
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LATABLE: TOWARDS LARGE TABULAR MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data is one of the most ubiquitous data modalities, yet the literature on
tabular generative foundation models is lagging behind its text and vision counter-
parts. Large Tabular Models (LTMs) could revolutionize the way tabular data is
used: not as any single dataset analyzed in a vacuum, but contextualized using their
metadata and with respect to related datasets. Creating an LTM is difficult, due to
the heterogeneous feature spaces of different tabular datasets, metadata, and prior
knowledge. In this work, we propose LaTable: a novel tabular diffusion model
that addresses these challenges. We show LaTable can be trained across tabular
datasets. Through extensive experiments, we find that LaTable displays early signs
of scaling laws previously encountered in foundation model regimes. Moreover,
LaTable outperform baselines in out-of-distribution few-shot data generation.

1 INTRODUCTION

Motivation. Foundation models in the image and text domains epitomize the value of large scale
training with impressive results that push the boundaries of AI capabilities. In this work, we propose
LaTable, a tabular diffusion model that can be trained across vastly different datasets and demonstrates
early signs of scaling laws, in hopes that LaTable become the basis for a tabular foundation model.

Tabular foundation models, or Large Tabular Models (LTMs), lag far behind their text and vision coun-
terparts, and existing LTM research focuses on representation and supervised learning Van Breugel
& Van Der Schaar (2024). Despite this lag, tabular data is ubiquitous in the real world Borisov
et al. (2022a); Shwartz-Ziv & Armon (2022), ranging from electronic health records Fatima & Pasha
(2017) to census data Doxsey-Whitfield et al. (2015), from cybersecurity Buczak & Guven (2015)
to credit scoring Dastile et al. (2020), and from finance to natural sciences Huang et al. (2012).
A generative LTM could transform these fields through enabling few-shot generation of synthetic
data, and providing a base model that can be fine-tuned to other tasks like representation learning or
prediction van Breugel & van der Schaar (2023). Few-shot capabilities are especially interesting for
the tabular domain, where datasets are often smaller, and augmenting existing datasets via few-shot
generation of additional columns is of significant interest to researchers and practitioners alike.

Aim. Developing a generative LTM is difficult. First, until recently there has been a lack of large
tabular metadatasets. Second, different datasets cover vastly different features, and the existing tabular
datasets may also use different formats or lack labels for any specific task. Third, tabular datasets
may require domain knowledge, or some prior on tabular features. As a result of this, training models
meaningfully on large amounts of heterogeneous data remains underexplored. In this paper, we take a
step towards LTMs by developing a versatile tabular generative model with the following desiderata:

D1 Cross-dataset generation. We need an LTM to be able to generate different tables, which
requires it being able to generate different features and variable number of features.

D2 Categorical and numerical feature generation. Tables consist of combinations of both
continuous and discrete data, and we want to be able to model each explicitly. 1

D3 Use textual context. The model will need to understand contextual metadata, including the
dataset description, feature names, and allowed categories for categorical features.

D4 Equivariance w.r.t. column order. Table column order is usually arbitrary, which poses
an equivariance desiderata. If we define generative model G : SL ×M → OL, where

1In contrast, an LLM-based approach like Borisov et al. (2022b) implicitly models each numerical feature as
a series of discrete tokens. See Section 2 for more details.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

S denotes the column-wise input space (e.g. feature names), O the output space, and
M the metadata (e.g. dataset description), we have that ∀s ∈ SL,m ∈ M, we desire
G(T (s),m) = T (G(s,m)), where T represents some permutation to the column order.

Contributions. Our contributions are as follows:

1. We introduce LaTable, a novel tabular diffusion model that satisfies these desiderata. Thus,
LaTable can be trained across vastly different tabular datasets including different features,
number of features, different feature types, and with context of table metadata.

2. We demonstrate that LaTable displays early signs of scaling laws, familiar to those in
foundation model regimes. We use both zero-shot and few-shot generation for evaluation.

3. We empirically show that LaTable outperforms existing generative models in out-of-
distribution few-shot data generation.

2 RELATED WORK

Tabular single-dataset generative models. Tabular data is challenging due to its lack of structural
meaning (unlike images), mixed-type variables, and often limited size Van Breugel & Van Der Schaar
(2024). A growing body of work is developing generative models tailored to tabular data Choi et al.
(2017); Xu et al. (2019); Watson et al. (2023), including score-based diffusion models Dieleman et al.
(2022); Kotelnikov et al. (2023); Zhang et al. (2023). Nonetheless, most methods ignore or naively
one-hot-encode categorical data (e.g. feature names and categories), which loses context that could
help overcome data availability issues (D2 D3). Naturally, methods developed for single datasets are
also not designed for cross-dataset generation (D1), or equivariance with respect to columns (D4).

LLM-based approaches. Pretrained language models may provide a solution to cross-dataset
generation, as they contain general knowledge and can represent strings as numerical vectors in a
space structured by language supervision. Uniformly, all the works in this direction convert the rows
of tables into strings that can be processed by the LLM. The string generated by the LLM is then
converted back to a tabular format. Borisov et al. (2022b) fine-tuned GPT-2 Radford et al. (2019)
on tables, and they aim to achieve approximate equivariance (D4) through randomly generating
feature permutations, and sampling token distributions autoregressively rather than sampling only the
most likely sentences. Solatorio & Dupriez (2023) note that the approach in Borisov et al. (2022b)
retains GPT-2’s original vocabulary, yet most tokens may not appear in the tables of interest. They
instead use a fixed-set vocabulary Padhi et al. (2021), which reduces the chances of generating invalid
samples and thus improves efficiency. Zhao et al. (2023) show that an untrained, smaller LLM can
generate more accurate data and do so more cheaply than Borisov et al. (2022b). We note that in
contrast to us, previous works like Borisov et al. (2022b); Solatorio & Dupriez (2023); Zhao et al.
(2023) fine-tune their model on just a single tabular dataset, i.e. they do not attempt cross-dataset
training and do not aim to create a generative model that generalizes beyond the training data (D1).

