
Physics-Informed DeepONets for drift-diffusion on metric graphs: simulation
and parameter identification

Jan Blechschmidt 1 2 Tom-Christian Riemer 1 Max Winkler 1 Martin Stoll 1 Jan-F. Pietschmann 3

Abstract
We develop a novel physics informed deep learn-
ing approach for solving nonlinear drift-diffusion
equations on metric graphs. These models repre-
sent an important model class with a large number
of applications in areas ranging from transport in
biological cells to the motion of human crowds.
While traditional numerical schemes require a
large amount of tailoring, especially in the case
of model design or parameter identification prob-
lems, physics informed deep operator networks
(DEEPONETS) have emerged as a versatile tool
for the solution of partial differential equations
with the particular advantage that they easily in-
corporate parameter identification questions. We
here present an approach where we first learn
three DEEPONET models for representative in-
flow, inner and outflow edges, resp., and then
subsequently couple these models for the solu-
tion of the drift-diffusion metric graph problem
by relying on an edge-based domain decomposi-
tion approach. We illustrate that our framework
is applicable for the accurate evaluation of graph-
coupled physics models and is well suited for
solving optimization or inverse problems on these
coupled networks.

1. Introduction
Dynamic processes on graphs (Newman, 2018; Barabási,
2016) are crucial for understanding complex phenomena

1Department of Mathematics, TU Chemnitz, Chemnitz,
Germany 2Department of Mathematics and Computer Science,
TU Bergakademie Freiberg, Freiberg, Germany 3Department
of Mathematics, University of Augsburg, Augsburg, Germany
and Centre for Advanced Analytics and Predictive Sciences
(CAAPS), University of Augsburg, Universitätsstr. 12a, 86159
Augsburg, Germany. . Correspondence to: Jan Blech-
schmidt <jan.blechschmidt@math.tu-chemnitz.de>, Martin Stoll
<martin.stoll@math.tu-chemnitz.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

v1

v5

v3

v4

v2

v6

e1

e2

e3

e4

e5

0.0

0.2

0.4

0.6

0.8

1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6

0.8

inner edge DEEPONET
uorigin

uoutflowρue

S1

S2

S3

S4

S5

v inflow vertex

v outflow vertex

v inner vertex

S
measurement
sensor

in many application areas. We focus on the case of a met-
ric graph where each edge is associated with an interval of
(possibly) different length. Therefore, the metric graph can
be equipped with a differential operator, acting separately
on each edge and with appropriate coupling conditions or
boundary conditions at the nodes, called the Hamiltonian,
leading to what is known as quantum graphs (Lagnese et al.,
2012; Berkolaiko & Kuchment, 2013). Numerical methods
for quantum graphs have gained recent interest (Arioli &
Benzi, 2018; Gyrya & Zlotnik, 2019; Stoll & Winkler, 2021)
both for simulation of PDE models as well as for solving de-
sign or inverse problems. As the structure of such graphs is
typically rather complex, efficient schemes such as domain
decomposition methods (Leugering, 2017) are often needed
for computational efficiency.

1

Physics-Informed DeepONets for drift-diffusion on metric graphs

In this paper we propose a machine learning technique,
namely, the physics-informed DEEPONET approach (Lu
et al., 2021; Wang et al., 2021) for drift-diffusion on metric
graphs. These methods have been introduced to improve on
the performance of the, by now well established, physics-
informed neural networks (PINNS) (Raissi et al., 2019),
which have found their way into many application areas
(Zhu et al., 2019; Jin et al., 2021; Sahli Costabal et al.,
2020) including fluid dynamics (Raissi et al., 2018; Mao
et al., 2020; Lye et al., 2020; Magiera et al., 2020; Wes-
sels et al., 2020), continuum mechanics and elastodynamics
(Haghighat et al., 2020; Nguyen-Thanh et al., 2020; Rao
et al., 2020), inverse problems (Meng & Karniadakis, 2020;
Jagtap et al., 2020), fractional advection-diffusion equations
(Pang et al., 2019), stochastic advection-diffusion-reaction
equations (Chen et al., 2021), stochastic differential equa-
tions (Yang et al., 2020) and power systems (Misyris et al.,
2020). XPINNs (eXtended PINNS) are introduced in (Jag-
tap & Karniadakis, 2020) as a generalization of PINNS
involving multiple neural networks allowing for paralleliza-
tion in space and time via domain decomposition, see also
(Heinlein et al., 2021) for a review on machine learning ap-
proaches in domain decomposition. Due to its broad range
of applications, the PINN approach helped to establish the
field of scientific machine learning (Thiyagalingam et al.,
2022; Rackauckas et al., 2020; Cuomo et al., 2022; Blech-
schmidt & Ernst, 2021). On the other hand, the PINN ap-
proach often suffers from reduced accuracy when compared
with classical numerical methods for differential equations.
Furthermore, it has to be retrained everytime when initial
conditions, boundary conditions or parameters of the PDE
change. The DEEPONET architecture was introduced based
on the universal approximation theorem for operators and re-
lies on two neural networks for learning a representation of
the solution operator, namely a branch net for the input vari-
ables, e.g., time t and space x, and a second neural network
called trunk net encoding boundary and initial conditions
conditions as well as other parameters of the underlying
problem, e.g., a variable velocity, viscosity or heat conduc-
tivity. Similar to XPINNs DEEPONET has been extended
for a domain decomposition application (Yin et al., 2022)
where the key component is the coupling condition between
the different domains that are constructed during the domain
partitioning.

In this work we introduce the extension of the DEEPONET
framework to graphs, particularly the application to the case
of a drift-diffusion equation posed on a metric graphs. Drift-
diffusion models are used in many application areas ranging
from modeling electrical networks, (Hinze et al., 2011), to
simulation of traffic flow in cities, (Coclite et al., 2005), and
thus serve as a relevant and sufficiently complex test case.

On the metric graph, the domain is naturally composed of a
possibly large number of domains, i.e., the different edges.

However, depending on the coupling conditions at vertices,
different type of models have to be learned which distin-
guishes our approach from classical domain decomposition
methods. Once these models are trained, we are able to
obtain solutions on virtually arbitrary graphs via a computa-
tionally cheap optimization of loss terms at the nodes which
ensure the coupling conditions. This advantage becomes
even more significant when considering parameter identifi-
cation problems where traditional PDE optimization based
approaches would require many solutions of forward and
adjoint equations, (De los Reyes, 2015). In our setting, solv-
ing the inverse problem merely manifests itself in adding
additional loss terms. Therefore, strikingly, the cost of solv-
ing the forward and the inverse problem are practically the
same.

Our main contributions are as follows:

• We propose a methodology to solve PDEs on graphs us-
ing a novel Lego-like domain decomposition approach
where graph edges are represented by DEEPONET
models.

• Graph-agnostic training of the edge surrogate DEEP-
ONET model based on inner, inflow and outflow edges.
No additional training is required to couple these
models for representing flows on arbitrarily complex
graphs.

• The novel DEEPONET architecture enables robust
model evaluation but also allows the solution of opti-
mization or inverse problems at almost no additional
cost. This is exemplified on a parameter identification
problem.

2. Drift-diffusion equations on metric graphs
Let us introduce our notion of a metric graph in more detail.
A metric graph is a directed graph that consists of a set of
vertices V and edges E connecting a pair of vertices denoted
by (voe , v

t
e) where voe , v

t
e ∈ V . Here voe denotes the vertex at

the origin while vte denotes the terminal vertex. In contrast
to combinatorial graphs a length ℓe is assigned to each edge
e ∈ E . We identify each edge with a one-dimensional inter-
val which allows for the definition of differential operators.
The graph domain is then denoted by

Γ :=
⊗
e∈E

[0, ℓe].

We also introduce a normal vector ne(v) defined as
ne(v

o
e) = −1 and ne(v

t
e) = 1. To prescribe the behav-

ior at the boundary of the graph, we first subdivide the set
of vertices V into the interior vertices VK and the exterior
vertices VD as follows:

2

Physics-Informed DeepONets for drift-diffusion on metric graphs

• the set of interior vertices v ∈ VK ⊂ V contains all
vertices that are incident to at least one incoming edge
and at least one outgoing edge (i.e. ∀v ∈ VK ∃ e1, e2 ∈
E such that vte1 = v and voe2 = v),

• the set of exterior vertices v ∈ VD := V \VK, contains
vertices to which either only incoming or only outgoing
edges are incident, i.e., either vte = v or voe = v holds
∀e ∈ Ev with Ev the edge set incident to vertex v.

The differential operator defined on each edge consists of
the non-linear drift-diffusion equation given by

H(ρe) := ∂tρe−∂x(ε ∂xρe−νe f(ρe)) = 0, e ∈ E , (1)

where ρe : e × (0, T) → R+ describes the concentration
of some quantity on the edge e ∈ E , νe > 0 is an edge-
dependent velocity and ε > 0 a (typically small) diffusion
constant. Furthermore, f : R+ → R+ satisfies f(0) =
f(1) = 0. This property ensures that solutions satisfy 0 ≤
ρe ≤ 1 a.e. on each edge, see Theorem 2.2. By identifying
each edge with an interval [0, ℓe], we define the flux as

Je(x) := −ε ∂xρe(x) + νe f(ρe(x)) . (2)

A typical choice for f used in the following is f(ρe) =
ρe(1− ρe).
Remark 2.1. Note that the choice νe > 0 results in the fact
that the prefered direction of transport is encoded in the
direction of the edge (on our directed graph). On the other
hand, due to the additional diffusion contributions, the flux
Je, and thus the direction of mass transport on each edge,
may change sign.

To make (1) a well-posed problem, we need to add initial-
conditions as well as coupling conditions in the vertices.
First we impose on each edge e ∈ E the following initial
condition

ρe (0, x) = uinit
e (x) , for almost all x ∈ (0, ℓe), e ∈ E ,

(3)
with uinit

e ∈ L2 (e).

For vertices v ∈ VK ⊂ V , we apply homogeneous Kirchhoff-
Neumann conditions, i. e., there holds∑

e∈Ev

Je(v)ne(v) = 0, (4)

for almost every t ∈ (0, T) and with Ev the edge set incident
to the vertex v. Additionally, we ask the solution to be
continuous over vertices, i.e.

