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Abstract

In this paper, we study the offline and online settings of reinforcement learning from1

human feedback (RLHF) with KL-regularization—a widely used objective function2

in large language model alignment—under the ϵ local differential privacy (ϵ-LDP)3

model on the label of the human preference. In the offline setting, we design an4

algorithm based on the principle of pessimism and derive a new suboptimality5

gap of Õ(1/[(eϵ − 1)2n]) on the KL-regularized objective under single-policy6

concentrability. We also prove its optimality by providing a matching lower7

bound where n is the sample size. In the online setting, we are the first one8

to theoretically investigate the problem of KL-regularized RLHF with LDP. We9

design an optimism-based algorithm and derive a logarithmic regret bound of10

O(dF log(NF · T )/(eϵ − 1)2), where T is the total time step, NF is cardinality of11

the reward function space F and dF is a variant of eluder dimension for RLHF.12

As a by-product of our analysis, our results also imply the first analysis for online13

KL-regularized RLHF without privacy. Finally, we implement our algorithm in the14

offline setting on real data to verify our theoretical results.15

1 INTRODUCTION16

The alignment of Large Language Models (LLMs) with human preferences, often achieved through17

Reinforcement Learning from Human Feedback (RLHF), has become a central area of research. A key18

technique in this process is the Kullback-Leibler (KL) regularization, which is widely used to prevent19

the model from deviating too far from its original behavior and to avoid overfitting [37, 2, 40, 30].20

Mathematically, this objective function encourages the maximization of a reward model while forcing21

the learned policy π to stay close to a base policy πref for a given state s (prompt) and action a22

(response):23

J(π) := E(s,a)∼d0×π

[
r∗(s, a)− β−1 log

π(a | s)
πref(a | s)

]
, (1)

where r∗(s, a) represents the ground truth reward and β > 0 is the inverse temperature parameter.24

The performance of algorithms is measured by the suboptimality gap in the offline setting, defined as25

SubOpt(π) := J(π∗)− J(π), (2)

where π∗ is the optimal policy π∗ := argmaxπ J(π). In the online setting, performance is measured26

by regret:27

Reg(π1:T ) :=

T∑
t=1

(J(π∗)− J(πt)) . (3)

While RLHF is effective, significant privacy concerns arise because the preference data used for align-28

ment may contain personal or sensitive information [36, 24]. The standard framework for quantifying29
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and mitigating privacy leakage is Differential Privacy (DP) [9]. By introducing calibrated randomness,30

DP ensures that the output of an algorithm is not overly sensitive to any single individual’s data,31

thereby protecting their privacy. In the context of learning from human feedback, a key challenge32

is to preserve the privacy of the potentially sensitive preference labels provided by users. This has33

motivated recent work on applying DP specifically to preference-based learning, often referred to as34

label differential privacy (label DP) [12]. Label differential privacy in KL-regularized RLHF for the35

offline setting is studied in [35] under a central differential privacy model in which the learner can36

access the raw information of human labels. However, in some applications, individual labelers may37

be unwilling—or legally unable—to share raw feedback with the learner. These considerations moti-38

vate studying a local model for label differential privacy, where each human preference is privatized39

before disclosure.40

Several recent works consider privacy issues on preference labels and study the problem by adopting41

differential privacy. However, the intersection of these two areas—KL-regularized RLHF and local42

model label differential privacy—remains unexplored. In particular, it is unknown whether applying43

label LDP to KL-regularized RLHF can yield strong theoretical guarantees on suboptimality and44

regret. Motivated by this gap, we are interested in our first question:45

1. In the offline setting, can we achieve an optimal rate for KL-regularized RLHF under the label-LDP46

setting?47

A primary challenge in offline RLHF is the distribution shift, which occurs when the data distribution48

used to train the reward model mismatches the response distribution of the optimized policy. This49

can lead to out-of-distribution errors, reward over-optimization, and degraded performance. While50

many recent works on theoretical offline RLHF derive rates that depend on notions of data coverage,51

one effective method to mitigate distribution shift is to use an online version of RLHF. For instance,52

[38] achieves logarithmic regret for online KL-regularized RL, depending on the eluder dimension.53

