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ABSTRACT

Developing a robust and generalizable state representation is essential for over-
coming the challenges posed by reinforcement learning tasks that rely on images
as input. Recent developments in metric learning, including techniques like deep
bisimulation metric approaches, have facilitated the transformation of states into
structured representation spaces, allowing the measurement of distances based on
task-relevant features. However, these approaches face challenges in handling de-
manding generalization tasks and scenarios characterized by sparse rewards. Their
limited one-step update strategy often falls short of capturing adequate long-term
behaviors within their representations. To address these challenges, we present
the State Chrono Representation (SCR) approach, which enhances state repre-
sentations by integrating long-term information alongside the bisimulation met-
ric. SCR learns state distances and measurements within a temporal framework,
considering future dynamics and accumulated rewards across current and long-
term future states. The resulting representation space not only captures sequential
behavioral information but also integrates distances and measurements from the
present to the future. This temporal-aware learning strategy does not introduce a
significant number of additional parameters for modeling dynamics, ensuring the
efficiency of the entire learning process. Comprehensive experiments conducted
within DeepMind Control environments reveal that SCR achieves state-of-the-art
performance in demanding generalization tasks and scenarios characterized by
sparse rewards.

1 INTRODUCTION

In deep reinforcement learning (Deep RL), deriving an optimal policy from highly dimensional en-
vironmental observations, particularly images, is a critical challenge (Castro, 2020; Gelada et al.,
2019; Seo et al., 2022). An RL agent continually receives images that display temporal relation-
ships and substantial spatial redundancy. Redundant and potentially distracting visual inputs make
it difficult for the agent to formulate optimal policies. Numerous studies have emphasized the impor-
tance of crafting state representations capable of discerning task-relevant information amidst task-
irrelevant surroundings. Such representations hold the potential to greatly facilitate the RL process
and enhance the generalizability of the learned policies. Consequently, representation learning has
been recognized as a cornerstone in the advancement of Deep RL algorithms, garnering increased
attention within the RL community (Kirk et al., 2023).

The primary focus of representation learning in reinforcement learning (RL) lies in developing a
mapping function to transform high-dimensional observations into low-dimensional embeddings,
which mitigates the influence of irrelevant signals to simplify the process of policy learning. Previ-
ous research in this area has employed autoencoder-like reconstruction losses (Yarats et al., 2021c;
Higgins et al., 2017), yielding impressive outcomes across various visual RL tasks. However, these
approaches do not fully account for noise in visual features, which can be vital for accurately re-
constructing input images. Data augmentation (Yarats et al., 2021b; Laskin et al., 2020a;b) methods
have shown promise in tasks involving noisy observations, primarily enhancing perception models
without directly impacting the policy within the context of the Markov Decision Process (MDP).
The methods by learning auxiliary tasks (Seo et al., 2022) aim to predict additional tasks related to
the environments using the learned representation as input. Nonetheless, these auxiliary tasks are
often designed independently of the primary RL objective, potentially limiting their effectiveness.
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In recent advancements, behavioral metrics (Ferns et al., 2004; Ferns & Precup, 2014), such as the
bisimulation metric (Castro, 2020; Zhang et al., 2021) and MICo (Castro et al., 2021), have emerged
to quantify the dissimilarity between two states by considering differences in immediate reward
signals and the divergence of next-state distributions. These metric learning methods establish ap-
proximate metrics within the representation space, preserving the behavioral similarities among
states. State representations are constrained within a structured metric space, wherein each state is
positioned or clustered relative to others based on their behavioral distances. Moreover, behavioral
metrics have been proven to set an upper bound on state-value discrepancies between correspond-
ing states. By learning behavioral metrics within representations, these methods selectively retain
task-relevant features essential for achieving the final RL goal, which involves maximizing the value
function and shaping agent behaviors. Conversely, they filter out noise unrelated to state values and
behavioral metrics. Behavioral metric approaches have demonstrated remarkable performance in
various RL tasks, including control tasks from images, particularly in the presence of noisy images.

However, behavioral metrics encounter challenges in handling demanding generalizable RL tasks
and scenarios with sparse reward (Kemertas & Aumentado-Armstrong, 2021). While behavioral
metrics can somehow capture long-term behavioral metrics by temporal-difference update mech-
anism, their reliance on one-step transition data, where the information is limited in the case of
sparse reward, significantly hampers learning efficiency. As a result, the representations learned
using behavioral metrics may suffer from encoding with non-informative signals, such as sparse
rewards (Kemertas & Aumentado-Armstrong, 2021). Some model-based approaches attempt to
mitigate these issues by learning transition models, but the task of learning a large transition model
with long trajectories places increased demands on computational resources and parameters.

To address the aforementioned challenges, we introduce the State Chrono Representation (SCR)
framework, a metric-based approach to learning long-term behavioral representation and accumu-
lated rewards spanning from present to future states. Within the SCR framework, we advocate for
the training of two distinct state encoders. An encoder specializes in crafting a state representation
for individual states, while the other focuses on generating a Chronological Embedding, which en-
capsulates the relationship between a state and one of its future states. In addition to learning the
conventional behavioral metric for state representations, we introduce a novel behavioral metric tai-
lored to temporal state pairs. This new metric is approximated within the chronological embedding
space. We also propose an alternative distance metric, distinct from the typical Lp norm, to effi-
ciently approximate this behavioral metric in a lower-dimensional vector space. To infuse long-term
rewards information into these representations, we present a “measurement” that quantifies the sum
of rewards between the current and future states. Instead of directly regressing this measurement, we
impose two constraints on it to restrict its range and value. Note that SCR is a versatile representation
learning methodology that can be integrated into any existing RL algorithm.

In summary, our contributions are threefold: 1) We introduce the SCR framework for representation
learning with a focus on behavioral metrics involving temporal state pairs. Additionally, we provide
a practical method for approximating these metrics.; 2) We develop a novel measurement specifically
tailored for temporal state pairs and propose learning algorithms that incorporate this measurement
while enforcing two constraints; 3) Our proposed representation demonstrates enhanced generaliza-
tion and efficiency in challenging generalization tasks, as exemplified by experiments conducted on
the Distracting DeepMind Control Suite (Stone et al., 2021; Tunyasuvunakool et al., 2020).

