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ABSTRACT

Tabular data is one of the most ubiquitous data modalities, yet the literature on
tabular generative foundation models is lagging behind its text and vision counter-
parts. Large Tabular Models (LTMs) could revolutionize the way tabular data is
used: not as any single dataset analyzed in a vacuum, but contextualized using their
metadata and with respect to related datasets. Creating an LTM is difficult, due to
the heterogeneous feature spaces of different tabular datasets, metadata, and prior
knowledge. In this work, we propose LaTable: a novel tabular diffusion model
that addresses these challenges. We show LaTable can be trained across tabular
datasets. Through extensive experiments, we find that LaTable displays early signs
of scaling laws previously encountered in foundation model regimes. Moreover,
LaTable outperform baselines in out-of-distribution few-shot data generation.

1 INTRODUCTION

Motivation. Foundation models in the image and text domains epitomize the value of large scale
training with impressive results that push the boundaries of AI capabilities. In this work, we propose
LaTable, a tabular diffusion model that can be trained across vastly different datasets and demonstrates
early signs of scaling laws, in hopes that LaTable become the basis for a tabular foundation model.

Tabular foundation models, or Large Tabular Models (LTMs), lag far behind their text and vision coun-
terparts, and existing LTM research focuses on representation and supervised learning Van Breugel
& Van Der Schaar (2024). Despite this lag, tabular data is ubiquitous in the real world Borisov
et al. (2022a); Shwartz-Ziv & Armon (2022), ranging from electronic health records Fatima & Pasha
(2017) to census data Doxsey-Whitfield et al. (2015), from cybersecurity Buczak & Guven (2015)
to credit scoring Dastile et al. (2020), and from finance to natural sciences Huang et al. (2012).
A generative LTM could transform these fields through enabling few-shot generation of synthetic
data, and providing a base model that can be fine-tuned to other tasks like representation learning or
prediction van Breugel & van der Schaar (2023). Few-shot capabilities are especially interesting for
the tabular domain, where datasets are often smaller, and augmenting existing datasets via few-shot
generation of additional columns is of significant interest to researchers and practitioners alike.

Aim. Developing a generative LTM is difficult. First, until recently there has been a lack of large
tabular metadatasets. Second, different datasets cover vastly different features, and the existing tabular
datasets may also use different formats or lack labels for any specific task. Third, tabular datasets
may require domain knowledge, or some prior on tabular features. As a result of this, training models
meaningfully on large amounts of heterogeneous data remains underexplored. In this paper, we take a
step towards LTMs by developing a versatile tabular generative model with the following desiderata:

D1 Cross-dataset generation. We need an LTM to be able to generate different tables, which
requires it being able to generate different features and variable number of features.

D2 Categorical and numerical feature generation. Tables consist of combinations of both
continuous and discrete data, and we want to be able to model each explicitly. 1

D3 Use textual context. The model will need to understand contextual metadata, including the
dataset description, feature names, and allowed categories for categorical features.

D4 Equivariance w.r.t. column order. Table column order is usually arbitrary, which poses
an equivariance desiderata. If we define generative model G : SL ×M → OL, where

1In contrast, an LLM-based approach like Borisov et al. (2022b) implicitly models each numerical feature as
a series of discrete tokens. See Section 2 for more details.
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S denotes the column-wise input space (e.g. feature names), O the output space, and
M the metadata (e.g. dataset description), we have that ∀s ∈ SL,m ∈ M, we desire
G(T (s),m) = T (G(s,m)), where T represents some permutation to the column order.

Contributions. Our contributions are as follows:

1. We introduce LaTable, a novel tabular diffusion model that satisfies these desiderata. Thus,
LaTable can be trained across vastly different tabular datasets including different features,
number of features, different feature types, and with context of table metadata.

2. We demonstrate that LaTable displays early signs of scaling laws, familiar to those in
foundation model regimes. We use both zero-shot and few-shot generation for evaluation.

3. We empirically show that LaTable outperforms existing generative models in out-of-
distribution few-shot data generation.

2 RELATED WORK

Tabular single-dataset generative models. Tabular data is challenging due to its lack of structural
meaning (unlike images), mixed-type variables, and often limited size Van Breugel & Van Der Schaar
(2024). A growing body of work is developing generative models tailored to tabular data Choi et al.
(2017); Xu et al. (2019); Watson et al. (2023), including score-based diffusion models Dieleman et al.
(2022); Kotelnikov et al. (2023); Zhang et al. (2023). Nonetheless, most methods ignore or naively
one-hot-encode categorical data (e.g. feature names and categories), which loses context that could
help overcome data availability issues (D2 D3). Naturally, methods developed for single datasets are
also not designed for cross-dataset generation (D1), or equivariance with respect to columns (D4).