ρe(v) = ρe′(v) for all v ∈ VK, e, e
′ ∈ Ev, (5)

again for almost every t ∈ (0, T). In vertices v ∈ VD :=
V \ VK the solution ρ fulfills flux boundary conditions∑
e∈Ev

Je(v)ne(v) = −uinflow
v (t) (1− ρv) + uoutflow

v (t) ρv,

(6)

where uinflow
v : (0, T) → R+, u

outflow
v : (0, T) → R+,

v ∈ VD, are functions prescribing the rate of influx of mass
into the graph as well as the velocity of mass leaving the
graph at the boundary vertices. Note that this choice ensures
that the bounds 0 ≤ ρe ≤ 1 are preserved, while the total
mass on the complete graph may change over time. In typi-
cal situations, boundary vertices are either of influx- or of
outflux type, i.e. uinflow

v (t)uoutflow
v (t) = 0 for all v ∈ VD.

The Kirchhoff-Neumann conditions are the natural boundary
conditions for the differential operator (1), as they ensure
that mass enters or leaves the system only via the boundary
nodes VD for which either uinflow

v or uoutflow
v is positive.

Having introduced the complete continuous model, we state
the following existence and uniqueness result, whose proof
can be found in Appendix A, together with a detailed defini-
tion of the function spaces involved.

Theorem 2.2. Let the initial data uinit ∈ L2(Γ) satisfy
0 ≤ uinit ≤ 1 a.e. on E and let nonnegative functions
uinflow
v , uoutflow

v ∈ L∞(0, T), v ∈ VD and non-negative num-
bers νe, e ∈ E , be given. Then there exists a unique weak
solution ρ ∈ L2(0, T ;H1(Γ)) ∩H1(0, T ;H1(Γ)∗) s.t.

∑
e∈E

∫
e

(∂tρe(t)φe + (ε ∂xρe(t)− νe f(ρe(t))) ∂xφe) dx

+
∑
v∈VD

(−uinflow
v (t)(1−ρ(t, v))+uoutflow

v (t)ρ(t, v))φ(v) = 0,

(7)

for all test functions φ ∈ H1(Γ) and a.a. t ∈ (0, T). Here
L2 denotes the space of square integrable functions. The
space H1 denotes the space of functions for which also the
weak derivative is bounded in L2 and with (H1)∗ its dual
space. The Bochner spaces contain time-dependent func-
tions where for u(t, x) to belong to, e.g. L2(0, T ;H1(Γ)),
the norm ∫ T

0

∥u(t, ·)∥2H1(Γ) dx

has to be finite.

3. Learning surrogate models
We apply the operator learning approach to obtain models
for the dynamics on edges, given initial and boundary data.
Due to the boundary and flux conditions (4)–(6) each graph
can be partitioned into three types of edges:

• inflow edges originate in a vertex vo ∈ VD with
uinflow
vo (t) ̸= 0 and terminate in a inner vertex,

• inner edges originate and terminate in inner vertices,

• outflow edges originate in an inner vertex and terminate
in a vertex vt ∈ VD with uoutflow

vt (t) ̸= 0.

3

Physics-Informed DeepONets for drift-diffusion on metric graphs

In our framework we design one DEEPONET model for
each of these three different edges. Once trained, this will
allow to construct a composite model using the DEEP-
ONET submodels for inflow, outflow and inner edges
as building blocks of typical graphs. To be more pre-
cise, the PDE-describing sensor measurements usensor

e =

(uorigin
e , utarget

e , uinit
e , νe) are edge-specific, since they have to

accommodate for different types of flux conditions, either
Kirchhoff-Neumann conditions (4) for inner edges or inflow
and outflow conditions (6) for inflow and outflow edges,
respectively.

The training data, i.e. boundary and initial conditions,
are assumed to be given, as a function of discrete time,
in certain sensor locations, and are collected in a vector
usensor ∈ Rnsensor . Therefore, a deep operator network maps
(usensor, t, x) to the solution of the respective PDE on an in-
dividual edge with initial and boundary conditions encoded
in usensor. Our physics-informed DEEPONET does so by
incorporation of residual terms that involve the point-wise
evaluation of the PDE as well as boundary and initial con-
ditions. This flexibility of learning the solution of the PDE
operator, i.e., the solution of the PDE for arbitrary boundary
conditions usensor, makes them a viable tool in our method.

To generate training data for the drift-diffusion model on
the metric graph we rely on a finite volume implementation
described in Section B where we fix ℓe = 1 for all edges
and T = 1. We solve the PDE (1)–(3) on three kinds of
graphs depicted in Figure 1 using this finite volume method
(FVM). Initial conditions uinit as well as inflow and out-
flow conditions uinflow

v and uoutflow
v are obtained by sampling

from a Gaussian process for all edges e ∈ E and all ver-
tices v ∈ VD, resp. These are evaluated on an equidistant
discretization, both in space and time. We assume that all
random Gaussian processes are approximated through

g(x) =

nGP∑
k=1

ηk ϕ(x− xk) (8)

by using a radial basis function (RBF) kernel ϕ(r) =

exp
(
−∥r∥2 /ℓ2

)
with length scale ℓ = 0.5, nGP = 512

equally distributed centers xk ∈ [0, 1] and ηk ∼ N (0, 1)
normally distributed.

To accommodate for discontinuities in the initial conditions
of the randomly initialized graph, we let the finite volume
scheme run for a small time-interval and then take the so-
lution at this time as the initial solution for the training of
our model at the sensor locations xinit to obtain uinit

e along
each edge. The training flux sensor measurements uorigin

e

and utarget
e are taken similarly at sensor locations torigin and

ttarget, resp., by evaluation of the flux boundary condition
(6) if either the origin or target vertex belong to VD, and
by evaluation of the Kirchhoff-Neumann condition (4) for

Figure 1. Model graphs that were used to generate training data
for physics-informed DEEPONETS. Green edges are used to train
inflow model, blue ones for inner model and red ones for outflow
model.

vertices in VK.

To learn the parameters of our model, we minimize the
objective

npde∑
i=1

LPDE(u
sensor
i , ti, xi) +

ninit∑
i=1

Linit(u
sensor
i , xi)

+

nbc∑
i=1

Ledge(u
sensor
i , ti) (9)

where θ is the set of trainable parameters of our model,
npde, ninit and nbc are the respective batch sizes. By setting
Gusensor

θ (t, x) := Gθ(u
sensor, t, x) as the output of the inflow

(resp. inner and outflow) operator network, the pointwise
PDE loss is defined as

LPDE(u
sensor
i ; ti, xi) :=

(
H(G

usensor
i

θ (ti, xi))
)2

,

where the DEEPONET operator is learned to satisfy the
physics model. For the initial data we use

Linit(u
sensor
i ;xi) =

(
G

usensor
i

θ (0, xi)− uinit
e (xi)

)2
.

The edge loss is the only term which differs among the three
different edge types. We train the inflow model based on

Linflow
edge (usensor

i ; ti) =(
uorigin
i (ti) (1−G

usensor
i

θ (ti, 0))− Je(G
usensor
i

θ (ti, 0))
)2

+
(
utarget
i (ti)− Je(G

usensor
i

θ (ti, 1)))
)2

,

while the loss for the inner model is given by

Linner
edge (u

sensor
i ; ti) =(

uorigin
i (ti)− Je(G

usensor
i

θ (ti, 0)))
)2

+
(
utarget
i (ti)− Je(G

usensor
i

θ (ti, 1)))
)2

.

Similar to the inflow edge loss, the corresponding outflow

4

Physics-Informed DeepONets for drift-diffusion on metric graphs

edge loss term reads

Linflow
edge (usensor

i ; ti) =(
uorigin
i (ti)− Je(G

usensor
i

θ (ti, 0)))
)2

(
utarget
i (ti)G

usensor
i

θ (ti, 1)− Je(G
usensor
i

θ (ti, 1))
)2

.

In contrast to the default DEEPONET approach, which is
trained using a large number of point evaluations of the
solution obtained using some reference numerical method,
the physics-informed approach only relies on the physical
model in arbitrary points as well as a set of reasonable initial
and boundary measurements.

The model architecture in the approximation of the opera-
tor net follows (Wang et al., 2021). In particular, we use a
modified multilayer perceptron (MLP) as branch net and a
Fourier network with 5 random frequencies as trunk net. We
train our models with seven hidden layers and hyperbolic
tangent activation function. Training of all models is con-
ducted with a gradient clipped Adam optimizer (Kingma
& Ba, 2015) with an exponentially decaying learning rate
schedule and 20 000 epochs. To investigate the influence of
the expressivity of the networks, we train a small network
with seven hidden layers and width 100 and a large one with
hidden dimension 200 for the various edge types. For each
model, we use single precision on a single NVIDIA A40
GPU with three different sets of training data: the 5K, 10K
and 20K models use data generated from 5000, 10 000 and
20 000 FVM solves with random measure data, resp. Since
our training graphs depicted in Figure 1 contain in total 6
inner edges, 4 inflow and 4 outflow edges, the inner model
is trained with 50 percent more data than the inflow and out-
flow edge model. We decided to keep this slight imbalance,
due to the fact that inner edges appear much more often than
boundary edges, especially in larger graphs.

We report the validation loss for each model in Table 1.
One can clearly see that the approximation quality of our
model improves significantly if more training data are used.
Furthermore, the larger model with width 200 benefits even
more from a larger training set and halves the validation loss
when compared to the smaller network. Convergence plots
of the various loss terms can be found in Section D.

4. Model evaluation
After performing the training procedure discussed in the
previous section, we obtain three DEEPONETmodels with
different sets of parameters for inflow, outflow and inner
edges, resp. We denote them by Gθinflow , Gθinner and Gθoutflow ,
where we always use letter G, as the architecture is the
same is all three cases. Each operator network Gθ, for
θ = θinflow, θinner, θoutflow returns function evaluations of
its solution in arbitrary points (t, x) for arbitrary feasible

0.0

0.2

0.4
0.6

0.8
1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6

0.8

initial cond
outflow cond
inflow cond

Figure 2. Illustration of random GP training data: initial condition
measurements uinit (blue), inflow measurements uinflow

v (green),
outflow measurements uoutflow

v (orange).