2 PRELIMINARY

Markov Decision Process: A Markov Decision Process (MDP) is defined as a tuple M =
(S,A, P, r, γ), where S represents the state space, consisting of all possible states, A indicates
the action space, consisting of all possible actions which an agent can take in each state. The term P
stands for the state transition probability function. Given a current state st ∈ S and an action at ∈ A
taken, P (st+1|st, at) gives the probability of transitioning to any state st+1 ∈ S. r : S×A → R de-
notes the reward function, which gives the immediate reward r(st, at) received for taking an action
at in a state st. The discount factor, γ ∈ [0, 1], determines the present value of future rewards.

A policy π : S → A is a mapping function that determines the action that an agent will take in
each state. The goal in MDP is to determine the optimal policy π∗ that maximizes the expected
discounted cumulated reward, π∗ = argmaxπ E[

∑
t γ

tr(st, π(st))].
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Figure 1: Overall architecture of SCR.

Behavioral Metric: The bisimulation metric in DBC (Zhang et al., 2021) defines a pseudometric
d : S×S → R to measure the distance between two states. A variant of bisimulation metric, known
as π-bisimulation metric, is defined on a given policy π.
Theorem 1 (π-bisimulation metric). The π-bisimulation metric update operator Fbisim : M → M
is defined as,

Fbisimd(x,y) := |rπx − rπy |+ γW(d)(Pπx , P
π
y ),

where M is the space of d, rπx =
∑
a∈A π(a|x)rax, Pπx =

∑
a∈A π(a|x)P ax , and W is the Wasser-

stein distance. Fbisim has a unique least fixed point dπbisim.

MICo (Castro et al., 2021) defines another metric based on sampling the next states without mea-
suring the intractable Wasserstein distance.
Theorem 2 (MICo distance). The MICo distance update operator FMICo : M → M is defined as,

FMICod(x,y) := |rπx − rπy |+ γEx′∼Pπ
x ,y

′∼Pπ
y
d(x′,y′),

FMICo has a fixed point dπMICo.

3 STATE CHRONO REPRESENTATION

Despite their capabilities, the bisimulation metric (Zhang et al., 2021) and MICo (Castro et al., 2021)
fall short when encoding future information. This limitation can impede the effectiveness of state
representations in policy learning. To overcome this shortcoming and integrate future details, we
present State Chrono Representation (SCR). Figure 1 shows the detailed architecture of SCR.

SCR encompasses two representations: a state representation ϕ(x) ∈ Rn for a state x and a
chronological embedding ψ(xi,xj) ∈ Rn for a state xi and its future state xj . The state repre-
sentation, ϕ(x), is developed through a behavioral metric d, which discerns the reward and dynamic
divergence between two states. In contrast, the chronological embedding, ψ(xi,xj), fuses these two
state representations using deep learning, highlighting the long-term behavioral correlation between
the current state xi and future state xj . A “chronological” behavioral metric is proposed to learn and
compute the distance between any two chronological embeddings and is further refined through the
Bellman operator-like MSE loss. Moreover, ϕ(x) employs an innovative temporal measurement,
m, to assess the transition from the current state to a future one, effectively capturing sequential re-
ward data. This devised temporal measurement operates within defined lower and upper constraints,
directing the learning trajectory of both the measurement and state representation.

3.1 METRIC LEARNING FOR STATE REPRESENTATION

The state representation encoder ϕ is trained by approximating a behavioral metric like the MICo dis-
tance. In our model, we adopt a MICo-based metric transformation operator, swapping the sampling-
based prediction in MICo with latent dynamics-based modeling to determine the divergence between
two subsequent states distribution, drawing parallels with the methodology in SimSR (Zang et al.,
2022). The metric update operator for latent dynamics, denoted as F , is defined below.
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Theorem 3. Let d̂ : Rn×Rn → R be a metric in the latent state representation space, dϕ(xi,yi′) :=
d̂(ϕ(xi), ϕ(yi′)) be a metric in the state domain. The metric update operator F is defined as,

Fdϕ(xi,yi′) = |rxi
− ryi′ |+ γE ϕ(xi)∼P̂ (·|ϕ(xi+1),axi

)

ϕ(yi′+1)∼P̂ (·|ϕ(yi′+1),ayi′
)

d̂(ϕ(xi+1), ϕ(yi′+1)), (1)

where M̂ is the space of d, with axi
and ayi′ being the actions at states xi and yi′ , respectively, and

P̂ is the learned latent dynamics model. F has a fixed point dπϕ.

To learn the approximation for dπϕ in the representation space, the form of distance d̂ for low-
dimensional vectors must be specified. Castro et al. (2021) demonstrated that a behavioral metric
with a sample-based next state distribution divergence is a diffuse metric due to the divergence of
the next state distribution being the Łukaszyk-Karmowski distance.

Definition 3.1 (diffuse metric (Castro et al., 2021)). A function d : X ×X → R based on the set X
is a diffuse metric if the following axioms hold:
1) d(a,b) ≥ 0 for any a,b ∈ X .
2) d(a,b) = d(b,a) for any a,b ∈ X .
3) d(a,b) + d(b, c) ≥ d(a, c) for any a,b, c ∈ X .

MICo offers an approximation of the behavioral metric through an angular distance: d̂MICo(a,b) =
∥a∥2

2+∥b∥2
2

2 + βθ(a,b), where a,b ∈ Rn, θ(a,b) represents the angle between vectors a and b, and
β is a hyperparameter pre-determined to be 0.1. This distance calculation features a non-zero self-
distance, rendering it compatible with expressing the Łukaszyk-Karmowski distance. However, the
angle function θ(a,b) exclusively considers the angle between a and b, necessitating computations
involving the cosine similarity and arccos function, which can lead to numerical discrepancies. DBC
recommends employing theL1 norm with zero self-distance, suitable exclusively for the Wasserstein
distance. Meanwhile, SimSR utilizes the cosine distance, derived from the cosine similarity, albeit
without fulfilling the triangle inequality and the non-zero self-distance.

To mitigate the aforementioned challenges, we propose a revised distance, d̂(a,b), in the embedding
space, characterized as a diffuse metric. This is mathematically formulated as:

Definition 3.2. Define d̂ : Rn × Rn → R as a distance function, where d̂(a,b) =√
∥a∥22 + ∥b∥22 − a⊤b, for any a,b ∈ Rn.

Theorem 4. d̂ is a diffuse metric.

Proof. Refer to Appendix for proofs of Theorem 4.

Lemma 1 (Non-zero self-distance). The self-distance of d̂ is not stricter to zero, i.e., d̂(a,a) =
∥a∥2 ≥ 0. This becomes zero if and only if every element in vector a is zero.