The advantage of LLM-based generation is its simplicity and the fact that it does not require any
preprocessing of data, since the raw table can be presented to the LLM directly via prompting and in-
context learning. However, adapting LLMs as LTMs comes with serious disadvantages Van Breugel
& Van Der Schaar (2024). First, LLMs are expensive during both fine-tuning and inference. A
1-minute training job for CTGAN takes a whopping 540× longer for Borisov et al. (2022b) (see their
Appendix B.5, Table 6). One of the core sources of this inefficiency is the linearization of table
rows as sentences, and generating these autoregressively. For tabular data, where many columns
are typically numerical, this is problematic—it means that a single numerical variable is implicitly
modelled as an autoregressive series of categorical variables (e.g. 1.23 is modelled as 1→ .→ 23).
Hence, generating this number with an LLM requires 3 expensive forward calls to the model (plus
one for the field separation token). Fitting the whole table in context might also become difficult
with datasets containing hundreds of columns. Furthermore, the LLM training objective is not apt at
approximating continuous distributions. Hopkins et al. (2023) show that LLMs do not accurately
generate simple distributions (e.g. uniform). Van Breugel & Van Der Schaar (2024) visualize how
modelling a simple Gaussian with an LLM is non-trivial. By opting for an end-to-end numerical
representation of the data and a diffusion model framework, LaTable circumvents these limitations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 METHOD

Summary. We propose LaTable, which satisfies the desiderata D1-D4. LaTable uses an encoder-
only transformer as backbone for mixed-type diffusion. The input of the model consists of noised
feature values (i.e. from the forward noising process), but also the dataset description, column
names, conditioning mask (in case of conditional generation), and boolean missingness mask. All
metadata strings (e.g. dataset description and feature names) and categorical features are first encoded
using a pretrained LLM into a fixed-length embedding. All inputs are subsequently mapped to a
common hidden space using separate element-wise MLPs, and added to provide the direct input of the
transformer. The output of the transformer is decoded on a feature-by-feature basis, where categorical
features are mapped to probabilities over the original features. See Figure 1 for an overview.

3.1 SETUP AND NOTATION

We index datasets with k, samples with i, and features with j. 2 Let us assume we have access to
a metadataset D = {D(k)}nD

k=1, where each dataset D(k) consists of a description, column names,
and the data itself. Let dk ∈ N denote the number of columns for dataset D(k). We define the j-th
feature space for dataset D(k) as X (k)

j . For categorical data, we let this be a finite set of strings, and
for numerical columns it may be some subset of R. Recall that we use S to denote the column-wise
input space (e.g. feature names), andM the metadata (e.g. dataset description). We can thus write
D(k) = (m(k), s(k), X(k)), with m(k) ∈M the dataset description, s(k) ∈ Sdk feature names, and
samples X(k) ∈ Πdk

j=1X
(k)
j . Finally, let us denote the indices of the categorical features by I(k)cat .

3.2 GENERATIVE MODEL CHOICE

We use a score-based diffusion model Ho et al. (2020); Song & Ermon (2019) for modelling the
data distribution. Diffusion models have increased in popularity thanks to their capability to produce
samples of higher quality than GANs and VAEs Goodfellow et al. (2020); Kingma (2013). We use
the discrete-time formulation with the Denoising Diffusion Implicit Model (DDIM) noise scheduler
Song et al. (2020). In the following sections, we will look into each element of LaTable in more
detail. We will look at (1) Transformer backbone (D1, D4); (2) Textual context (D3); (3) Mixed-type
variables (D2), and analyze how each model design choice satisfies desiderata D1-D4.

3.3 SATISFYING DESIDERATA

3.3.1 TRANSFORMER BACKBONE (D1, D4)

We use an encoder-only transformer at the core of LaTable. The transformer backbone is useful for
our setting, as it allows variable-length input and output, which allows us to train across datasets
(D1). We do not use a positional encoding for the input, such that the transformer is equivariant
with respect to the input (D4). In contrast, a recurrent architecture would not necessarily satisfy this
equivariance property. 3 We denote the transformer’s hidden dimension by dh.

3.3.2 USING CONTEXT (D3)

To make use of context (D3), we will encode the category names, column names, and dataset
description using a pretrained LLM encoder. Note that the dataset description is the same across all
features, but the other metadata are defined on the feature level. By using a pretrained LLM encoder,
we avoid having to learn embeddings for descriptions and categories from scratch. It also allows
access to textual similarities, even if our tabular data is limited. For example, datasets may contain
column “gender” and “sex”, and we need not learn from the data alone that these are closely related.

We denote the pretrained LLM by fLLM . Text encodings are of a fixed length df for any input string
S , such that fLLM : S → Rdf . Whenever we encode text data, we will denote this with a bar m̄(K):

2To avoid excessive clutter, we will leave out indices when they are irrelevant or clear from context.
3Importantly, removing the positional encoding means the transformer cannot know which column is which.

We remove this undesirable symmetry by adding column information to each input element, in the form of a
feature name embedding. See Section 3.3.2 for a more thorough discussion.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1. Each dataset description m(K) is encoded by the LLM into a vector m̄(K).
2. Each categorical variable is converted into a string “[column name s] is [category c]".