(t, x)

H(Gu
θ (t, x))

LPDE

θ∗

Linit

Ledge

Gu
θ (t, 0/1) Gu

θ (0, x)

(uorigin, utarget, uinit, ν)

Trunk Net Branch Net

Gu
θ (t, x)

b1s1

PDE Flow

min

Initial

Loss

Figure 3. Illustration of physics-informed DEEPONET adapted to
our setting from (Wang et al., 2021).

5

Physics-Informed DeepONets for drift-diffusion on metric graphs

Width Data Inflow Inner Outflow

100
5K 4.34e-03 1.42e-03 3.63e-03

10K 1.62e-03 8.29e-04 1.95e-03
20K 1.09e-03 5.67e-04 1.05e-03

200
5K 8.09e-03 1.42e-03 6.07e-03

10K 1.96e-03 5.50e-04 2.12e-03
20K 6.64e-04 2.62e-04 6.30e-04

Table 1. Final validation loss after 20 000 epochs of training.

boundary and initial conditions, separately for each edge.

Pursuing our goal to solve the drift-diffusion equation de-
fined in (1) on a complete graph, it remains to obtain the
correct input parameters on each edge such that the conti-
nuity and Kirchhoff-Neumann conditions given in (5) and
(4) resp., are satisfied at each vertex. Learning these un-
known flow parameters z is done by minimization of the
loss function

Lcoupling(z) =
∑
i

Lc(ti, z) (10)

where Lc(ti, z) is defined by

1

|VK|
∑
v∈VK

1

|Ev|
∑

e,e′∈Ev

(ρ̂u(z)e (ti, v)− ρ̂
u(z)
e′ (ti, v))

2

︸ ︷︷ ︸
continuity loss

+
1

|VK|
∑
v∈VK

1

|Ev|

(∑
e∈Ev

(Ĵu(z)
e (ti, v)ne(v)

)2
︸ ︷︷ ︸

Kirchhoff loss

where the first term ensures the continuity of the flow values
at each node for all edges.The second Kirchhoff term en-
sures that the conservation of mass across the overall graph
and all nodes. Here, the value ρ̂

u(z)
e (ti, v) corresponds to

the evaluation of the DEEPONET for u(z) depending on the
respective edge type of e at time ti. Similarly, Ĵu(z)

e (ti, v)
represents the evaluation of the flux. We here assume that
the vector z is approximated by a kernel interpolation using
a radial basis function (RBF) kernel with fixed parameters
resulting in

z(t) =

nβ∑
k=1

βkϕ(t− tk)

where nβ = 10 is chosen to further reduce the computa-
tional complexity and tk are uniformly distributed in [0, 1].

The kernel function ϕ(r) = exp
(

−∥r∥2

ℓ2

)
with ℓ = 0.2. To

illustrate this in a bit more detail consider the following
inflow edge modeled via

(uorigin, utarget, uinit) ∈ Rnorigin+ntarget+ninit .

Figure 4. Model graphs that were used to verify our methodology.

Width Data G1 G2 G3 G4

100
5K 5.50e-02 3.27e-02 3.97e-02 6.65e-02

10K 9.38e-03 1.29e-02 1.31e-02 1.11e-02
20K 8.46e-03 1.03e-02 1.10e-02 1.44e-02

200
5K 2.87e-02 1.71e-02 2.35e-02 3.36e-02

10K 6.06e-03 7.66e-03 7.59e-03 6.86e-03
20K 4.68e-03 5.62e-03 5.81e-03 7.91e-03

Table 2. Absolute space-time L2-error between solution of the
FVM code compared to the output of DEEPONET averaged over
1000 runs with randomly drawn initial and boundary conditions.
These are sampled as Gaussian processes (8) with nGP = 468 and
ℓ = 0.4.

where the values for inflow, stored in uorigin, and initial
condition uinit are known and the values for the outflow,
encoded in utarget, have to be determined. Since utarget is
parameterized using the above-described RBF interpolation
we now learn the parameters β for the outflow condition.
To address this challenge on the whole graph we learn the
values for β at all nodes to enforce the PDE, the coupling
and continuity conditions as well as initial and boundary
(inflow plus outflow) conditions. The parametrization of this
system only requires 2nβ parameters for all inner edges and
nβ parameters for inflow and outflow edges. With nβ small
the resulting learning can be done in a matter of seconds
using a standard gradient based optimization algorithm such
as Adam implemented in JAX (Bradbury et al., 2018).

The results confirm that our methodology is able to learn
the solution of the drift-diffusion PDE on graphs. In the
upper part of Figure 5 we plot both the physics-informed
DEEPONET and the reference solution. The error terms
shown below indicate that the approximation error is small,
see also Table 2 and Table 3 for detailed values. Figure 6
shows that our method is able to capture nonsmooth transi-
tions at the vertices of a chain graph. Again, the solution
of the DEEPONET and the reference solution are visually
indistinguishable.

5. Inverse problems
The methodology developed in the previous sections is es-
pecially suited for the efficient solution of large scale pa-
rameter identification problems on graphs, as this amounts
to merely add data misfit terms to (10).

6

Physics-Informed DeepONets for drift-diffusion on metric graphs

Figure 5. Upper row: Almost indistinguishable reference solution
(solid) and PI DEEPONET solution (dashed) on model graph at
t = 0.5 (left) and t = 1.0 (right). Lower row: Absolute difference
between reference and PI DEEPONET solution.

Figure 6. Reference solution (solid) and PI DEEPONET solution
(dashed) on unrolled chain graph with 7 edges over time.

Width Data G1 G2 G3 G4

100
5K 1.28e-01 7.05e-02 9.74e-02 1.59e-01

10K 2.15e-02 2.73e-02 3.21e-02 2.88e-02
20K 1.96e-02 2.21e-02 2.59e-02 3.80e-02

200
5K 5.48e-02 3.45e-02 4.79e-02 6.84e-02

10K 1.37e-02 1.62e-02 1.73e-02 1.59e-02
20K 1.06e-02 1.20e-02 1.30e-02 1.84e-02

Table 3. Relative space-time L2 error between solution of the FVM
code compared to the output of DEEPONET averaged over 1000
runs with randomly drawn initial and boundary conditions. These
are sampled as Gaussian processes (8) with nGP = 468 and ℓ =
0.4.

As a toy application, we think of a traffic network with
measurement sensors located at the midpoint of each edge.
We assume that they are able to measure both the density
and the flux of vehicles at their respective location and
as a function of time using modern sensor hardware and
corresponding traffic flow estimation algorithms, see (Seo
et al., 2017) for more details. We denote these time discrete
measurements by ρmeas

e ∈ Rnmeas and je ∈ Rnmeas , and by
xmeas
e the location of the sensor on each edge. To add this

information to our model, we now simply extend Lcoupling
by the following additional loss terms

1

nmeas

nmeas∑
i=1

1

|Ev|
∑
e∈Ev

[
(ρ̂u(z)e (xmeas

e,i)− ρmeas
e,i)2

+(Ĵu(z)
e (xmeas

e,i)− jmeas
e,i)2

]
.

In Table 6, we report the various loss terms for our test
graphs averaged over 100 runs. Thus, the algorithm ex-
plained in Section 4 can be used to tackle the inverse prob-
lem without any major changes. After completing the opti-
mization procedure, we automatically solved several inverse
problems: Evaluating the vector u, we recover the unknown
initial condition and also the velocities νe on each edge.
What is more, evaluating ρ̂ue (t, x) at any time in the sim-
ulation interval, we also obtain access to the densities on
the complete graph without the need to perform another
forward simulation of the model.

We test our methodology on the three test graphs G1-G3

depicted in Figure 4 as well as on the large graph shown in
Figure 10 (G4) with 1034 edges and 5 inflow and 5 outflow
edges. where we choose nmeas = 101. For illustration, the
learned unknown initial conditions and velocities as well as
the inferred solutions of a chain graph with seven edges are
depicted in Figure 7 for various levels of additive measure-
ment noise ϵ = 0.1, 0.05, 0.01. We observe that we are able
to recover all the essential features of the initial conditions-
but also of the dynamics at later times. In particular, due
to the fitting of space-time data, the error remains roughly
constant in time, at least in the eye ball norm. As for the

7

Physics-Informed DeepONets for drift-diffusion on metric graphs

Figure 7. Illustration of parameter identification on chain graph
with 7 edges. Reference solution (solid) and physics-
informed DEEPONET solutions (dashed) for noise levels ϵ =
0.1, 0.05, 0.01. Bottom row depicts recovered edge velocities,
first row corresponds to recovered initial conditions.

prediction of the velocity, we observe that the accuracy of
certain edges away from the ends of the chain have a sub-
stantially larger error for high noise levels than others, which
we will investigate further in future works. Nevertheless, the
example shows that our approach is feasible for the param-
eter identification problem and even suitable for possible
real-time applications such as traffic flow prediction.

A more systematic error analysis can we found in Table 4
and Table 5, where we report the parameter identification
capability of our method using the large model (width 200,
20K training data) by using a space-time L2 error measure.

6. Conclusion
We provide a novel physics-informed DEEPONET architec-
ture for creating a surrogate model that allows the efficient
solution of a drift diffusion model on a possibly complex
metric graph. Additionally, our model allows to solve an
inverse problem for this setup at almost no additional costs.
The flexibility of traing DEEPONET submodels for inflow,

err. init err. vel. ∥ρ− ρref∥L2

G1

ϵ1 9.13e-02 9.39e-02 4.42e-02
ϵ2 5.79e-02 5.32e-02 2.76e-02
ϵ3 4.02e-02 3.05e-02 1.83e-02

G2

ϵ1 1.86e-01 9.91e-02 6.73e-02
ϵ2 1.01e-01 5.41e-02 3.79e-02
ϵ3 4.68e-02 1.98e-02 1.65e-02

G3

ϵ1 1.08e-01 9.52e-02 4.27e-02
ϵ2 6.76e-02 5.53e-02 2.54e-02
ϵ3 5.03e-02 3.32e-02 1.70e-02

G4

ϵ1 1.11e-01 8.51e-02 4.09e-02
ϵ2 6.29e-02 4.12e-02 2.18e-02
ϵ3 3.99e-02 1.58e-02 1.17e-02

Table 4. Absolute L2-errors for parameter identification problem
on test graphs depicted in Figure 4 with measurement noise ϵ1 =
0.1, ϵ2 = 0.05, ϵ3 = 0.01 averaged over 100 runs.

outflow, and inner edges allows the construction of drift
diffusion models (and in a similar fashion other PDEs) on
complex graphs in a Lego-like way with linear complexity
in the number of edges. This would allow straightforwardly
the application to real traffic data, which is readily avail-
able in several open databases (e.g. (Loder et al., 2019)).
Adding the respective graph topology is no obstacle, while
more complex traffic equations beyond the drift-diffusion
model would require the adjustment of the physics loss in
our suggested approach, see (Piccoli & Garavello, 2006) for
an overview of such models.