Theorem 4 validates that d̂ is a diffuse metric satisfying triangle inequality, and Lemma 1 shows
d̂ has non-zero self-distance capable of approximating dynamic divergence that is a Łukaszyk-
Karmowski distance. Moreover, The structure of d̂ resembles the L2 norm with the exception that
the weight before a⊤b is -1 instead of -2. Its construction, which only includes vector inner product
and square root computations exempting divisions and trigonometric functions, prevents numerical
computational issues and simplifies implementation.

To learn the representation function ϕ, a prevalent approach is minimizing the MSE loss between
both ends of Equation 13. The loss, combined with d̂ and relative to ϕ, is expressed as:

Lϕ(ϕ) = E xi,yi′ ,rxi
,ry

i′
∼D

ϕ(xi+1),ϕ(yi′+1)∼P̂

∣∣∣d̂(ϕ(xi), ϕ(yi′))− |rxi
− ryi′ | − γd̂(ϕ(xi+1), ϕ(yi′+1))

∣∣∣2 , (2)

where D represents the replay buffer or the sampled rollout for the RL learning process.
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3.1.1 THE LACK OF LONG-TERM TEMPORAL INFORMATION

The loss Lϕ(ϕ) in Equation 2 leans heavily on temporal-difference update mechanism with one-step
transitions information. Consequently, it lacks the capacity and efficiency to grasp and encode rich
long-term information from trajectories. Encoding temporal information within the representation,
while ensuring it remains structured and adheres to behavioral metrics, poses an intricate challenge.
To surmount this challenge, we propose two distinct methods, Chronological Embedding (discussed
in Section 3.2) and Temporal Measurement (discussed in Section 3.3). Each technique is tailored
to harness the temporal essence of a rollout, denoted as τ(xi;xj), which represents a sequence that
originates from state xi and reach its future state xj .

Figure 2: Illustration of an ex-
ample with two rollout.

As illustrated in Figure 2, the chronological embedding seeks
to craft an innovative paired state embedding, symbolized as
ψ(xi,xj). This is achieved by transforming state representations
ϕ(xi) and ϕ(xj) with deep network. The objective for learning ψ
is to learn a novel ”chronological” behavioral metric, one that mea-
sures the distance between rollouts τ(xi;xj) and τ(yi′ ;yj′). On
the other hand, temporal measurement aspires to compute a special
”distance” between states xi and xj . This measurement offers in-
sights into the cumulative rewards amassed throughout the rollout
τ(xi;xj). However, the learning temporal distance is formidable,
and neither single method can claim full mastery over it. Con-
sequently, we synergize both techniques to fortify and elevate the
quality of the state representation.

3.2 CHRONOLOGICAL EMBEDDING

The chronological embedding, denoted as ψ(xi,xj) ∈ Rn, is tailored to capture the relationship
between a given state xi and its long-term future states xj . It is premised on the assumption that both
states, xi and xj , originate from the same trajectory. With a focus on capturing extended behavioral
knowledge, we introduce a distance function dψ : (S × S) × (S × S) → R, which is envisaged to
mirror the behavioral metric, and allows the encoder ψ to integrate the behavioral information.

Building upon the MICo distance in Theorem 2, we specify the metric update operator FChrono for
dψ .
Theorem 5. Let Mψ be the space of dψ . The metric update operator FChrono : Mψ → Mψ is
defined as,

FChronodψ(xi,xj ,yi′ ,yj′) = |rxi
− ryi′ |+ γExi+1∼Pπ

x ,yi′+1∼Pπ
y
dψ(xi+1,xj ,yi′+1,yj′). (3)

FChrono has a fixed point dπψ .

Here dπψ denotes the “chronological” behavioral metric. Our goal is to closely approximate dπψ . It
quantifies the distance between two sets of states, (xi,xj) and (yi′ ,yj′), considering the immediate
reward difference and dynamics divergence. In our strategy to co-learn the encoder ψ with dπψ , we
represent dπψ in terms of d̂ as dπψ(xi,xj ,yi′ ,yj′) := d̂(ψ((xi,xj)), ψ(yi′ ,yj′)), where d̂ is defined
in Definition 3.2. Similar to Equation 13, we construct dπψ to compute the distance in the embedding
space.

dπψ(xi,xj ,yi′ ,yj′) = |rxi
− ryi′ |+ γExi+1∼Pπ

x ,yi′+1∼Pπ
y
d̂(ψ(xi+1,xj), ψ(yi′+1,yj′)). (4)

For computational efficiency, the parameters between encoders ϕ and ψ are shared. The encoder
ψ extracts outputs from ϕ, and the distance measure is suitably adapted as dπψ(xi,xj ,yi′ ,yj′) :=

d̂(ψ((ϕ(xi), ϕ(xj))), ψ(ϕ(yi′), ϕ(yj′))). The objective for learning the chronological embedding
is formulated as minimizing the MSE loss between both sides of Equation 4 w.r.t ϕ and ψ,

Lψ(ψ, ϕ) = E xi,xj ,yi′ ,yj′ ,rxi
,

ry
i′
,xi+1,yi′+1∼D

∣∣∣d̂(ψ((ϕ(xi), ϕ(xj))), ψ(ϕ(yi′), ϕ(yj′)))
−|rxi

− ryi′ | − γd̂(ψ((ϕ(xi+1), ϕ(xj))), ψ(ϕ(yi′+1), ϕ(yj′)))
∣∣∣2 . (5)
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The goal of this objective is to nudge embeddings of analogous state sequences closer in the embed-
ded space, bolstering the categorization of congruent behaviors.

3.3 TEMPORAL MEASUREMENT

To facilitate SCR in acquiring future insights, we introduce temporal measurement, a conceptual
“distance” to quantify the discrepancies between the current state xi and future state xj . This mea-
surement, m(xi,xj), aims to measure the differences in state value or the sum of rewards received
within the current and future states. We build the approximated measurement upon the state repre-
sentation ϕ, i.e., m̂ϕ(xi,xj) := m̂(ϕ(xi), ϕ(xj)). where m̂ : Rn × Rn → R is a non-parametric
asymmetrical metric function further detailed in Section 3.3.1. This approach organizes the repre-
sentation space of ϕ(x) around the “distance” m, enabling the structured representation of ϕ(x) to
hold sufficient information to plan for future states.