LLM-based approaches. Pretrained language models may provide a solution to cross-dataset
generation, as they contain general knowledge and can represent strings as numerical vectors in a
space structured by language supervision. Uniformly, all the works in this direction convert the rows
of tables into strings that can be processed by the LLM. The string generated by the LLM is then
converted back to a tabular format. Borisov et al. (2022b) fine-tuned GPT-2 Radford et al. (2019)
on tables, and they aim to achieve approximate equivariance (D4) through randomly generating
feature permutations, and sampling token distributions autoregressively rather than sampling only the
most likely sentences. Solatorio & Dupriez (2023) note that the approach in Borisov et al. (2022b)
retains GPT-2’s original vocabulary, yet most tokens may not appear in the tables of interest. They
instead use a fixed-set vocabulary Padhi et al. (2021), which reduces the chances of generating invalid
samples and thus improves efficiency. Zhao et al. (2023) show that an untrained, smaller LLM can
generate more accurate data and do so more cheaply than Borisov et al. (2022b). We note that in
contrast to us, previous works like Borisov et al. (2022b); Solatorio & Dupriez (2023); Zhao et al.
(2023) fine-tune their model on just a single tabular dataset, i.e. they do not attempt cross-dataset
training and do not aim to create a generative model that generalizes beyond the training data (D1).

The advantage of LLM-based generation is its simplicity and the fact that it does not require any
preprocessing of data, since the raw table can be presented to the LLM directly via prompting and in-
context learning. However, adapting LLMs as LTMs comes with serious disadvantages Van Breugel
& Van Der Schaar (2024). First, LLMs are expensive during both fine-tuning and inference. A
1-minute training job for CTGAN takes a whopping 540× longer for Borisov et al. (2022b) (see their
Appendix B.5, Table 6). One of the core sources of this inefficiency is the linearization of table
rows as sentences, and generating these autoregressively. For tabular data, where many columns
are typically numerical, this is problematic—it means that a single numerical variable is implicitly
modelled as an autoregressive series of categorical variables (e.g. 1.23 is modelled as 1→ .→ 23).
Hence, generating this number with an LLM requires 3 expensive forward calls to the model (plus
one for the field separation token). Fitting the whole table in context might also become difficult
with datasets containing hundreds of columns. Furthermore, the LLM training objective is not apt at
approximating continuous distributions. Hopkins et al. (2023) show that LLMs do not accurately
generate simple distributions (e.g. uniform). Van Breugel & Van Der Schaar (2024) visualize how
modelling a simple Gaussian with an LLM is non-trivial. By opting for an end-to-end numerical
representation of the data and a diffusion model framework, LaTable circumvents these limitations.
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3 METHOD

Summary. We propose LaTable, which satisfies the desiderata D1-D4. LaTable uses an encoder-
only transformer as backbone for mixed-type diffusion. The input of the model consists of noised
feature values (i.e. from the forward noising process), but also the dataset description, column
names, conditioning mask (in case of conditional generation), and boolean missingness mask. All
metadata strings (e.g. dataset description and feature names) and categorical features are first encoded
using a pretrained LLM into a fixed-length embedding. All inputs are subsequently mapped to a
common hidden space using separate element-wise MLPs, and added to provide the direct input of the
transformer. The output of the transformer is decoded on a feature-by-feature basis, where categorical
features are mapped to probabilities over the original features. See Figure 1 for an overview.

3.1 SETUP AND NOTATION

We index datasets with k, samples with i, and features with j. 2 Let us assume we have access to
a metadataset D = {D(k)}nD

k=1, where each dataset D(k) consists of a description, column names,
and the data itself. Let dk ∈ N denote the number of columns for dataset D(k). We define the j-th
feature space for dataset D(k) as X (k)

j . For categorical data, we let this be a finite set of strings, and
for numerical columns it may be some subset of R. Recall that we use S to denote the column-wise
input space (e.g. feature names), andM the metadata (e.g. dataset description). We can thus write
D(k) = (m(k), s(k), X(k)), with m(k) ∈M the dataset description, s(k) ∈ Sdk feature names, and
samples X(k) ∈ Πdk

j=1X
(k)
j . Finally, let us denote the indices of the categorical features by I(k)cat .

3.2 GENERATIVE MODEL CHOICE

We use a score-based diffusion model Ho et al. (2020); Song & Ermon (2019) for modelling the
data distribution. Diffusion models have increased in popularity thanks to their capability to produce
samples of higher quality than GANs and VAEs Goodfellow et al. (2020); Kingma (2013). We use
the discrete-time formulation with the Denoising Diffusion Implicit Model (DDIM) noise scheduler
Song et al. (2020). In the following sections, we will look into each element of LaTable in more
detail. We will look at (1) Transformer backbone (D1, D4); (2) Textual context (D3); (3) Mixed-type
variables (D2), and analyze how each model design choice satisfies desiderata D1-D4.

3.3 SATISFYING DESIDERATA

3.3.1 TRANSFORMER BACKBONE (D1, D4)

We use an encoder-only transformer at the core of LaTable. The transformer backbone is useful for
our setting, as it allows variable-length input and output, which allows us to train across datasets
(D1). We do not use a positional encoding for the input, such that the transformer is equivariant
with respect to the input (D4). In contrast, a recurrent architecture would not necessarily satisfy this
equivariance property. 3 We denote the transformer’s hidden dimension by dh.