Categories (c1, ..., cn) are then encoded by the LLM and stacked into an embedding matrix
C̄

(k)
j = (c̄1, ..., c̄n).

3. Feature names s(k)j are encoded by the LLM into vectors s̄(k)j .

We condition on the encoded metadata by mapping the dataset description m̄ and feature embeddings
s̄j to size dh using shallow MLPs gr, gs and adding it to the transformer input (see Figure 1). For the
encoder fLLM , we use the model WhereIsAI/UAE − Large− V 1 for three reasons: it is open
source and easily available 4; it achieved SOTA on the Massive Text Embedding Benchmark (MTEB)
Muennighoff et al. (2022); and it is very lightweight (size: 1.34 GB). All encodings are cached to
disk before training and testing to avoid LLM forward calls during training.

3.3.3 MIXED-TYPE VARIABLES (D2)

In contrast to LLMs, transformers, and diffusion models, we need to generate numerical values as
well as categoricals (D2). Let us start with the numerical variables.

Numerical variables. For numerical variables we can use relatively standard diffusion. Given some
time step t, the forward denoising process is applied to all numerical features xj , giving the noisy
(xj)t. A shallow MLP ginnum : R→ Rdh is used to map each numerical variable to the transformer’s
input space. The transformer is applied to the sequence of all variables. Subsequently, each sequence
element in the transformer’s output corresponding to a numerical variable is mapped back to scalars
using output network goutnum : Rdh → R. For each numerical xj , this yields output x̂j , and the loss
(e.g. sample-loss, ϵ-loss, or v-prediction) is computed per feature.

Categorical variables. To handle categorical variables, we draw inspiration from Continuous
Diffusion for Categorical Data (CDCD) Dieleman et al. (2022). The original CDCD learns high-
dimensional embeddings for each category separately, before applying L2 normalization to each
embedding (after which noise is added for the denoising). During training, CDCD adds noise to
these categorical embeddings (identical to continuous diffusion), and trains a model that predicts
probabilities for the original categories. This model is trained using some classification loss, e.g.
cross-entropy. During sampling, the outputted probabilities are used to predict the score in the
continuous space. Specifically, they use score interpolation—which is effectively a weighted mean of
all category embeddings, where weights are given by the probabilities predicted by the score model.

In our case, we do not want to learn embeddings and predict probabilities for all possible categories
in all datasets. By learning an embedding separately for each category, we lose context that is
captured in the category name (e.g. how categories female and woman are related). It also makes it
difficult to scale to large numbers of categories, especially if some of these categories are hardly ever
observed. Instead, we use the pretrained LLM fLLM for acquiring df -dimensional embeddings for
each category c, which carry the contextual knowledge of the category name. 5 We fine-tune these
embeddings using a shallow MLP followed by an L2 normalization layer, which we together denote
by gf : Rdf → Sdf . 6 The forward diffusion process corrupts these vectors by adding Gaussian
noise, giving c̄t. Similar to the numericals, we use a network gincat : Rdf → Rdh to map these
noisy embeddings to the transformer’s input space, and network goutcat : Rdh → Rdf is applied to the
categorical sequence elements in the transformer’s output—giving predicted embeddings in Rdf .

One key question remains: considering each categorical feature may have a different number of
categories, how do we map the transformer output (in Rdf) back to the individual categories? We
achieve this using an attention-like layer. Letting ĉj ∈ Rdf be the output of the model, we let the final
predicted probability for some category i be proportional to the similarity of the generated vector and
the original categories’ embeddings:

4https://huggingface.co/WhereIsAI/UAE-Large-V1
5As discussed in Section 3.3.2, for all categorical features we embed the categorical c as c̄ = “[feature name]

is [c]".
6Without the normalization layer, it would be difficult for the model to give embedded categories with small

L2-norm a high probability (see Eq. 1). We add the shallow MLP’s finetuning to avoid projecting embeddings
that are quite different in Rd to the same point on the unit sphere.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

p(ci) = softmax(gf (C̄)T ĉ)i,∀i (1)

thereby allowing us to predict probabilities for each datasets’ and categoricals’ categories individually.
Identical to CDCD, we use cross-entropy loss (CE) for the categorical variables and use score
interpolation. Combining the numerical and categorical losses, we get:

L(x, x̂) = 1

dk
[
∑

j∈I(k)
cat

CE(xj , x̂j) +
∑

j /∈I(k)
cat

MSE(xj , x̂j)] (2)

Bringing it together. Overall, the model thus consists of a number of independent MLPs g that
allow us to bring differently sized variables (dataset description, feature column name embeddings,
categorical features, numerical features) all to the same space dh. The input of the transformer
consists of a sequence of inputs hj ∈ Rdh , j = 1, ..., dk (recall that dk is the number of columns in
the table), with hj = gincat((x̄j)t)+gr(m̄)+gs(s̄j)+gt(t) for categoricals, and hj = ginnum((xj)t)+
gr(m̄) + gs(s̄j) + gt(t) for numericals. This way, the encoder-only transformer backbone allows
variable-length input and output, which allows us to train across datasets (D1). We do not use a
positional encoding for the input, such that the transformer is equivariant with respect to the input
(D4). And We encode all metadata, including dataset description, feature column names, etc using a
pre-trained LLM (D3). The transformers output sequence is again decoded using independent shallow
networks goutnum and goutcat to provide score estimates for both numerical and categorical variables (D2).
See Figure 1 for a full overview.