We propose m to represent the expected discounted accumulated rewards, obtained by an optimal
policy π∗ from state xi to state xj :

m(xi,xj) = Eπ∗

[
j−i∑
t=0

γtrst

∣∣∣∣∣s0 = xi, sj−i = xj

]
. (6)

However, it is non-trivial to obtain m(xi,xj) because the optimal policy π∗ is unknown and is, de
facto, the primary goal of the RL task. Instead of directly approximating m(xi,xj), we learn the
approximation m̂(xi,xj) in an alternative way that ensures it is located in a feasible range covering
the true m(xi,xj). To construct this range, we introduce two constraints.

The first constraint, which is considered as a lower boundary, asserts that the expected discounted
cumulative reward collected by any policy π, optimal or otherwise, cannot surpass m:

Eπ

[
j−i∑
t=0

γtrst

∣∣∣∣∣s0 = xi, sj−i = xj

]
≤ m(xi,xj). (7)

This constraint is constructed based on an assumption that any sub-optimal policy is inferior to the
optimal policy. Based on the constraint in Equation 7, we propose the first objective for learning
the approximation m̂ϕ:

Llow(ϕ) = Eτ(xi;xj)∼π

∣∣∣∣∣ReLU
(
j−i∑
t=0

γtrxt
− m̂(ϕ(xi), ϕ(xj))

)∣∣∣∣∣
2

, (8)

where ReLU(x) = x+ = max(0, x). This objective becomes non-zero when the constraint in
Equation 7 is not satisfied, pushing the value of m(ϕ(xi), ϕ(xj)) to be larger until it becomes larger
than the sampled reward sum.

The second constraint, corresponding to upper boundary, is proposed according to inspiration from
the triangle inequality. The absolute value |m(xi,xj)| is limited by the following inequality,

|m(xi,xj)| ≤ d(xi,yi′) + |m(yi′ ,yj′)|+ d(xj ,yj′), (9)
where d is the behavioral metric introduced in Section 3.1. The right-hand side represents the
longer path from xi to xj . This inequality demonstrates that the absolute temporal measurement
|m(xi,xj)| is no greater than the sum of behavioral metrics at the beginning states (xi and yi′ ),
i.e. d(xi,yi′), and end states pair (xj and yj′ ), i.e. d(xj ,yj′), respectively, plus the measurement
|m(yi,yj)|. This constraint leads to the following formulation of the 2nd objective for training m̂ϕ:

Lup(ϕ) =
∣∣∣ReLU(|m̂(ϕ(xi), ϕ(xj))|

− stop grad
(
d̂((ϕ(xi), ϕ(yi′))) + d̂((ϕ(xj), ϕ(yj′))) +m(ϕ(yi′), ϕ(yj′))

))∣∣∣2 (10)

This objective pushes down the value of m̂ϕ when the constraint in Equation 9 is not satisfied.

By optimizing both constraints in a unified manner, we ensure the approximated temporal measure-
ment, m, is anchored within a specific range, bounded by the lower and upper constraints. The
overall objective for m̂ is formulated as:

Lm̂(ϕ) = Llow(ϕ) + Lup(ϕ). (11)
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3.3.1 ASYMMETRICAL METRIC FUNCTION FOR m̂

The measurement m̂(xi,xj) designed to measure the distance regarding the rewards should be
asymmetrical with respect to xi and xj . This is predicated on our assumption that state xi pre-
cedes xj , making its relation distinctly different from the progression from xj to xi. Recently
research studies the quasimetric in deep learning (Pitis et al., 2020; Wang & Isola, 2022b;a) and de-
velop various methodologies to compute asymmetrical distances. In our method, we opt to leverage
Interval Quasimetric Embedding (IQE) (Wang & Isola, 2022a) to implement m̂.

3.4 OVERALL OBJECTIVE

As shown in Figure 1, the encoders are designed to predict state representations ϕ(x) for individual
states and chrono embedding ψ(xi,xj) for capturing the relationship existing between that states xi
and xj . The measurement m̂ is subsequently computed based on ϕ(xi) and ϕ(xj) to account for the
accumulated rewards in between these states. The components ψ and m̂ collaboratively enhance the
state representations ϕ to capture the temporal information and its predictive capabilities for future
insight. We will show the necessity of ψ and m̂ in the ablation study which is detailed in Section 4.3.
Therefore, a comprehensive objective is formulated in a unified manner:

L(ϕ, ψ) = Lϕ(ϕ) + Lψ(ψ, ϕ) + Lm̂(ϕ). (12)

Our method, denoted as SCR, possesses the flexibility to be integrated with a broad spectrum of
deep RL algorithms. These algorithms can effectively utilize the representation ϕ(x) as an integral
input component. In our implementation, we employ Soft Actor-Critic (SAC) (Haarnoja et al., 2018)
as our foundational RL algorithm. The state representation serves as the input state for the policy
network and Q-value network in SAC. Other implementation details are referred to Appendix A.2.

4 EXPERIMENTS

Benchmarks. The primary objective of our proposed SCR is to cultivate a versatile and general-
izable representation for deep RL when dealing with high-dimensional observation. To assess its
efficiency, we conduct experiments utilizing the DeepMind Control Suite (DM Control) environ-
ment with rendered pixels observations (Tunyasuvunakool et al., 2020) and a distraction setting,
Distracting Control Suite (Stone et al., 2021). This environment utilizes the MuJoCo physics en-
gine, providing pixel observations for a set of continuous control tasks. It includes rich testing
scenarios, especially given its inclusion of background distractions and camera pose distractions,
which simulate real-world complexities with camera inputs. Specifically,

• Default setting. We evaluate our SCR on seven tasks in DM Control compared with other RL
approaches. Each frame is rendered 3 × 84 × 84 pixels, as demonstrated in Figure 3. We stack
three frames as states and feed them into the RL agents.

• Distraction setting. To evaluate to generalizability of SCR, we perform experiments on
DDM Control with distraction. The distraction (as shown in Figure 4) includes 1) background
video distraction, replacing the clean and simple background with a natural video; 2) object color
distraction, slightly changing the color of the bodies of the robot; and 3) camera pose distraction,
randomizing the camera pose of position and angle for rendering from the simulator. We observe
that tasks become very hard if camera pose distraction is applied.

Figure 3: Examples of observations from
DM Control with default setting.

Figure 4: Examples of observations from
DM Control with distraction setting.

