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Abstract
The Rashomon Effect, coined by Leo Breiman,
describes the phenomenon that there exist many
equally good predictive models for the same
dataset. This phenomenon happens for many real
datasets and when it does, it sparks both magic
and consternation, but mostly magic. In light of
the Rashomon Effect, this perspective piece pro-
poses reshaping the way we think about machine
learning, particularly for tabular data problems
in the nondeterministic (noisy) setting. We ad-
dress how the Rashomon Effect impacts (1) the
existence of simple-yet-accurate models, (2) flexi-
bility to address user preferences, such as fairness
and monotonicity, without losing performance,
(3) uncertainty in predictions, fairness, and expla-
nations, (4) reliable variable importance, (5) al-
gorithm choice, specifically, providing advanced
knowledge of which algorithms might be suitable
for a given problem, and (6) public policy. We
also discuss a theory of when the Rashomon Ef-
fect occurs and why. Our goal is to illustrate how
the Rashomon Effect can have a massive impact
on the use of machine learning for complex prob-
lems in society.

1. Introduction
Real-world datasets often admit many approximately-
equally-good models. Leo Breiman called this phenomenon
the Rashomon Effect, naming it after a Japanese movie in
which four different views of the same murder show no
single truth, just many reasonable explanations, for what
happened (Breiman, 2001b; Kurosawa, 1950). One might
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think of the Rashomon Effect as a nuisance that prevents us
from getting at a single “true” understanding of the data due
to uncertainty, but from another perspective, the Rashomon
Effect unlocks a treasure trove of information about the re-
lationship of real datasets to families of predictive models.
Harnessing this knowledge has massive practical implica-
tions, providing answers to some of the most fundamental
questions in machine learning, such as: Is there an accuracy-
interpretability trade-off? Which algorithm(s) are suitable
for a given dataset? How can we easily (i.e., without solving
a difficult optimization problem) find a model that incorpo-
rates multiple objectives such as fairness or monotonicity?
How can we get stable variable importance estimates? The
Rashomon Effect provides surprising insight into all of these
questions – and more.

The Rashomon Effect is often present in datasets generated
by processes that are nondeterministic, i.e., noisy or un-
certain, including data used for bail and parole decisions,
healthcare, and financial loan decisions – high stakes appli-
cations. In fact, as we will discuss, it has been proven in
specific cases that datasets drawn from noisy processes tend
to exhibit a large Rashomon Effect in that there are many
approximately-equally accurate models (Semenova et al.,
2023). Furthermore, a large Rashomon Effect correlates
with the existence of simple-yet-accurate models (Semen-
ova et al., 2022). Hence, there is no accuracy/interpretability
trade-off in many domains. The lack of a trade-off has been
well-established empirically for tabular data (e.g., see Holte,
1993; Lou et al., 2013; Angelino et al., 2018; McTavish
et al., 2022; Liu et al., 2022b; McElfresh et al., 2023). This
knowledge has important policy implications, because it
explains that black box models have no performance advan-
tage over interpretable models that are easier to administer
and use.

Knowing that the Rashomon Effect exists – and the extent
to which it exists – changes the lens through which we view
just about everything in machine learning. The current ma-
chine learning paradigm solves problems by finding a single
good model. However, understanding that many good mod-
els differ dramatically – in terms of variable importance,
predictions on individual points, complexity, fairness, etc.
– changes how we approach the problem. For instance, we
cannot generally assume that any of the variables used heav-
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ily by one model are important to every well-performing
model. We cannot assume that because an algorithm finds a
complex model with good test performance that this level
of complexity is necessarily needed for obtaining that test
performance; similarly, we cannot assume that a complex
model has discovered secrets in the dataset that a simpler
model could not also find. Knowledge that many equally
good models could exist might make us unhappy with the
status quo of algorithms that optimize for only one machine
learning model, when we could select from many. That is,
just knowing about existence of the Rashomon Effect shows
us that the standard machine learning paradigm that returns
only one model is too narrow, and new methods and insights
are needed.

We define the Rashomon set as the set of models that
perform approximately-equally to the best models from
a given function class. The first algorithms that quantify the
Rashomon Effect by capturing and storing the Rashomon set
for nontrivial function classes have been developed only re-
cently (Xin et al., 2022; Zhong et al., 2023; Liu et al., 2022a;
Zhu et al., 2023). These algorithms allow users to interact
with the Rashomon set to address user preferences, such
as fairness concerns and monotonicity constraints. They
also allow us to study variable importance in a holistic way,
including all of the good models.

