
Under review as a conference paper at ICLR 2024

MSPIPE: MINIMAL STALENESS PIPELINE FOR EFFI-
CIENT TEMPORAL GNN TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal graph neural networks (TGNNs) have demonstrated exceptional perfor-
mance in modeling interactions on dynamic graphs. However, the adoption of mem-
ory modules in state-of-the-art TGNNs introduces significant overhead, leading to
performance bottlenecks during training. This paper presents MSPipe, a minimal
staleness pipeline design for maximizing training throughput of memory-based
TGNNs, tailored to maintain model accuracy and reduce resource contention. Our
design addresses the unique challenges associated with fetching and updating mem-
ory modules in TGNNs. We propose an online pipeline scheduling algorithm that
strategically breaks temporal dependencies between iterations with minimal stale-
ness and delays memory fetching (for obtaining fresher memory vectors) without
stalling the GNN training stage or causing resource contention. We further design
a staleness mitigation mechanism to improve training convergence and model ac-
curacy. We provide convergence analysis and demonstrate that MSPipe retains the
same convergence rate as vanilla sampling-based GNN training. Our experiments
show that MSPipe achieves up to 2.45× speed-up without sacrificing accuracy, mak-
ing it a promising solution for efficient TGNN training. The implementation (anony-
mous) for our paper can be found at https://anonymous.4open.science/r/MSPipe/.

1 INTRODUCTION

Many real-world graphs are inherently dynamic with nodes and edges continuously evolving over
time. For example, a temporal graph of a social network captures the changing patterns of connections
between individuals, while a temporal user-item graph can represent the changing preferences of
users in a recommendation system. Previous attempts to model these dynamic systems have relied on
static graph representations that fail to account for their temporal nature Zhang et al. (2019; 2020);
Nguyen et al. (2018). Recently, temporal graph neural networks (TGNNs) are designed to incorporate
time-related information, learn both structural and temporal dependencies and enable more accurate
and comprehensive modeling of dynamic graphs Rossi et al. (2021); Wang et al. (2021); Kumar et al.
(2019); Trivedi et al. (2019); Xu et al. (2020); Zhang et al. (2023); Cong et al. (2023).

Among the existing TGNN models, memory-based TGNNs, such as TGN Rossi et al. (2021),
APAN Wang et al. (2021), JODIE Kumar et al. (2019), DyRep Trivedi et al. (2019) and TIGER Zhang
et al. (2023), have achieved state-of-the-art performance on a variety of tasks Poursafaei et al. (2022),
notably link prediction and node classification. Their promising performance can be attributed to the
node memory module, which stores time-aware representations, allowing them to capture intricate
long-term information of each node. In each training iteration of these models, the memory vectors
of nodes within the sampled subgraphs are loaded and fed into GNN training together with node
features (Fig. 1); the updated representations are written back to the memory module along with the
current batch of the timed events when this iteration of GNN training is done.

Despite their impressive performance, it remains challenging to train memory-based TGNN at scale,
because of the temporal dependency induced by the nature of the memory module. The memory
module behaves like a recursive filtering mechanism that iteratively filters and distills information of
historical events into the memory state. Consequently, respecting the temporal dependency incurs
a substantial overhead in memory-based TGNN training (up to 36.1% of the execution time of one
training iteration) but is important for maintaining model performance. Specifically, the temporal
dependency of the memory module is manifested in memory fetch and update operations. First, the

1

https://anonymous.4open.science/r/MSPipe/

Under review as a conference paper at ICLR 2024

Figure 1: Memory-based TGNN Training. (a) represents the general training scheme; (b) shows the
pre-sampling and pre-fetching optimization; (c) is the case of breaking the dependency.

latest memory state of a node cannot be fetched until the update of the node memory module in the
last iteration has been completed. This dependency is illustrated by the red arrow in Fig. 1, indicating
that subsequent iterations fetch the most recently updated node memory from previous iterations.
Next, to avoid information leakage, updated memory of a node with a graph event in the current
batch cannot be utilized before training the model using the same event Rossi et al. (2021). As a
result, the memory update can only be applied at the end of each training iteration. When applying
optimizations from previous works Kaler et al. (2022); Zheng et al. (2022), memory fetching in
the next training iteration has to wait until the memory update is finished as shown in Fig. 1(b),
diminishing the training efficiency. The detailed temporal dependencies originating from the memory
module between iterations are depicted in Fig. 2. These temporal dependencies on the memory fetch
and update execution orders limit the chances for parallel execution and lower GPU utilization in
training TGNNs, posing a significant challenge in effectively scaling TGNN learning to large datasets.
In contrast, the remarkable success of recent DNN models relies on efficient parallelism for maximal
utilization of distributed hardware resources and datasets Shoeybi et al. (2019); Rasley et al. (2020).
Therefore, there is a pressing need for a parallel execution scheme that enables more efficient and
scalable distributed TGNN training.

There exists a line of research Wan et al. (2022); Peng et al. (2022); Zheng et al. (2022); Kaler et al.
(2022); Gandhi & Iyer (2021) on optimizing the training of static GNNs. However, the temporal
dependencies discussed above are unique to TGNN because of the memory module. The existing
works fail to handle such temporal dependencies and are therefore ineffective for TGNN training.
Moreover, prior studies on optimizing TGNN systems are limited Wang & Mendis (2023); Zhou
et al. (2022a), which all focus on accelerating inference speed rather than training throughput. While
previous works have analyzed the convergence rate of static GNN training Chen et al. (2017); Cong
et al. (2020; 2021), the ramifications of violating temporal dependencies have not yet been explored.

To fill these gaps, we propose a novel framework that leverages a minimal staleness bound to
accelerate TGNN training with theoretical guarantees. The main contributions are as follows:

•We propose a formulation for the TGNN training pipeline, by analyzing the initiation and completion
times across training stages. This formulation decomposes TGNN training into different stages,
facilitating a comprehensive analysis of training bottlenecks. Using this formulation, we conduct
thorough profiling of distributed memory-based TGNN training, illustrating the opportunity to
optimize the bottlenecks caused by the memory module and its temporal dependencies.

• Tackling the temporal dependencies, we propose a TGNN training framework, MSPipe, consisting
of two key designs: (1) We break the temporal dependencies by introducing staleness in the memory
module. This is achieved through a minimal staleness algorithm that determines a minimal staleness
bound and effectively schedules the training pipeline accordingly, to maximize training throughput
while maintaining model accuracy. (2) We propose a lightweight staleness mitigation method that
leverages the memories of recently updated nodes with the highest similarity, which effectively
reduces the staleness error.

• We provide a theoretical convergence analysis, demonstrating that MSPipe does not sacrifice
convergence speed and the asymptotic convergence rate of our method is the same as vanilla memory-
based TGNN training (without staleness).

•We comprehensively evaluate the performance of MSPipe through experiments. MSPipe outper-
forms existing state-of-the-art frameworks (TGL Zhou et al. (2022b) and TGL with optimizations
from SALIENT Kaler et al. (2022)), achieving up to 2.45× speed-up and 83.6% scaling efficiency
without accuracy loss.

2

Under review as a conference paper at ICLR 2024

2 BACKGROUND AND RELATED WORK

Temporal Graph Neural Network. Among the variety of TGNNs, memory-based TGNNs achieve
state-of-the-art accuracy in modeling temporal dynamics in graph-structured data Rossi et al. (2021);
Xu et al. (2020); Trivedi et al. (2019); Kumar et al. (2019); Poursafaei et al. (2022); Sankar et al.
(2020); Zhang et al. (2023); Cong et al. (2023). Memory-based TGNNs maintain a node memory
vector Sv for each node v in the dynamic graph that memorizes long-term dependencies. The memory
update and training paradigms can be formulated as:

mi
v = agg(mi

v,m
i
u | u ∈ N(v)) (1)

Si
v = f(Si−1

v ,mi
v) (2)

hi
v = ϕ(g(Si

v, S
i
u | u ∈ N(v)) (3)

where mi
v represents a message generated by a graph event related to v that occurs at training iteration

i, Si
v is the memory vector and hi

v is the embedding of node v in iteration i. The messages of node v’s
1-hop neighbors N(v) are combined with mi

v using an aggregator function agg (e.g., mean aggrega-
tion) to form mi

v , which are applied in the memory update function f(·) (e.g., an RNN) to update Si
v .

Iter i

Memory
Store

Msg
Store 𝑚!

𝑆!"#
Mem

Updater 𝑆!
Memory

Store

Embedd
ing

Batch
i

Msg
Store

ℎ!

Update
𝑚!$#

𝑆!
Mem

Updater 𝑆!$#
Memory

Store

Embedd
ing

Batch
i+1

Msg
Store

ℎ!$#

Update

Iter i + 1

Update Update

Figure 2: Memory-based TGNN Training
Stages

Then the memory aggregator g(·) gathers the mem-
ory vector and passes it to the update function ϕ(·),
which is a single layer perceptron σ(Wi) where
σ(·) is a non-linear activation function and Wi is
a weight matrix. Note that all the above operations
are executed in GPU and the updated memory vec-
tors Si

v will be written back to the memory stor-
age in CPU main memory. The detailed training
workflow is illustrated in Fig. 2. The key design
differences of various TGNN models lie in f(·)
and g(·) functions. Due to the space limit, detailed discussion of the TGNN models can be found in
Appendix B.