Baselines. For a comprehensive understanding of our method’s performance, we benchmark it
against prominent algorithms in the domain, including: 1) SAC (Haarnoja et al., 2018), a base-
line deep RL method for continuous control; 2) DrQ (Yarats et al., 2021b), a data augmentation
method using random crop; 3) DBC (Zhang et al., 2021), representation learning with the bisimu-
lation metric; and 4) SimSR (Zang et al., 2022), representation learning with the behavioral metric
approximated by the cosine distance.
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SAC DrQ DBC SimSR SCR
ball in cup-catch 450.6±452.0 964.2±20.3 125.2±309.3 961.2±21.3 962.8±29.4
cartpole-swing up 808.0±54.6 824.8±40.3 346.7±79.2 866.9±5.3 858.6±4.3
cartpole-swing up sparse 12.5±9.5 762.2±32.4 220.2±218.9 725.3±152.8 828.0±13.3
cheetah-run 366.0±72.0 491.2±30.4 372.6±20.9 809.7±29.3 734.4±26.8
finger-spin 436.3±10.7 958.2±11.4 413.8±7.8 973.0±11.3 968.3±10.2
reacher-easy 381.4±420.9 977.2±13.6 222.3±354.7 83.5±166.6 865.5±209.5
walker-walk 313.3±100.1 914.8±45.8 384.7±167.0 934.7±41.9 937.1±35.1

Table 1: Result scores on DeepMind Control Suite with the default setting at 500K steps. Each
result is written in the format of mean±std.

SAC DrQ DBC SimSR SCR
ball in cup-catch 38.4±145.4 257.9±398.3 24.6±153.9 145.0±345.2 171.5±251.4
cartpole-swing up 220.6±48.3 276.1±114.9 108.6±46.1 101.8±63.1 494.4±90.6
cartpole-swing up sparse 2.8±5.8 0.6±1.7 0.0±0.0 0.0±0.0 30.7±6.5
cheetah-run 154.3±63.0 161.2±64.1 10.1±2.2 10.7±2.3 310.0±115.9
finger-spin 88.7±94.9 628.1±279.7 1.0±3.1 0.3±0.9 851.4±28.8
reacher-easy 89.8±180.5 115.5±252.8 179.5±301.4 93.4±123.1 209.8±323.5
walker-walk 170.1±47.5 28.8±11.0 26.0±8.7 28.2±12.3 543.1±75.0

Table 2: Result scores on DM Control with distraction setting at 500K step. Distraction includes
background, robot body color, and camera pose. Each result is written in the format of mean±std.

4.1 RESULTS ON THE DEFAULT SETTING

In order to verify the sample efficiency of our method, we compare it with other methods on seven
tasks in DM Control: ball in cup-catch, cartpole-swing up, cartpole-swing up sparse, cheetah-run,
finger-spin, reacher-easy and walker-walk. We train each method in each task for 500K steps. Ta-
ble 1 reports the scores evaluated at the end of training. All experimental results are averaged over 3
runs. We can observe that SCR has comparable results with the augmentation method DrQ and the
state-of-the-art behavioral metric approach SimSR. Given that the maximum achievable returns for
a DM Control task stands at 1000, a policy that collects scores around 900 is nearly optimal. These
outcomes underscore the potency of SCR in mastering standard RL control tasks.

4.2 RESULTS ON THE DISTRACTION SETTING

To further evaluate the generalization ability of our method, we perform comparison experiments
on DM Control with Distraction. We use the same training configuration as with the default setting.
The camera-pose distraction presents a challenge for metric-centric methods like DBC and SimSR,
primarily due to the significant distortion of the robot shape and position in the image state. Table 2
shows the results scores. Our method outperforms all other methods, including sparse reward task
cartpole-swing up sparse, where other methods receive almost zero scores. DrQ outperforms other
behavioral metric methods as its random cropping facilitates better alignment of robot position.

4.3 ABLATION STUDY

Figure 5: Ablation study on cheetah-run (left) and walker-
walk (right) in distracting setting. Curves are evaluation
scores average on 3 runs and shadow shapes are std.

To evaluate the impact of each com-
ponent in the proposed SCR, we per-
form an ablation study where cer-
tain components were selectively re-
moved or substituted. Figure 5 shows
the training curves on cheetah-run
and walker-walk under distracting
setting. SCR is the full model of the
proposed method. SCR w/o ψ re-
moves the chronological embedding
ψ. SCR w/o m̂ refers to exclusion of the approximation m̂. SCR w/ cos replaces the distance func-
tion d̂ for computing metrics on representation space with cosine distance, akin to SimSR does.

8



Under review as a conference paper at ICLR 2024

SCR w/ MICo replaces d̂ with MICo’s angular distance. SCR w/ L1 replaces d̂ with L1 distance as
adopted by DBC. SCR w/ ϕ only removes losses Lψ(ϕ, ψ) and Lm̂(ϕ) but keep Lϕ(ϕ). The results
show the superior performance of the full model and the importance of ψ and m̂. The absence of
these components can lead to worse performance and unstable training.

4.4 RESULTS ON BACKGROUND DISTRACTION ONLY

DBC SimSR SCR
ball in cup-catch 174.7±340.5 71.7±230.9 688.8±292.2
cartpole-swing up 120.3±57.1 840.4±20.8 855.6±5.0
cartpole-swing up sparse 559.0±145.0 694.5±276.8 792.1±41.3
cheetah-run 295.0±72.5 540.7±166.6 584.9±61.6
finger-spin 526.9±69.4 952.5±13.5 960.4±7.4
reacher-easy 133.3±231.5 128.8±143.3 286.8±401.1
walker-walk 222.0±30.3 920.4±76.8 880.8±47.0

Table 3: Result scores on DeepMind Control Suite with the dis-
traction setting at 500K steps. Distraction includes background
video distraction only. Each result is written in the format of
mean±std.

We provide another version
of DM Control with distrac-
tion which includes only back-
ground distraction by replacing
with greyscale videos. This
experiment setup follows DBC
and SimSR. Table 3 shows the
experiment results. It is cru-
cial to note that tasks limited
to only background distractions
are considerably simpler com-
pared to those with object color
and camera pose distractions.
We perform these experiments to fairly compare with DBC and SimSR. The results show that SimSR
performs quite well under this setting and our SCR achieves comparable results with SimSR.

5 RELATED WORK

Recent studies have investigated representation learning in RL in many ways. Previous works (Hig-
gins et al., 2017; Lee et al., 2020a; Yarats et al., 2021c) train autoencoder to encode image states
into low-dimensional latent embeddings which improve the visual perception and accelerate policy
learning. Approaches (Yarats et al., 2021b; Laskin et al., 2020a;b; Yarats et al., 2021a; Stooke et al.,
2021) utilize data augmentation, e.g., random crop or noise injection, accompanied with contrastive
loss to learn better generalizable state representations. Auxiliary tasks approaches (Lee et al., 2020b;
Seo et al., 2022; Hafner et al., 2019) learn representation by predicting auxiliary tasks to extract more
information from environments.