We elaborate on how the Rashomon Effect has implica-
tions for simplicity, specifically the existence of simple-
yet-accurate models (Section 3), flexibility to address user
preferences without losing performance (Section 5), uncer-
tainty in predictions, models, and explanations (Section 7),
stable variable importance (Section 8), algorithm choice,
specifically advance knowledge of which algorithms might
be suitable for a given problem (Section 9), and public pol-
icy (Section 10). We question the relevance of the classical
machine learning paradigm in light of the Rashomon Effect
in Section 4 and discuss an alternative paradigm in Section 5.
This perspective piece distills work from several technical
papers to make them more widely accessible and discusses
their link to policy.

2. The Rashomon Effect is Everywhere
The Rashomon Effect occurs when there are many different
well-performing models for the same dataset. Standard ma-
chine learning (ML) analysis reveals it, but most researchers
might not recognize it, because they are not looking for it.

Let us work with a dataset – the FICO dataset from the
Explainable ML Challenge (FICO et al., 2018) – though
extremely similar results hold for an astounding number of
other datasets (Semenova et al., 2022). We will examine the
Rashomon Effect for a large model class, large enough to
encompass the usual function classes used in machine learn-

Classifier Test Accuracy Test AUC
Random Forest 0.697±0.017 0.757±0.017
Boosted trees 0.723±0.024 0.789±0.028
SVM (linear kernel) 0.720±0.029 0.795±0.027
SVM (RBF kernel) 0.727±0.023 0.799±0.022
8-layer neural network 0.722±0.022 0.792±0.026
Logistic regression 0.731±0.023 0.801±0.028
2-layer additive risk model 0.738±0.020 0.806±0.025

Table 1. Performance of different machine learning models on the
23-feature FICO dataset (Chen et al., 2022) over 10 test folds.
They perform similarly. Some of these models (specifically, the
2-layer additive risk model) are interpretable.

ing, such as combinations of trees, neural networks, kernel
machines, and so on. We applied a variety of machine learn-
ing methods to the data, including boosted decision trees,
random forest, multi-layer perceptrons, support vector ma-
chines, logistic regression, and a 2-layer additive risk model.
All of these models have completely different functional
forms, from linear models to kernel-based nonparametric
models with smooth decision boundaries, to tree-based non-
parametric models with sharp decision boundaries, yet most
of these models perform comparably, as shown in Table 1.
This means all of these models are in the Rashomon set of
the large class of functions.

Table 2 shows that these different models depend on vari-
ables differently. This exemplifies the Rashomon Effect –
when the best models that can be (practically) constructed
for a given dataset are numerous and diverse. In Table 2,
we used simple permutation importance (e.g., see Fisher
et al., 2019) to estimate variable importance of each vari-
able to the model’s predictions. This type of analysis can
be conducted with similar results on many tabular datasets.
We will see another way to directly observe the Rashomon
Effect in Section 5: by enumerating all of the good models
from a given function class. Appendix A shows other ways
to measure the Rashomon Effect.

Because there are many good functions, some of these func-
tions are simple.

3. The Rashomon Effect Gives Rise to
Simpler-Yet-Accurate Models

When large portions of the function space contain many
good models, the Rashomon set is likely large enough to
include simpler models. A mathematical explanation for
why this is true is illustrated in Figure 1 (Semenova et al.,
2022). We have two function classes: a class of complex
functions with a large Rashomon set (blue region) and a
simpler function class contained in the complex function
class (orange dots). Assume that every model in the complex
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Classifier Reliance on Reliance on Reliance on
ExternalRiskEstimate NumInqLast6M NetFractionRevolvingBurden

Boosted trees 1.18 ± 0.02 1.01 ± 0.00 1.03 ± 0.01
SVM (RBF kernel) 1.15 ± 0.01 1.01 ± 0.00 1.12 ± 0.00
Logistic regression 1.02 ± 0.00 1.02 ± 0.00 1.23 ± 0.02
2-layer additive risk model 1.01 ± 0.00 1.08 ± 0.01 1.00 ± 0.00

Table 2. Model reliance, calculated by permuting feature values, (the multiplicative version, from Fisher et al., 2019) on three important
features across top performing model classes, with standard error across 5 train-test splits. Here, e.g., 1.18 means the loss increases
by 18% when a variable is scrambled; in that case, the variable is quite important to the model. Value 1.00 means the variable is not
important at all. The ordering of variable importance is inconsistent among these model classes; boosted trees rely most heavily on
“ExternalRiskEstimate,” SVM relies heavily on both “ExternalRiskEstimate” and “NetFractionRevolvingBurden,” logistic regression
relies most on “NetFractionRevolingBurden,” and the model from Chen et al. (2022) relies most on “NumInqLast6M.” The variable
“NetFractionRevolingBurden” is not important to the 2-layer additive risk models, but very important to logistic regression.