Optimizations for GNNs. There have been recent studies on accelerating the inference speed of
TGNN Zhou et al. (2022a); Wang & Mendis (2023). Sampling-based mini-batch training has become
the norm for static GNN and TGNN training Gandhi & Iyer (2021); Hamilton et al. (2017); Waleffe
et al. (2023); Yang et al. (2022); Ying et al. (2018), which samples a subset of neighbors of target
nodes to generate a subgraph, as input to GNN training. The bottlenecks mainly lie in subgraph
sampling and feature fetching due to the neighbor explosion problem Chen et al. (2018); Yan et al.
(2018). ByteGNN Zheng et al. (2022) and SALIENT Kaler et al. (2022) adopt pre-sampling and
pre-fetching to hide sampling and feature fetching overhead in multi-layer static GNN training. These
optimizations may not resolve the bottleneck of TGNN training: Maintaining node memories in
sequential order presents inevitable overhead in memory-based TGNN training when only lightweight
sampling and feature fetching are needed for a single TGNN layer Rossi et al. (2021).

Asynchronous Distributed Training A number of works advocate asynchronous training of DNN
and static GNN models, which introduces staleness in model parameter learning. For distributed
DNN training, PipeSGD Li et al. (2018), SAPipe Chen et al. (2022), Hogwild Recht et al. (2011),
SSP Ho et al. (2013) and Dai et al. (2018) adopt stale weight gradients on large model parameters to
eliminate communication overhead, while GNN models typically have much smaller sizes. For static
GNN training, PipeGCN Wan et al. (2022) and Sancus Peng et al. (2022) overlap model computation
with communication in full-graph training, and introduce staleness in node embeddings. Although
these methods are effective in training multi-layer static GNNs, their effect is limited when applied to
memory-based TGNNs, from three aspects: 1) they focus on full graph training and apply staleness
between multiple GNN layers to overlap the significant communication overhead with computation.
In TGNN training, the communication overhead is relatively small due to subgraph sampling and the
presence of only one GNN layer. Therefore, the optimizations for full-graph training are not suitable.
2) all previous GNN training frameworks simply introduce a pre-defined staleness bound without ex-
plicitly analyzing the relationship between model quality and training throughput, potentially leading
to sub-optimal parallelization solutions; 3) they focus on addressing the logical dependency between
feature fetching and model training within each training iteration, while performance bottleneck lies
more on temporal dependency caused by memory fetching and updating in TGNN training. To our
best knowledge, we present the first comprehensive approach to address the bottlenecks arising from

3

Under review as a conference paper at ICLR 2024

Dataset Sample Fetch
feature

Fetch
memory

Train
GNN

Update
memory

REDDIT Kumar et al. (2019) 9.5% 12.6% 5.7% 46.9% 25.3%
WIKI Kumar et al. (2019) 6.6% 5.8% 5.8% 51.5% 30.3%
MOOC Kumar et al. (2019) 9.7% 3.0% 2.5% 53.1% 31.7%
LASTFM Kumar et al. (2019) 11.5% 9.1% 8.5% 43.0% 26.8%
GDELT Zhou et al. (2022b) 17.6% 12.8% 10.5% 37.5% 21.6%

Table 1: Training time breakdown of TGN model. Profiling setup
and other models’ statistics are in Appendix D.

Figure 3: Training throughput
and model accuracy under dif-
ferent staleness bounds

the memory module in TGNNs and determine the minimal staleness bound that enables efficient and
scalable training of memory-based TGNNs, with corresponding theoretical convergence proofs.

3 MSPIPE FRAMEWORK

We design a stall-free minimal-staleness scheduling system for TGNN training, MSPipe (Fig. 1(c)).
We first identify the bottleneck and temporal dependencies triggered by the memory module. To
accelerate training, we pipeline data preprocessing, memory module fetching/updating and GNN
training across multiple iterations. The minimal number of staleness iterations without causing
pipeline stagnation is optimally decided and an online scheduling algorithm is designed to control
memory staleness and avoid resource contention. To further mitigate memory staleness, we propose
a lightweight similarity-based memory update module to obtain fresher information.

3.1 MSPIPE MECHANISM

Significant memory operation overhead and temporal dependencies. We consider a common
5-stage abstraction of memory-based TGNN training, i.e., graph sampling, feature fetching, memory
fetching, GNN training and memory update. We conduct detailed profiling of the execution time of
each stage, with time breakdown shown in Table 1. Memory operations incur substantial overhead
(up to 36.1% of the total execution time of one training iteration), while sampling and feature fetching
do not (due to the 1-layer TGNN structure). As shown in Fig. 1(a), memory fetching depends on
memory vectors updated at the end of the previous iteration, and has to wait for the relatively long
TGNN training and memory updating to finish (Fig. 1(b)).

Pipline mechanism. A natural design to accelerate the training process involves decoupling the
temporal dependency between the memory update stage in one training iteration and the memory
fetching stage in the subsequent iteration, by leveraging stale memory vectors in the latter. Fig. 1(c)
provides a high-level overview of the training pipeline, where computation (e.g., GNN training) is
parallelized with fragmented I/O operations encompassing feature fetching, memory fetching, and
memory update. The advanced memory fetching stage introduces a certain degree of staleness into
the node memory module, causing the TGNN model to receive outdated input. Mathematically,
MSPipe’s training can be formulated as follows, which are modified from Eqn. 2 and Eqn. 3:

S̃i
v = f(S̃i−k

v ,mi
v), h

i
v = ϕ(g(S̃i

v, S̃
i
u | u ∈ N(v)) (4)

where S̃i
v represents the memory vector of node v in training iteration i updated based on stale

memory vector in iteration i − k, and hi
v is the embedding of node v. MSPipe uses the memory

vector from k iterations before the current iteration to generate messages and train the model.

In the example pipeline in Fig. 4, we have staleness bound k = 2, 4, indicating that memory fetching
retrieves memory vectors updated two and four iterations before, respectively. While a larger staleness
bound can enhance throughput, it may have detrimental effects on model convergence. Previous
static GNN frameworks Wan et al. (2022); Peng et al. (2022) all rely on a intuitively predefined
staleness bound. We argue that randomly selecting a staleness bound k, is inadequate and may lead
to delayed execution of the GNN training stage or unnecessarily high staleness. To support our
argument, we conduct experiments on the LastFM dataset, training TGN models. As depicted in
Fig. 3, applying the smallest staleness bound (e.g., k = 2) leads to degradation in training throughput,
while employing a larger staleness bound (e.g., k = 5) impacted model accuracy. To address this, we
introduce a pipeline scheduling policy that determines the minimal staleness bound that maximizes
system throughput without affecting model convergence.

4

Under review as a conference paper at ICLR 2024

Sample Fetch
Feat.

Fetch
Mem

Sample

Samplek=4

iter 1

iter 2

iter 3(a)

(b)

Memory UpdateGNN Training

Sampleiter 4

Sampleiter 5

Fetch
Feat.

Fetch
Mem Memory UpdateGNN Training

Fetch
Feat.

Fetch
Mem Memory UpdateGNN Training

Fetch
Feat.

Fetch
Mem Memory UpdateGNN Training

Fetch
Feat.

Fetch
Mem Memory UpdateGNN Training

Sample Fetch
Feat.

Fetch
Mem

Sample

Sample
k=2

iter 1

iter 2

iter 3

Memory UpdateGNN Training

Fetch
Feat.

Fetch
Mem Memory UpdateGNN Training

Fetch
Feat.

Fetch
Mem Memory UpdateGNN Training

Figure 4: Pipeline execution. Dashed arrow represents the bubble
time. Red arrow denotes memory fetching to retrieve memory vectors
updated k iterations before.

1.Sample 2. Feature
Fetching

3. Memory
Fetching

5. Memory
Update

4.GNN
Training

GPU PCIe H2D NetworkPCIe D2H

Figure 5: Resource require-
ment of different stages.

3.2 STALL-FREE MINIMAL-STALENESS PIPELINE SCHEDULE

To maximize TGNN training throughput, our objective is to enable the GPU to seamlessly perform
computation without waiting for data preparation, as depicted in Fig. 4(a). We seek to determine the
minimal staleness iteration number k and perform resource-aware online pipeline stage scheduling,
which enables maximum speed-up without stalling the GNN training stage, while ensuring model
convergence. To accurately model resource contention, we analyze the resource requirements for
different stages. Fig. 5 demonstrates that feature fetching and memory fetching contend for the copy
engine and PCIe resources during the copy operation from host to device. However, no contension
are encountered during the memory update stage, as it involves a copy operation from device to
host Choquette & Gandhi (2020). Additionally, we adopt a GPU sampler with restricted GPU
resource allocation to avoid competition with the GNN training stage.

Minimal-staleness bound k. Let b(j)i and e
(j)
i denote the start time and end time of stage j in

iteration i. τ (j) is the execution time of stage j. b(j)i and e
(j)
i can be computed as

b
(j)
i =


b
(j)
i−1 + τ (j) j = 1

max(b
(j−1)
i + τ (j−1), b

(j+1)
i−1 + τ (j+1)) j = 2

max(b
(j−1)
i + τ (j−1), b

(j)
i−1 + τ (j)) j ∈ [3, 5]

, e
(j)
i = b

(j)
i + τ (j), j ∈ [1, 5]

(5)
where τ (j) can be collected in a few iterations of profiling. Eqn. 5 ensures sequential execution
of the stages in each training iteration, which prohibits simultaneous execution of the same stage
from different iterations and resource competition among different stages. Specifically, feature
fetching (stage 2) competes for PCIe and copy engine resources with memory fetching (stage 3) in
the last iteration. Consequently, in MSPipe, feature fetching cannot commence until the memory
fetching from the previous iteration and the sampling stage from the current iteration have both been
completed, as illustrated in Fig. 4. Moreover, during synchronous training, different batches cannot
be computed simultaneously by the TGNN (stage 4) and memory vectors from different iterations
must be updated sequentially (stage 5) to prevent write conflicts.