Recent research with metric learning method for RL learns to measure distance on state represen-
tations. Some approaches learn to approximate bisimulation metric (Zhang et al., 2021; Kemertas
& Aumentado-Armstrong, 2021) while other approaches learn sample-based distance (Zang et al.,
2022; Castro et al., 2021). Goal-based RL have harnessed bisimulation metrics for state representa-
tion (Hansen-Estruch et al., 2022). Additionally, a recent work introduces quasimetrics learning as
a fresh RL objective for cost MDPs (Wang et al., 2023).

6 CONCLUSION

The primary challenge of deep RL lies in cultivating an optimal policy from intricate, high-
dimensional noisy observations, such as images. In this work, we propose a novel metric-based
representation framework State Chrono Representation (SCR) that leverages temporal dynamics in
RL. SCR stands out by fusing the foundational principles of behavioral metrics with a holistic ap-
preciation for long-term state dynamics. Our proposed method, while acknowledging past strides
made using behavioral metrics, accentuates the need for a long-term vision in state representation,
plugging gaps left by the one-step-focused models. Furthermore, by innovatively measuring rewards
over temporal trajectories and weaving this measurement through representations, SCR pushes the
frontier of efficient and adaptive RL representation. Our comprehensive experiments underscore
the potency of this approach, especially in intricate environments laden with distractions. As the
field advances, SCR serves as a testament to the blend of temporal relevance and behavioral metrics,
hinting at the trajectory future representation learning endeavors might take.
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Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv:1704.00675, 2017.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter
Abbeel. Masked world models for visual control. In 6th Annual Conference on Robot Learning,
2022. URL https://openreview.net/forum?id=Bf6on28H0Jv.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting con-
trol suite – a challenging benchmark for reinforcement learning from pixels. arXiv preprint
arXiv:2101.02722, 2021.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 9870–9879. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/stooke21a.html.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and
tasks for continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi:
https://doi.org/10.1016/j.simpa.2020.100022. URL https://www.sciencedirect.com/
science/article/pii/S2665963820300099.

Tongzhou Wang and Phillip Isola. Improved representation of asymmetrical distances with interval
quasimetric embeddings. In NeurIPS 2022 Workshop on Symmetry and Geometry in Neural
Representations, 2022a. URL https://openreview.net/forum?id=KRiST_rzkGl.

Tongzhou Wang and Phillip Isola. On the learning and learnability of quasimetrics. In Interna-
tional Conference on Learning Representations, 2022b. URL https://openreview.net/
forum?id=y0VvIg25yk.

11

https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e615c82aba461681ade82da2da38004a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/08058bf500242562c0d031ff830ad094-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/08058bf500242562c0d031ff830ad094-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/89b9e0a6f6d1505fe13dea0f18a2dcfa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/89b9e0a6f6d1505fe13dea0f18a2dcfa-Paper.pdf
https://openreview.net/forum?id=HJeiDpVFPr
https://openreview.net/forum?id=Bf6on28H0Jv
https://proceedings.mlr.press/v139/stooke21a.html
https://proceedings.mlr.press/v139/stooke21a.html
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://openreview.net/forum?id=KRiST_rzkGl
https://openreview.net/forum?id=y0VvIg25yk
https://openreview.net/forum?id=y0VvIg25yk


Under review as a conference paper at ICLR 2024

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching rein-
forcement learning via quasimetric learning. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th In-
ternational Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 36411–36430. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/wang23al.html.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-
totypical representations. 2021a.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In International Conference on Learning Representa-
tions, 2021b. URL https://openreview.net/forum?id=GY6-6sTvGaf.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(12):10674–10681, May 2021c. doi: 10.
1609/aaai.v35i12.17276. URL https://ojs.aaai.org/index.php/AAAI/article/
view/17276.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

Hongyu Zang, Xin Li, and Mingzhong Wang. Simsr: Simple distance-based state representations for
deep reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, 36
(8):8997–9005, Jun. 2022. doi: 10.1609/aaai.v36i8.20883. URL https://ojs.aaai.org/
index.php/AAAI/article/view/20883.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learn-
ing invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=-2FCwDKRREu.

A APPENDIX

A.1 PROOFS

A.1.1 PROOF OF THEOREM 3

Theorem 3. Let d̂ : Rn×Rn → R be a metric in the latent state representation space, dϕ(xi,yi′) :=
d̂(ϕ(xi), ϕ(yi′)) be a metric in the state domain. The metric update operator F is defined as,

Fdϕ(xi,yi′) = |rxi − ryi′ |+ γE ϕ(xi)∼P̂ (·|ϕ(xi+1),axi
)

ϕ(yi′+1)∼P̂ (·|ϕ(yi′+1),ayi′
)

d̂(ϕ(xi+1), ϕ(yi′+1)), (13)

where M̂ is the space of d, with axi and ayi′ being the actions at states xi and yi′ , respectively, and
P̂ is the learned latent dynamics model. F has a fixed point dπϕ.

Proof. We follow the proof techniques from (Castro et al., 2021) and (Zang et al., 2022). By substi-
tuting d̂(ϕ(xi+1), ϕ(yi′+1)) with dϕ(xi+1,yi′+1), we have

Fdϕ(xi,yi′) = |rxi − ryi′ |+ γE xi∼P̂ (·|ϕ(xi+1),axi
)

yi′+1∼P̂ (·|ϕ(yi′+1),ayi′
)

dϕ(xi+1,yi′+1). (14)

The operator Fdϕ is a contraction mapping with respect to the L∞ norm because,

|Fdϕ(x,y)−Fdϕ′(x,y)| =

∣∣∣∣∣∣γE xi∼P̂ (·|ϕ(xi+1),axi
)

yi′+1∼P̂ (·|ϕ(yi′+1),ayi′
)

(dϕ − dϕ′)(xi+1,yi′+1)

∣∣∣∣∣∣
≤γ∥(dϕ − dϕ′)(xi+1,yi′+1)∥∞.

(15)
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By Banach’s fixed point theorem, operator F has a fixed point dπϕ.

A.1.2 PROOF OF THEOREM 4

To prove the distance d̂ is a diffuse metric, we need to prove that d̂ satisfies all of three axioms in
the Definition 3.1 (definition of diffuse metric).
Lemma 2. ∥a∥22 + ∥b∥22 − a⊤b ≥ 0 for any a,b ∈ R.