Sex Income Age Hours per week

F >50K 47 38

LLM LLM

Forward denoising process (training)
Sample T noise (generation)

𝑔!"#$% 𝑔!"#$%

Transformer

𝑔!"#&'#

Backwards denoising step

𝑔%'($% 𝑔%'($%

𝑔!"#&'# 𝑔%'(&'# 𝑔%'(&'#

num losscat loss

32 38
categoricals

numericals

conditioning

No learnable params

Learnable mlpg

Noise
scheduler

decoder decoder

LLM LLM Fourier enc

Noise
scheduler

Diffusion
timestep

Table
description

𝑔) 𝑔* 𝑔#

Figure 1: The diffusion pipeline, for both training and generation. Note that the whole pipeline
is flexible with respect to the number of numerical and categorical features as input. The LLM
encoder is frozen and the transformer is an encoder-only model without positional encodings or
causal masking. Additional conditioning (e.g. missingness mask, conditioning information) can be
trivially added to the transformer input, or through cross-attention layers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

40M 80M 118M
0.6

0.64

0.68

Trainable Parameter Count

A
cc

ur
ac

y,
F1

sc
or

e,
an

d
R

O
C

A
U

C

Performance vs Model Size

Accuracy
F1 score

ROCAUC

1M 10M 100M
0.3

0.5

0.7

Number of Rows in Training set

Performance vs Dataset Size

Accuracy
F1 score

ROCAUC

Figure 2: By varying model size and dataset size, we observe that Latable’s performance follows a
general log-linear trend, mirroring that of early scaling laws in foundation models regimes. That is, as
we increase the model/dataset size exponentially, we obtain a linear increase in the final performance.

4 EXPERIMENTS

In this section, we will explore the tabular data generation capabilities of LaTable. We show that
LaTable displays early signs of scaling laws commonly found in foundation model regimes. Then, we
benchmark the performance of LaTable against popular baseline tabular models, as well as ablation
experiments that justify the design choice of our method.

Evaluation Pipeline We follow a four-step process to evaluate the performance of LaTable in the
few-shot out-of-distribution generation setting, partially inspired by the "Train on Synthetic, Test on
Real" methodology. (1) We obtain the final model checkpoint after training has converged (under
different training settings). (2) We choose a test dataset. More details about how the test datasets are
selected and what test datasets we use will be discussed shortly. (3) We perform minor fine-tuning
on 100 data samples (which is very small for synthetic data generation models), and we generate
synthetic data given the dataset metadata. (4) Finally, we use a well-known classifier model to fit the
generated synthetic data, and evaluate on real data using downstream performance metrics such as
accuracy, f1 score, and Area Under the Receiver Operating Characteristic Curve (rocauc). By default,
we will use the CatBoost classifier because it is has strong performance on tabular dataset tasks.

Training data. In order to make meaningful advancement towards foundation models, we need to
gather a training set for tabular data whose scale surpasses any existing collections of tabular datasets.
We build upon the recent effort of Tablib Eggert et al. (2023), which scrapes over 600M tables from
the web. After filtering through the data via heuristics and standard data cleaning, we arrive at a
subset of 100K tabular datasets. Finally, we chop each dataset down to 1K rows ensure an even
spread of data during training. In the end, the training set totals 100M rows, spanning 30K columns.

Test data, and combating data leakage. Because the datasets from Tablib are scraped from the web,
there is no sensible way to rule out data contamination or data leakage in the training data. In order
to best prevent data leakage and contamination, we gathered several tabular datasets that were not
commonly found on the web. These datasets are Cardio, URL, WiDS, Insurance, and Heloc Stoian
et al. (2024). In addition, for the tabular datasets that we ask LaTable to generate, we deliberately
pick the ones that LaTable cannot generate from zero-shot, hence verifying that LaTable did not
remember the training data. The core component of our evaluation is to show that training across a
large number of datasets indeed gives LaTable the ability to generate synthetic tabular datasets with
very few fine-tuning examples, and potentially pave a path for building larger and better LTMs for
future research.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1 SCALING LAWS: MODEL AND DATA

In this section, we show that LaTable displays early signs of scaling laws commonly found in
foundation model regimes. We vary different training settings, and record the final downstream
performance from the synthetic data generation after the training has converged. We change the
model size by varying the number of transformer layers in the architecture, arriving at model sizes of
40M (2 layers), 80M (6 layers), and 118M (10 layers). We change the dataset sizes by varying the
number of tables we include in the training set, arriving at dataset sizes of 1M (1K tables), 10M (10K
tables), and 100M (100K tables). When varying the model sizes, the dataset size is fixed at 100M
(100K tables). When varying the dataset sizes, the model size is fixed at 118M (10 layers).

As we can see in Figure 2, the performance of LaTable follows a log-linear trend, mirroring that
of early scaling laws in foundation models regimes. That is, as we increase the model/dataset size
exponentially, we obtain a linear increase in the final performance. Interestingly, the model seems
to yield the best performance when trained with roughly the same dataset size as parameter count,
which could suggest further directions for tabular scaling laws.

4.2 LATABLE OUTPERFORMS BASELINES IN DATA GENERATION

In this section, we show that LaTable outperforms various baseline methods in few-shot out-of-
distribution tabular data generation. We choose GREAT, CTGAN, TVAE Xu et al. (2019), ARF
Watson et al. (2023), and TabDDPM Kotelnikov et al. (2023) as baselines, all of which are competitive
methods for tabular data tasks. We evaluate these methods on the test datasets Cardio, URL, WiDS,
Insurance, and Heloc. More specifically, we fit a CatBoost classifier on the generated data (treating
the synthetic data as the training data), and obtain downstream performance metrics (accuracy, F1
score, ROCAUC) from using the real data as the test set. In order to generate sensible synthetic data,
all methods are first fine-tuned for 100 samples on the test dataset.