3.3.2 USING CONTEXT (D3)

To make use of context (D3), we will encode the category names, column names, and dataset
description using a pretrained LLM encoder. Note that the dataset description is the same across all
features, but the other metadata are defined on the feature level. By using a pretrained LLM encoder,
we avoid having to learn embeddings for descriptions and categories from scratch. It also allows
access to textual similarities, even if our tabular data is limited. For example, datasets may contain
column “gender” and “sex”, and we need not learn from the data alone that these are closely related.

We denote the pretrained LLM by fLLM . Text encodings are of a fixed length df for any input string
S , such that fLLM : S → Rdf . Whenever we encode text data, we will denote this with a bar m̄(K):

2To avoid excessive clutter, we will leave out indices when they are irrelevant or clear from context.
3Importantly, removing the positional encoding means the transformer cannot know which column is which.

We remove this undesirable symmetry by adding column information to each input element, in the form of a
feature name embedding. See Section 3.3.2 for a more thorough discussion.
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1. Each dataset description m(K) is encoded by the LLM into a vector m̄(K).
2. Each categorical variable is converted into a string “[column name s] is [category c]".

Categories (c1, ..., cn) are then encoded by the LLM and stacked into an embedding matrix
C̄

(k)
j = (c̄1, ..., c̄n).

3. Feature names s(k)j are encoded by the LLM into vectors s̄(k)j .

We condition on the encoded metadata by mapping the dataset description m̄ and feature embeddings
s̄j to size dh using shallow MLPs gr, gs and adding it to the transformer input (see Figure 1). For the
encoder fLLM , we use the model WhereIsAI/UAE − Large− V 1 for three reasons: it is open
source and easily available 4; it achieved SOTA on the Massive Text Embedding Benchmark (MTEB)
Muennighoff et al. (2022); and it is very lightweight (size: 1.34 GB). All encodings are cached to
disk before training and testing to avoid LLM forward calls during training.

3.3.3 MIXED-TYPE VARIABLES (D2)

In contrast to LLMs, transformers, and diffusion models, we need to generate numerical values as
well as categoricals (D2). Let us start with the numerical variables.

Numerical variables. For numerical variables we can use relatively standard diffusion. Given some
time step t, the forward denoising process is applied to all numerical features xj , giving the noisy
(xj)t. A shallow MLP ginnum : R→ Rdh is used to map each numerical variable to the transformer’s
input space. The transformer is applied to the sequence of all variables. Subsequently, each sequence
element in the transformer’s output corresponding to a numerical variable is mapped back to scalars
using output network goutnum : Rdh → R. For each numerical xj , this yields output x̂j , and the loss
(e.g. sample-loss, ϵ-loss, or v-prediction) is computed per feature.

Categorical variables. To handle categorical variables, we draw inspiration from Continuous
Diffusion for Categorical Data (CDCD) Dieleman et al. (2022). The original CDCD learns high-
dimensional embeddings for each category separately, before applying L2 normalization to each
embedding (after which noise is added for the denoising). During training, CDCD adds noise to
these categorical embeddings (identical to continuous diffusion), and trains a model that predicts
probabilities for the original categories. This model is trained using some classification loss, e.g.
cross-entropy. During sampling, the outputted probabilities are used to predict the score in the
continuous space. Specifically, they use score interpolation—which is effectively a weighted mean of
all category embeddings, where weights are given by the probabilities predicted by the score model.

In our case, we do not want to learn embeddings and predict probabilities for all possible categories
in all datasets. By learning an embedding separately for each category, we lose context that is
captured in the category name (e.g. how categories female and woman are related). It also makes it
difficult to scale to large numbers of categories, especially if some of these categories are hardly ever
observed. Instead, we use the pretrained LLM fLLM for acquiring df -dimensional embeddings for
each category c, which carry the contextual knowledge of the category name. 5 We fine-tune these
embeddings using a shallow MLP followed by an L2 normalization layer, which we together denote
by gf : Rdf → Sdf . 6 The forward diffusion process corrupts these vectors by adding Gaussian
noise, giving c̄t. Similar to the numericals, we use a network gincat : Rdf → Rdh to map these
noisy embeddings to the transformer’s input space, and network goutcat : Rdh → Rdf is applied to the
categorical sequence elements in the transformer’s output—giving predicted embeddings in Rdf .

One key question remains: considering each categorical feature may have a different number of
categories, how do we map the transformer output (in Rdf ) back to the individual categories? We
achieve this using an attention-like layer. Letting ĉj ∈ Rdf be the output of the model, we let the final
predicted probability for some category i be proportional to the similarity of the generated vector and
the original categories’ embeddings:

4https://huggingface.co/WhereIsAI/UAE-Large-V1
5As discussed in Section 3.3.2, for all categorical features we embed the categorical c as c̄ = “[feature name]

is [c]".
6Without the normalization layer, it would be difficult for the model to give embedded categories with small

L2-norm a high probability (see Eq. 1). We add the shallow MLP’s finetuning to avoid projecting embeddings
that are quite different in Rd to the same point on the unit sphere.
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p(ci) = softmax(gf (C̄)T ĉ)i,∀i (1)

thereby allowing us to predict probabilities for each datasets’ and categoricals’ categories individually.
Identical to CDCD, we use cross-entropy loss (CE) for the categorical variables and use score
interpolation. Combining the numerical and categorical losses, we get:

L(x, x̂) = 1

dk
[
∑

j∈I(k)
cat

CE(xj , x̂j) +
∑

j /∈I(k)
cat

MSE(xj , x̂j)] (2)

Bringing it together. Overall, the model thus consists of a number of independent MLPs g that
allow us to bring differently sized variables (dataset description, feature column name embeddings,
categorical features, numerical features) all to the same space dh. The input of the transformer
consists of a sequence of inputs hj ∈ Rdh , j = 1, ..., dk (recall that dk is the number of columns in
the table), with hj = gincat((x̄j)t)+gr(m̄)+gs(s̄j)+gt(t) for categoricals, and hj = ginnum((xj)t)+
gr(m̄) + gs(s̄j) + gt(t) for numericals. This way, the encoder-only transformer backbone allows
variable-length input and output, which allows us to train across datasets (D1). We do not use a
positional encoding for the input, such that the transformer is equivariant with respect to the input
(D4). And We encode all metadata, including dataset description, feature column names, etc using a
pre-trained LLM (D3). The transformers output sequence is again decoded using independent shallow
networks goutnum and goutcat to provide score estimates for both numerical and categorical variables (D2).
See Figure 1 for a full overview.

Sex Income Age Hours per week

F >50K 47 38

LLM LLM

Forward denoising process (training)
Sample T noise (generation)

𝑔!"#$% 𝑔!"#$%

Transformer

𝑔!"#&'#

Backwards denoising step

𝑔%'($% 𝑔%'($%

𝑔!"#&'# 𝑔%'(&'# 𝑔%'(&'#

num losscat loss

32 38
categoricals

numericals

conditioning

No learnable params

Learnable mlpg

Noise 
scheduler

decoder decoder

LLM LLM Fourier enc

Noise 
scheduler

Diffusion 
timestep

Table 
description

𝑔) 𝑔* 𝑔#

Figure 1: The diffusion pipeline, for both training and generation. Note that the whole pipeline
is flexible with respect to the number of numerical and categorical features as input. The LLM
encoder is frozen and the transformer is an encoder-only model without positional encodings or
causal masking. Additional conditioning (e.g. missingness mask, conditioning information) can be
trivially added to the transformer input, or through cross-attention layers.
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Figure 2: By varying model size and dataset size, we observe that Latable’s performance follows a
general log-linear trend, mirroring that of early scaling laws in foundation models regimes. That is, as
we increase the model/dataset size exponentially, we obtain a linear increase in the final performance.

4 EXPERIMENTS

In this section, we will explore the tabular data generation capabilities of LaTable. We show that
LaTable displays early signs of scaling laws commonly found in foundation model regimes. Then, we
benchmark the performance of LaTable against popular baseline tabular models, as well as ablation
experiments that justify the design choice of our method.

Evaluation Pipeline We follow a four-step process to evaluate the performance of LaTable in the
few-shot out-of-distribution generation setting, partially inspired by the "Train on Synthetic, Test on
Real" methodology. (1) We obtain the final model checkpoint after training has converged (under
different training settings). (2) We choose a test dataset. More details about how the test datasets are
selected and what test datasets we use will be discussed shortly. (3) We perform minor fine-tuning
on 100 data samples (which is very small for synthetic data generation models), and we generate
synthetic data given the dataset metadata. (4) Finally, we use a well-known classifier model to fit the
generated synthetic data, and evaluate on real data using downstream performance metrics such as
accuracy, f1 score, and Area Under the Receiver Operating Characteristic Curve (rocauc). By default,
we will use the CatBoost classifier because it is has strong performance on tabular dataset tasks.

Training data. In order to make meaningful advancement towards foundation models, we need to
gather a training set for tabular data whose scale surpasses any existing collections of tabular datasets.
We build upon the recent effort of Tablib Eggert et al. (2023), which scrapes over 600M tables from
the web. After filtering through the data via heuristics and standard data cleaning, we arrive at a
subset of 100K tabular datasets. Finally, we chop each dataset down to 1K rows ensure an even
spread of data during training. In the end, the training set totals 100M rows, spanning 30K columns.

Test data, and combating data leakage. Because the datasets from Tablib are scraped from the web,
there is no sensible way to rule out data contamination or data leakage in the training data. In order
to best prevent data leakage and contamination, we gathered several tabular datasets that were not
commonly found on the web. These datasets are Cardio, URL, WiDS, Insurance, and Heloc Stoian
et al. (2024). In addition, for the tabular datasets that we ask LaTable to generate, we deliberately
pick the ones that LaTable cannot generate from zero-shot, hence verifying that LaTable did not
remember the training data. The core component of our evaluation is to show that training across a
large number of datasets indeed gives LaTable the ability to generate synthetic tabular datasets with
very few fine-tuning examples, and potentially pave a path for building larger and better LTMs for
future research.
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4.1 SCALING LAWS: MODEL AND DATA

In this section, we show that LaTable displays early signs of scaling laws commonly found in
foundation model regimes. We vary different training settings, and record the final downstream
performance from the synthetic data generation after the training has converged. We change the
model size by varying the number of transformer layers in the architecture, arriving at model sizes of
40M (2 layers), 80M (6 layers), and 118M (10 layers). We change the dataset sizes by varying the
number of tables we include in the training set, arriving at dataset sizes of 1M (1K tables), 10M (10K
tables), and 100M (100K tables). When varying the model sizes, the dataset size is fixed at 100M
(100K tables). When varying the dataset sizes, the model size is fixed at 118M (10 layers).