Proof. Because a⊤b ≤ ∥a∥∥b∥, we have,

∥a∥2 + ∥b∥2 − a⊤b

≥∥a∥2 + ∥b∥2 − ∥a∥∥b∥
≥∥a∥2 + ∥b∥2 − 2∥a∥∥b∥
=(∥a∥ − ∥b∥)2

≥0.

(16)

This lemma indicates that the term under the square root of d̂ is always non-negative. d̂ is able to
measure any two vectors a,b ∈ Rn.

Lemma 3 (Non-negative). d̂(a,b) ≥ 0 for any a,b ∈ R.

Proof. By definition, the square root is non-negative.

Lemma 4 (Symmetric). d̂(a,b) = d̂(b,a)

Proof. d̂(a,b) =
√
∥a∥22 + ∥b∥22 − a⊤b =

√
∥b∥22 + ∥a∥22 − b⊤a = d̂(b,a)

Lemma 5 (Triangle inequality). d̂(a,b) + d̂(b, c) ≥ d̂(a, c), for any a,b, c ∈ R.

Proof. To prove this lemma, it is equivalent to prove the following inequality by definition of d̂,√
∥a∥2 + ∥b∥2 − a⊤b+

√
∥b∥2 + ∥c∥2 − b⊤c ≥

√
∥a∥2 + ∥c∥2 − a⊤c. (17)

Because −∥x∥∥y∥ ≤ x⊤y ≤ ∥x∥∥y∥,∀x,y , we have√
∥a∥2 + ∥b∥2 − a⊤b+

√
∥b∥2 + ∥c∥2 − b⊤c

≥
√

∥a∥2 + ∥b∥2 − ∥a∥∥b∥+
√
∥b∥2 + ∥c∥2 − ∥b∥∥c∥,

(18)

and √
∥a∥2 + ∥c∥2 + ∥a∥∥c∥ ≥

√
∥a∥2 + ∥c∥2 − a⊤c. (19)

If √
∥a∥2 + ∥b∥2 − ∥a∥∥b∥+

√
∥b∥2 + ∥c∥2 − ∥b∥∥c∥ ≥

√
∥a∥2 + ∥c∥2 + ∥a∥∥c∥ (20)

is true, then inequality (17) is true and Lemma 5 is proven. To prove inequality (20), we can take
squares on both sides without sign changing because both sides are non-negative. Then we have,(√

∥a∥2 + ∥b∥2 − ∥a∥∥b∥+
√
∥b∥2 + ∥c∥2 − ∥b∥∥c∥

)2
≥ ∥a∥2 + ∥c∥2 + ∥a∥∥c∥. (21)

To prove inequality (20), it is equivalent to prove inequality (21). Expand and simplify inequality
(21), we have

2
√
∥a∥2 + ∥b∥2 − ∥a∥∥b∥

√
∥b∥2 + ∥c∥2 − ∥b∥∥c∥ ≥ −2∥b∥2 + ∥a∥∥b∥+ ∥b∥∥c∥+ ∥a∥∥c∥.

(22)

The left-hand side of inequality (22) is non-negative.
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1) if right hand side −2∥b∥2+∥a∥∥b∥+∥b∥∥c∥+∥a∥∥c∥ < 0, then inequality (22) is proven and
backtrace to Lemma 5 is proven.

2) if right hand side −2∥b∥2 + ∥a∥∥b∥+ ∥b∥∥c∥+ ∥a∥∥c∥ ≥ 0, we take square on both sides of
inequality (22) and have,

4(∥a∥2+ ∥b∥2−∥a∥∥b∥)(∥b∥2+ ∥c∥2−∥b∥∥c∥) ≥ (−2∥b∥2+ ∥a∥∥b∥+ ∥b∥∥c∥+ ∥a∥∥c∥)2.
(23)

To prove inequality (23), we let left-hand side subtract right-hand side,

4(∥a∥2 + ∥b∥2 − ∥a∥∥b∥)(∥b∥2 + ∥c∥2 − ∥b∥∥c∥)− (−2∥b∥2 + ∥a∥∥b∥+ ∥b∥∥c∥+ ∥a∥∥c∥)2

=3∥a∥2∥b∥2 + 3∥a∥2∥c∥2 + 3∥b∥2∥c∥2 − 6∥a∥2∥b∥∥c∥ − 6∥a∥∥b∥∥c∥2 + 6∥a∥∥b∥2∥c∥
=3(∥a∥∥b∥+ ∥b∥∥c∥ − ∥a∥∥c∥)2

≥0.
(24)

Therefore, inequality (23) is proven. Consequently, inequality (22) in the case of −2∥b∥2 +
∥a∥∥b∥ + ∥b∥∥c∥ + ∥a∥∥c∥ ≥ 0 is proven. Summarize with the case of −2∥b∥2 + ∥a∥∥b∥ +
∥b∥∥c∥+ ∥a∥∥c∥ < 0, inequality (22) is proven and Lemma 5 is proven.

Theorem 6. d̂ is a diffuse metric.

Proof. By summarizing Lemma 3, 4, and 5, function d̂ holds the three axioms of diffuse metric.
Therefore, function d̂ is a diffuse metric.

A.1.3 PROOF OF THEOREM 5

Theorem 5. Let Mψ be the space of dψ . The metric update operator FChrono : Mψ → Mψ is
defined as,

FChronodψ(xi,xj ,yi′ ,yj′) = |rxi
− ryi′ |+ γExi+1∼Pπ

x ,yi′+1∼Pπ
y
dψ(xi+1,xj ,yi′+1,yj′). (25)

FChrono has a fixed point.

Proof. We follow the proof in Section A.1.1. FChrono is contraction mapping because

|FChronodψ(xi,xj ,yi′ ,yj′)−FChronodψ′(xi,xj ,yi′ ,yj′)|

=
∣∣∣γExi+1∼Pπ

x ,yi′+1∼Pπ
y
(dψ − dψ′)(xi+1,xj ,yi′+1,yj′)

∣∣∣
≥γ∥(dψ − dψ′)(xi+1,xj ,yi′+1,yj′)∥∞

(26)

By Banach’s fixed point theorem, operator FChrono has a fixed point dπψ .