Table 1: LaTable outperforms baselines in the few-shot out-of-distribution data generation setting.
Because we only fine-tune on 100 samples, baseline methods fail to generate high-quality synthetic
data, while LaTable generates good synthetic data, sometimes even coming close to real data. We
attribute this to both the training procedure and model design choices, as we will discuss in later
sections.

Methods Cardio URL WiDS Insurance Heloc
CTGAN

Accuracy 0.50 (0.00) 0.59 (0.01) 0.55 (0.00) 0.56 (0.01) 0.48 (0.01)
F1 score 0.43 (0.00) 0.58 (0.00) 0.54 (0.01) 0.53 (0.00) 0.45 (0.01)
ROCAUC 0.53 (0.07) 0.60 (0.00) 0.57 (0.00) 0.57 (0.00) 0.48 (0.02)

TVAE
Accuracy 0.58 (0.00) 0.61 (0.00) 0.57 (0.01) 0.61 (0.00) 0.59 (0.00)
F1 score 0.58 (0.00) 0.60 (0.02) 0.56 (0.01) 0.60 (0.00) 0.58 (0.00)
ROCAUC 0.60 (0.01) 0.64 (0.01) 0.60 (0.02) 0.65 (0.01) 0.60 (0.00)

ARF
Accuracy 0.55 (0.01) 0.53 (0.00) 0.55 (0.00) 0.54 (0.00) 0.53 (0.02)
F1 score 0.53 (0.01) 0.52 (0.00) 0.53 (0.01) 0.52 (0.01) 0.53 (0.01)
ROCAUC 0.57 (0.00) 0.55 (0.01) 0.55 (0.00) 0.56 (0.00) 0.53 (0.01)

DDPM
Accuracy 0.59 (0.01) 0.66 (0.00) 0.55 (0.00) 0.58 (0.00) 0.60 (0.00)
F1 score 0.58 (0.00) 0.65 (0.00) 0.54 (0.00) 0.58 (0.00) 0.58 (0.00)
ROCAUC 0.59 (0.00) 0.70 (0.00) 0.58 (0.00) 0.62 (0.01) 0.64 (0.02)

GREAT
Accuracy 0.58 (0.00) 0.59 (0.00) 0.57 (0.01) 0.58 (0.00) 0.57 (0.00)
F1 score 0.57 (0.00) 0.57 (0.01) 0.55 (0.00) 0.57 (0.00) 0.57 (0.00)
ROCAUC 0.58 (0.00) 0.59 (0.00) 0.59 (0.00) 0.57 (0.00) 0.57 (0.02)

LaTable
Accuracy 0.64 (0.02) 0.79 (0.01) 0.75 (0.01) 0.81 (0.02) 0.71 (0.00)
F1 score 0.62 (0.03) 0.79 (0.01) 0.74 (0.00) 0.80 (0.00) 0.71 (0.00)
ROCAUC 0.67 (0.01) 0.85 (0.01) 0.80 (0.00) 0.87 (0.01) 0.77 (0.00)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Because we are only fine-tuning the methods on 100 samples (which is very small for tabular
data generation tasks), none of the baselines perform particularly well for the downstream metrics,
see Table 1. On the other hand, LaTable outperforms all baseline methods in the few-shot out-
of-distribution data generation domain. Another performance assessment we can obtain is the
ground-truth downstream performance, because we can break down the real data into the training set,
validation set, and test set. For instance, when we fit CatBoost on the training set of Cardio, and then
evaluated that performance, the accuracy and F1 score comes close to 0.74. This is inspiring, because
it suggests that we are able to generate data that is approaching the quality of the read dataset. In
future sections, we will discuss why we have reason to believe the architectural design choices made
in LaTable contributes to these results.

4.3 THE IMPORTANCE OF CROSS-DATASET TRAINING (D1)

Table 2: The training phase is essential for LaTable’s good performance. Without training, LaTable’s
performance drops to baseline level.

Methods Cardio URL WiDS Insurance Heloc
Without training

Accuracy 0.50 (0.00) 0.50 (0.00) 0.49 (0.01) 0.57 (0.01) 0.52 (0.01)
F1 score 0.33 (0.00) 0.48 (0.01) 0.37 (0.01) 0.54 (0.00) 0.42 (0.01)
ROCAUC 0.58 (0.06) 0.53 (0.00) 0.53 (0.00) 0.60 (0.00) 0.58 (0.00)

With training
Accuracy 0.64 (0.02) 0.79 (0.01) 0.75 (0.01) 0.81 (0.02) 0.71 (0.00)
F1 score 0.62 (0.03) 0.79 (0.01) 0.74 (0.00) 0.80 (0.00) 0.71 (0.00)
ROCAUC 0.67 (0.01) 0.85 (0.01) 0.80 (0.00) 0.87 (0.01) 0.77 (0.00)

In this section, we will discuss the first design choice (D1), and specifically the importance of training
LaTable on large amounts of data. We take the first checkpoint and the last checkpoint of LaTable,
such that we can benchmark the performance with and without the training phase. As we see in
Table 2, LaTable’s performance drops significantly when training is not applied before synthetic data
generation, and the downstream performance drops to the level of other models as we expect it would.
Recalling Figure 2, the model reaches its best performance when it is trained on large amounts of
training data. In conclusion, we believe that the good performance of LaTable is not only due to the
model architecture, but also the cross-dataset training procedure.

4.4 TEXTUAL CONTEXT IS ESSENTIAL FOR PERFORMANCE (D3)

Table 3: LaTable’s performance depends on the quality of the metadata it gets. When we switch the
default LaTable embeddings (UAE) to dummy embeddings, train until convergence, fine-tune on 100
samples, and generate synthetic data, LaTable’s performance drops to baseline level.