As we can see in Figure 2, the performance of LaTable follows a log-linear trend, mirroring that
of early scaling laws in foundation models regimes. That is, as we increase the model/dataset size
exponentially, we obtain a linear increase in the final performance. Interestingly, the model seems
to yield the best performance when trained with roughly the same dataset size as parameter count,
which could suggest further directions for tabular scaling laws.

4.2 LATABLE OUTPERFORMS BASELINES IN DATA GENERATION

In this section, we show that LaTable outperforms various baseline methods in few-shot out-of-
distribution tabular data generation. We choose GREAT, CTGAN, TVAE Xu et al. (2019), ARF
Watson et al. (2023), and TabDDPM Kotelnikov et al. (2023) as baselines, all of which are competitive
methods for tabular data tasks. We evaluate these methods on the test datasets Cardio, URL, WiDS,
Insurance, and Heloc. More specifically, we fit a CatBoost classifier on the generated data (treating
the synthetic data as the training data), and obtain downstream performance metrics (accuracy, F1
score, ROCAUC) from using the real data as the test set. In order to generate sensible synthetic data,
all methods are first fine-tuned for 100 samples on the test dataset.

Table 1: LaTable outperforms baselines in the few-shot out-of-distribution data generation setting.
Because we only fine-tune on 100 samples, baseline methods fail to generate high-quality synthetic
data, while LaTable generates good synthetic data, sometimes even coming close to real data. We
attribute this to both the training procedure and model design choices, as we will discuss in later
sections.

Methods Cardio URL WiDS Insurance Heloc
CTGAN

Accuracy 0.50 (0.00) 0.59 (0.01) 0.55 (0.00) 0.56 (0.01) 0.48 (0.01)
F1 score 0.43 (0.00) 0.58 (0.00) 0.54 (0.01) 0.53 (0.00) 0.45 (0.01)
ROCAUC 0.53 (0.07) 0.60 (0.00) 0.57 (0.00) 0.57 (0.00) 0.48 (0.02)

TVAE
Accuracy 0.58 (0.00) 0.61 (0.00) 0.57 (0.01) 0.61 (0.00) 0.59 (0.00)
F1 score 0.58 (0.00) 0.60 (0.02) 0.56 (0.01) 0.60 (0.00) 0.58 (0.00)
ROCAUC 0.60 (0.01) 0.64 (0.01) 0.60 (0.02) 0.65 (0.01) 0.60 (0.00)

ARF
Accuracy 0.55 (0.01) 0.53 (0.00) 0.55 (0.00) 0.54 (0.00) 0.53 (0.02)
F1 score 0.53 (0.01) 0.52 (0.00) 0.53 (0.01) 0.52 (0.01) 0.53 (0.01)
ROCAUC 0.57 (0.00) 0.55 (0.01) 0.55 (0.00) 0.56 (0.00) 0.53 (0.01)

DDPM
Accuracy 0.59 (0.01) 0.66 (0.00) 0.55 (0.00) 0.58 (0.00) 0.60 (0.00)
F1 score 0.58 (0.00) 0.65 (0.00) 0.54 (0.00) 0.58 (0.00) 0.58 (0.00)
ROCAUC 0.59 (0.00) 0.70 (0.00) 0.58 (0.00) 0.62 (0.01) 0.64 (0.02)

GREAT
Accuracy 0.58 (0.00) 0.59 (0.00) 0.57 (0.01) 0.58 (0.00) 0.57 (0.00)
F1 score 0.57 (0.00) 0.57 (0.01) 0.55 (0.00) 0.57 (0.00) 0.57 (0.00)
ROCAUC 0.58 (0.00) 0.59 (0.00) 0.59 (0.00) 0.57 (0.00) 0.57 (0.02)

LaTable
Accuracy 0.64 (0.02) 0.79 (0.01) 0.75 (0.01) 0.81 (0.02) 0.71 (0.00)
F1 score 0.62 (0.03) 0.79 (0.01) 0.74 (0.00) 0.80 (0.00) 0.71 (0.00)
ROCAUC 0.67 (0.01) 0.85 (0.01) 0.80 (0.00) 0.87 (0.01) 0.77 (0.00)
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Because we are only fine-tuning the methods on 100 samples (which is very small for tabular
data generation tasks), none of the baselines perform particularly well for the downstream metrics,
see Table 1. On the other hand, LaTable outperforms all baseline methods in the few-shot out-
of-distribution data generation domain. Another performance assessment we can obtain is the
ground-truth downstream performance, because we can break down the real data into the training set,
validation set, and test set. For instance, when we fit CatBoost on the training set of Cardio, and then
evaluated that performance, the accuracy and F1 score comes close to 0.74. This is inspiring, because
it suggests that we are able to generate data that is approaching the quality of the read dataset. In
future sections, we will discuss why we have reason to believe the architectural design choices made
in LaTable contributes to these results.