Rashomon set

Packing net

Simple (interpretable) 
models 

Figure 1. Illustration showing that for hypothesis spaces with good
approximating properties, larger Rashomon sets tend to contain
multiple simpler models. For every model in the more complex
space (blue shaded region), there exists a δ-close model from the
simpler space (orange dots). In this illustration, the Rashomon
set contains at least four simpler models, which is its 2δ-packing
number, where blue dots correspond to the centers of the balls in
the packing.

class is “close to” a simpler one, meaning that they are
within a radius δ of each other in function space (i.e., the
simpler class is a cover of the more complex set). Then, the
Rashomon set in the complex class contains at least as many
functions from the simpler class as its 2δ-packing number,
where the packing number is the maximal number of balls
in the Rashomon set, the centers of which are at least 2δ
apart. From the “closeness” assumption, every ball in the
packing contains a simpler model, therefore, the larger the
Rashomon set, the more simpler models it contains.

The “closeness” assumption is reasonable. For instance,
sparse decision trees serve as a cover for deeper, more com-
plex decision trees, and trees are universal function approxi-
mators (Barron, 1993). If the more complex trees are opti-
mized so that they are not so deep that they overfit, shallow
trees serve as an even better cover. For instance, Theorem

4.2 in McTavish et al. (2022) shows that any boosted deci-
sion tree is equivalent to a single tree with a greater depth,
so the set of boosted trees is naturally covered by single
trees. Because the closeness assumption generally holds,
and because we often have large Rashomon sets, we often
find that for tabular data, a single sparse tree (of depth ∼5)
can achieve performance similar to that of a boosted deci-
sion tree. Figure 2 shows a single tree for the FICO dataset
that achieves the accuracy of the black box models shown
in Table 1. Thus, as we stated, for many problems, sim-
ple models can perform as well as much more complex
models, and there is no accuracy/interpretability trade-off.

Figure 2. Decision tree: train and test accuracy are both approxi-
mately 72%, which is comparable to the best black box algorithms
(deep learning and boosted decision trees). This tree has 7 leaves
and was obtained in 8.1 seconds by the GOSDT algorithm (Lin
et al., 2020; McTavish et al., 2022).

A second simple model, of a different functional form, is
shown in Figure 3. This is a sparse generalized additive
model (GAM). Interestingly, the GAM has no feature inter-
action terms yet achieves accuracy that is extremely similar
to that of the decision trees, which rely only on feature inter-
actions. Again, this illustrates a case of similar performance
from completely different models.
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Figure 3. Sparse GAM: the user gets a score for each of the 11
features in this model, from the FastSparse algorithm (Liu et al.,
2022b). The sum of scores translates into a risk of defaulting on
a loan. The model was obtained in 3.15 seconds. Its test AUC
and accuracy are .790 and .723. The cross-validation AUC and
accuracy of FastSparse are 0.791± 0.010 and 72.4%± 1.2%.

This dataset was provided by FICO, the major credit scoring
agency in the United States, for a data science competition
to discover post-hoc explanations to black box models. It is
a particularly interesting dataset, because the competition
organizers thought interpretable-yet-accurate models did not
exist, but they do. The dataset’s variables represent credit
history, and its label is whether an individual will default
on a loan. The dataset appears to represent a particularly
difficult (balanced) subpopulation that has a high risk of loan
default relative to the population. If interpretable models
demonstrate strong performance on this dataset, which was
specifically designed for a benchmarking challenge, we
could only imagine the potential success of interpretable
models in addressing a much broader range of high-stakes
problems.

Interpretable and simple models are easier to verify, easier
to debug, and easier to use. However, they are not easier to
design, as we discuss shortly.

4. The Standard ML Paradigm is Too Narrow
Among models with equal complexity on a static dataset, sta-
tistical learning theory says that it should not matter which
model in the Rashomon set we choose – all models with
equal complexity should generalize equally well to the test
data (e.g., Rudin, 2020, chapter on learning theory). This
standard paradigm, where any model that has good cross-
validation performance on a static dataset can be trusted,
assumes the test data come from the same distribution as

the training set, the data need no troubleshooting, and no
additional domain knowledge is needed. This is why ma-
chine learning methods need only choose one model from
the Rashomon set in the standard paradigm.

However, the real world is not an ML benchmark. In the
real world, data are messy, the model inputs must be easy to
check, domain knowledge can substitute for lack of data or
problems with data, and models often need to be easy to un-
derstand and/or obey additional domain-specific constraints
(Wagstaff, 2012; Rudin & Wagstaff, 2014). The standard
ML paradigm makes it difficult to do just about anything ex-
cept what it was designed for – to produce accurate models
on a static dataset.