However, no existing work has studied the privacy problem in online KL-regularized RLHF, which54

leads us to our second question:55

2. In the online setting, can we provide a logarithmic regret bound for KL-regularized RLHF under a56

local differential privacy mechanism?57

We answer both of these questions affirmatively and summarize our contributions as follows:58

• For the problem of private KL-regularized RLHF in the offline setting, we propose the59

PPKL-RLHF algorithm (Algorithm 1), which uses a Random Response (RR) mechanism60

to achieve label ϵ-LDP. Using these privatized preference labels for a private Maximum61

Likelihood Estimation (MLE), we obtain a conservative reward estimation via the principle62

of pessimism, which is then used for policy optimization with Gibbs sampling. We derive63

a suboptimality gap upper bound of Õ
(
1/[(eϵ − 1)2n]

)
(Equation (2)), with sample size64

n and under single policy concentrability. To demonstrate optimality, we also establish a65

matching lower bound.66

• For the online setting, we design the POKL-RLHF algorithm (Algorithm 2), which uses67

RR to locally privatize human feedback. With the privatized labels and historical data,68

we design an exploitation agent using private least squares estimation and strategically69

design exploration via optimism for reward estimation. This exploration strategy yields70

a logarithmic regret bound for the exploration agent (Equation 3). To the best of our71

knowledge, we are the first to study the private online KL-regularized RLHF problem.72

• As a by-product, our analysis provides insights into the non-private online KL-regularized73

RLHF setting. In particular, we establish the first logarithmic regret bound for online74

KL-regularized RLHF using a new variant of the eluder dimension. This result outperforms75

the sublinear regret bound for online RLHF in [30, 28] and sheds light on future research76

directions, such as online f -regularized RLHF or analyzing online KL-regularized RLHF77

from a Markov decision process perspective.78

• Finally, we also run some experiments on a real dataset by implementing our algorithm79

design for the offline setting.80
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2 RELATED WORK81

Given the large literature on trustworthy LLM alignment, this is necessarily a short review of the82

most related theory work. We refer the reader to [17] for a more comprehensive survey of this topic.83

Non-Private Offline KL-regularized RLHF Offline RLHF suffers from a distribution shift problem,84

since the model is trained on a fixed dataset. Coverage conditions are used to measure the ability85

of the training-data distribution to cover the test-data distribution. With sample size n in KL-86

regularized RLHF, [30] derives a suboptimality gap of1 Õ(1/
√
n) under single-policy coverage. [37]87

achieves a suboptimality gap of Õ(1/n) but under their all-policy concentrability, which is a strong88

condition that requires the sample distribution to cover all possible distributions. [39] first establishes89

the suboptimality gap of Θ̃(1/n) under single-policy coverage. Building on these, we derive the90

optimal convergence of Θ̃(1/[(eϵ − 1)2n] with single-policy concentrability for the private offline91

KL-regularized RLHF under ϵ-LDP.92

Non-private Online KL-regularized RLHF Online methods are a promising approach to overcome93

the out-of-distribution problems in offline RLHF. [30, 31] show the benefits of the online exploration94

agent and provides regret of Õ(
√
T ) for online KL-regularized RLHF with an eluder-type condition.95

[33] investigate the online KL-regularized RLHF problem via a Nash equilibrium reformulation. [28]96

study online KL-regularized RLHF via adding an exploration term on their loss function based on97

optimism in the face of uncertainty, and establishes regret of Õ(
√
T ) under their trajectory-level98

coverability coefficient. Our result improves has a better regret, but for a different objective function.99

In fact, taking the privacy parameter ϵ→ +∞, our results imply the first logarithmic regret bound of100

Õ(log T ) depending on the eluder dimension.101

Locally Private RLHF [42, 43] achieve sub-optimality gap of Õ(1/[(eϵ− 1)
√
n]) for locally private102

RLHF on the unregularized suboptimality gap as the performance measure for policy in the offline103

setting. We adopt a KL-regulized objective function to evaluate progress on the same function the104

algorithm optimizes, which avoids evaluation–training mismatch. With KL-regularized performance105

measure, we can improve the sub-optimality gap to Θ̃(1/(1/[(eϵ − 1)2n]) for the offline setting106

and achieve Õ(log T/(eϵ − 1)2) with eluder dimension for the online setting, due to the strongly107

convexity of the KL-regularized objection function. [7] considers label DP in both local and central108

models in offline RLHF, but they focus on the estimation error of the parameter, not suboptimality109

gaps.110

3 PRELIMINARY111

In this section, we introduce the necessary background of KL-regularized RLHF via the contextual112

bandits view, for both offline and online settings, as well as the basic knowledge of privacy in human113

feedback. We refer the readers to [16] for a unified view of RLHF via contextual bandits.114