4.3 THE IMPORTANCE OF CROSS-DATASET TRAINING (D1)

Table 2: The training phase is essential for LaTable’s good performance. Without training, LaTable’s
performance drops to baseline level.

Methods Cardio URL WiDS Insurance Heloc
Without training

Accuracy 0.50 (0.00) 0.50 (0.00) 0.49 (0.01) 0.57 (0.01) 0.52 (0.01)
F1 score 0.33 (0.00) 0.48 (0.01) 0.37 (0.01) 0.54 (0.00) 0.42 (0.01)
ROCAUC 0.58 (0.06) 0.53 (0.00) 0.53 (0.00) 0.60 (0.00) 0.58 (0.00)

With training
Accuracy 0.64 (0.02) 0.79 (0.01) 0.75 (0.01) 0.81 (0.02) 0.71 (0.00)
F1 score 0.62 (0.03) 0.79 (0.01) 0.74 (0.00) 0.80 (0.00) 0.71 (0.00)
ROCAUC 0.67 (0.01) 0.85 (0.01) 0.80 (0.00) 0.87 (0.01) 0.77 (0.00)

In this section, we will discuss the first design choice (D1), and specifically the importance of training
LaTable on large amounts of data. We take the first checkpoint and the last checkpoint of LaTable,
such that we can benchmark the performance with and without the training phase. As we see in
Table 2, LaTable’s performance drops significantly when training is not applied before synthetic data
generation, and the downstream performance drops to the level of other models as we expect it would.
Recalling Figure 2, the model reaches its best performance when it is trained on large amounts of
training data. In conclusion, we believe that the good performance of LaTable is not only due to the
model architecture, but also the cross-dataset training procedure.

4.4 TEXTUAL CONTEXT IS ESSENTIAL FOR PERFORMANCE (D3)

Table 3: LaTable’s performance depends on the quality of the metadata it gets. When we switch the
default LaTable embeddings (UAE) to dummy embeddings, train until convergence, fine-tune on 100
samples, and generate synthetic data, LaTable’s performance drops to baseline level.

Methods Cardio URL WiDS Insurance Heloc
Dummy Embeddings

Accuracy 0.53 (0.01) 0.52 (0.01) 0.54 (0.00) 0.50 (0.01) 0.49 (0.01)
F1 score 0.46 (0.01) 0.48 (0.00) 0.47 (0.00) 0.43 (0.00) 0.46 (0.00)
ROCAUC 0.55 (0.01) 0.54 (0.00) 0.57 (0.00) 0.54 (0.01) 0.53 (0.00)

LaTable Embeddings
Accuracy 0.64 (0.02) 0.79 (0.01) 0.75 (0.01) 0.81 (0.02) 0.71 (0.00)
F1 score 0.62 (0.03) 0.79 (0.01) 0.74 (0.00) 0.80 (0.00) 0.71 (0.00)
ROCAUC 0.67 (0.01) 0.85 (0.01) 0.80 (0.00) 0.87 (0.01) 0.77 (0.00)

In this section, we discuss the third design choice (D3). Specifically, we ablate on the embedding
model used for the metadata, thus capturing the importance of textual input (the embedding model is
responsible for dataset description, column names, and other textual data inputs). As we can see in
Table 3, the performance of LaTable takes a hit when we replace the UAE embedding model with
dummy embeddings, possibly impacting not only training but also the data generation process during
evaluation.
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4.5 FINE-TUNING IMPACT ON FINAL PERFORMANCE

Table 4: The number of fine-tuning samples impacts LaTable’s performance. When we increase the
number of fine-tuning examples from 100 to 1000, LaTable performs better in data generation, even
coming close to the downstream performance of real data.

Methods Cardio URL WiDS Insurance Heloc
Fine-tune 100 sample

Accuracy 0.55 (0.00) 0.60 (0.00) 0.57 (0.00) 0.60 (0.00) 0.57 (0.01)
F1 score 0.53 (0.00) 0.58 (0.01) 0.56 (0.00) 0.57 (0.00) 0.53 (0.00)
ROCAUC 0.55 (0.00) 0.64 (0.00) 0.58 (0.001) 0.64 (0.00) 0.58 (0.00)

Fine-tune 1000 sample
Accuracy 0.69 (0.01) 0.81 (0.00) 0.79 (0.01) 0.83 (0.02) 0.73 (0.00)
F1 score 0.69 (0.01) 0.80 (0.00) 0.78 (0.00) 0.81 (0.01) 0.73 (0.00)
ROCAUC 0.76 (0.00) 0.86 (0.01) 0.81 (0.00) 0.87 (0.00) 0.80 (0.01)

In this section, we conclude the experiments with an ablation on the number of samples used for
fine-tuning. We change the number of fine-tuning samples from the default (100) to 1000, thereby
enhancing the level of access LaTable has to the test dataset during the data generation phase. As we
can see from Table 4, the downstream performance increases, coming closer and closer to the real
data performance (around 0.72 for Cardio).