Black box models have hidden flaws, whereas users try-
ing to design interpretable machine learning models realize
quickly that understandable models have understandable
flaws. This is a key reason why the standard machine learn-
ing paradigm often fails in the real world. Selecting just
a single, understandable model – ignoring the Rashomon
Effect – comes with problems. In our experience, the user is
rarely satisfied with the first model that is output by a stan-
dard interpretable machine learning algorithm – because
they see flaws that can be fixed. Since standard ML algo-
rithms are not interactive, the feedback loop can be fraught
and frustrating. This is what we call the interaction bot-
tleneck, where users cannot effectively interact with algo-
rithms to improve machine learning models. Fortunately,
there is a fix: finding Rashomon sets.

5. A New Paradigm: Finding Rashomon Sets
Because the Rashomon set is large, it often includes many
simple-yet-good models. Being able to find all of the good
models from a given simple function class has benefits
that we spend the rest of this article discussing, the most
important ones appearing in this section.

The first algorithm that finds all good models for a nontrivial
function class is the TreeFARMS algorithm, which finds all
decision trees with a low regularized risk value (Xin et al.,
2022). The second such algorithm is the GAM Rashomon
set algorithm, which finds accurate sparse generalized ad-
ditive models (Zhong et al., 2023). Third is the FasterRisk
algorithm, which finds accurate sparse scoring systems (Liu
et al., 2022a; Zhu et al., 2023). Figure 4 shows several
sparse trees for the COMPAS dataset (Larson et al., 2016)
found using TreeFARMS.

The opportunity to search through the Rashomon set means
we can optimize multiple objectives simultaneously, which
has implications for constraint handling and alignment
with domain knowledge. Typical constraints that one might
wish to include are monotonicity constraints, where the
predicted outcomes increase with a specified set of variables,
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Figure 4. Example sparse decision trees in the Rashomon set of the
COMPAS dataset (Larson et al., 2016), found by TreeFARMS.

and algorithmic fairness constraints. A simple loop over
the Rashomon set will suffice to find all possible answers
to a constrained or multi-objective optimization problem.
Accordingly, the new paradigm allows us to easily align the
model with multiple fairness objectives. Among equally-
good models, the user can choose one that optimally
satisfies the criteria.

Having the Rashomon set at one’s fingertips resolves the
interaction bottleneck. As discussed in the previous sec-
tion, in the standard ML paradigm, if a user wants to add
domain knowledge or constraints to the model, they need
to formulate and solve new optimization problems each
time they get new feedback from the user. This process is
time-consuming, requires possibly many reformulations of
optimization problems, and can be exceedingly frustrating.
Access to the full Rashomon set resolves this. Using inter-
active tools, such as TimberTrek and GAMChanger (Wang
et al., 2022b; 2021), to explore the Rashomon set, users can
find a model that aligns with their domain knowledge in real
time, even when that knowledge was not specified in ad-
vance. Figure 5 shows screenshots of these interactive tools.
Even if the Rashomon set contains hundreds of millions of
models, when they are organized effectively, humans can
easily explore them.

The computational cost of finding the Rashomon set is much
higher than that of finding a single optimal model. Luckily,
the TreeFARMS, GAM Rashomon set, and FasterRisk al-
gorithms can handle the computation for most reasonably
sized problems for sparse trees, generalized additive models,
and scoring systems in minutes (see timing tables in Xin
et al., 2022; Zhong et al., 2023; Liu et al., 2022a), which
is often acceptable to users. If the Rashomon set is exceed-
ingly large, these algorithms have mechanisms to sample

(a) Rashomon set of the 1,365 best sparse decision trees for the
COMPAS dataset, generated by TreeFARMS and displayed by
TimberTrek (figure from Wang et al., 2022b).

(b) GAM Changer empowers domain experts and data scientists
to easily and responsibly align model behaviors with their domain
knowledge, via direct manipulation of GAM model weights (figure
from Wang et al., 2021).

Figure 5. Interactive tools.

from it or otherwise represent it.

Rashomon sets containing all accurate models contain
Rashomon sets for a variety of other objectives. Many
of the objectives we consider in machine learning are re-
lated to each other. For instance, a highly accurate model
probably also has high AUC, low loss, high F1-score, etc.
We can take advantage of the relationship between these
objectives. If we create a Rashomon set that includes all
models with misclassification error below a threshold, we
can often prove that it also includes all models with a dif-
ferent objective below a different threshold. For example,
Xin et al. (2022) showed how all models with high F1-score
could be calculated without ever optimizing for F1-score
directly. These models are easy to find, because they are
contained in a high-accuracy Rashomon set.