Software and Data
The software and data that is necessary to reproduce
the results is published on GitHub and can be found
under https://github.com/janblechschmidt/
physics-informed-operator-networks-for-
pdes-on-metric-graphs.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Arioli, M. and Benzi, M. A finite element method for

quantum graphs. IMA Journal of Numerical Analysis, 38
(3):1119–1163, 2018.

Barabási, A.-L. Network science. Number 1987. Cambridge

8

https://github.com/janblechschmidt/physics-informed-operator-networks-for-pdes-on-metric-graphs
https://github.com/janblechschmidt/physics-informed-operator-networks-for-pdes-on-metric-graphs
https://github.com/janblechschmidt/physics-informed-operator-networks-for-pdes-on-metric-graphs

Physics-Informed DeepONets for drift-diffusion on metric graphs

err. init err. vel. ∥ρ− ρref∥L2

G1

ϵ1 1.85e-01 8.63e-02 9.49e-02
ϵ2 1.19e-01 4.67e-02 5.97e-02
ϵ3 8.03e-02 2.29e-02 3.80e-02

G2

ϵ1 3.93e-01 9.19e-02 1.50e-01
ϵ2 2.12e-01 4.82e-02 8.36e-02
ϵ3 9.25e-02 1.68e-02 3.35e-02

G3

ϵ1 2.19e-01 8.10e-02 8.85e-02
ϵ2 1.37e-01 4.47e-02 5.30e-02
ϵ3 1.04e-01 2.57e-02 3.62e-02

G4

ϵ1 2.41e-01 7.75e-02 8.98e-02
ϵ2 1.34e-01 3.79e-02 4.80e-02
ϵ3 8.21e-02 1.34e-02 2.57e-02

Table 5. Relative L2-errors for parameter identification problem on
test graphs depicted in Figure 4 with measurement noise ϵ1 = 0.1,
ϵ2 = 0.05, ϵ3 = 0.01 averaged over 100 runs.

University Press, Cambridge, 2016.

Berkolaiko, G. and Kuchment, P. Introduction to quan-
tum graphs. Number 186. American Mathematical Soc.,
Providence, R.I., 2013.

Blechschmidt, J. and Ernst, O. G. Three ways to solve
partial differential equations with neural networks—a
review. GAMM-Mitteilungen, 44(2):e202100006, 2021.

Blechschmidt, J., Pietschman, J.-F., Riemer, T.-C., Stoll, M.,
and Winkler, M. A comparison of pinn approaches for
drift-diffusion equations on metric graphs, 2022.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Bressloff, P. C. and Karamched, B. R. Model of re-
versible vesicular transport with exclusion. Journal
of Physics A: Mathematical and Theoretical, 49(34):
345602, jul 2016. doi: 10.1088/1751-8113/49/34/
345602. URL https://dx.doi.org/10.1088/
1751-8113/49/34/345602.

Bressloff, P. C. and Levien, E. Synaptic democracy
and vesicular transport in axons. Physical Review
Letters, 114(16), 2015. ISSN 1079-7114. doi: 10.
1103/physrevlett.114.168101. URL http://dx.doi.
org/10.1103/PhysRevLett.114.168101.

Brezis, H. Functional Analysis, Sobolev Spaces and Partial
Differential Equations. Springer Science and Business
Media, Berlin Heidelberg, 2010. ISBN 978-0-387-70913-
0.

Burger, M. and Pietschmann, J.-F. Flow characteris-
tics in a crowded transport model. Nonlinearity, 29:
3528–3550, 2016. doi: 10.1088/0951-7715/29/11/3528.
WWU::123155.

Burger, M., Humpert, I., and Pietschmann, J.-F. On Fokker-
Planck equations with in- and outflow of mass. Kinetic &
Related Models, 13:249–277, 01 2020. doi: 10.3934/krm.
2020009.

Chen, X., Duan, J., and Karniadakis, G. E. Learning and
meta-learning of stochastic advection-diffusion-reaction
systems from sparse measurements. European Journal
of Applied Mathematics, 32(3):397–420, 2021. ISSN
0956-7925.

Coclite, G. M., Garavello, M., and Piccoli, B. Traffic
flow on a road network. SIAM Journal on Mathemat-
ical Analysis, 36(6):1862–1886, 2005. doi: 10.1137/
S0036141004402683.

Crossley, R. M., Pietschmann, J.-F., and Schmidtchen,
M. Existence of weak solutions for a volume-filling
model of cell invasion into extracellular matrix. Jour-
nal of Differential Equations, 428:721–746, 2025. ISSN
0022-0396. doi: https://doi.org/10.1016/j.jde.2025.02.
023. URL https://www.sciencedirect.com/
science/article/pii/S0022039625001421.

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi,
M., and Piccialli, F. Scientific machine learning through
physics–informed neural networks: Where we are and
what’s next. Journal of Scientific Computing, 92(3):88,
2022.

De los Reyes, J. C. Numerical PDE-constrained optimiza-
tion. Springer, 2015.

Domschke, P., Hiller, B., Lang, J., Mehrmann, V., Morandin,
R., and Tischendorf, C. Gas network modeling: An
overview. 2021. URL https://opus4.kobv.de/
opus4-trr154/411.

Gomes, S. N., Stuart, A. M., and Wolfram, M.-T. Pa-
rameter estimation for macroscopic pedestrian dynam-
ics models from microscopic data. SIAM Journal on
Applied Mathematics, 79(4):1475–1500, 2019. doi:
10.1137/18M1215980.

Gyrya, V. and Zlotnik, A. An explicit staggered-grid
method for numerical simulation of large-scale natural
gas pipeline networks. Applied Mathematical Modelling,
65:34–51, 2019.

Haghighat, E., Raissi, M., Moure, A., Gomez, H., and
Juanes, R. A deep learning framework for solution and
discovery in solid mechanics. arXiv:2003.02751, 2020.

9

http://github.com/jax-ml/jax
https://dx.doi.org/10.1088/1751-8113/49/34/345602
https://dx.doi.org/10.1088/1751-8113/49/34/345602
http://dx.doi.org/10.1103/PhysRevLett.114.168101
http://dx.doi.org/10.1103/PhysRevLett.114.168101
https://www.sciencedirect.com/science/article/pii/S0022039625001421
https://www.sciencedirect.com/science/article/pii/S0022039625001421
https://opus4.kobv.de/opus4-trr154/411
https://opus4.kobv.de/opus4-trr154/411

Physics-Informed DeepONets for drift-diffusion on metric graphs

Heinlein, A., Klawonn, A., Lanser, M., and Weber, J. Com-
bining machine learning and domain decomposition meth-
ods for the solution of partial differential equations – a
review. GAMM-Mitteilungen, 44(1), 2021.

Hinze, M., Kunkel, M., and Vierling, M. Pod model order re-
duction of drift-diffusion equations in electrical networks.
In Model Reduction for Circuit Simulation, volume 74,
pp. 177–192. Springer, Dordrecht, 2011.

Jagtap, A. and Karniadakis, G. Extended physics-informed
neural networks (XPINNs): A generalized space-time do-
main decomposition based deep learning framework for
nonlinear partial differential equations. Communications
in Computational Physics, 28:2002–2041, 11 2020.

Jagtap, A. D., Kharazmi, E., and Karniadakis, G. E. Con-
servative physics-informed neural networks on discrete
domains for conservation laws: Applications to forward
and inverse problems. Computer Methods in Applied
Mechanics and Engineering, 365, 2020.

Jin, X., Cai, S., Li, H., and Karniadakis, G. E. Nsfnets
(navier-stokes flow nets): Physics-informed neural net-
works for the incompressible navier-stokes equations.
Journal of Computational Physics, 426, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Bengio, Y. and LeCun, Y. (eds.), ICLR
(Poster), 2015.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Re-
search, 24(89):1–97, 2023.

Lagnese, J. E., Leugering, G., and Schmidt, E. G. Model-
ing, analysis and control of dynamic elastic multi-link
structures. Birkhäuser, Boston, 2012.

Lazarov, R. D., Mishev, I. D., and Vassilevski, P. S. Fi-
nite volume methods for convection-diffusion problems.
SIAM Journal on Numerical Analysis, 33(1):31–55, feb
1996.

Leugering, G. Domain decomposition of an optimal con-
trol problem for semi-linear elliptic equations on metric
graphs with application to gas networks. Applied Mathe-
matics, 8(08):1074–1099, 2017.

LeVeque, R. J. Finite volume methods for hyperbolic prob-
lems, volume 31. Cambridge university press, 2002.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020.

Loder, A., Ambühl, L., Menendez, M., and Axhausen, K. W.
Understanding traffic capacity of urban networks. Sci-
entific Reports, 9(1), November 2019. ISSN 2045-2322.
doi: 10.1038/s41598-019-51539-5.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
machine intelligence, 3(3):218–229, 2021.

Lye, K. O., Mishra, S., and Ray, D. Deep learning ob-
servables in computational fluid dynamics. Journal of
Computational Physics, 410, 2020.

Magiera, J., Ray, D., Hesthaven, J. S., and Rohde, C.
Constraint-aware neural networks for Riemann problems.
Journal of Computational Physics, 409, 2020.

Mao, Z., Jagtap, A. D., and Karniadakis, G. E. Physics-
informed neural networks for high-speed flows. Com-
puter Methods in Applied Mechanics and Engineer-
ing, 360, 2020. doi: https://doi.org/10.1016/j.cma.2019.
112789.