To maximize training throughput with the least impact on model accuracy, we seek to fetch the
most up-to-date memory vectors that are ki iterations before the current iteration i without causing
resource contention or pipeline stalling. To achieve this, we find the minimal ki as in the following
linear program:

minimize ki

subject to e
(jupd)
i−ki

≥ b
(jfeat)
i + τ (jfeat), e

(jupd)
i−ki

≤ b
(jtrain)
i − τ (jmem), ki ≤ kmax

1 ≤ ki < i, i = 1, ..., E, i− ki ≥ 0, jfeat = 2, jmem = 3, jtrain = 4, jupd = 5

Here E denotes the total number of iterations in a training epoch. There are 3 constraints: 1) The first
ensures that the memory update for the i− kith iteration is finished before memory fetching in the
ith iteration. 2) The second guarantees that delaying the memory fetching stage does not stall the
subsequent GNN training stage, which enables incessant execution of GNN training stages on the
GPU. 3) The third constraint introduces an upper bound for the number of staled iterations, which
is based on an observation: During each iteration, the memory module updates only a small subset
of nodes’ memory vectors. Consequently, it is only the memory vectors of these specific nodes that
become stale when they are fetched prior to the memory update stage. In Fig. 6, it can be observed

5

Under review as a conference paper at ICLR 2024

Figure 6: Percentage of nodes that
use staled memory vectors under dif-
ferent numbers of staleness iterations

Sample
Fetch
Feat.

Fetch
Mem

Sample

Samplek=3

iter 1

iter 2

iter 3

Memory UpdateGNN Training

Sampleiter 4

Sampleiter 5

Fetch
Feat.

Fetch
Mem Memory UpdateGNN Training

Fetch
Feat.

Fetch
Mem Memory UpdateGNN Training

Fetch
Feat.

Fetch
Mem Memory UpdateGNN Training

Fetch
Feat.

Fetch
Mem GNN Training

(minimal)

Figure 7: Resource-aware online schedule. Red arrow denotes
memory fetching to retrieve memory vectors updated k itera-
tions before. Green dashed arrow represents the delay time.

that the percentage of stale nodes increases with larger staleness iterations and we choose an upper
bound kmax to ensure that the percentage of stale nodes will not exceed 50%. By iterating through
each iteration, the above problem can be solved in O(E).

Resource-aware online pipeline schedule. Once we have determined the minimal staleness iteration
number ki, we can schedule the training pipeline by deciding the start time b

(j)
i of each stage. This

scheduling problem can be modeled as a variant of the “bounded buffer problem” in producer-
consumer systems Mehmood et al. (2011), where the buffer length k represents the number of staled
iterations, the memory update stage serves as a slow consumer, and the memory fetching stage acts
as a fast producer. To ensure efficient training, the scheduler ensures that the training stages from
different iterations do not compete for the same hardware resource and strictly adhere to a sequential
execution order, as illustrated in Fig. 7. By leveraging the minimal staleness iteration numbers ki, the
scheduler monitors the staleness state of each iteration and defers the memory fetching stage until
the minimal staleness condition is satisfied, ensuring that subsequent GNN training stages are not
impeded to maximize training throughput. The detailed pseudocode can be found in Appendix D.3.

3.3 SIMILARITY-BASED STALENESS MITIGATION

Figure 8: Distribution
of ∆t in WIKI dataset

As a node’s memory should be updated upon occurrence of events related to
the node, stationary memory state over a certain period of time would result
in stale representations Rossi et al. (2021); Kumar et al. (2019). MSPipe
may aggravate this problem although minimal staleness is introduced. To
improve model convergence and accuracy with MSPipe, we further propose
a staleness mitigation strategy by aggregating memories of recently active
nodes with the highest similarity, which are considered to have similar and
fresher temporal representations, to update the stale memory of a node.
When node v’s memory has not been updated for time ∆t, longer than a
threshold tthr, we update the stale memory of the node, S̃i−k

v , by combining it with the averaged
memory of a set N of most similar and active nodes. An active node is defined to be the one whose
memory is fresher than that of node v and ∆t is smaller than tthr. For similarity between different
nodes, we count their common neighbors which are reminiscent of the Jaccard similarity Leskovec
et al. (2020). We observe that ∆t follows a power-law distribution shown in Fig. 8, which means that
only a few ∆t values are much larger than the rest. We accordingly set tthr to p quantile (e.g., 99%
quantile) of the ∆t distribution to reduce staleness errors. Noted that our ∆t is the difference between
the timestamp of the current event and the last updation time, which is different from observations
in previous TGNN inference systems Wang & Mendis (2023); Zhou et al. (2022a). We apply the
following memory staleness mitigation mechanism in the memory fetching stage:

Ŝi−k
v = λS̃i−k

v + (1− λ)

∑
n∈N S̃i−k

n

|N |

where Ŝi−k
v is the mitigated memory vector of node v at iteration i− k, and λ is a hyperparameter in

[0, 1]. The mitigated memory vector will then be fed into the memory update function:

Ŝi
v = f(Ŝi−k

v ,mi
v)

3.4 THEORETICAL ANALYSIS

We analyze the convergence guarantee and convergence rate of MSPipe with respect to our bounded
memory vector staleness. By carefully scheduling the pipeline and utilizing stale memory vectors,

6

Under review as a conference paper at ICLR 2024

we demonstrate that our approach incurs negligible approximation errors that can be bounded. We
provide a rigorous analysis of the convergence properties of our approach, which establishes the
theoretical foundation for its effectiveness in practice.

Theorem 1 (Convergent result, informal) With a memory-based TGNN model, suppose that 1)
there is a bounded difference between the stale node memory vector S̃i and the exact node memory
vector Si with the staleness bound ϵs, i.e., ∥S̃i − Si∥F ≤ ϵs where ∥∥F is the Frobenius norm; 2)
the loss function L in TGNN training is bounded below and L-smooth; and 3) the gradient of the
loss function L is ρ-Lipschitz continuous. Choose step size η = min{ 2

L ,
1√
t
}. There exists a constant

D > 0 such that:

min
1≤t≤T

∥∇L(Wt)∥2F ≤ [2L(W0)− L(W ∗) + ρD]
1√
T
,

where W0, Wt and W ∗ are the initial, step-t and optimal model parameters, respectively.

The formal version of Theorem 1 along with its proof can be found in Appendix A. Theorem 1
indicates that the convergence rate of MSPipe is O(T− 1

2), which shows that our approach maintains
the same convergence rate as vanilla sampling-based GNN training methods (O(T− 1

2) Chen et al.
(2017); Cong et al. (2020; 2021)).

4 EXPERIMENTS

Testbed. The main experiments are conducted on a machine equipped with two 64-core AMD EPYC
7H12 CPUs, 512GB DRAM, and four NVIDIA A100 GPUs (40GB), and the scalability experiments
are conducted on two of such machines with 100Gbps interconnect bandwidth.

Datasets and Models. We evaluate MSPipe on five temporal datasets: REDDIT, WIKI, MOOC,
LASTFM Kumar et al. (2019) and a large dataset GDELT Zhou et al. (2022b). On each dataset, we
use the same 70%-15%-15% chronological train/validation/test set split as in previous works Xu et al.
(2020); Rossi et al. (2021). More detailed information of the datasets is given in Appendix E. We
train 3 state-of-the-art memory-based TGNN models, JODIE Kumar et al. (2019), TGN Rossi et al.
(2021) and APAN Wang et al. (2021).

Baselines. We adopt TGL Zhou et al. (2022b), a state-of-the-art TGNN training system, as the
synchronous TGNN training baseline. We run experiments using the same model hyperparameters
and training settings as in TGL, which are summarized in Appendix E.2. We also implement the
Presample (with pre-fetching features) mechanism similar to SAILENT Kaler et al. (2022) on TGL
as a stricter baseline, which provides a parallel sampling and feature fetching scheme by executing
them in advance. We implement MSPipe on PyTorch Paszke et al. (2019) and DGL Wang et al.
(2019), supporting both single-machine multi-GPU and multi-machine distributed TGNN training.
MSPipe-S is MSPipe with staleness compensation from similar neighbors with λ set to 0.95. Noted
that MSPipe does not implement the staleness mitigation mechanism by default.

4.1 EXPEDITED TRAINING WITH COMPARABLE ACCURACY

The results in Table 2 show that MSPipe improves the training throughput while maintaining
high model accuracy. AP in the table stands for average model precision evaluated on the test
set. For a more comprehensive analysis of various batch sizes, we provide detailed experiments in
Appendix E.5.

Training Throughput. We observe that MSPipe is 1.50× to 2.45× faster than TGL, and achieves up
to 104% speed-up as compared to the Presample mechanism. MSPipe obtains the best speed-up on
GDELT, which can be attributed to the relatively smaller proportion of execution time devoted to
the GNN training stage compared to other datasets (as shown in Table 1). This is mainly because
MSPipe effectively addresses the primary bottlenecks in memory-based TGNN training by breaking
temporal dependencies between iterations and ensuring uninterrupted progression of the GNN training
stage, thereby enabling seamless overlap with other stages. Consequently, the total training time is
predominantly determined by the uninterrupted GNN training stage. Notably, a smaller GNN training
stage results in a larger speed-up, further contributing to the superior performance of MSPipe.

7

Under review as a conference paper at ICLR 2024

Table 2: Training Performance. The best (second-best) results are in bold (underlined). Each data
point is average of 3 trials. Due to space limit, the full table with standard deviation is in Appendix.