Methods Cardio URL WiDS Insurance Heloc
Dummy Embeddings

Accuracy 0.53 (0.01) 0.52 (0.01) 0.54 (0.00) 0.50 (0.01) 0.49 (0.01)
F1 score 0.46 (0.01) 0.48 (0.00) 0.47 (0.00) 0.43 (0.00) 0.46 (0.00)
ROCAUC 0.55 (0.01) 0.54 (0.00) 0.57 (0.00) 0.54 (0.01) 0.53 (0.00)

LaTable Embeddings
Accuracy 0.64 (0.02) 0.79 (0.01) 0.75 (0.01) 0.81 (0.02) 0.71 (0.00)
F1 score 0.62 (0.03) 0.79 (0.01) 0.74 (0.00) 0.80 (0.00) 0.71 (0.00)
ROCAUC 0.67 (0.01) 0.85 (0.01) 0.80 (0.00) 0.87 (0.01) 0.77 (0.00)

In this section, we discuss the third design choice (D3). Specifically, we ablate on the embedding
model used for the metadata, thus capturing the importance of textual input (the embedding model is
responsible for dataset description, column names, and other textual data inputs). As we can see in
Table 3, the performance of LaTable takes a hit when we replace the UAE embedding model with
dummy embeddings, possibly impacting not only training but also the data generation process during
evaluation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.5 FINE-TUNING IMPACT ON FINAL PERFORMANCE

Table 4: The number of fine-tuning samples impacts LaTable’s performance. When we increase the
number of fine-tuning examples from 100 to 1000, LaTable performs better in data generation, even
coming close to the downstream performance of real data.

Methods Cardio URL WiDS Insurance Heloc
Fine-tune 100 sample

Accuracy 0.55 (0.00) 0.60 (0.00) 0.57 (0.00) 0.60 (0.00) 0.57 (0.01)
F1 score 0.53 (0.00) 0.58 (0.01) 0.56 (0.00) 0.57 (0.00) 0.53 (0.00)
ROCAUC 0.55 (0.00) 0.64 (0.00) 0.58 (0.001) 0.64 (0.00) 0.58 (0.00)

Fine-tune 1000 sample
Accuracy 0.69 (0.01) 0.81 (0.00) 0.79 (0.01) 0.83 (0.02) 0.73 (0.00)
F1 score 0.69 (0.01) 0.80 (0.00) 0.78 (0.00) 0.81 (0.01) 0.73 (0.00)
ROCAUC 0.76 (0.00) 0.86 (0.01) 0.81 (0.00) 0.87 (0.00) 0.80 (0.01)

In this section, we conclude the experiments with an ablation on the number of samples used for
fine-tuning. We change the number of fine-tuning samples from the default (100) to 1000, thereby
enhancing the level of access LaTable has to the test dataset during the data generation phase. As we
can see from Table 4, the downstream performance increases, coming closer and closer to the real
data performance (around 0.72 for Cardio).

5 DISCUSSION

Summary We have motivated this paper by describing the effect Large Tabular Models (LTMs)
could have on the way tabular data is used: not as any single dataset analyzed in a vacuum, but
contextualized using their metadata and with respect to related datasets. We acknowledge the difficulty
in creating an LTM, due to the heterogeneous feature spaces of different tabular datasets, different
specifications of tabular data tasks, and even messy/insufficient data. In order to make a meaningful
first step towards creating LTMs, we propose LaTable, which can be trained across tabular datasets
(D1), takes information from categorical, numerical, and textual features (D2, D3), is equivariant
with respect to the input (D4), and displays early signs of scaling laws previously encountered
in foundation model regimes as well as outperform baselines in out-of-distribution few-shot data
generation. We would like to conclude this paper with discussions about limitations, impacts, and
next steps.

Binary classification, Multi-class, and Regression It is insightful to discuss a bit more about the
way we select the test datasets. We have selected five test datasets—Cardio, URL, WiDS, Insurance,
and Heloc—so that we can best ensure there will not be any data leakage issues. At the same
time, all five datasets belong to the same task—binary classification. This is not a coincidence.
Intuitively, binary classification is much easier than multi-class classification and regression, for
downstream models and synthetic data generation alike. This is because the number of modes for
a binary classification data distribution is likely to be significantly lower than other tabular dataset
tasks. When running experiments for LaTable, we have attempted to execute the same evaluation
pipeline for multi-class classification and regression datasets (like Gesture), but the performance did
not come close to the downstream results obtained on binary classification tasks, or the ground truth
downstream performance. We postulate that multi-class classification datasets and regression datasets
are inherently more complex datasets, and therefore more difficult to generate. This marks the proper
understanding of different types of tabular datasets to be a valuable and worthy direction of future
research.

Going forward. We think it would be beneficial for the community to list out a few directions of
LTM research

• Scaling Laws. Unlike in text and in vision, we don’t have a good intuition of the type of
scaling laws that would appear in LTMs. For instance, we do not yet know whether there is
a scaling law for model size and dataset size, like the ones we have seen in large language
model regimes. Nor do we know the optimal compute ratio when it comes to training and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

evaluating LTMs. The proper scale of an LTM model and its dataset is likewise uncertain.
All of these are valuable directions for future research.

• Dataset Tasks. As we have noted in earlier sections, LaTable performs well across binary
classification datasets, but the reason why its performance drops on multi-class and regres-
sion datasets still elude us. It is possible that the latter datasets are inherently more difficult
to capture. Whether or not that is the case, much more research effort should be spent into
understanding the different types of tabular datasets, and how they are different in the nature
of their tasks.