Meng, X. and Karniadakis, G. E. A composite neural net-
work that learns from multi-fidelity data: Application
to function approximation and inverse PDE problems.
Journal of Computational Physics, 401, 2020.

Misyris, G. S., Venzke, A., and Chatzivasileiadis, S.
Physics-informed neural networks for power systems. In
2020 IEEE Power & Energy Society General Meeting
(PESGM), pp. 1–5. IEEE, 2020.

Morton, K., Stynes, M., and Süli, E. Analysis of a cell-
vertex finite volume method for convection-diffusion
problems. Mathematics of Computation, 66(220):1389–
1406, 1997.

Newman, M. Networks. Oxford university press, Oxford,
2018.

Nguyen-Thanh, V. M., Zhuang, X., and Rabczuk, T. A
deep energy method for finite deformation hyperelasticity.
European Journal of Mechanics-A/Solids, 80, 2020.

Pang, G., Lu, L., and Karniadakis, G. E. fPINNs: Fractional
physics-informed neural networks. SIAM Journal on
Scientific Computing, 41(4):A2603–A2626, 2019.

Piccoli, B. and Garavello, M. Traffic flow on networks.
American Institute of Mathematical Sciences, 2006.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov,
K., Supekar, R., Skinner, D., Ramadhan, A., and Edelman,
A. Universal differential equations for scientific machine
learning. arXiv preprint arXiv:2001.04385, 2020.

10

Physics-Informed DeepONets for drift-diffusion on metric graphs

Raissi, M., Yazdani, A., and Karniadakis, G. E. Hidden
fluid mechanics: A navier-stokes informed deep learn-
ing framework for assimilating flow visualization data.
arXiv:1808.04327, 2018.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Rao, C., Sun, H., and Liu, Y. Physics informed deep learning
for computational elastodynamics without labeled data.
arXiv:2006.08472, 2020.

Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D. E.,
and Kuhl, E. Physics-informed neural networks for car-
diac activation mapping. Frontiers in Physics, 8:42, 2020.

Seo, T., Bayen, A. M., Kusakabe, T., and Asakura, Y. Traffic
state estimation on highway: A comprehensive survey.
Annual Reviews in Control, 43:128–151, 2017. ISSN
1367-5788. doi: https://doi.org/10.1016/j.arcontrol.2017.
03.005.

Simon, J. Compact sets in the space Lp(O, T ;B). Annali
di Matematica pura ed applicata, 146:65–96, 1986.

Stoll, M. and Winkler, M. Optimal dirichlet control of
partial differential equations on networks. Electronic
Transactions on Numerical Analysis, 54:392–419, 2021.

ten Thije Boonkkamp, J. H. M. and Anthonissen, M. J. H.
The finite volume-complete flux scheme for advection-
diffusion-reaction equations. Journal of Scientific Com-
puting, 46(1):47–70, jun 2010.

Thiyagalingam, J., Shankar, M., Fox, G., and Hey, T. Sci-
entific machine learning benchmarks. Nature Reviews
Physics, 4(6):413–420, 2022.

Wang, S., Wang, H., and Perdikaris, P. Learning the solution
operator of parametric partial differential equations with
physics-informed DeepONets. Science advances, 7(40):
eabi8605, 2021.

Wessels, H., Weißenfels, C., and Wriggers, P. The neural
particle method–an updated lagrangian physics informed
neural network for computational fluid dynamics. Com-
puter Methods in Applied Mechanics and Engineering,
368, 2020.

Yang, L., Zhang, D., and Karniadakis, G. E. Physics-
informed generative adversarial networks for stochastic
differential equations. SIAM Journal on Scientific Com-
puting, 42(1):A292–A317, 2020.

Yin, M., Zhang, E., Yu, Y., and Karniadakis, G. E. In-
terfacing finite elements with deep neural operators for
fast multiscale modeling of mechanics problems. Com-
puter methods in applied mechanics and engineering,
402:115027, 2022.

Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., and Perdikaris, P.
Physics-constrained deep learning for high-dimensional
surrogate modeling and uncertainty quantification with-
out labeled data. Journal of Computational Physics, 394:
56–81, 2019.

11

Physics-Informed DeepONets for drift-diffusion on metric graphs

A. Proof of Theorem 2.2
The proof is based on extending ideas from (Gomes et al., 2019; Burger et al., 2020), where in- and outflow boundary
conditions are treated, to metric graphs.

We will work with Sobolev spaces defined on the metric graph G = (V, E , (le)e∈E). We first introduce the space of square
integrable functions

L2(E) := {v : E → R : ∀e ∈ E ve = v|e ∈ L2(e) = L2(0, le)}.

It is a Hilbert space with scalar product

⟨v, w⟩E =
∑
e∈E

⟨ve, we⟩e =
∑
e∈E

∫ ℓe

0

vewe dx,

which induces the norm ∥u∥L2(E) =
√
⟨u, u⟩. Furthermore, the space H1(E) of functions having a square integrable weak

derivative is then defined by

H1(E) =
{
w ∈ L2(E) : ∂xwe ∈ L2(e) and we(v) = we′(v) ∀e, e′ ∈ E(v), v ∈ VK

}
.

We further denote by (H1(E))′ the dual space, i.e. the space containing all linear, bounded functionals on H1(E).

Space-time dependent functions are considered as time-dependent functions with values in a function space, say v(t) ∈ X .
For such functions, we introduce the norm ∥v∥L2(0,T ;X) =

∫ T

0
∥v(t)∥X dt and use the notation L2(0, T ;X) for all functions

such that this norm is finite. In complete analogy, we also define H1(0, T ;X) and the energy space

W (0, T) = L2(0, T ;H1(E)) ∩H1(0, T ; (H1(E))′). (11)

The actual proof of Theorem 2.2 is based on the use of the formal gradient flow structure of the problem, i.e. the fact that the
entropy functional

E(ρ) =
∑
e∈E

∫ le

0

ε(ρe log(ρe) + (1− ρe) log(1− ρe)) + ρ νe x dx, (12)

is a Lyapunov functional. For readability, we used f(ρe) = ρe(1 − ρe) in this definition, noting that the proof works
completely analogous for other choices of f , upon modifying the entropy functional.

Based on this, we introduce the entropy variable w defined as the variational derivative of the entropy, i.e.

w(ρ) :=
δE

δρ
=
∑
e∈E

ε(log(ρe)− log(1− ρe)) + νex. (13)

such that the transformation from w to ρ is given by

ρe =
e

we−νe x
ε

1 + e
we−νe x

ε

, ∀e ∈ E ,

where we = w|e.

The proof is based on a time-discretization and regularization strategy using these variables. To this end, let N ∈ N be such
that (0, T] has sub-intervals of the form

(0, T] =

N⋃
k=1

(
(k − 1)τ, kτ

]
,

where τ = T
N and tk = τk. Using ε ∂xρe+ρe (1−ρe) νe = ρe (1−ρe) ∂xwe for all e ∈ E , we introduce the time-discretized

and regularized form of (7) with w as unknown as∑
e∈E

∫
e

(
ρke − ρk−1

e

τ
φe + ρke (1− ρke) ∂xw

k
e ∂xφe

)
dx+ τ

∑
e∈E

∫
e

(
∂xw

k
e ∂xφe + wk

e φe

)
dx

+
∑
v∈VD

(
−uinflow

v (tk) (1− ρk(v)) + uoutflow
v (tk) ρ

k+1(v)
)
φ(v) = 0, (14)

12

Physics-Informed DeepONets for drift-diffusion on metric graphs

for all test functions φ ∈ H1(Γ) and given nonnegative functions uinflow
v , uoutflow

v ∈ L∞(0, T), v ∈ VD. In addition, we
added a regularization term, multiplied by τ .

Our first aim is to show existence of iterates ρk satisfying the (still non-linear) equation (14). This is done using a linearisation
strategy and a fixed-point argument. We begin by defining the set

A := {ρ ∈ L∞(E) : 0 ≤ ρe ≤ 1, e ∈ E} .

Lemma A.1. Given τ > 0 and ρ̃ ∈ A, the linear problem

∑
e∈E

∫
e

(
ρ̃e − ρk−1

e

τ
φe + ρ̃e (1− ρ̃e) ∂xwe ∂xφe

)
dx+ τ

∑
e∈E

∫
e

(∂xwe ∂xφe + we φe) dx

+
∑
v∈VD

(−uinflow
v (tk+1) (1− ρ̃(v)) + uoutflow

v (tk+1) ρ̃(v))φ(v) = 0, (15)

for all φ ∈ H1(E), has a unique solution w ∈ H1(E) such that

∥w∥H1(E) ≤ C, (16)

where the constant C > 0 depends only on τ and ρk−1.

In addition, the operator S1 : A → L2(E), which assigns some given ρ̃ ∈ A to w, being the solution to Eq. (15), is
continuous and compact.

Proof. As ρ̃ (1 − ρ̃) ≥ 0 and τ > 0, the existence of a unique solution w ∈ H1(E) is a direct consequence of the
Lax-Milgram Lemma, cf. (Brezis, 2010), estimating the boundary terms as in (Burger & Pietschmann, 2016)[Theorem 3.5].
The a priori bound follows by choosing φ = w as a test function and applying a trace theorem and the weighted Young
inequality to the right-hand side of Eq. (15).

For the continuity of S1, consider a sequence (ũn, m̃n) ∈ A such that (ũn, m̃m) → (ũ, m̃) ∈ A and denote by wn and w
the respective solutions to Eq. (15). Subtracting the respective equations and choosing φ = (w−wn) yields the convergence
wn → w in H1(Ω). This allows us to pass to the limit in the weak formulation (15).

Finally, the compactness of S1 then follows from the compactness of the embedding H1(E) ↪→ L2(E).

We are now in a position to the existence of iterates, i.e. solutions to (14).

Theorem A.2. For given ρk−1 ∈ A with and τ > 0, there exist a weak solution ρk ∈ A ∩H1(E) to Eq. (14). In addition,
for τ > 0, it holds that 0 < ρk < 1.

Proof. We define the additional operator S2 : L2(E) → A by means of

[S2w]e =
e

we−νe x
ε

1 + e
we−νe x

ε

.