Model Scheme REDDIT WIKI MOOC LASTFM GDELT
AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup

TGN

TGL 99.8 1× 99.4 1× 99.4 1× 87.2 1× 98.2 1×
Presample 99.8 1.16× 99.4 1.12× 99.4 1.16× 87.1 1.36× 98.1 1.32×
MSPipe 99.8 1.77× 99.1 1.54× 99.3 1.50× 86.9 2.00× 98.2 2.36×

MSPipe-S 99.8 1.72× 99.3 1.52× 99.4 1.47× 87.9 1.96× 98.2 2.26×

JODIE

TGL 99.6 1× 98.4 1× 98.6 1× 73.0 1× 98.0 1×
Presample 99.6 1.10× 98.4 1.14× 98.6 1.09× 73.0 1.37× 98.0 1.73×
MSPipe 99.6 1.55× 97.2 1.65× 98.6 1.50× 71.7 1.87× 98.1 2.28×

MSPipe-S 99.6 1.50× 97.6 1.54× 98.6 1.48× 76.3 1.79× 98.2 2.23×

APAN

TGL 99.6 1× 98.0 1× 98.6 1× 73.4 1× 95.8 1×
Presample 99.6 1.38× 98.0 1.06× 98.6 1.30× 73.2 1.49× 95.8 1.71×
MSPipe 99.6 2.03× 96.4 1.78× 98.4 1.91× 72.4 2.37× 95.9 2.45×

MSPipe-S 99.6 1.96× 97.1 1.63× 98.6 1.77× 76.1 2.25× 96.0 2.41×

(a) REDDIT (b) WIKI (c) LASTFM (d) GDELT

Figure 9: Scalability of training TGN.

Model Accuracy. MSPipe without staleness mitigation can already achieve comparable test average
precision with TGL on all datasets, with a marginal degradation ranging from 0 to 1.6%. This can be
attributed to the minimal staleness mechanism and proper pipeline scheduling in MSPipe.

Staleness Mitigation. With the proposed staleness mitigation mechanism, MSPipe-S consistently
achieves higher average precision than MSPipe across all models and datasets. Notably, MSPipe-S
achieves the same test accuracy as TGL on REDDIT and MOOC datasets, while surpassing TGL’s
model performance on LastFM and GDELT datasets. MSPipe-S introduces a minimal overhead of
only 3.73% on average for the staleness mitigation process. This demonstrates the efficiency of the
proposed mechanism in effectively mitigating staleness while maintaining high performance levels.

Scalability. Fig. 9 presents the training throughput with different numbers of GPUs. MSPipe
achieves not only consistent speed-up but also up to 83.6% scaling efficiency on a single machine,
which is computed as the ratio of the speed-up achieved by using 4 GPUs to the ideal speed-up,
outperforming other baselines. We also scale TGN training on GDELT to two machines with eight
GPUs in Fig. 9(d). Without explicit optimization for inter-machine communication, MSPipe still
outperforms the baselines and exhibits better scalability.

4.2 PRESERVING CONVERGENCE RATE

To validate that MSPipe can maintain the same convergence rate as vanilla sampling-based GNN
training without applying staleness (O(T− 1

2)), we compare the training curves of all models on all
datasets in Fig. 10 (the complete result can be found in Appendix E.3). We observe that MSPipe’s
training curves largely overlap with those of vanilla methods (TGL and Presample), verifying our
theoretical results in Sec. 3.4. With staleness mitigation, MSPipe-S can achieve slightly better and
more steady convergence (e.g., on WIKI and LastFM) than others.

4.3 STALL-FREE MINIMAL STALENESS BOUND

To further validate that MSPipe can find the minimal staleness bound without delaying the GNN
training stage, we conduct a comparative analysis of accuracy and throughput between the converged
staleness bound computed by MSPipe and different staleness bounds k. The results, depicted in
Fig. 11 and Fig. 17 in Appendix E.3.3 (due to space constraints), consistently demonstrate that
MSPipe achieves the highest throughput while maintaining the best accuracy compared to other

8

Under review as a conference paper at ICLR 2024

(a) REDDIT (b) WIKI (c) MOOC (d) LASTFM

Figure 10: Convergence of TGN training. x-axis is the wall-clock training time, and y-axis is the test
average precision.

Figure 11: Throughput
and AP on different stal-
eness bound (MOOC)

Figure 12: Staleness
error comparison on
TGN

Figure 13: Staleness
mitigation with most
similar or random nodes

Figure 14: Hyperpara-
meter analysis

staleness bound options. Additionally, the computed minimal staleness bounds for various datasets
range from 2 to 4, providing further evidence for the necessity of accurately determining the minimal
staleness bound rather than relying on random selection. Note that k = 1 represents the baseline
method of TGL without applying staleness.

4.4 STALENESS MITIGATION MECHANISM

Error reduction. To better understand the accuracy enhancement and convergence speed-up achieved
by MSPipe-S, we conduct a detailed analysis of the intermediate steps involved in our staleness
mitigation mechanism. Specifically, we refer to Theorem 1, where we assume the existence of a
bounded difference ϵs between the stale node memory vector S̃i and the precise node memory vector
Si. To assess the effectiveness of our staleness mitigation mechanism, we compare the mitigated
staleness error ∥Ŝi − Si∥F obtained after applying our mechanism with the original staleness error
∥S̃i − Si∥F . As shown in Fig. 12, MSPipe-S consistently reduces the staleness error across all
datasets, validating the theoretical guarantee and the effectiveness in enhancing accuracy.

Benefit of using most-similar neighbors. We further investigate our staleness mitigation mechanism
by comparing using the most similar and active nodes for staleness mitigation with utilizing random
active nodes, on the LastFM dataset. In Fig. 13, we observe that our proposed most similar mechanism
leads to better model performance, while random selection would even degrade model accuracy. This
could be because similar nodes have resembling representations that facilitate the stale node to obtain
more updated information. The memory similarity comparison between the most similar nodes and
random nodes is presented in Appendix E.3.

Hyperparameter analysis. We examine the effect of hyperparameter λ on test accuracy, as depicted
in Fig. 14. We find that mitigating staleness with a larger λ (> 0.8) results in better model performance
than TGL’s results, indicating that we should retain more of the original stale memory representations
and apply a small portion of mitigation from their similar ones.

5 CONCLUSION

We present MSPipe, an efficient and scalable pipeline scheduling framework for memory-based
TGNN training that improves training throughput and maintains model accuracy. MSPipe identifies
the minimal number of staleness iterations to adopt in the pipeline without causing pipeline stagnation.
Given the minimal staleness, MSPipe utilizes an online scheduler to delay the memory fetching stage
and prevent resource contention. MSPipe further adopts a lightweight staleness mitigation strategy to
alleviate memory staleness. Extensive experiments validate that MSPipe attains significant speed-up
over state-of-the-art TGNN training schemes with minimal accuracy loss.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Yangrui Chen, Cong Xie, Meng Ma, Juncheng Gu, Yanghua Peng, Haibin Lin, Chuan Wu, and
Yibo Zhu. Sapipe: Staleness-aware pipeline for data parallel dnn training. In Advances in Neural
Information Processing Systems, 2022.

Jack Choquette and Wish Gandhi. Nvidia a100 gpu: Performance & innovation for gpu computing.
In 2020 IEEE Hot Chips 32 Symposium (HCS), pp. 1–43. IEEE Computer Society, 2020.

Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. Minimal variance sampling
with provable guarantees for fast training of graph neural networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1393–1403,
2020.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On the importance of sampling in learning
graph convolutional networks. arXiv preprint arXiv:2103.02696, 2021.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
arXiv preprint arXiv:2302.11636, 2023.

Wei Dai, Yi Zhou, Nanqing Dong, Hao Zhang, and Eric Xing. Toward understanding the impact of
staleness in distributed machine learning. In International Conference on Learning Representations,
2018.

Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed deep graph learning at scale. In OSDI,
pp. 551–568, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B Gibbons, Garth A
Gibson, Greg Ganger, and Eric P Xing. More effective distributed ml via a stale synchronous
parallel parameter server. Advances in neural information processing systems, 26, 2013.

Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, Tao Schardl, Charles E
Leiserson, and Jie Chen. Accelerating training and inference of graph neural networks with fast
sampling and pipelining. Proceedings of Machine Learning and Systems, 4:172–189, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive data sets. Cambridge
university press, 2020.

Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung Kim, and Alexander Schwing.
Pipe-sgd: A decentralized pipelined sgd framework for distributed deep net training. Advances in
Neural Information Processing Systems, 31, 2018.

Syed Nasir Mehmood, Nazleeni Haron, Vaqar Akhtar, and Younus Javed. Implementation and experi-
mentation of producer-consumer synchronization problem. International Journal of Computer
Applications, 975(8887):32–37, 2011.

10

Under review as a conference paper at ICLR 2024

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul
Kim. Continuous-time dynamic network embeddings. In Companion proceedings of the the web
conference 2018, pp. 969–976, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong Cao. Sancus: sta le n
ess-aware c omm u nication-avoiding full-graph decentralized training in large-scale graph neural
networks. Proceedings of the VLDB Endowment, 15(9):1937–1950, 2022.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, , and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. In Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks, 2022.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
3505–3506, 2020.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. Advances in neural information processing systems, 24,
2011.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal Graph Networks for Deep Learning on Dynamic Graphs. In Proceedings of
International Conference on Learning Representations, 2021.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
international conference on web search and data mining, pp. 519–527, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations,
2019.

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkataraman. Mariusgnn:
Resource-efficient out-of-core training of graph neural networks. In Eighteenth European Confer-
ence on Computer Systems (EuroSys’ 23), 2023.

C Wan, Y Li, Cameron R Wolfe, A Kyrillidis, Nam S Kim, and Y Lin. PipeGCN: Efficient full-graph
training of graph convolutional networks with pipelined feature communication. In The Tenth
International Conference on Learning Representations (ICLR 2022), 2022.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui,
Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for real-time
temporal graph embedding. In Proceedings of the 2021 international conference on management
of data, pp. 2628–2638, 2021.