• High-quality data. Apart from Tablib, we have also tried training on WikiTables, another
large-scale tabular dataset in the wild. However, LaTable’s performance does not improve
with WikiTable training, possibly due to the fact that tables that cover a wide range of topics
with context from the Wikipedia article are not high-quality tabular datasets. These exper-
iment results emphasize the importance of good quality data in improving generalization
performance of LTMs. The issue of data quality may be resolved by better understanding of
large metadatasets like TabLib, and using heavy-handed curation and selection. To avoid
data leakage between the training and evaluation sets, this also requires robust tools for
identifying and removing duplicates, which is hard for tabular datasets since pre-processed
and filtered copies are common. Another possible avenue for future work is to use more
specialized databases for training, e.g. of high-throughput biological data.

Limitations. LaTable can be extended and improved in multiple ways:

• Scale and data. As discussed in the previous section, LaTable is a relatively small model
trained on a relatively small dataset. Scaling up LaTable and discovering larger scaling laws
is one of the key challenges for future research. In addition, we must simultaneously search
for high-quality data that spans binary classification, multi-class, and regression problems.

• Extending variable and table types. We restrict ourselves to numerical and categorical
data, but future work could consider date time, full string descriptions, time-series, and
relational databases to increase applicability and impact. In addition, future work could also
explore in-depth the inter-feature relationships and interactions between features as source
of information.

• Bias. In this work, we did not explore possible bias in the data and pre-trained LLMs, or
how LaTable copies that bias. More research into bias is required before applying LaTable
to the real-world, see broader impact below.

Broader Impact. It is insightful to recognize why LTMs can be difficult to create. Even though
there is an abundance of tabular data in the real world, in-the-wild tabular data can also be very large
and complex, often containing thousands of columns and millions of rows. This introduces obvious
problems such as complicated data preprocessing pipelines, expensive computation, etc. Because
the scale of tabular data is so large, even the features that are observed during training might not be
fully captured by the model—there may be a significant shift in the feature distribution from train to
test, let alone how one feature interacts (e.g. correlates) with other features, and the interaction of
features will often require domain knowledge to effectively annotate, i.e. LLMs may not be able to
approximate. All the difficulties we have discussed in this paper should be taken into consideration
when quantifying the difficulty of creating foundation models for tabular data. Nevertheless, LTMs
possess the huge potential to transform how we process real-world data as we know it. We believe the
broader impact of LaTable, and continued work in this area, is primarily positive. LaTable can enable
better synthetic data using fewer samples, which could promote more responsible AI. For example, to
improve minority representation using data augmentation, ML model testing through data simulation,
and data democratization through private synthetic data. The latter is especially interesting, since
few-shot generation may require a smaller privacy budget than standard synthetic data (after all the
model need not learn the full distribution from the private data and may be less likely to memorize
this data). Nonetheless, we need to acknowledge the risk: LaTable may make errors and may reflect
or exacerbate societal biases that are present in the data, or in the pretrained LLM embeddings. More
research into possible biases is required. The quality and fairness of generated data should always be
evaluated before applying LaTable to real-world sensitive settings like healthcare and finance. We
look forward to future research on tabular foundation models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

BIBLIOGRAPHY

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE transactions on neural networks
and learning systems, 2022a.

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language
models are realistic tabular data generators. arXiv preprint arXiv:2210.06280, 2022b.

Anna L Buczak and Erhan Guven. A survey of data mining and machine learning methods for cyber
security intrusion detection. IEEE Communications surveys & tutorials, 18(2):1153–1176, 2015.

Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng Sun.
Generating multi-label discrete patient records using generative adversarial networks. In Machine
learning for healthcare conference, pp. 286–305. PMLR, 2017.

Xolani Dastile, Turgay Celik, and Moshe Potsane. Statistical and machine learning models in credit
scoring: A systematic literature survey. Applied Soft Computing, 91:106263, 2020.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion
for categorical data. arXiv preprint arXiv:2211.15089, 2022.

Erin Doxsey-Whitfield, Kytt MacManus, Susana B Adamo, Linda Pistolesi, John Squires, Olena
Borkovska, and Sandra R Baptista. Taking advantage of the improved availability of census data:
a first look at the gridded population of the world, version 4. Papers in Applied Geography, 1(3):
226–234, 2015.

Gus Eggert, Kevin Huo, Mike Biven, and Justin Waugh. Tablib: A dataset of 627m tables with
context. arXiv preprint arXiv:2310.07875, 2023.

Meherwar Fatima and Maruf Pasha. Survey of machine learning algorithms for disease diagnostic.
Journal of Intelligent Learning Systems and Applications, 9(01):1–16, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Aspen K Hopkins, Alex Renda, and Michael Carbin. Can llms generate random numbers? evaluating
llm sampling in controlled domains. In ICML 2023 Workshop: Sampling and Optimization in
Discrete Space, 2023.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arxiv 2020. arXiv preprint arXiv:2012.06678, 2012.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pp. 17564–
17579. PMLR, 2023.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316, 2022.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret Ross,
Ravi Nair, and Erik Altman. Tabular transformers for modeling multivariate time series. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3565–3569. IEEE, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Aivin V Solatorio and Olivier Dupriez. Realtabformer: Generating realistic relational and tabular
data using transformers. arXiv preprint arXiv:2302.02041, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Mihaela Cătălina Stoian, Salijona Dyrmishi, Maxime Cordy, Thomas Lukasiewicz, and Eleonora
Giunchiglia. How realistic is your synthetic data? constraining deep generative models for tabular
data. arXiv preprint arXiv:2402.04823, 2024.

Boris van Breugel and Mihaela van der Schaar. Beyond privacy: Navigating the opportunities and
challenges of synthetic data. arXiv preprint arXiv:2304.03722, 2023.