A.2 IMPLEMENTATION DETAILS

A.2.1 IMPLEMENTATION OF m̂

We adopt IQE (Wang & Isola, 2022a) to implement m̂. Given two vectors a,b ∈ Rn, reshaping to
Rk×l where k × l = n, IQE first computes the union of the interval for each component:

di(a,b) = |
l⋃

j=1

[aij ,max(aij ,bij)]|,∀i = 1, 2, ..., k, (27)

where [·, ·] is the interval on the real line. Then it computes the distance among all components di
as

dIQE(a,b) = α ·max(d1(a,b), ..dk(a,b)) + (1− α) ·mean(d1(a,b), ..dk(a,b)), (28)

where α ∈ R is an adaptive weight to balance the “max” and “mean” terms. In the scope of our
method, we adopt dIQE(a,b) to implement m̂.
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A.2.2 NETWORK ARCHITECTURE

The encoder ϕ takes input of the states and consists of 4 convolutional layers followed by 1 fully-
connected layer. The output dimension of ϕ is 256. The encoder ψ takes input of 512 dimensional
vector (concatenated with ϕ(xi) and ϕ(xj)), feed it into two layer MLPs with 512 hidden units, and
output a 256 dim embedding. Q network and policy network are 3-layer MLPs with 1024 hidden
units.

A.2.3 HYPERPARAMETERS

Hyperparameters Values
Stack frames 3
Observation shape (3× 3, 84, 84)
Action repeat 2 for finger-spin, walker-walk

8 for cartpole-swing up, cartpole-swing up sparse
4 for otherwise

Convolutional layers 4
Convolutional kernal size 3× 3
Convolutional strides [2, 1, 1, 1]
Convolutional channels 32
ϕ dimension 256
ψ dimension 256
Learning rate 1e-4
Q function EMA αQ 0.01
Encoder ϕ EMA αϕ 0.05
Initial steps 1000
Replay buffer size 500K
Target update freq 2
Batch size 128
Discount factor γ 0.99

Table 4: Hyperparameters

A.2.4 ALGORITHM

Algorithm 1 A learning step in jointly learning SCR and SAC.
Require: Replay Buffer D, Q network Q, policy network π, target Q network Q̄, state encoder ϕ,

target state encoder ϕ̄, chronological encoder ψ.
1: Sample a batch of trajectories with size B: {τk}Bk=1 ∼ D
2: Sample state xi, transition at xi and its future state xj from each trajectory τk:

{(xi,xi+1, ri,ai,xj)k ∼ τk}Bk=1
3: Compute loss Lϕ(ϕ) according Equation 2
4: Compute loss Lψ(ψ, ϕ) according Equation 5
5: Compute loss Lm̂(ϕ) according Equation 11
6: Compute loss L(ϕ, ψ) = Lϕ(ϕ) + Lψ(ψ, ϕ) + Lm̂(ϕ) according Equation 12
7: Update ϕ and ψ by minimizing loss L(ϕ, ψ)
8: Compute RL loss LRL according to SAC objectives
9: Update ϕ, Q and π by minimizing loss LRL

10: Soft update target Q network: Q̄ = αQQ+ (1− αQ)Q̄
11: Soft update target state encoder: ϕ̄ = αϕϕ+ (1− αϕ)ϕ̄
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B EXPERIMENTS

B.1 ADDITIONAL INFORMATION FOR DISTRACTING SETTINGS IN DEEPMIND CONTROL
SUITE

In Section 4.2 and 4.4, the evaluating environment has different distracting background videos than
training environment.

For the distraction setting in Section 4.2, we utilized the Distracting Control Suite (Stone et al.,
2021) with the setting ”difficulty=easy”. This involves mixing the background with videos from the
DAVIS2017 (Pont-Tuset et al., 2017) dataset. Specifically, the training environment samples videos
from the DAVIS2017 train set, while the evaluation environment uses videos from the validation
set. Each episode reset triggers the sampling of a new video. Additionally, it introduces variability
in each episode by applying a uniformly sampled RGB color shift to the robot’s body color and
randomly selecting the camera pose. The specifics of the RGB color shift range and camera pose
variations are in line with the Distracting Control Suite paper (Stone et al., 2021). Different random
seeds are used for the training and evaluating environments at the start of training to ensure diverse
environments.

For the distraction setting in Section 4.3, we follow the approach in DBC (Zhang et al., 2021) to
setup experiments focusing solely on background video distraction. The background videos for
this setting are sampled from the Kinetics (Kay et al., 2017) dataset (Kay et al., 2017). We use
1000 consecutive frames for the training environment and a different set of 1000 consecutive frames
for the evaluation environment, providing a varied visual context between training and evaluation
phases.

B.2 ADDITIONAL EXPERIMENTS ON THE NUMBER OF STEPS BETWEEN i AND j

In previous experiments, we set the number of steps between i and j to 50. To demonstrate the
impact of the hyper-parameter, we include additional experiments with varying step counts: 1, 5,
10, 50, and 100 steps. We evaluate on cheetah-run and walker-walk tasks with the distracting setting
in Section 4.2. The results are shown in Figure 6. We observe that that 50 steps yield optimal results
in these tasks.

Figure 6: Training curves with varying step counts: 1, 5, 10, 50, and 100 steps in distracting settin.
Left: cheetah-run and right: walker-walk. Curves are evaluation scores average on 3 runs and
shadow shapes are std.

B.3 TRAINING CURVES OF DISTRACTING CONTROL SUITE IN SECTION 4.2

Figure 7 shows the training curves of SCR and baseline methods in distracting setting in Section 4.2.
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Figure 7: Training curves with varying step counts: 1, 5, 10, 50, and 100 steps in distracting settin.
Left: cheetah-run and right: walker-walk. Curves are evaluation scores average on 3 runs and
shadow shapes are std.

B.4 ADDITIONAL EXPERIMENTS ON META-WORLD

In this subsection, we present additional experimental investigations within the Meta-World (Yu
et al., 2019), a comprehensive simulated benchmark encompassing 50 distinct robotic manipulation
tasks. Our focus narrows to three specific tasks: window-open-v2, door-open-v2, and drawer-open-
v2. The observations are rendered as 84 × 84 RGB pixels, consistent to DeepMind Control Suite.
The outcomes of these evaluations are depicted in Figure 8. Notably, our proposed SCR outperforms
existing baseline methodologies across all evaluated tasks. While the DrQ algorithm demonstrates
proficiency in achieving optimal performance levels, it is observed that SCR maintains superior
sample efficiency, underscoring its effectiveness in the applied setting.

Figure 8: Training Curves of Meta-World. From left to right: window-open-v2, door-open,-v2
drawer-open-v2. Curves are evaluation scores average on 3 runs and shadow shapes are std.
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