Yufeng Wang and Charith Mendis. Tgopt: Redundancy-aware optimizations for temporal graph
attention networks. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, pp. 354–368, 2023.

11

Under review as a conference paper at ICLR 2024

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representa-
tion learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for
skeleton-based action recognition. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong Chen, Wenyuan Yu, and
Jingren Zhou. Gnnlab: a factored system for sample-based gnn training over gpus. In Proceedings
of the Seventeenth European Conference on Computer Systems, pp. 417–434, 2022.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Yao Zhang, Yun Xiong, Xiangnan Kong, Zhuang Niu, and Yangyong Zhu. Ige+: A framework for
learning node embeddings in interaction graphs. IEEE Transactions on Knowledge and Data
Engineering, 33(3):1032–1044, 2019.

Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao Zheng, and Yangyong
Zhu. Tiger: Temporal interaction graph embedding with restarts. arXiv preprint arXiv:2302.06057,
2023.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhao Li, and Can Wang.
Learning temporal interaction graph embedding via coupled memory networks. In Proceedings of
the web conference 2020, pp. 3049–3055, 2020.

Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu, Changji Li, James
Cheng, Hao Yang, and Shuai Zhang. Bytegnn: efficient graph neural network training at large
scale. Proceedings of the VLDB Endowment, 15(6):1228–1242, 2022.

Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor K. Prasanna, and Carl E. Busart. Model-
architecture co-design for high performance temporal gnn inference on fpga. 2022 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pp. 1108–1117, 2022a.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis.
Tgl: A general framework for temporal gnn training on billion-scale graphs. arXiv preprint
arXiv:2203.14883, 2022b.

12

Under review as a conference paper at ICLR 2024

A PROOFS

In this section, we provide the detailed proofs of the theoretical analysis.

Lemma 1 If f(·) is β-smooth, then we have,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ β

2
∥y − x∥2

Proof.

|f(y)− f(x)− ⟨∇f(x), y − x⟩|

=|
∫ 1

0

⟨∇f(x) + t(y − x), y − x⟩dt− ⟨∇f(x), y − x⟩|

≤
∫ 1

0

|⟨∇f(x) + t(y − x)−∇f(x), y − x⟩|dt

≤
∫ 1

0

∥∇f(x) + t(y − x)−∇f(x)∥ · ∥y − x∥dt

≤
∫ 1

0

tβ∥y − x∥2dt

=
β

2
∥y − x∥2

Lemma 2 if L(·) is ρ-Lipschitz smooth, then we have

∥∇L̃(W)−∇L(W)∥F ≤ ρϵs

where∇L̃ (Wt) denote the gradient when stale memoys are used.

Proof. By the assumption that there is a bounded difference between the stale node memory vector S̃i

and the exact node memory vector Si with the staleness bound ϵs, we have:

∥S − S̃∥F ≤ ϵs

By smoothness of L(·), we have

∥∇L(S,W)−∇L(S̃,W)∥F
=∥∇L̃(W)−∇L(W)∥F
≤ρϵs

Learning Algorithms. In the tth step, we have

Wt+1 −Wt = −ηt∇L̃ (Wt) (6)

, where ∇L̃ (Wt) denote the gradient when stale memoys are used and ηt is the learning rate.

By Lemma 1 and the Lf -smoothness of L , we have

L(Wt+1)− L(Wt) ≤ ⟨Wt+1 −Wt,∇L(Wt)⟩+
Lf

2
∥Wt+1 −Wt∥2F (7)

Use Eqn. 6 to substitute, we have

L (Wt+1)− L (Wt) ≤ −ηt⟨∇L̃(Wt),∇L(Wt)⟩︸ ︷︷ ︸
1

+
Lfη

2
t

2
∥∇L̃(Wt)∥2F︸ ︷︷ ︸

2

(8)

We bound the terms step by step and let δt = ∇L̃ (Wt)−∇L (Wt) to subsitute in Equ. 8.

13

Under review as a conference paper at ICLR 2024

First, For 1 , we have

− ηt⟨∇L̃(Wt),∇L(Wt)⟩
=− ηt ⟨δt +∇L (Wt) ,∇L (Wt)⟩
=− ηt[⟨δt,∇L (Wt)⟩+ ∥∇L(Wt)∥2F]

For 2 , we have

Lfη
2
t

2
∥∇L̃(Wt)∥2F

=
Lfη

2
t

2
∥δt +∇L(Wt)∥2F

=
Lfη

2
t

2
(∥δt∥2F + 2⟨δt,∇L(Wt)⟩+ ∥∇L(Wt)∥2F)

Combining both 1 and 2 together and by the choice of learning rate ηt =
1
Lf

, we have

L(Wt+1)− L(Wt) ≤ −(ηt −
Lf

2
η2t)∥∇L(Wt)∥2F +

Lfη
2
t

2
∥δt∥2F

By Lemma 2. we have ∥δt∥2F ≤ ρϵs

L(Wt+1)− L(Wt) ≤ −(ηt −
Lf

2
η2t)∥∇L(Wt)∥2F +

Lfη
2
t

2
ρϵs (9)

Rearrange Eqn. 9 and let c = Lfρϵs
2 , we have,

(ηt −
Lf

2
η2t)∥∇L(Wt)∥2F ≤ L(Wt)− L(Wt+1) + η2t c (10)

Telescope sum from t = 1...T , we have

T∑
t=1

(ηt −
Lfη

2
t

2
)∥∇L(Wt)∥2F ≤ L(W0)− L(WT) +

T∑
t=1

η2t c (11)

min
1≤t≤T

∥∇L(Wt)∥2F ≤
L(W0)− L(WT)∑T

t=1(ηt −
Lfη2

t

2)
+

∑T
t=1 η

2
t c∑T

t=1(ηt −
Lfη2

t

2)
(12)

Substitute Equ. 12 with ηt = min{ 1√
t
, 1
Lf
} and L(W ∗) ≤ L(WT), we have

min
1≤t≤T

∥∇L(Wt)∥2F

≤(2(L(W0)− L(W ∗)) +
c

Lf
)

1√
T

≤(2(L(W0)− L(W ∗)) +
ρϵs
2

)
1√
T

Therefore, the convergence rate of MSPipe is O(T− 1
2), which maintains the same convergence rate

as vanilla sampling-based GNN training methods (O(T− 1
2) Chen et al. (2017); Cong et al. (2020;

2021)).

14

Under review as a conference paper at ICLR 2024

B MORE DISCUSSION ON THE RELATED WORK

As discussed before, the key design space of the memory-based TGNN model lies in memory updater
and memory aggregator functions. JODIE Kumar et al. (2019) updates the memory using two
mutually-recursive RNNs and applies MLPs to predict the future representation of a node. Similar
to JODIE, TGN Rossi et al. (2021) and APAN Wang et al. (2021) use RNN as the memory update
function while incorporating an attention mechanism to capture spatial and temporal information
jointly. APAN further optimizes inference speed by using asynchronous propagation. A recent work
TIGER Zhang et al. (2023) improves TGN by introducing an additional memory module that stores
node embeddings, and proposes a restarter for warm initialization of node representations.

Moreover, some researchers focus on optimizing the inference speed of TGNN models: Zhou et al.
(2022a) propose a model-architecture co-design to reduce computation complexity and external
memory access. TGOpt Wang & Mendis (2023) leverages redundancies to accelerate inference of the
temporal attention mechanism and the time encoder.

There are several GNN training schemes with staleness techniques, PipeGCN Wan et al. (2022) and
Sancus Peng et al. (2022), as we have discussed about the difference in Sec. 2, we would like to
emphasize and detail the difference between those works and MSPipe:

1. Dependencies and Staleness: PipeGCN Wan et al. (2022) and Sancus Peng et al. (2022) aim
to eliminate inter-layer dependencies in multi-layer GNN training to enable communication-
computation overlap. In contrast, MSPipe is specifically designed to tackle temporal dependencies
within the memory module of TGNN training. The dependencies and staleness in TGNN training
pose unique challenges that require distinct theoretical analysis and system designs.

2. The choice of staleness bound: Previous staleness based static GNN methods randomly choose a
staleness bound for acceleration, which may lead to suboptimal system performance and affect
model accuracy. MSPipe strategical decide the minimal staleness bound that can reach the highest
throughput without sacrifice the model accuracy.

3. Bottlenecks: In full-graph training scenarios, such as PipeGCN Wan et al. (2022) and Sancus Peng
et al. (2022), the main bottleneck lies in communication between graph partitions on GPUs. Due to
limited GPU memory, the graph is divided into multiple parts, leading to increased communication
time during full graph training. Therefore, these methods aim to optimize the communication-
computation overlap to improve training throughput. In contrast, in TGNN training, the main
bottleneck stems from maintaining the memory module on the CPU and the associated challenges
of updating and synchronizing it with CPU storage across multiple GPUs. MSPipe focuses on
addressing this specific bottleneck. Furthermore, unlike full graph training where the entire
graph structure needs to be stored in the GPU, TGNN adopts a sampling-based subgraph training
approach. As a result, the communication overhead in TGNN is significantly smaller compared to
full graph training.

4. Training Paradigm and Computation Patterns: PipeGCN Wan et al. (2022) and Sancus Peng
et al. (2022) are tailored for full-graph training scenarios, which differ substantially from TGNN
training in terms of training paradigm, computation patterns, and communication patterns. TGNNs
typically involve sample-based subgraph training, which presents unique challenges and con-
straints not addressed by full graph training approaches. Therefore, the full graph training works
cannot support TGNN training.