Using that S2 is clearly continuous as well as the results of Lemma A.1, the operator

S = S2 ◦ S1 : A → A

is well-defined, continuous and compact. Furthermore, it is readily observed that A is a convex subset of L∞(Ω). Thus, an
application of Schauder’s fixed point theorem yields the existence of a fixed point ρk ∈ A associated to wk = S1(ρ

k). By
definition of S2, the H1-regularity of wk directly implies ρk ∈ H1(E) as well, which allows us to identify the fixed point as
a weak solution of Eqs. (14).

Finally, we note that as the edges are one-dimensional domains, we also have the embedding H1(E) ↪→ L∞(E). Appealing
again to the definition of S2, this implies the strict bounds 0 < ρk < 1.

Next, we use the entropy functional to show that the iterates ρk are bounded, uniformly in τ . This will then allow to extract
converging subsequences whose limit will be the desired solution of the original problem (7).

13

Physics-Informed DeepONets for drift-diffusion on metric graphs

Proposition A.3. Let (ρk)∞k=0 ⊂ A ∩H1(E) be solutions to (14). Then, for any k ∈ N, the following discrete entropy
estimate holds

1

τ

(
E(ρk)− E(ρk−1)

)
+ τ

∑
e∈E

∫ le

0

|∂xwk
e |2 + |wk

e |2 dx+
∑
e∈E

∫
Ω

ρk(1− ρk)|∂xwk
e |2 ≤ 0. (17)

Moreover,

∥∂xρk∥2L2(E) ≤ C +
1

τ

(
E(ρk−1)− E(ρk)

)
, (18)

τ1/2∥wτ∥L2(0,T ;H1(E)) ≤ C, (19)

where wτ denotes the piecewise constant in time interpolation of wk and with C > 0 independent of τ and k.

Proof. Owing to the strict upper and lower bounds provided by Theorem A.2, the logarithmic terms appearing in the
derivative of the entropy are well defined. Thus, we can use the joint convexity of the energy to obtain

E(ρk)− E(ρk−1) ≤
∑
e∈E

∫ le

0

[
ε(log ρke − log(1− ρke)) + νex

]
(ρke − ρk−1

e) dx

Using the definition of the entropy variable, Eq. (13), this results in

E(ρk)− E(ρk−1) ≤
∑
e∈E

∫ le

0

wk
e (ρ

k
e − ρk−1

e) dx.

Due to the H1(E)-regularity of wk, we may use it as a test functions in Eq. (14) to get

1

τ

(
E(ρk)− E(ρk−1)

)
≤ −τ

∑
e∈E

∫ le

0

(
|∂xwk

e |2 + |wk
e |2
)
dx

−
∑
e∈E

∫ le

0

ρke(1− ρke)|∂xwk
e |2 dx

−
∑
v∈VD

(−uinflow
v (tk+1) (1− ρk(v)) + uoutflow

v (tk+1) ρ
k(v))wk(v), (20)

Using the definition of wk, cf. Eq (13), and the fact that inflow vertices are always located at x = 0 on each edge, we rewrite
the inflow terms as follows

−
∑
v∈VD

(−uinflow
v (tk+1) (1− ρk(v))wk(v) = −

∑
v∈VD

(−uinflow
v (tk+1) (1− ρk(v)) ε (log ρk(v)− log(1− ρk(v)))

=
∑
v∈VD

uinflow
v (tk+1)

[
−(1− ρk(v)) log

1− ρk(v)

ρk(v)
+ 2ρk(v)− 1

]
+
∑
v∈VD

uinflow
v (tk+1)

[
−2ρk(v) + 1

]
≤ C.

We recognize the first term as a relative entropy which is non-positive, while the second term is bounded since 0 ≤ ρk ≤ 1.
A similar argument implies that the outflow terms are bounded as well. Finally, using once more the definition of wk, cf. Eq
(13), we further estimate the second term in (20), using the weighted Young inequality,

∑
e∈E

∫ le

0

∫
Ω

ρke (1− ρke) |∂xwk|2 dx ≥
∑
e∈E

(∫ le

0

|∂xρke |2

ρke(1− ρke)
dx− 2

∫ le

0

|νe| |∂xρke | dx+

∫ le

0

ρke (1− ρke) ν
2
e dx

)

≥
∑
e∈E

∫ le

0

|∂xρke |2

2 ρke (1− ρke)
dx−

∫ le

0

ρke (1− ρke) |νe|2 dx

≥ 2
∑
e∈E

∫ le

0

|∂xρke |2 dx− 1

4

∑
e∈E

le νe.

14

Physics-Informed DeepONets for drift-diffusion on metric graphs

Inserting this estimate into the entropy inequality (20) above yields

∥∂xρk∥2L2(E) ≤ C +
1

τ

(
E(ρk−1)− E(ρk)

)
.

From Eq. (20) we get

τ
(
∥∂xwk∥2L2(E) + ∥wk∥2L(E)

)
≤ C +

1

τ

(
E(ρk−1)− E(ρk)

)
.

For the piecewise constant in time interpolation wτ of wk this yields, summing from k = 1, . . . , NT , the estimate

∥∂xwτ∥2L2(0,T ;L2(E)) + ∥wτ∥2L2(0,T ;L2(E)) ≤ C NT +

NT∑
k=1

1

τ

(
E(ρk−1)− E(ρk)

)
.

Since the sum on the right-hand side is telescopic, this simplifies further to

τ
(
∥∂xwτ∥2L2(0,T ;L2(E)) + ∥wτ∥2L2(0,T ;L2(E))

)
≤ C T + (E(ρ0)− E(ρNT)),

using T = NT τ . Since 0 ≤ ρke ≤ 1 for all e ∈ E and maxe∈E le < ∞, we obtain the following uniform estimate

τ1/2∥wτ∥L2(0,T ;H1(E)) ≤ C,

independent of τ > 0.

Lemma A.4 (Time regularity for ρτ). Let (ρk)∞k=0 ⊂ A ∩ H1(E) be the solution to the implicit Euler approximation
(Eq. (14)) and let ρτ be the piecewise constant interpolation associated with (ρk)∞k=0. Then, there holds

∥dτρτ∥L2(0,T ;(H1(E))′) ≤ C,

where C > 0 is independent of τ > 0 and dτ denotes the finite difference quotient

[dτρτ]|(tk−1,tk] =
ρk − ρk−1

τ
, k = 1, . . . , NT .

Proof. This result follows from the regularity estimates of Proposition A.3. They allow to estimate the terms on the right
hand side (14) in terms of a constant multiplied by ∥φ∥H1(E). Thus, taking the supremum over all φ yields the desired
(H1(E))′-estimate.

Having established the a priori estimates, let us now show the existence of convergent subsequences whose limits we identify
as weak solutions to (7).

The bounds provided by Proposition A.3 in conjunction with the Banach-Alaoglu theorem (see (Brezis, 2010)) yield the
existence of subsequences and a function ∂xρ ∈ L2(0, T ;L2(E)), such that

• ∂xρτ ⇀ ∂xρ in L2(0, T ;L2(E))

where we did not relabel the subsequences. Moreover, again by the uniform bounds of Proposition A.3, we may invoke
(Simon, 1986)[Theorem 6] such that

• ρτ → ρ in L2(0, T ;L2(E)),

again, up to subsequences. Finally, from Lemma A.4, we have

• dτρτ ⇀ ∂tρ in L2(0, T ; (H1(E))′),

15

Physics-Informed DeepONets for drift-diffusion on metric graphs

up to a subsequence. The identification of the limits follows from standard arguments for weak convergence, see, e.g.
(Crossley et al., 2025)[Section 2.3].

Having collected sufficient compactness and the corresponding convergent subsequences and limits, we can now prove the
main result.

Proof of Theorem 2.2. Let us revisit Eq. (14), i.e.,

∑
e∈E

∫ T

0

∫
e

(dτρτ,e φτ,e + ρτ,e (1− ρτ,e)∂xwτ,e ∂xφτ,e) dx+ τ
∑
e∈E

∫ T

0

∫
e

(∂xwτ,e ∂xφτ,e + wτ,e φτ,e) dx

+
∑
v∈VD

∫ T

0

(−uinflow
τ,v (t)(1− ρk+1(v)) + uoutflow

τ,v (t)ρτ (v))φτ (v) dt = 0, (21)

First let us note that the term premultiplied by τ vanishes due estimate (19). Next, using the convergences above, we can
pass to the limit in the other terms of the equation to get

∑
e∈E

∫
e

(∂tρe(t)φe + (ε ∂xρe(t)− νe f(ρe(t))) ∂xφe) dx

+
∑
v∈VD

(−uinflow
v (t)(1− ρ(t, v)) + uoutflow

v (t)ρ(t, v))φ(v) = 0,

for any φ ∈ C∞
c ((0, T)× E) which is dense in L2(0, T ;H1(E)). Thus, the limit ρ is a weak solution to Eq. (7).

The a priori estimates follow from passing to the limit in the bounds of Proposition A.3 and Lemma A.4, using the weak
lower semicontinuity of the norms. Finally, the compactness is sufficient to conclude that the weak solution satisfy the initial
data.

B. Numerical solvers
Partial differential equations (PDEs) are an essential tool in science and engineering, as they are typically used to model the
complex physical phenomena. These equations are typically dependent on crucial system parameters that are mostly not
known precisely and the formulation of the problem is written in an infinite-dimensional function space setting. As a result
numerical discretizations of the equations are performed based. We here focus on the case when a finite volume method
(LeVeque, 2002) is used which was previously introduced in (Blechschmidt et al., 2022). These are popular discretization
schemes as they usually work in a structure preserving manner.

B.1. Finite volume scheme

To derive a finite volume scheme we briefly recall our setup and start from considering differential operators defined on each
edge, and we focus on non-linear drift-diffusion equations

∂tρe = ∂x(ε ∂xρe − νef(ρe)), e ∈ E , (22)

where ρe : e× (0, T) → R+ describes, on each edge, the concentration of some quantity while νe > 0 an edge-dependent
velocity, and ε > 0 is a (typically small) diffusion constant. Furthermore, f : R+ → R+ satisfies f(0) = f(1) = 0. This
property ensures that solutions satisfy 0 ≤ ρe ≤ 1 a.e. on each edge, see Theorem 2.2. By identifying each edge with an
interval [0, ℓe], we define the flux as

Je(x) := −ε ∂xρe(x) + νef(ρe(x)). (23)

A typical choice for f used in the following is f(ρe) = ρe(1− ρe).