Thus, Rashomon sets place substantially more control into
the hands of human data analysts.

6. Why Does the Rashomon Effect Occur?
One theory as to why the Rashomon Effect occurs for so
many real-world datasets comes from “A Path to Simpler
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Figure 6. Description of the “path” that starts with noise and leads to larger Rashomon ratios and the existence of simpler models. The
plots are created for the COMPAS dataset (Larson et al., 2016).

Models Starts with Noise,” by Semenova et al. (2023). This
work shows that uncertainty in the outcomes (noise) is one
of the causes of the Rashomon Effect. This work provides a
4-step “path” (see Figure 6) that outlines how the uncertainty
in the outcomes leads to simpler-yet-accurate models.

In Step 1 of the path, uncertainty in the outcomes (label
noise) increases the variance of the loss function with re-
spect to random draws of the data. This means the loss
function’s values are more uncertain, thus, the user cannot
tell with certainty what the value of the loss might be on
the test set by looking only at the training set. This leads
to Step 2, where the generalization error, i.e., the differ-
ence between train and test performance, increases with the
variance. Thus, it is easier to overfit the training set.

In Step 3, the user realizes that they are overfitting, per-
haps through conducting cross-validation, and simplifies the
function class. Even stopping the path here, we arrive at
simpler functions. The user had to simplify the function
class, because they were not able to generalize, and the test
performance would be poor if they did not do it. In other
words, even if the data were generated from a complex pro-
cess, as long as there is label noise, the user would still need
to simplify the function class to avoid overfitting to that
noise and to reduce cross-validation error.

In Step 4, when the function class is simpler, the Rashomon
Ratio is large. The Rashomon Ratio is the fraction of the
model class that has close-to-optimal loss. It is the fraction
of the function class within the Rashomon set. Thinking
of these simpler functions as (diverse) representatives of
the original function class, a large Rashomon Ratio for
the simpler function class equates to a large number of
well-performing representatives from the larger function
class; i.e., a large Rashomon Effect. Thus, when the data
generation process has noise, models with a wide range of
complexity can all be part of the same large Rashomon set,
leading to a large Rashomon Effect.

Tying this back to the existence of simpler-yet-accurate
models from Section 3, the packing argument from Section
3 can be used to show that models from an even simpler
class are likely to exist that are approximately as accurate

as functions within the user’s current function class.

A separate situation in which there is generally a large
Rashomon Effect is when the margins between classes (dis-
tance between classes in feature space) are large. For exam-
ple, the MNIST dataset is not a noisy dataset, yet almost any
machine learning method – with functions from any type of
function class – performs well on it.

Although most real tabular datasets seem to have a large
Rashomon Effect, it is easy to construct cases where
Rashomon sets are extremely small. An example is where
the labels are generated deterministically (no noise) from
a complicated function. Incidentally, this is why approx-
imating or explaining an already-selected machine learn-
ing model will generally have an accuracy-interpretability
trade-off, whereas working with real (noisy) labels will not.
In other words, if we try to approximate a fixed, already-
selected function f with a simpler function g, then there
will likely be a trade-off between the complexity of g and
how well it can fit f . This is discussed, for instance, by
Kleinberg & Mullainathan (2019) (note that they reversed
the terms “interpretability” and “explainability” from us).

7. Uncertainty in Predictions, Fairness, and
Explanations

Knowledge of the Rashomon set can illuminate uncertainty
that causes problems with ML systems. This includes un-
derspecification – where the model development process
does not have enough information to learn generalizable do-
main knowledge – and predictive multiplicity, where there
are many different predictions made by models within the
Rashomon set. If we can calculate the degree of predic-
tive multiplicity in the Rashomon set (how many different
predictions are possible), we gain insight into underspec-
ification (many different conclusions). Researchers have
recently started to quantify these effects (Marx et al., 2020;
Coker et al., 2021; Hsu & Calmon, 2022; Watson-Daniels
et al., 2023). Again, analysts typically minimize the loss
without considering the variation in other quantities, such
as predictions, variable importance, or fairness, which is
where problems arise.
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D’Amour et al. (2020) demonstrate the impact of under-
specification for several industry-scale learning tasks, such
as medical imaging with eye and skin images, clinical risk
prediction with electronic healthcare records, and pronoun
affiliation with large language models; they observe that
even the choice of random seed can dramatically impact
the behavior of the final model – a serious consequence of
overlooking the powerful Rashomon Effect.