5. Multi-Layer GNNs vs Single-Layer TGNNs: PipeGCN Wan et al. (2022) and Sancus Peng
et al. (2022) lies on the assumption that the GNN have multiple layers (e.g., GCN Kipf & Welling
(2016), GAT Ying et al. (2018)) and they break the dependencies among multiple layers to overlap
communication with computation. While memory-based TGNNs only have one layer with a
memory module Zhou et al. (2022b); Poursafaei et al. (2022); Rossi et al. (2021); Kumar et al.
(2019); Wang et al. (2021), which makes their methods lose efficacy for TGNNs.

15

Under review as a conference paper at ICLR 2024

C TRAINING TIME BREAKDOWN

C.1 PROFILING SETUPS

We use TGL Zhou et al. (2022b), the SOTA TGNN training framework, on a server equipped with 4
A100 GPUs for profiling, which is the same as the experiment testbed introduced in the section 4.
The local batch size for the REDDIT, WIKI, MOOC, and LastFM datasets is set to 600, while for the
GDELT dataset, it is set to 4000. All the breakdown statistics are averaged over 100 epochs. All these
hyperparameters are the same as the experiments. We firmly believe that, by leveraging TGL’s highly
optimized performance, we can evaluate bottlenecks and areas for improvement, further justifying
the need for our proposed MSPipe framework.

C.2 BREAKDOWN STATISTICS OF JODIE AND APAN

We provide the training time breakdowns for the JODIE and APAN models, which reveal that memory
operations, including memory fetching and updating, can account for up to 50.51% and 58.56% of
the total training time, respectively. Notably, the significant overhead is primarily due to memory
operations rather than the sampling and feature fetching stages, which distinguishes these models
from static GNN models and the systems designed for static GNN models.

Table 3: Training time breakdown of JODIE model

Dataset Sample Fetch
feature

Fetch
memory

Train
GNN

Update
memory

REDDIT Kumar et al. (2019) 4.14% 8.05% 7.36% 50.11% 30.34%
WIKI Kumar et al. (2019) 2.20% 1.10% 4.95% 46.70% 45.05%
MOOC Kumar et al. (2019) 3.41% 1.02% 5.80% 51.05% 38.71%
LASTFM Kumar et al. (2019) 4.29% 1.14% 6.19% 44.95% 43.43%
GDELT Zhou et al. (2022b) 3.25% 8.56% 9.34% 38.75% 40.11%

Table 4: Training time breakdown of APAN model

Dataset Sample Fetch
feature

Fetch
memory

Train
GNN

Update
memory

REDDIT Kumar et al. (2019) 12.94% 5.75% 15.18% 39.14% 27.00%
WIKI Kumar et al. (2019) 6.52% 0.87% 9.13% 42.61% 40.87%
MOOC Kumar et al. (2019) 10.60% 0.83% 8.32% 45.11% 35.14%
LASTFM Kumar et al. (2019) 11.12% 1.02% 12.26% 41.77% 33.83%
GDELT Zhou et al. (2022b) 14.34% 3.25% 20.31% 23.95% 38.15%

C.3 GPU SAMPLER ANALYSIS

MSPipe utilizes a GPU sampler for improved resource utilization and faster sampling and we further
clarify the remarkable speedup mainly comes from our pipeline mechanism not the GPU sampler. As
shown in Tab. 5, we conducted a detailed profiling of the sampling time using TGL and found that our
sampler is 24.3% faster than TGL’s CPU sampler for 1-hop most recent sampling, which accounts for
only 3.6% of the total training time. Therefore, the performance gain is primarily attributed to our
pipeline mechanism and resource-aware minimal staleness schedule but not to the acceleration of the
sampler.

C.4 WHY DOES THE MEMORY UPDATE STAGE TAKE LONGER TIME?

The memory update takes a longer time for two reasons: 1)In a multi-GPU environment, the
memory module is stored in the CPU, allowing multiple GPUs to read simultaneously but not write
simultaneously to ensure consistency and avoid conflicts; 2) our memory fetching implementation,

16

Under review as a conference paper at ICLR 2024

Table 5: Training time breakdown of TGN model.

Dataset Framework Avg
Epoch(s) Sample(s) Fetch

feature (s)
Fetch

memory(s)
Train

GNN(s)
Update

memory(s)

REDDIT TGL 7.31 0.69 0.92 0.42 3.43 1.85
MSPipe-NoPipe 7.05 0.44 0.88 0.41 3.42 1.90

WIKI TGL 2.41 0.16 0.14 0.14 1.24 0.73
MSPipe-NoPipe 2.32 0.08 0.12 0.10 1.20 0.82

MOOC TGL 4.31 0.42 0.13 0.11 2.29 1.37
MSPipe-NoPipe 4.20 0.31 0.31 0.21 2.13 1.41

LASTFM TGL 13.10 1.50 1.19 1.11 5.64 3.65
MSPipe-NoPipe 12.64 1.04 1.20 1.05 6.12 3.23

GDELT TGL 645.46 113.62 82.39 67.62 242.61 139.22
MSPipe-NoPipe 626.09 94.26 85.20 69.21 240.99 136.43

aligns with TGL, utilizes non-blocking memory copy APIs for efficient transfer of memory vectors
from CPU to GPU with pinned memory. However, the lack of a non-blocking API equivalent for
tensor.cpu() can impact performance.

D IMPLEMENTATION DETAILS

D.1 ALGORITHM DETAILS

We clarify that τ is the execution time of different stages, which can be collected in a few iterations
of the profiling. The τ and the staleness ki can be pre-calculated for all the graph data, which can be
reused for future training. It’s simple and efficient to do the profiling, pre-calculation, and training
with our open-source code provided in the anonymous link.

In the case of stages such as the GNN computation stage, the execution time is likely to be dependent
on the number of sampled nodes or edges. This quantity not only varies across different batches but
also depends on the underlying graph structure. While the training time of a static GNN can differ due
to varying numbers of neighbors for each node and the utilization of random sampling, memory-based
TGNNs typically employ a fixed-size neighbor sampling approach using the most recent temporal
sampler. Specifically, the sampler selects a fixed number of the most recently observed neighbors
to construct the subgraph. Consequently, as the timestamp increases, the number of neighboring
nodes grows, and it becomes more stable, governed by the maximum number of neighbors per node
constraint. Through our profiling analysis, we observed that the number of nodes in the subgraph
converges after approximately 10-20 iterations, allowing the average execution time to effectively
represent the true execution time.

D.2 MULTI-GPU SERVER IMPLEMENTATION

We have provided a brief description of how MSPipe works in multi-GPU servers at Sec. 2 and
Sec. 3.1 and we have provided the implementation with the anonymous link in the abstract. We
will give you a more detailed analysis of the implementation details here: The graph storage is
implemented with NVIDIA UVA so each GPU worker retrieves a local batch of events and performs
the sampling process on GPU to generate sub-graphs. The memory module is stored in the CPU’s
main memory without replication to ensure consistency and exhibit the ability to store large graphs.
Noted that, except for the GPU sample, the other stages align with TGL. Here is a step-by-step
overview:

1. Each GPU worker retrieves a local batch of events and performs the sampling process on the GPU
to generate sub-graphs.

2. Fetches the required features and node memory vectors from the CPU to the GPU for the subgraphs.
3. Performs TGNN forward and backward computations on each GPU. MSPipe implements Data

Parallel training similar to TGL.

17

Under review as a conference paper at ICLR 2024

4. The memory module is stored in the CPU’s main memory without replication to ensure consistency.
Each GPU transfers the updated memory vectors to the CPU and updates the corresponding
elements, which ensures that the memory module remains consistent across all GPUs.

D.3 STALL-FREE MINIMAL STALENESS SCHEDULING

We propose a resource-aware online scheduling algorithm to decide the starting time of stages in each
training iteration, as given in Alg. 1

Algorithm 1 Online Scheduling for TGNN training pipeline

1: Input: E batches of events Bi, Graph G, minimum staleness iteration number ki
2: Global: iupd ← 0 ▷ the latest iteration whose memory update is done
3: for i ∈ 1, 2, ..., E in parallel do
4: if lock(sample_lock) then
5: Gsub ← Sample(G,Bi) ▷ sample subgraph Gsub using a batch of events
6: if lock(feature_lock & pcie_lock) then
7: fetch_feature(Gsub) ▷ feature fetching for the subgraphs
8: if lock(memory_lock & pcie_lock) then
9: while i− iupd > ki do

10: wait() ▷ delay memory fetching until staleness iteration number is smaller than ki
11: fetch_memory(Gsub) ▷ transfer memory vectors for the subgraphs
12: if lock(gnn_lock) then
13: GNN(Gsub) ▷ train the GNN model using the subgraphs
14: if lock(update_lock) then
15: update_mem(Gsub,Bi) ▷ generate new memory vectors and write back to CPU storage
16: iupd ← i ▷ update the last iteration with memory update done

To enable asynchronous and parallel execution of the stages, we utilize a thread pool and a CUDA
stream pool. Each batch of data is assigned an exclusive thread and stream from the respective
pools, enabling concurrent processing of multiple batches. Dedicated locks for each stage are used to
resolve resource contention and enforce sequential execution (Eqn. 5). Fig. 7 provides a schematic
illustration of our online scheduling. The schedule of the memory fetching stage ensures the minimal
staleness iteration requirement (Lines 8-11). As illustrated in Fig. 7, the scheduling effectively fills
the bubble time while minimizing staleness and avoiding resource competence. At the end of each
training iteration, new memory vectors are generated based on the staled historical memories and
events in the current batch (Line 15). Finally, the latest iteration whose memory update stage has
been completed is recorded, enabling other parallel threads that run other training iterations to track
(Line 16). Note that the first few iterations before iteration k will act as a warmup, which means they
will not wait for the memory update k iterations before.