5 DISCUSSION

Summary We have motivated this paper by describing the effect Large Tabular Models (LTMs)
could have on the way tabular data is used: not as any single dataset analyzed in a vacuum, but
contextualized using their metadata and with respect to related datasets. We acknowledge the difficulty
in creating an LTM, due to the heterogeneous feature spaces of different tabular datasets, different
specifications of tabular data tasks, and even messy/insufficient data. In order to make a meaningful
first step towards creating LTMs, we propose LaTable, which can be trained across tabular datasets
(D1), takes information from categorical, numerical, and textual features (D2, D3), is equivariant
with respect to the input (D4), and displays early signs of scaling laws previously encountered
in foundation model regimes as well as outperform baselines in out-of-distribution few-shot data
generation. We would like to conclude this paper with discussions about limitations, impacts, and
next steps.

Binary classification, Multi-class, and Regression It is insightful to discuss a bit more about the
way we select the test datasets. We have selected five test datasets—Cardio, URL, WiDS, Insurance,
and Heloc—so that we can best ensure there will not be any data leakage issues. At the same
time, all five datasets belong to the same task—binary classification. This is not a coincidence.
Intuitively, binary classification is much easier than multi-class classification and regression, for
downstream models and synthetic data generation alike. This is because the number of modes for
a binary classification data distribution is likely to be significantly lower than other tabular dataset
tasks. When running experiments for LaTable, we have attempted to execute the same evaluation
pipeline for multi-class classification and regression datasets (like Gesture), but the performance did
not come close to the downstream results obtained on binary classification tasks, or the ground truth
downstream performance. We postulate that multi-class classification datasets and regression datasets
are inherently more complex datasets, and therefore more difficult to generate. This marks the proper
understanding of different types of tabular datasets to be a valuable and worthy direction of future
research.

Going forward. We think it would be beneficial for the community to list out a few directions of
LTM research

• Scaling Laws. Unlike in text and in vision, we don’t have a good intuition of the type of
scaling laws that would appear in LTMs. For instance, we do not yet know whether there is
a scaling law for model size and dataset size, like the ones we have seen in large language
model regimes. Nor do we know the optimal compute ratio when it comes to training and
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evaluating LTMs. The proper scale of an LTM model and its dataset is likewise uncertain.
All of these are valuable directions for future research.

• Dataset Tasks. As we have noted in earlier sections, LaTable performs well across binary
classification datasets, but the reason why its performance drops on multi-class and regres-
sion datasets still elude us. It is possible that the latter datasets are inherently more difficult
to capture. Whether or not that is the case, much more research effort should be spent into
understanding the different types of tabular datasets, and how they are different in the nature
of their tasks.

• High-quality data. Apart from Tablib, we have also tried training on WikiTables, another
large-scale tabular dataset in the wild. However, LaTable’s performance does not improve
with WikiTable training, possibly due to the fact that tables that cover a wide range of topics
with context from the Wikipedia article are not high-quality tabular datasets. These exper-
iment results emphasize the importance of good quality data in improving generalization
performance of LTMs. The issue of data quality may be resolved by better understanding of
large metadatasets like TabLib, and using heavy-handed curation and selection. To avoid
data leakage between the training and evaluation sets, this also requires robust tools for
identifying and removing duplicates, which is hard for tabular datasets since pre-processed
and filtered copies are common. Another possible avenue for future work is to use more
specialized databases for training, e.g. of high-throughput biological data.

Limitations. LaTable can be extended and improved in multiple ways:

• Scale and data. As discussed in the previous section, LaTable is a relatively small model
trained on a relatively small dataset. Scaling up LaTable and discovering larger scaling laws
is one of the key challenges for future research. In addition, we must simultaneously search
for high-quality data that spans binary classification, multi-class, and regression problems.

• Extending variable and table types. We restrict ourselves to numerical and categorical
data, but future work could consider date time, full string descriptions, time-series, and
relational databases to increase applicability and impact. In addition, future work could also
explore in-depth the inter-feature relationships and interactions between features as source
of information.

• Bias. In this work, we did not explore possible bias in the data and pre-trained LLMs, or
how LaTable copies that bias. More research into bias is required before applying LaTable
to the real-world, see broader impact below.

