third term in Eq. 4 is small in practice.

7 CONCLUSION

We develop a novel privacy-preserving MUDA algorithm. Our approach is based on the assumption
that an input distribution is mapped into a multi-modal distribution in an embedding space as a re-
sult of supervised learning. We achieve privacy between each source domain and the target domain
by minimizing the SWD loss between an intermediate GMM distribution and the target domain
distribution in the latent embedding space. We then combine the source-specific models according
to their reliability. We provide theoretical analysis to justify our algorithm. Our experimental re-
sults demonstrate that our algorithm performs favorably against SOTA MUDA algorithms on four
standard benchmark datasets while preserving privacy. Future direction includes considering setting
where the target domain shares different classes with each of the source domains.

9
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A APPENDIX

A.1 PROOF OF THEOREM 5.1

We offer a proof for Theorem 5.1 from the main paper. Consider the following results.
Theorem A.1. Theorem 2 from Redko & Sebban (2017)

Let h be the hypothesis learnt by our model, and h∗ the hypothesis that minimizes eS + eT . Under
the assumptions described in our framework, consider the existence of N source samples and M
target samples, with empirical source and target distributions µ̂S and µ̂T in Rd. Then, for any
d′ > d and ζ <

√
2, there exists a constant number N0 depending on d′ such that for any ξ > 0 and

min(N,M) ≥ N0 max(ξ−(d
′+2), 1) with probability at least 1− ξ, the following holds:

eT (h) ≤ eS(h) +W (µ̂T , µ̂S) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

N
+

√
1

M

)
+ eC(h

∗) (5)

The above theorem provides an upper bound on the target error with respect to the source error,
the distance between source and target domains, a term that is minimized based on the number of
samples, and a constant eC = eS(h∗)+eT (h∗) describing the performance of an optimal hypothesis
on the present set of samples.

We adapt the result in Theorem A.1 to provide an upper bound in our multi-source setting. Consider
the following two results.
Lemma A.2. Under the definitions of Theorem A.1

W (µ̂S , µ̂T ) ≤W (µ̂S , µ̂P) +W (µ̂P , µ̂T ) (6)

where µ̂P is the GMM distribution learnt for source domain S.

Proof. As W is a distance metric, the proof is an immediate application of the triangle inequality.

Lemma A.3. Let h be the hypothesis describing the multi-source model, and let hk be the hypothesis
learnt for a source domain k. If eT (h) is the error function for hypothesis h on domain T , then

eT (h) ≤
n∑
k=1

wkeT (hk) (7)

Proof. Let p(X) =
∑n
k=1 wkfk(X) with

∑
wk = 1, wk > 0 be the probabilistic estimate returned

by our model for some input X , and let y be the label associated with this input. The proof for the
Lemma proceeds as follows

eT (h) = E(X,y)∼T Lce(p(X),1y) = E(X,y)∼T − log p(X)[y]

= E(X,y)∼T − log(

n∑
k=1

wkfk(X)[y])

≤ E(X,y)∼T

n∑
k=1

wk(− log fk(X)[y]) By Jensen’s Inequality

=

n∑
k=1

wkE(X,y)∼T Lce(fk(x),1y)

=

n∑
k=1

wkeT (hk)
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We now extend Theorem A.1 as follows
Theorem A.4. Multi-Source unsupervised error bound (Theorem 5.1 from the main paper)

Under the assumptions of our framework and using the definitions from Theorem A.1

eT (h) ≤
n∑
k=1

wk(eSk(hk) +W (µ̂T , µ̂Pk
) +W (µ̂Pk

, µ̂Sk)+

√(
2 log(

1

ξ
)/ζ
)(√ 1

Nk
+

√
1

M

)
+ eCk(h∗k))

(8)

where Pk is the sample GMM distribution learnt for source domain k, NK is the sample size of
domain k, Ck is the combined error loss with respect to domain k, and h∗k is the optimal model with
respect to this loss.

Proof.

eT (h) ≤
n∑
k=1

wkeT (hk) From Lemma A.3

≤
n∑
k=1

wk(eSk(hk) +W (µ̂T , µ̂Sk) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

Nk
+

√
1

M

)
+ eCk(h∗k)) by Theorem A.1

≤
n∑
k=1

wk(eSk(hk) +W (µ̂T , µ̂Pk
) +W (µ̂Pk

, µ̂Sk)+

√(
2 log(

1

ξ
)/ζ
)(√ 1

Nk
+

√
1

M

)
+ eCk(h∗k)) by Lemma A.2

A.2 SLICED WASSERSTEIN DISTANCE

As mentioned in the main body of the manuscript, the Sliced Wasserstein Distance is an approxima-
tion of optimal transport. Following the results in Rabin et al. (2011), the SWD acts as an estimate
for the quadratic Wasserstein Distance (WD) between two distributions, by aggregating the tractable
1−dimensional WD of L projections onto the unit hypersphere. In the context of our algorithm, the
discrepancy measure D(·, ·) can be written in the form of SWD as follows:

D(g(T ), Ak) =
1

L

L∑
l=1

|〈g(Xt
il

), γl〉 − 〈Xa
jl
, γl〉|2 ≈W2(g(T ), Ak) (9)
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