E FULL EXPERIMENTS

We first provide the details of the experiments and discuss the experiment setting. Then we provide the
full version of the experiment results, including the accuracy and throughput speedup, the convergence
of the JODIE and APAN model, the distribution of ∆t in remaining datasets, and the analysis of the
node memory similarity.

E.1 DETAILS OF THE EXPERIMENTS

Datasets. This paper employs several datasets, each with its unique properties and characteristics.
The Reddit dataset captures the posting behavior of users on subreddits over one month, and the
link feature is extracted through the conversion of post text into a feature vector. The Wikipedia
dataset records the editing behavior of users on Wikipedia pages over a month, and the link feature
is extracted through the conversion of the edit text into a 172-dimensional Linguistic Inquiry and
Word Count (LIWC) feature vector. The MOOC dataset captures the online learning behavior of
students in a MOOC course while the LastFM dataset contains information about which songs were

18

Under review as a conference paper at ICLR 2024

Table 6: The detailed statistics of the datasets. |dv| and |de| show the dimensions of node features
and edge features, respectively. Random means we use randomized features

Dataset |V | |E| |dv| |de|
Node

Features
Link

Features Duration

Reddit Kumar et al. (2019) 10,984 672,447 0 172 No Yes 1 month
WIKI Kumar et al. (2019) 9,227 157,474 0 172 No Yes 1 month
MOOC Kumar et al. (2019) 7,144 411,749 0 128 No Random 17 months
LastFM Kumar et al. (2019) 1,980 1,293,103 0 128 No Random 1 month
GDELT Zhou et al. (2022b) 16,682 1,912,909 413 186 Yes Yes 5 years

listened to by which users over one month. The GDELT dataset is a Temporal Knowledge Graph that
records global events in multiple languages every 15 minutes, which covers events from 2016 to 2020
and consists of homogeneous dynamic graphs with nodes representing actors and temporal edges
representing point-time events. Furthermore, it is important to highlight that TGNN training employs
graph edges as training samples, in contrast to static GNN training, which utilizes nodes as training
samples. All the datasets are downloaded from the link in TGL Zhou et al. (2022b) repository.

E.2 EXPERIMENT SETTINGS

The implementations of TGN, JODIE, and APAN are modified from TGL Zhou et al. (2022b) for
better modularity and readability. The implementations from TGL can achieve better accuracy than
these models’ original implementation. To ensure a fair comparison, we used the same default
hyperparameters as TGL, including a learning rate of 0.0001, a local batch size of 600 (4000 for the
GDELT dataset), and hidden dimensions and memory dimensions of 100. We train each dataset for
100 epochs, except for GDELT, which was trained in 10 epochs. We sampled the 10 most recent
1-hop neighbors for all datasets and constructed mini-batches with an equal number of positive and
negative node pairs for sampling and subgraph construction during training and evaluation.

E.3 FULL VERSION OF THE EXPERIMENT RESULTS

E.3.1 ACCURACY AND THROUGHPUT SPEEDUP.

We include the missing standard deviations and a higher precision for the average precision of the
evaluation in Sec. 4.1. As shown in Table 7, we can see that MSPipe without staleness mitigation can
already achieve the same or even slightly better test average precision with TGL on all datasets, with
up to 2.45× speedup than TGL.

Table 7: Training Performance. The best and second-best results are emphasized in bold and
underlined. The AP difference smaller than 0.1% will be considered the same.

Model Dataset REDDIT WIKI MOOC LASTFM GDELT
AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup

TGN

TGL 99.82(0.03) 1× 99.43(0.03) 1× 99.42(0.03) 1× 87.21(1.90) 1× 98.23(0.05) 1×
Presample 99.80(0.03) 1.16× 99.43(0.03) 1.12× 99.40(0.03) 1.16× 87.12(1.51) 1.36× 98.18(0.05) 1.32×
MSPipe 99.81(0.03) 1.77× 99.14(0.03) 1.54× 99.32(0.03) 1.50× 86.93(0.89) 2.00× 98.25(0.06) 2.36×

MSPipe-S 99.82(0.03) 1.72× 99.39(0.03) 1.52× 99.48(0.03) 1.47× 87.93(1.26) 1.96× 98.29(0.04) 2.26×

JODIE

TGL 99.63(0.02) 1× 98.40(0.03) 1× 98.64(0.01) 1× 73.04(2.89) 1× 98.01(0.07) 1×
Presample 99.62(0.03) 1.10× 98.41(0.03) 1.14× 98.61(0.03) 1.09× 72.96(2.68) 1.37× 98.04(0.05) 1.73×
MSPipe 99.62(0.02) 1.55× 97.24(0.02) 1.65× 98.63(0.02) 1.50× 71.7(2.84) 1.87× 98.12(0.08) 2.28×

MSPipe-S 99.63(0.02) 1.50× 97.61(0.02) 1.54× 98.66(0.02) 1.48× 76.32(2.45) 1.79× 98.23(0.05) 2.23×

APAN

TGL 99.62(0.03) 1× 98.01(0.03) 1× 98.60(0.03) 1× 73.37(1.59) 1× 95.80(0.02) 1×
Presample 99.65(0.02) 1.38× 98.03(0.03) 1.06× 98.62(0.03) 1.30× 73.24(1.70) 1.49× 95.83(0.04) 1.71×
MSPipe 99.63(0.03) 2.03× 96.43(0.04) 1.78× 98.38(0.02) 1.91× 72.41(1.21) 2.37× 95.94(0.03) 2.45×

MSPipe-S 99.64(0.03) 1.96× 97.12(0.03) 1.63× 98.64(0.03) 1.77× 76.08(1.42) 2.19× 96.02(0.03) 2.41×

The superior AP in LastFM. The reasons why our staleness mitigation strategy outperforms the AP
of the baseline TGL in the LastFM dataset is due to the unique characteristics of the LastFM datasets:

19

https://github.com/amazon-science/tgl/blob/main/down.sh

Under review as a conference paper at ICLR 2024

• The LastFM dataset exhibits a larger average time gap (tmax−tmin

E , where tmax and tmin represent
the largest and smallest timestamps, respectively, and E denotes the number of events) compared to
other datasets, as discussed by Cong et al. (2023). Specifically, LastFM has an average time gap of
106, whereas Reddit’s average time gap is 4, Wiki’s average time gap is 17, MOOC’s average time
gap is 3.6, and GDELT’s average time gap is 0.1.

• Consequently, even without staleness in the baseline method, the node memory in the LastFM graph
tends to become significantly outdated Rossi et al. (2021), as discussed in Section 3.3. Our staleness
mitigation strategy eliminates the outdated node representation by aggregating the memories of the
recently active nodes with the highest similarity. This approach helps mitigate the impact of the large
time gap present in LastFM datasets, ultimately leading to an improvement in AP compared to the
baseline methods.

E.3.2 CONVERGENCE OF THE JODIE AND APAN.

We further provide the convergence of JODIE and APAN models on five datasets in Fig. 15 and
Fig. 16. We can see that the training curves of all models largely overlap with the baselines (TGL and
Presample), demonstrating that MSPipe preserves the convergence rate. Notably, MSPipe-S achieves
better performance than the other variants on the REDDIT and GDELT datasets.

(a) REDDIT (b) WIKI (c) MOOC (d) LASTFM

Figure 15: Convergence of JODIE training. the x-axis is the wall-clock training time, and the y-axis
is the test average pricision

(a) REDDIT (b) WIKI (c) MOOC (d) LASTFM

Figure 16: Convergence of APAN training. the x-axis is the wall-clock training time, and the y-axis
is the test average pricision

E.3.3 COMPARISON BETWEEN DIFFERENT STALENESS BOUND

Furthermore, we present a comprehensive comparison of various staleness bounds across multiple
datasets including REDDIT, WIKI, LASTFM, and GDELT, using the TGN model, in order to validate
the efficacy of MSPipe. The results consistently demonstrate that MSPipe outperforms other staleness
bound options in terms of both throughput and accuracy across all datasets. As shown in Fig 20, the
number of staleness ki will soon converge to a steady minimal staleness value. To represent this
minimal staleness bound, we utilize a fixed value that corresponds to the steady state. This choice
allows us to showcase the minimal staleness bound effectively.

E.3.4 THE DISTRIBUTION OF ∆t ON OTHER DATASETS.

We introduce ∆t as the duration since a node v’s memory was last updated, which differs from the
∆t in the TGNN inference system Wang & Mendis (2023); Zhou et al. (2022a). The ∆t defined in

20

Under review as a conference paper at ICLR 2024

(a) REDDIT (b) WIKI (c) LASTFM (d) GDELT

Figure 17: Staleness error comparison on TGN. MOOC datasets is presented in Fig. 11

TGOpt Wang & Mendis (2023) and Zhou et al. Zhou et al. (2022a) are designed for the time-encoder,
which is computed by the difference between current events’ timestamp and their historical events’
timestamps with their neighbors. We further post the distribution of ∆t of the remaining datasets in
Fig. 18 and observed that the ∆t in all datasets follow the power-law distribution, indicating that most
∆t values are small and that most node memories are not stale or constant. This observation provides
insights into the occurrence patterns of nodes in different dynamic graphs, and our similarity-based
staleness mitigation mechanism focuses on compensating for memory vectors with stale ∆t values in
the long tail of the distribution.

(a) REDDIT (b) MOOC (c) LastFM (d) GDELT

Figure 18: Distribution of ∆t

E.3.5 ANALYSIS OF THE NODE MEMORY SIMILARITY.

We compensate the stale node memory by finding their most similar and recently active nodes
with the intuition that similar nodes have resembling representations that facilitate the stale node to
obtain more updated information. The most similar nodes are computed by counting their common
neighbors to get Jaccard similarity. As illustrated in Fig. 19, our mechanism for identifying the most
recent similar nodes can locate those with representations that are not only similar but also more
recently updated than randomly selected nodes. We use cosine similarity as the evaluation metric for
similarity.