Consider benchmarking challenges in algorithmic fairness.
Here, one would use a special “biased” dataset, compute
a model for it, find unfairness in this model, and fix the
problem. However, Cooper et al. (2024) points out that on
these special datasets, if one averages over bootstrap sam-
ples to find a stable model, then such a model is already
fair. In other words, prior to Cooper et al. (2024), the im-
provement that fairness researchers were seeing could be a
mirage due to the Rashomon Effect – they were only con-
sidering one model from the Rashomon set that happened
to be biased. This follows the work of Rodolfa et al. (2021);
Coston et al. (2021); Black et al. (2022; 2024) showing that
although there can exist an accuracy-fairness trade-off in
theory (Kleinberg, 2018), it may not exist in practice due to
the Rashomon Effect.

Rather than ignoring the Rashomon Effect, we should make
use of it. We could, for instance, answer questions such as
“How important can this variable possibly be for all good
models?” (Fisher et al., 2019), or “Can I create a model with
sparser counterfactual explanations?” (Sun et al., 2024), or
perhaps “What is the largest and smallest my prediction
could be from all of the good models?” (Coker et al., 2021).
We can also visualize the Rashomon Effect by projecting
the Rashomon set into variable importance space (Dong &
Rudin, 2020), where we can see how much every model
in the Rashomon set depends on each variable. Or, we
could leverage the Rashomon set to create stable variable
importance values, discussed next.

8. Stable Variable Importance
Measuring the global significance of a variable in predict-
ing an outcome holds paramount importance in scientific
exploration and critical decision-making. Two important
examples are genetics (e.g., Wang et al., 2020; Novakovsky
et al., 2022), where the goal is to figure out which genes
have unique information for predicting traits, and criminal
justice, where mistakes in variable importance analysis have
led to confusion and accusations of racial bias (see Larson
et al., 2016; Rudin et al., 2020). Traditional approaches gen-
erally assess variable importance based on a single model
trained on a specific dataset, but this framework does not
account for the Rashomon Effect. As we know, failing to
consider it can lead different researchers to draw divergent
conclusions from identical data, based on identifying dif-

ferent variables as important. Along with the Rashomon
Effect, another issue in variable importance is the lack of
reproducibility: a variable importance estimate can change
amid reasonable data perturbations (e.g., swapping out on
observation). One solution is provided by the Rashomon
Importance Distribution (RID), which quantifies the impor-
tance of a variable across the set of all good models and
across perturbations to the original dataset using almost any
variable importance metric of interest (Donnelly et al., 2023).
By considering variations of the data through bootstrapping,
and considering the Rashomon set for each bootstrap sample
to produce a distribution of variable importance values for
each variable, RID can obtain much more stable variable
importance calculations. It is able to recover variables that
are important to complex data generation processes more
accurately than other approaches, demonstrating how lever-
aging knowledge of the Rashomon Effect can be helpful for
scientific discovery.

9. Which Algorithm Should I Use?
A perennial question in machine learning is about the match
of algorithms to problems: which machine learning algo-
rithm is likely to work for my data? For image and text data
there are clear current answers that take advantage of the
structure in these data types (e.g., CNNs and transformers),
but for tabular data there is not – most machine learning
algorithms perform equally well. (In fact, researchers have
had to compile special “hard” datasets because it is uncom-
mon to find cases where different ML algorithms perform
differently, see McElfresh et al., 2023). From what we have
discussed above, the answer depends on the level of noise
in the outcomes.

For predicting criminal recidivism, where we predict months
or years in advance whether someone will commit a crime,
the randomness in this process means that simpler mod-
els will tend to perform as well as complex models. Thus,
we would expect that boosted decision trees (Freund &
Schapire, 1997), random forest (Breiman, 2001a), or neural
networks provide no performance advantage over sparse ad-
ditive models or the type of simple scoring systems that are
often used for this purpose by the criminal justice system.
Empirical evidence on recidivism prediction supports this
(see e.g., Wang et al., 2022a; Zeng et al., 2017; Tollenaar &
van der Heijden, 2013). Results of this flavor would be ex-
pected to hold for loan default predictions, and we presented
empirical evidence based on the FICO dataset earlier. This
same reasoning process holds for many healthcare predic-
tion problems (readmission, mortality, e.g., see Zhu et al.,
2023). In other words, simply by knowing the type of data
and the level of noise in the outcome, we can determine
whether methods that produce optimized simpler models
are likely to be sufficiently accurate.
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It is important to note that there is a performance difference
between algorithms such as CART (Breiman et al., 1984)
and C4.5 (Quinlan, 1993) from the 1980s and 1990s and
more modern algorithms. As shown by Xin et al. (2022),
CART rarely produces models within the Rashomon set
of a dataset, even when subsampling data numerous times
and rerunning CART for each subsample. This means these
older algorithms do not achieve an accuracy/sparsity balance
that is as good as more modern algorithms. (Additional
experiments for CART vs. more modern tree algorithms
appear in Lin et al., 2020; McTavish et al., 2022).