Broader Impact. It is insightful to recognize why LTMs can be difficult to create. Even though
there is an abundance of tabular data in the real world, in-the-wild tabular data can also be very large
and complex, often containing thousands of columns and millions of rows. This introduces obvious
problems such as complicated data preprocessing pipelines, expensive computation, etc. Because
the scale of tabular data is so large, even the features that are observed during training might not be
fully captured by the model—there may be a significant shift in the feature distribution from train to
test, let alone how one feature interacts (e.g. correlates) with other features, and the interaction of
features will often require domain knowledge to effectively annotate, i.e. LLMs may not be able to
approximate. All the difficulties we have discussed in this paper should be taken into consideration
when quantifying the difficulty of creating foundation models for tabular data. Nevertheless, LTMs
possess the huge potential to transform how we process real-world data as we know it. We believe the
broader impact of LaTable, and continued work in this area, is primarily positive. LaTable can enable
better synthetic data using fewer samples, which could promote more responsible AI. For example, to
improve minority representation using data augmentation, ML model testing through data simulation,
and data democratization through private synthetic data. The latter is especially interesting, since
few-shot generation may require a smaller privacy budget than standard synthetic data (after all the
model need not learn the full distribution from the private data and may be less likely to memorize
this data). Nonetheless, we need to acknowledge the risk: LaTable may make errors and may reflect
or exacerbate societal biases that are present in the data, or in the pretrained LLM embeddings. More
research into possible biases is required. The quality and fairness of generated data should always be
evaluated before applying LaTable to real-world sensitive settings like healthcare and finance. We
look forward to future research on tabular foundation models.
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Algorithm 1: Training phase. Θ denotes all learnable parameters (of denoising and primary
networks). We use the CDCD noise scheduler(Dieleman et al., 2022) for categoricals and VESDE
Song et al. (2020) for numericals, denoted by respectively “CatSched" and “NumSched”. Capitals
X and H denote the tensors of dimensions (batch size, number of columns, hidden dimension)

Input: data D, LLM encoder fLLM : S → Rdf , diffusion noise schedulers CatSched and
NumSched, batch size “bs”
Initialise: transformer gT , primary networks gf , gs, gr, gt, gincat, g

in
num, goutcat , g

out
num, cache

dictionary D̄ = ∅.
# Encode all strings and cache embeddings
for string in

⋃
k({r(k)} ∪

⋃dk

j=1{s
(k)
j } ∪

⋃
j∈I(k)

cat
{x(k)

ij }
nk
i=1) do

¯string ← fLLM (string)
Add string : ¯string to D̄

end for
# Training
repeat

Sample dataset index k and sample batch of size bs without replacement.
Load (r̄(k), m̄(k), s̄

(k)
1 , ..., s̄

(k)
dk

, X̄cat, Xnum, C̄(k) (we ignore index k from here)
Sample t ∼ pT (t)

Sample ϵnum ∈ Rbs×(dk−|I(k)
cat|)×dh with ϵjl

iid∼ N(0, 1)

Sample ϵcat ∈ R(bs×|I(k)
cat|×dh with ϵjl

iid∼ N(0, 1)
# Add noise to data:
X̃num ← NumSched.add_noise(Xnum, ϵnum, t)

X̃cat ← CatSched.add_noise(Xcat, ϵcat, t)
# Forward pass:
t̃← gt(PosEmb(t))
m̃← gr(m̄)
s̃j ← gs(s̄j),∀j
hj ← gincat(x̃j),∀j ∈ I(k)

hj ← ginnum(h̃j),∀j ̸∈ I(k)cat

hj ← t̃+ r̃ + s̃j + hj ,∀j
H̃ ← gT (H)

x̃j ← goutcat (h̃j),∀j ∈ I(k)

x̂j ← goutnum(h̃j),∀j ̸∈ I(k)cat
# Get probabilities for categoricals:
x̂j ← softmax(gf (C̄)x̃j),∀j ∈ I(k)cat (Eq. 1)
# Compute loss and backwards, Eq. 2:
Lcat = CatSched.loss(Xcat, X̂cat, t)

Lnum = NumSched.loss(Xnum, X̂num, t)
Update ∆Θ ∝ −∇Θ

1
dk
(Lnum + Lcat)

until convergence
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Algorithm 2: Generation phase. For diffusion schedulers, we use CDCD (Dieleman et al., 2022)
for categoricals and VESDE Song et al. (2020) for numericals, denoted by respectively “CatSched"
and “NumSched”, which have the same timestep scheduling (denoted by Sched.timesteps(T )).
Capitals X and H denote the tensors of dimensions (batch size, number of columns, hidden
dimension)

Input: metadata, m̄, (s̄j)j , C̄, I(k)cat , diffusion noise schedulers CatSched and NumSched, together
denoted as “Sched”, transformer gT , primary networks gf , gs, gr, gt, gincat, g

in
num, goutcat , g

out
num.

Sample X̃T
iid∼ N(0, I).

m̃← gr(m̄)
s̃j ← gs(s̄j),∀j
for t in Sched.timesteps(T ) do

# Single diffusion step:
t̃← gt(PosEmb(t))
hj ← gincat(x̃j,t),∀j ∈ I(k)

hj ← ginnum(x̃j,t),∀j ̸∈ I(k)cat

hj ← t̃+ r̃ + s̃j + hj ,∀j
H̃ ← gT (H)

x̃j ← goutcat (h̃j),∀j ∈ I(k)

x̂j,t−1 ← goutnum(h̃j),∀j ̸∈ I(k)cat

x̂j,t−1 ← softmax(gf (C̄)x̃j),∀j ∈ I(k)cat (Eq. 1)
# Take diffusion step:
X̃cat,t−1 = CatSched.step(X̃cat,t, X̂cat,t−1, t)

X̃num,t−1 = NumSched.step(X̃num,t, X̂num,t−1, t)
end for
Output: X̃0
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