E.4 THE VARIANCE OF ki WITH RESPECT TO i

We further evaluate the variance of ki when the i changes. As shown in Fig 20, the number of
staleness ki will soon converge to a steadily minimal staleness value. This is because of the periodic
manner of the GNN training as the computation time of different training stage is quite steady.

Figure 19: The cosine similarity of the memory
vectors between the target nodes (with staled node
memory) and their most similar nodes or random
nodes

Figure 20: The minimal number of staleness ki in
different iteration i

21

Under review as a conference paper at ICLR 2024

Table 8: Batch size sensitive analysis. The best results are in bold second-best are underlined.

Batch size Scheme REDDIT WIKI MOOC LASTFM GDELT
AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup AP(%) Speedup

Batch 300
(2000 for GDELT)

TGL 99.8 1× 99.5 1× 99.4 1× 88.1 1× 98.5 1×
Presample 99.8 1.26× 99.5 1.08× 99.4 1.04× 88.0 1.51× 98.5 1.12×
MSPipe 99.8 1.73× 99.4 1.67× 99.4 1.47× 87.2 1.90× 98.2 1.93×
MSPipe-S 99.8 1.68× 99.5 1.65× 99.4 1.45× 88.0 1.86× 98.5 1.88×

Batch 900
(6000 for GDELT)

TGL 99.8 1× 98.9 1× 98.6 1× 86.9 1× 97.8 1×
Presample 99.8 1.10× 98.9 1.12× 98.6 1.10× 86.9 1.37× 97.8 1.26×
MSPipe 99.8 1.62× 98.5 1.49× 98.6 1.58× 86.7 1.87× 97.7 2.01×
MSPipe-S 99.8 1.56× 98.9 1.46× 98.6 1.53× 87.8 1.80× 98.2 1.93×

Batch 1200
(8000 for GDELT)

TGL 99.8 1× 98.5 1× 98.3 1× 85.8 1× 97.1 1×
Presample 99.8 1.34× 98.5 1.37× 98.3 1.32× 85.8 1.56 97.1 1.28×
MSPipe 99.8 1.64× 98.5 1.48× 98.3 1.69× 85.8 1.92× 97.1 1.99×
MSPipe-S 99.8 1.59× 98.5 1.45× 98.8 1.62× 86.2 1.84× 98.1 1.90×

Batch 1600

TGL 99.8 1× 98.4 1× 97.9 1× 84.4 1×
Presample 99.8 1.38× 98.4 1.39× 97.9 1.33× 84.4 1.51×
MSPipe 99.8 1.66× 98.1 1.58× 97.9 1.71× 82.7 1.97×
MSPipe-S 99.8 1.58× 98.3 1.53× 98.7 1.64× 84.2 1.88×

Table 9: MSPipe compares with baseline methods using larger batch size.

Dataset REDDIT WIKI MOOC LastFM
AP(%) Time(s) Speedup AP(%) Time(s) Speedup AP(%) Time(s) Speedup AP(%) Time(s) Speedup

TGL
batch 600 99.8 7.31 1× 99.4 2.41 1× 99.4 4.31 1× 87.2 13.10 1×

MSPipe
batch 600 99.8 4.14 1.77× 99.1 1.57 1.54× 99.3 2.88 1.50× 86.9 6.55 1.87×

TGL
batch 900 99.8 5.22 1.40× 98.9 2.03 1.19× 98.7 3.18 1.36× 86.9 10.10 1.30×

TGL
batch 1200 99.8 4.48 1.63× 98.5 1.83 1.32× 98.3 2.99 1.44× 85.8 8.43 1.55×

E.5 BATCH SIZE SENSITIVITY ANALYSIS

To further validate the effectiveness of MSPipe in different batch sizes, we conducted batch size
sensitivity evaluations using the following local batch sizes: 300, 900, 1200, and 1600 for the
small datasets, and 2000, 6000, and 8000 for the large dataset (used 600 and 4000 in the original
experiments).

As demonstrated in Table 8, MSPipe consistently outperforms all baseline methods in varying batch
sizes, achieving up to 2.01× speedup without compromising model accuracy. These results further
validate the practicality of MSPipe. It is worth noting that for the same dataset, MSPipe tends to
exhibit similar speedup among various batch sizes, indicating no direct correlation between batch
size and speedup.

E.6 COMPARE WITH STRAWMAN METHOD: INCREASE BATCH SIZE

We conducted additional empirical comparisons between MSPipe and baseline methods using larger
batch sizes. In Table 9, MSPipe consistently outperforms baseline methods with batch sizes increased
by 1.5× and 2×, achieving speedups of up to 57% and 32% respectively. While the TGN model
experiences up to 1.4% accuracy loss with larger batch sizes, MSPipe maintains high accuracy with a
maximum accuracy loss of 0.3%. It is worth emphasizing that MSPipe can be applied with larger
batch sizes to further boost training throughput as shown in Table 8.

E.7 MEMORY OVERHEAD ANALYSIS.

1. In MSPipe, we introduce staleness in the memory module to enable the pre-fetching of features and
memory in later iterations. However, unlike PipeGCN and Sancus, where staleness is introduced
during GNN training, our TGNN training stage doesn’t have staleness. Each subgraph is executed
sequentially, so no additional hidden states are incurred during GNN computation.

2. The additional memory consumption in MSPipe arises from the prefetched subgraph, which
includes node/edge features and memory vectors. We can compute an upper bound for this
memory consumption as follows:

22

Under review as a conference paper at ICLR 2024

• Let the subgraph in each iteration have a batch size of B, node and edge feature dimensions of
H , node memory dimension of M , and an introduced staleness bound of K. For each graph event,
we have a source node, destination node, and neg_sample node, totaling 3 nodes per sample.
• During subgraph sampling, we use the maximum neighbor size of N = 10 to compute the
memory consumption, which represents an upper bound. Assuming the data format in Float32
(i.e., 4 bytes), the additional subgraph memory consumption is:

3× 4KB(N + 1)(H +M) + 12KB(N + 1) = 12KB(N + 1)(H +M) + 12KB(N + 1)

, where the first term represents the feature and memory usage, (N + 1) is the total number
of nodes, and (H + M) is the sum of the feature and memory dimensions. The second term
represents the node ID usage.

3. Moreover, we conduct empirical experiments on all the models/datasets with the
torch.cuda.memory_summary() API. The experiment results are listed in Table tables 10 to 12.
• As observed in the Table tables 10 to 12, the additional memory usage from MSPipe strictly
remains below our analyzed upper bound.
• Moreover, the additional memory only introduces an average of 47% more consumption
compared to TGL methods. It is important to note that the actual additional memory consumption
may be even lower than 47% since PyTorch tends to allocate more memory than it will ultimately
use.

Table 10: GPU memory usage of TGN model. The ’Addition’ row represent the additional memory
usage from MSPipe to TGL by introducing staleness. The ’Theory’ row represent the upperbound of
additional memory usage by introducing staleness.

Scheme REDDIT(MB) WIKI(MB) MOOC(MB) LastFM(MB) GDELT(GB)
TGL 348.16 202.75 312.72 264.19 8.12
MSPipe 507.06 303.10 428.00 352.26 11.34
Addition 158.90 100.35 115.28 88.06 3.22
Theory 193.88 129.25 162.52 162.52 4.42

Table 11: GPU memory usage of JODIE model. The ’Addition’ row represent the additional memory
usage from MSPipe to TGL by introducing staleness. The ’Theory’ row represent the upperbound of
additional memory usage by introducing staleness.

Scheme REDDIT(MB) WIKI(MB) MOOC(MB) LastFM(MB) GDELT(GB)
TGL 166.86 152.77 172.77 183.25 6.62
MSPipe 278.54 238.30 286.50 266.98 9.42
Addtion 111.68 85.54 113.73 83.73 2.8
Theory 193.88 129.25 162.52 162.52 4.42

Table 12: GPU memory usage of APAN model. The ’Addition’ row represent the additional memory
usage from MSPipe to TGL by introducing staleness. The ’Theory’ row represent the upperbound of
additional memory usage by introducing staleness.

Scheme REDDIT(MB) WIKI(MB) MOOC(MB) LastFM(MB) GDELT(GB)
TGL 229.38 215.04 196.61 208.90 7.4
MSPipe 337.92 362.50 348.16 313.34 10.17
Addtion 108.54 147.46 151.55 104.45 2.77
Theory 193.88 129.25 162.52 162.52 4.42

23

	Introduction
	Background and Related Work
	MSPipe framework
	MSPipe mechanism
	Stall-free Minimal-staleness Pipeline Schedule
	Similarity-based Staleness mitigation
	Theoretical Analysis

	Experiments
	Expedited Training with Comparable Accuracy
	Preserving Convergence Rate
	Stall-free Minimal Staleness Bound
	Staleness Mitigation Mechanism

	Conclusion
	Proofs
	MORE DISCUSSION ON THE RELATED WORK
	Training Time Breakdown
	Profiling setups
	Breakdown statistics of JODIE and APAN
	GPU sampler analysis
	Why does the memory update stage take longer time?

	Implementation details
	Algorithm details
	Multi-GPU server implementation
	Stall-free minimal staleness scheduling

	Full experiments
	Details of the Experiments
	Experiment Settings
	Full version of the Experiment Results
	Accuracy and Throughput Speedup.
	Convergence of the JODIE and APAN.
	Comparison between different staleness bound
	The distribution of t on other datasets.
	Analysis of the node memory similarity.

	The variance of ki with respect to i
	Batch size sensitivity analysis
	Compare with Strawman method: increase batch size
	Memory overhead analysis.