Thus, in terms of best practices for standard (“noisy”) tab-
ular data in cases where interpretability is important, one
would typically first find baseline performance using black
box models. Then, one would try to match baseline per-
formance using modern interpretable modeling algorithms
(from the 2020s rather than the 1980s). The easiest inter-
pretable ML algorithm to start with is probably FastSparse
(Liu et al., 2022b), which produces sparse generalized ad-
ditive models. Decision trees are a much harder class to
optimize, so when working with them, it is useful to use a
reduction in the search space provided by GOSDT+Guesses
(McTavish et al., 2022; Lin et al., 2020); here, the splits
from boosted decision trees are used for constructing single
high-accuracy trees. There are quite a lot of interpretable
ML algorithms available that produce models of a variety
of functional forms. Scoring systems (e.g., as produced by
the FasterRisk algorithm of Liu et al., 2022a), are extremely
popular in medicine and criminal justice. For linear models,
OKRidge (Liu et al., 2023) can find sparse solutions with
provable optimality. Rule sets (e.g., Wang et al., 2017) are
simple logical models. For datasets requiring more complex
models, try GA2M models (Lou et al., 2013), which are ad-
ditive models with pairwise interactions. Or, as is typically
done in credit risk scoring, one could create several smaller
models (subscales), and combine them using a small model,
as in the 2-layer additive risk model from Chen et al. (2022)
that was used in Table 1. Usually each subscale represents
a category of features (e.g., credit delinquency features, or
satisfactory trade features).

Finally, assuming these “first try” interpretable models are
flawed in some way that a user can identify, we suggest
allowing the user to explore the Rashomon set using an
algorithm and interface such as TreeFARMS & TimberTrek
or GAM Rashomon set & GAM Changer. This should yield
a model suitable for further consideration.

10. Policy Implications
Knowledge of the Rashomon Effect can be used to deliver
significant positive impacts to society, including the devel-
opment of fairer and more interpretable models.

Currently, policy makers have started to govern the “right to
explanation” for certain algorithmic decisions (Wikipedia,
2024). However, companies often do not want to provide
models that could provide an advantage to competitors. This
tension between a desire to preserve secrecy and mandated
explanations leads to them providing narrow explanations
that can be both misleading and incomplete, rather then
genuinely transparent. Explanations are generally post hoc,
which introduces several possible problems. First, they
might be unfaithful to the underlying reasoning process,
e.g., “You were denied a loan due to factors A and B,” when,
in fact, the loan denial was due to different factors. Second,
the explanations might be so incomplete as to be practically
useless, e.g., “Factors A and B are important in our decision,”
with no further explanation of how they were used and
whether other factors might also be important. A person
receiving an explanation has no way to determine the quality
of that explanation. Problems with explanations have been
discussed at length (e.g., Adebayo et al., 2018; Rudin, 2019;
Yanagawa & Sato, 2024; Han et al., 2022). Essentially, black
box models, even when supplemented with explanations,
create barriers for individuals to examine and question the
models, effectively allowing model designers to hide their
flaws.

Interpretable models do not have any of these issues. Their
explanations must be faithful and complete by design. They
are much easier to troubleshoot and use in practice. And,
as we discussed in Sections 3 and 6, the Rashomon Ef-
fect theoretically explains why and when interpretable mod-
els perform as well as their black box counterparts. For
these reasons, interpretable models should be used by
default for many high-stakes decisions using machine
learning. Thus, for applications such as criminal recidivism,
we should default to interpretable models when we know
the outcomes are noisy and where empirical evidence on
similar problems has confirmed that interpretable models
perform well (see, e.g., Wang et al., 2022a; Zeng et al.,
2017). Exceptions can be made in cases where models are
100% accurate (e.g., lesion detection in medical images),
in cases where no reason is needed (e.g., medical image
segmentation), or in cases where there is no practical way to
create an interpretable model. However, since we can now
find the Rashomon set, as discussed in Section 5, making it
easier to build interpretable models, there is often no excuse
to continue the use of black boxes.

Another policy implication involves other types of fairness
besides simplicity. We can find the “most fair” model within
the Rashomon set, according to any fairness metric, includ-
ing recourse (e.g., Black et al., 2022), and thus can verify
claims about whether there exists a fairer-yet-accurate
model for a given dataset.