Boris Van Breugel and Mihaela Van Der Schaar. Position: Why tabular foundation models should be
a research priority. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
48976–48993. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
van-breugel24a.html.

David S Watson, Kristin Blesch, Jan Kapar, and Marvin N Wright. Adversarial random forests for
density estimation and generative modeling. In International Conference on Artificial Intelligence
and Statistics, pp. 5357–5375. PMLR, 2023.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. Advances in neural information processing systems, 32, 2019.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-
based diffusion in latent space. arXiv preprint arXiv:2310.09656, 2023.

Zilong Zhao, Robert Birke, and Lydia Chen. Tabula: Harnessing language models for tabular data
synthesis. arXiv preprint arXiv:2310.12746, 2023.

A PSEUDO-CODE

12

https://proceedings.mlr.press/v235/van-breugel24a.html
https://proceedings.mlr.press/v235/van-breugel24a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 1: Training phase. Θ denotes all learnable parameters (of denoising and primary
networks). We use the CDCD noise scheduler(Dieleman et al., 2022) for categoricals and VESDE
Song et al. (2020) for numericals, denoted by respectively “CatSched" and “NumSched”. Capitals
X and H denote the tensors of dimensions (batch size, number of columns, hidden dimension)

Input: data D, LLM encoder fLLM : S → Rdf , diffusion noise schedulers CatSched and
NumSched, batch size “bs”
Initialise: transformer gT , primary networks gf , gs, gr, gt, gincat, g

in
num, goutcat , g

out
num, cache

dictionary D̄ = ∅.
Encode all strings and cache embeddings
for string in

⋃
k({r(k)} ∪

⋃dk

j=1{s
(k)
j } ∪

⋃
j∈I(k)

cat
{x(k)

ij }
nk
i=1) do

¯string ← fLLM (string)
Add string : ¯string to D̄

end for
Training
repeat

Sample dataset index k and sample batch of size bs without replacement.
Load (r̄(k), m̄(k), s̄

(k)
1 , ..., s̄

(k)
dk

, X̄cat, Xnum, C̄(k) (we ignore index k from here)
Sample t ∼ pT (t)

Sample ϵnum ∈ Rbs×(dk−|I(k)
cat|)×dh with ϵjl

iid∼ N(0, 1)

Sample ϵcat ∈ R(bs×|I(k)
cat|×dh with ϵjl

iid∼ N(0, 1)
Add noise to data:
X̃num ← NumSched.add_noise(Xnum, ϵnum, t)

X̃cat ← CatSched.add_noise(Xcat, ϵcat, t)
Forward pass:
t̃← gt(PosEmb(t))
m̃← gr(m̄)
s̃j ← gs(s̄j),∀j
hj ← gincat(x̃j),∀j ∈ I(k)

hj ← ginnum(h̃j),∀j ̸∈ I(k)cat

hj ← t̃+ r̃ + s̃j + hj ,∀j
H̃ ← gT (H)

x̃j ← goutcat (h̃j),∀j ∈ I(k)

x̂j ← goutnum(h̃j),∀j ̸∈ I(k)cat
Get probabilities for categoricals:
x̂j ← softmax(gf (C̄)x̃j),∀j ∈ I(k)cat (Eq. 1)
Compute loss and backwards, Eq. 2:
Lcat = CatSched.loss(Xcat, X̂cat, t)

Lnum = NumSched.loss(Xnum, X̂num, t)
Update ∆Θ ∝ −∇Θ

1
dk
(Lnum + Lcat)

until convergence

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 2: Generation phase. For diffusion schedulers, we use CDCD (Dieleman et al., 2022)
for categoricals and VESDE Song et al. (2020) for numericals, denoted by respectively “CatSched"
and “NumSched”, which have the same timestep scheduling (denoted by Sched.timesteps(T)).
Capitals X and H denote the tensors of dimensions (batch size, number of columns, hidden
dimension)

Input: metadata, m̄, (s̄j)j , C̄, I(k)cat , diffusion noise schedulers CatSched and NumSched, together
denoted as “Sched”, transformer gT , primary networks gf , gs, gr, gt, gincat, g

in
num, goutcat , g

out
num.

Sample X̃T
iid∼ N(0, I).

m̃← gr(m̄)
s̃j ← gs(s̄j),∀j
for t in Sched.timesteps(T) do

Single diffusion step:
t̃← gt(PosEmb(t))
hj ← gincat(x̃j,t),∀j ∈ I(k)

hj ← ginnum(x̃j,t),∀j ̸∈ I(k)cat

hj ← t̃+ r̃ + s̃j + hj ,∀j
H̃ ← gT (H)

x̃j ← goutcat (h̃j),∀j ∈ I(k)

x̂j,t−1 ← goutnum(h̃j),∀j ̸∈ I(k)cat

x̂j,t−1 ← softmax(gf (C̄)x̃j),∀j ∈ I(k)cat (Eq. 1)
Take diffusion step:
X̃cat,t−1 = CatSched.step(X̃cat,t, X̂cat,t−1, t)

X̃num,t−1 = NumSched.step(X̃num,t, X̂num,t−1, t)
end for
Output: X̃0

14

	Introduction
	Related work
	Method
	Setup and notation
	Generative model choice
	Satisfying desiderata
	Transformer backbone (D1, D4)
	Using context (D3)
	Mixed-type variables (D2)

	Experiments
	Scaling laws: Model and Data
	LaTable outperforms baselines in data generation
	The importance of cross-dataset training (D1)
	Textual context is essential for performance (D3)
	Fine-tuning impact on final performance

	Discussion
	Pseudo-code