The edge set incident to a vertex v ∈ V is denoted by Ev and we distinguish among E in
v = {e ∈ E : e = (ṽ, v) for some ṽ ∈

V} and Eout
v = Ev \ E in

v . The control volumes are defined as follows. To each edge e ∈ E we associate an equidistant grid of
the parameter domain

0 = xe
−1/2 < xe

1/2 < . . . < xe
ne+1/2 = Le

16

Physics-Informed DeepONets for drift-diffusion on metric graphs

with he = xe
k+ 1

2

− xe
k− 1

2

, and introduce the intervals Iek = (xk−1/2, xk+1/2) for all k = 0, . . . , ne. We introduce the
following control volumes for our finite volume method,

• the interior edge intervals Ie1 , . . . , I
e
ne−1 for each e ∈ E ,

• the vertex patches Iv =
(
∪e∈E in

v
Iene

)
∪
(
∪e∈Eout

v
Ie0
)

for each v ∈ V .

A semi-discrete approximation of the problem (1)–(6) can be expressed by the volume averages

ρek(t) = |Iek|−1

∫
Ie
k

ρe(t, x) dx,

ρv(t) = |Iv|−1
(∑

e∈Eout
v

∫
Ie
0

ρe(t, x) dx+
∑
e∈E in

v

∫
Ie
ne

ρe(t, x) dx
)
,

for all e ∈ E , k = 1, . . . , ne − 1, resp. v ∈ V . With the definition of the vertex patches we strongly enforce the continuity in
the graph nodes. Integrating (22) over some interval Iek , k = 0, . . . , ne, e ∈ E , gives∫

Ie
k

∂tρe(t, x) dx =

∫
Ie
k

∂x(ε ∂xρe(t, x)− νef(ρe(t, x)) de(t)) dx

= he ∂tρ
e
k = (ε ∂xρe(t, x)− νef(ρe(t, x)) de(t))

∣∣∣xe
k+1/2

xe
k−1/2

. (24)

The diffusive fluxes are approximated by central differences

∂xρ(t, x
e
k+1/2) ≈

1

he
(ρek+1(t)− ρek(t))

and for the convective fluxes we use, for stability reasons, the Lax-Friedrichs numerical flux

f(ρe(t, xk+1/2)) de(t) ≈ F e
k+1/2(t)

:=
νe
2
(f(ρek(t)) + f(ρek+1(t))) de(t)−

α

2
(ρek+1(t)− ρek(t)), (25)

where we use the convention ρe0 = ρv for v ∈ V satisfying e ∈ Eout
v and ρene

= ρṽ with ṽ ∈ V satisfying e ∈ E in
ṽ . The

parameter α > 0 is some stabilization parameter, chosen sufficiently large. At inflow and outflow vertices v ∈ VD we insert
the boundary condition (6) into (24) and obtain∑

e∈Ev

(ε ∂xρe(t, v)− νef(ρe(t, v)) de(t)) ≈ −uinflow
v (t) (1− ρv) + uoutflow

v (t) ρv.

Combining the previous investigations gives the following set of equations for each control volume Iek , k = 1, . . . , ne − 1,
e ∈ E , and Iv , v ∈ V , respectively.

For each e ∈ E and k = 1, . . . , ne − 1:

he ∂tρ
e
k(t) + ε

−ρek−1(t) + 2ρek(t)− ρek+1(t)

he
− F e

k− 1
2
(t) + F e

k+ 1
2
(t) = 0. (26a)

For each v ∈ VK: ∑
e∈Ev

he ∂tρ
v(t) +

∑
e∈E in

v

(
ε
ρv(t)− ρene−1(t)

he
− F e

ne− 1
2
(t)

)

−
∑
e∈Eout

v

(
ε
ρe1(t)− ρv(t)

he
− F e

1
2
(t)

)
= 0. (26b)

17

Physics-Informed DeepONets for drift-diffusion on metric graphs

For each influx node v ∈ V in
D:∑

e∈Ev

he ∂tρ
v(t)−

∑
e∈Eout

v

(
ε
ρe1(t)− ρv(t)

he
− F e

1
2
(t)

)
− uinflow

v (1− ρv(t)) = 0. (26c)

For each outflux node v ∈ Vout
D :∑

e∈Ev

he ∂tρ
v(t) +

∑
e∈E in

v

(
ε
ρv(t)− ρene−1(t)

he
− F e

ne− 1
2
(t)

)
+ uoutflow

v ρv(t) = 0. (26d)

In (26b) accumulated contributions evaluated in v vanish due to the Kirchhoff-Neumann vertex conditions (4).

To solve the system of ordinary differential equations (26) for the unknowns ρek and ρv, respectively, we introduce the
following time-discretization. For some equidistant time grid 0 = t0 < t1 < . . . < tnt

= T with grid size τ = tn − tn−1,
n = 1, . . . , nt, we define the following grid functions by

ρv,n = ρv(tn), ρe,nk = ρek(tn), F e,n
k+1/2 = F e

k+1/2(tn).

We restrict the equations (26) to the grid points and replace the time derivative by a difference quotient, evaluate the diffusion
terms in tn+1 and the convective terms in tn. This yields for each n = 1, . . . , nt the following system of equations:

For each e ∈ E and k = 1, . . . , ne − 1:

he ρ
e,n
k + ε τ

−ρe,nk−1 + 2ρe,nk − ρe,nk+1

he
= he ρ

e,n−1
k + τ

(
F e,n−1

k− 1
2

− F e,n−1

k+ 1
2

)
. (27a)

For each v ∈ VK:

|Iv| ρv,n + τ ε
∑
e∈E in

v

ρv,n − ρe,nne−1

he
− τ ε

∑
e∈Eout

v

ρe,n1 − ρv,n

he

= |Iv| ρv,n−1 + τ
∑
e∈Eout

v

F e,n−1
1
2

− τ
∑
e∈E in

v

F e,n−1

ne− 1
2

. (27b)

For each influx node v ∈ V in
D:

|Iv| ρv,n − τ ε
∑
e∈Eout

v

ρe,n1 − ρv,n

he
= |Iv| ρv,n−1 + τ F e,n−1

1
2

+ τ uinflow
v (1− ρv,n−1). (27c)

For each outflux node v ∈ Vout
D :

|Iv| ρv,n + τ ε
∑
e∈E in

v

ρv,n − ρe,nne−1

he
= |Iv| ρv,n−1 + τ

∑
e∈E in

v

F e,n−1

ne− 1
2

− τ uoutflow
v ρv,n−1. (27d)

The initial data are established by
ρe,0k = πIe

k
(ρ0), ρv,0 = πIv (ρ0),

where πM denotes the L2-projection onto the constant functions on a subset M ⊂ Γ. Note that this set of equations is linear
in the unknowns in the new time point ρe,nk , k = 1, . . . , ne − 1, e ∈ E and ρv,n, v ∈ V . The fully-discrete approximation
ρ̃ : [0, T]× Γ → R then reads

ρ̃(t, x) = ρ̂n(x) for t ∈ [tn, tn+1),

with
ρ̂n(x) = ρv,n for x ∈ Iv, ρ̂n(x) = ρe,nk for x ∈ Iek.

It is well-known that finite-volume schemes like (27) guarantee a couple of very important properties. On the one hand,
there is a well established convergence theory, see e. g. (Morton et al., 1997; Lazarov et al., 1996; ten Thije Boonkkamp
& Anthonissen, 2010). On the other hand, our scheme is mass-conserving and bound-preserving which we show in
the following theorem. Thus, the finite volume approach is suitable of generating reference solutions used to train the
DEEPONET models proposed here.

18

Physics-Informed DeepONets for drift-diffusion on metric graphs

Theorem B.1. The solution of (27), ρ̃, satisfies the following properties:

i) The scheme is mass conserving, i.e., if uinflow
v ≡ uoutflow

v ≡ 0 for all v ∈ VD, then there holds∫
Γ

ρ̂n dx =

∫
Γ

ρ̂0 dx ∀n = 1, . . . , nt.

ii) Assume that f(x) = x(1− x) and in (25) choose α = 1. Then, the scheme is bound-preserving, i.e., there holds

ρ̃(t, x) ∈ [0, 1] ∀t ∈ [0, T], x ∈ Γ,

provided that τ ≤ mine∈E he.

Proof. i) This directly follows after summing up all the equations in (27). Note that the diffusive and convective fluxes
cancel out.

ii) The system (27) can be written as a system of linear equations of the form

(M + τ εA)ρ⃗n = Mρ⃗n−1 + F⃗ (ρ⃗n−1), (28)

where M is the mass matrix and A contains the coefficients of the diffusion terms on the left-hand side of (27). The
vector ρ⃗n contains the unknowns ρv,n and ρe,nk . In the usual ordering of unknowns and equations the matrix M + τ εA
is strictly diagonal dominant and is thus an M-matrix. The inverse possesses non-negative entries only. The right-hand
side of (28) is also non-negative under the assumption ρ⃗n−1 ∈ [0, 1]. We demonstrate this for the equation (27a).
Insertion of (25) and reordering the terms yields

he ρ
e,n−1
k + τ

(
F e,n−1
k−1/2 − F e,n−1

k+1/2

)
= (he − α τ) ρe,n−1

k

+
τ

2

(
(1− ρe,n−1

k−1) + α
)
ρe,n−1
k−1 +

τ

2

(
−(1− ρe,n−1

k+1) + α
)
ρe,n−1
k+1 ≥ 0.

The non-negativity follows from ρe,n−1
k ∈ [0, 1] for k = 0, . . . , ne and α = 1 as well as τ ≤ mine∈E he. This, together

with the M-matrix property of M + τ εA, implies ρ⃗n ≥ 0.

Due to f(x) = x(1− x) we may rewrite (28) in the form

(M + τ εA)(⃗1− ρ⃗n) = M (⃗1− ρ⃗n−1) + G⃗(⃗1− ρ⃗n−1),

with some vector-valued function G⃗. With similar arguments like before we conclude that the right-hand side is non-
negative and thus, 1− ρ⃗n ≥ 0, which proves the upper bound. By induction the result follows for all n = 1, . . . , nt.