Even though interpretability, uncertainty, and fairness are
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essential to AI in practice and policy – with the Rashomon
Effect being central to all of them – these topics are touched
upon only superficially in most of today’s academic courses.
With respect to interpretability, most courses introduce no
techniques more modern than CART (Breiman et al., 1984)
and C4.5 (Quinlan, 1993). Information on post hoc ex-
planations is much more widespread, sometimes (unfortu-
nately) using the terminology “interpretable” to describe
them. A review of interpretable machine learning appears
in Rudin et al. (2022), and course material is available at
Rudin (2020). Policy makers can fund ethical AI educa-
tion, which will inevitably involve the Rashomon Effect
since it determines whether trade-offs can exist between
performance and ethical AI objectives.

11. Conclusion
The Rashomon Effect shows us that among models with
similar loss, there are a multitude of models with different
properties, including various levels of simplicity, fairness,
and explanations/variable importance values.

The ability to capture Rashomon sets and display them to
users addresses what is arguably the hardest open problem in
interpretable machine learning – incorporating human inter-
action. Solving the interaction bottleneck can have a major
impact on our ability to troubleshoot and add constraints,
which, in turn, could have a major impact on whether ma-
chine learning models can be used in high-stakes decisions.

We do not believe that we have truly grasped the full extent
of the Rashomon Effect yet, but we can already see that its
impact on practical machine learning will be enormous. It
forces us to change the way we think – even back to the
fundamentals of ML. Since we formulate ML algorithms
in terms of trade-offs between objectives, we tend to think
that trade-offs among these objectives must then exist in the
models they create. This is – surprisingly – wrong.
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Impact Statement
There are significant societal impacts discussed in this
work, with the most important points summarized as: (1)
Rashomon sets often admit many good models, giving rise
to the existence of high-performing models that obey con-

straints such as interpretability and fairness; such constraints
are crucial in high-stakes settings. (2) Machine learning al-
gorithms now exist within the new Rashomon set paradigm.
These algorithms can find whole Rashomon sets for a given
dataset, mitigating the interaction bottleneck, and allowing
users to easily create usable machine learning models for a
huge variety of applications. (3) We can determine, before
seeing any data, and by knowing only that noise is present
in the data generation process, whether a large Rashomon
set will exist, and (thus) whether simpler and/or fairer well-
performing models will exist. Policy-makers can use this
information as evidence for mandating that interpretable
models be used for many high-stakes decisions by default.
In this way, knowledge of the Rashomon set and its origins
can help make the practical uses of machine learning safer
and fairer across society. (4) Knowledge of the Rashomon
Effect changes the way we view just about everything in ma-
chine learning, including uncertainty, variable importance
measurements, interpretability, fairness, interactivity, and
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A. Metrics to Gauge the Rashomon Effect
There are many different ways to assess the Rashomon Effect.

• For measuring the size of Rashomon set: TreeFARMS (Xin et al., 2022) computes the number of sparse decision
trees. The GAM Rashomon set algorithm (Zhong et al., 2023) computes the number of unique support sets (for
GAMs, including linear and additive models); the Rashomon set includes a convex set of models for each support set.
CorelsEnum of Mata et al. (2022) enumerates the Rashomon set of rule lists, while DiversiTree of Ahanor et al. (2022)
gives a set of diverse, close-to-optimal mixed integer programming solutions. For ridge regression, the size of the
Rashomon set can be computed in closed-form (Semenova et al., 2022).

• For measuring diversity of predictions (for classifiers), we can use the pattern diversity metric of Semenova et al.
(2022) or the pairwise disagreement of Black et al. (2022). The ambiguity and discrepancy metrics of Marx et al.
(2020) can further help to understand the conflicting predictions from the Rashomon set’s models. For example,
ambiguity tells how many people’s bail decision could be changed by using a different model from the Rashomon set,
while discrepancy tells us the model in the Rashomon set with the most bail decisions changed relative to a baseline
(deployed) model. The Hacking Interval framework of Coker et al. (2021) contains calculations that show maximum
and minimum predictions within the Rashomon set for several different types of algorithms.

• For measuring variable importance diversity, we can use Model Class Reliance of Fisher et al. (2019) or Smith et al.
(2020) to get a range of variable importance values in the Rashomon set. We can visualize the “cloud” of variable
importance using the approach of Dong & Rudin (2020), which plots each model in variable importance space.

• For probabilistic classification, the Rashomon capacity metric of Hsu & Calmon (2022) can be used, or probabilistic
ambiguity/discrepancy of Watson-Daniels et al. (2023).

• The Rashomon ratio or pattern Rashomon ratio of Semenova et al. (2022), as well as the fraction of good models in the
hypothesis space, can help to understand the simplicity of the learning problem.

13