B.2. DEEPONET further details

The mathematical foundation of DEEPONET is rooted in the concept of approximating operators, which are mappings
between infinite-dimensional function spaces. Let G be such an operator, which maps the input function u(x) to an output
function G(u)(y), where x ∈ Rd and y ∈ Rm are the input and output coordinates, respectively. The goal of a DeepONet is
to approximate G using a neural network architecture that can handle functional inputs and outputs.

In more detail, the DEEPONET architecture consists of two main ingredients: namely, the branch net and the trunk
net. The branch net takes as input the discretized values of the input function u(x) at a set of predefined training points
{x1, x2, . . . , xn}, and gives as an output a set of coefficients {b1, b2, . . . , bp}. On the other hand, the trunk net takes as input
the output coordinate y and outputs a set of basis functions {t1(y), t2(y), . . . , tp(y)}. The final output of the DEEPONET is
then given by the inner product of the branch and trunk outputs written as

G(u)(y) =

p∑
i=1

bi(u) · ti(y),

where in this equation the coefficients bi(u) are obtained from the branch net, and the coefficients ti(y) are produced by the
trunk net. With this we are able to approximate the operator G by learning the appropriate coefficients and basis functions
from training data.

19

Physics-Informed DeepONets for drift-diffusion on metric graphs

BRANCH NET

The branch net architecture is used for encoding the input function u(x) into a finite-dimensional representation. Given the
discrete values of u(x) at known points {x1, x2, . . . , xn}, the branch net processes these values through a neural network
architecture to produce {b1, b2, . . . , bp}. In summary, the branch net can be represented as a function B : Rn → Rp such
that:

b = B(u(x1), u(x2), . . . , u(xn)),

where b = [b1, b2, . . . , bp]
T is the vector collecting all the coefficients.

TRUNK NET

The trunk net is then used for generating the basis functions that are used to construct the output function. For the output coor-
dinate y, the trunk net processes y using a deep learning architecture to produce the basis functions {t1(y), t2(y), . . . , tp(y)}.
Again, we obtain the following representation T : Rm → Rp such that:

t(y) = T (y),

where t(y) = [t1(y), t2(y), . . . , tp(y)]
T is the vector of basis functions.

The training of a DEEPONET involves minimizing a loss function that measures the discrepancy between the predicted
output and the true output. Given a dataset of input-output pairs {(ui, G(ui))}Ni=1, the loss function L is defined as:

L =
1

N

N∑
i=1

∫ ∥∥∥∥∥∥G(ui)(y)−
p∑

j=1

bj(ui) · tj(y)

∥∥∥∥∥∥
2

dy,

where the integral is taken over the domain of the output function. In practice, the integral is approximated using numerical
integration techniques, such as Monte Carlo sampling or quadrature methods. The parameters of the branch and trunk nets
are then optimized using gradient-based methods, such as stochastic gradient descent (SGD) or its variants, to minimize the
loss function.

C. Comments
The DeepONet approach shares a lot of similarity (even equivalence) with the FNO approach as pointed out in (Kovachki
et al., 2023). As a result one could apply our surrogate coupling technique with a different choice of the DeepONet
architecture to obtain an FNO setup and vice versa. Our methodology of coupling surrogate models based on the graph
topology can be used with different operator learning methods, e.g., (physics-informed) DeepONets or FNO. Also, one
could use a Graph Neural Operator technique that can act in the same way as the DeepONet or FNO for one edge operator
thus creating a surrogate operator, see(Li et al., 2020).

C.1. Discussion of strong GP Prior

While we use the Gaussian (RBF) kernel in several places our main goal to avoiding an inverse crime was to choose different
parameters for the generation of training data (inflow/outflow/initial: length scale ℓ = 0.5 and 512 Gaussian centers), to
generate random data for simulation (inflow/outflow/initial: length scale ℓ = 0.4 and 468 Gaussian centers). In the inverse
setting, we employ a length scale of ℓ = 0.2 and only 10 Gaussian centers to learn the flow couplings and unknown initial
conditions.

C.2. Further applications

Beyond the toy example of traffic flow considered here, at least two more applications come to mind: The first is the
transport of cargo inside of biological cells that is realized by molecular motors traveling along a network of one-dimensional
filaments (i.e. the graph in our setting). Previous work by different authors have demonstrated that, starting from an accurate
microscopic model, a mean field limit produces exactly the type of drift-diffusion equations that we consider, (Bressloff &
Levien, 2015; Bressloff & Karamched, 2016). Finally, when studying the transport in gas networks, (non-linear variants) of

20

Physics-Informed DeepONets for drift-diffusion on metric graphs

a) Inflow models b) Inner models c) Outflow models

Figure 8. Terms of loss function in training of models with width 100 and 5K (up), 10K (middle), 20K (down) training data. Solid lines
report training loss of various terms, dashed lines report validation loss. Recall that although only PDE physics loss (pde ph log),
boundary physics loss (bnd ph log) and initial condition loss (ics log) are considered in objective, all terms decrease during training.
The x-axis shows the learning epoch and the y-axis the value of the corresponding loss term.

drift-diffusion equations also appear as approximation to the (otherwise hyperbolic) governing equations. They go under the
name ISO3 model for gas transport, (Domschke et al., 2021).

C.3. Computational complexity

For the pure simulation task, the FVM solver is typically faster than our method. This is a caveat of most physics-informed
neural network and operator network approaches. However, our methodology shines in the inverse problem setting, were
dedicated approaches are needed for each problem type. To the best of our knowledge, unfortunately, such solvers don’t
exist for our specific setting and a direct comparison is infeasible. However, we estimate the complexity involved in both
approaches for the inverse problem as follows:

FVM: O(NGradientSteps ·Nt · (ne ·Nedges +Nvertices)
2)

PI DeepONet: O(NGradientSteps · ((3 · nβ + 1) ·Nedges))

and thus a reduction from quadratic to linear complexity.

D. Loss plots
The loss function evolution over 20 000 epochs is illustrated in Figure 8 for the model with width 100 and for width 200 in
Figure 9.

E. Results on large graphs
We test our method on larger graph networks with more edges using a directed network construction of varying sizes (102,
306, 1034 edges). This is easily done by providing the adjacency structure and the inflow and outflow nodes. These examples

21

Physics-Informed DeepONets for drift-diffusion on metric graphs

a) Inflow models b) Inner models c) Outflow models

Figure 9. Terms of loss function in training of models with width 200 and 5K (up), 10K (middle), 20K (down) training data. Solid lines
report training loss of various terms, dashed lines report validation loss. Recall that although only PDE physics loss (pde ph log),
boundary physics loss (bnd ph log) and initial condition loss (ics log) are considered in objective, all terms decrease during training.
The x-axis shows the learning epoch and the y-axis the value of the corresponding loss term.

22

Physics-Informed DeepONets for drift-diffusion on metric graphs

Figure 10. Graph with 1034 edges, 5 inflow nodes (green) and 5 outflow nodes (red).

also contain multiple inflow and outflow nodes, see for example Figure 10.

The local accuracy of our model is guaranteed by the accuracy of the surrogate model, in our case the physics informed
DeepONet, which makes sure that the PDE is resolved up to the precision of the training of this model. The overall accuracy
of the coupled surrogate models depends on the solution accuracy at the vertices, only, which we enforce for the least-squares
solver. The scaling to large networks therefore depends on the robustness of the least squares solver. Here, we rely on
the JAX implementation of an ADAM SGD method which should scale well with increasing network size utilizing the
computational power of the underlying GPU.

An exemplary simulation on the graph depicted in Figure 10 with noise 0.01 yields the following an absolute L2 error of
1.67e-02 and a relative L2 error of 4.84e-02. The absolute error of the solution at different time steps is shown in Figure 11.

An exemplary inverse problem on the graph depicted in Figure 10 with noise 0.01 yields the following errors: L2 error of
the solution on whole domain 1.57e-02 (abs) and 3.53e-02 (rel); L2 error of the initial condition 5.06e-02 (abs) and 1.11e-01
(rel); ℓ2 error of edge velocity below 2.29e-02 (abs) and 2.34e-02 (rel). The absolute error of the solution at different time
steps is shown in Figure 12.

In Table 6, we report the different loss terms after 20 000 epochs of training for our test graphs for different noise level
averaged over 100 runs.

23

Physics-Informed DeepONets for drift-diffusion on metric graphs

Figure 11. Absolute difference of PI DeepONet solution and baseline solution of example simulation problem on graph with 1034 edges.

Figure 12. Absolute difference of PI DeepONet solution and baseline solution of example inverse problem on graph with 1034 edges.

24

Physics-Informed DeepONets for drift-diffusion on metric graphs

Noise Total loss KN flux KN cont. Meas. flux Meas. cont.

G1

ϵ1 1.96e+00 1.04e-03 1.47e-03 9.74e-01 9.85e-01
ϵ2 4.91e-01 3.08e-04 4.41e-04 2.44e-01 2.47e-01
ϵ3 2.02e-02 1.17e-04 1.48e-04 9.95e-03 1.00e-02

G2

ϵ1 1.95e+00 1.55e-03 1.05e-03 9.63e-01 9.80e-01
ϵ2 4.87e-01 4.74e-04 3.43e-04 2.41e-01 2.45e-01
ϵ3 2.02e-02 1.57e-04 1.55e-04 9.90e-03 1.00e-02

G3

ϵ1 1.94e+00 2.12e-03 7.85e-04 9.75e-01 9.66e-01
ϵ2 4.87e-01 6.43e-04 3.11e-04 2.44e-01 2.42e-01
ϵ3 2.04e-02 2.20e-04 1.75e-04 1.01e-02 9.93e-03

G4

ϵ1 1.96e+00 2.71e-03 5.29e-04 9.76e-01 9.77e-01
ϵ2 4.90e-01 7.77e-04 2.09e-04 2.44e-01 2.45e-01
ϵ3 2.04e-02 2.52e-04 1.25e-04 1.01e-02 1.00e-02

Table 6. Final loss terms after 20 000 epochs of training on our test problems with measurement noise ϵ1 = 0.1, ϵ2 = 0.05, ϵ3 = 0.01
averaged over 100 runs. The results are obtained using the model with width 200 and 20K training data.

25