3.1 Offline and Online KL-regularized RLHF115

KL-regularized RLHF seeks to optimize a target policy π by using human preferences to learn a116

reward function r(s, a), while constraining the policy update to stay close to a reference policy πref.117

Without loss of generality, we will assume r(s, a) in [0, B] (e.g., via clipping in [14] or normalization).118

This leads to the following objective function:119

max
π

Es∼d0, a∼π(·|x)[r(s, a)]−
1

β
KL(π(· | s) ∥πref(· | s)), (4)

where πref is often a reference policy (e.g., SFT model). It is easy to see that the optimal solution of120

(4) is the Gibbs distribution, that is121

π∗
r (a | s) =

1

Zr(s)
πref(a | s) exp(β · r(s, a)), (5)

where Zr(s) is the normalization constant.122

1We use Õ(·), Ω̃(·), Θ̃(·) to hide polylog factors.
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Offline KL-regularized RLHF In the offline case, the learning agent aims to learn a good policy123

from a pre-collected dataset D = {(si, a1i , a2i , yi)}ni=1, where yi ∈ {−1, 1} denotes the human’s124

preference between two candidate responses a1i , a
2
i generated from the reference policy πref given a125

prompt si sampled from d0. The binary label yi ∈ {−1, 1} indicates whether a1i ≻ a2i (yi = 1) or126

a2i ≻ a1i (yi = −1), that is, which response is preferred.127

Remark 3.1. We use y ∈ {−1, 1} here, which is also adopted in [43], not in {0, 1} as in most of the128

RLHF literature, since this will help us simplify the math. The analysis under either convention can129

be translated back and forth without loss of generality.130

We will need some definitions to quantify the “concentrability” of πref, that is, its ability to generate a131

diverse set of actions.132

Definition 3.2 (40). Given a class of functions F ⊂ (S × A → [0, B]) and some policy π, let133

B = (S → [−B,B]) be the function class of biases, and define D2
F ((s, a);π) as134

sup
g,h∈F

inf
b∈B

(g(s, a)− h(s, a)− b(s))2

Es′∼d0 Vara′∼π(·|s′) [g (s′, a′)− h (s′, a′)]
.

Definition 3.3 (Single-policy Concentrability [40]). D2
π∗ := E(s,a)∼d0×π∗D2

F ((s, a);πref) <∞135

Definition 3.4 (Density-ratio-based concentrability). For policy class Π and reference policy πref , the136

density-ratio-based all-policy concentrability CΠ is CΠ := supπ∈Π,s∈S,a∈A π(a | s)/πref (a | s).137

The single-policy counterpart under the optimal policy π∗ is Cπ∗
:= sups∈S,a∈A π∗(a | s)/πref (a |138

s).139

Online KL-regularized RLHF Online KL-regularized RLHF updates the policy πt over rounds.140

At each step t, a context st is drawn, two actions a1t ∼ π1
t and a2t ∼ π2

t are sampled (possibly141

asymmetrically), and human feedback yt ∈ {−1, 1} is queried. The second policy π2
t is used to142

facilitate exploration. Based on accumulated feedback Dt = {(si, a1i , a2i , yi)}ti=1, the reward is143

re-estimated to get r̂t, and the next policy is updated via (5):144

π1
t+1(a | s) ∝ πref(a | s) · exp (β · r̂t(s, a)) .

Definition 3.5 (Uncertainty and pair eluder dimension). For any sequenceDt−1 =
{(

si, a
1
i , a

2
i

)}t−1

i=1
,145

we define UF (λ, s, a;Dt;πt+1), the uncertainty of (s, a) with respect to F , as146

sup
r1,r2∈F

|r1(s,a)−r2(s,a)−Eb∼πt+1
[r1(s,b)−r2(s,b)]|√

λ+
∑t

i=1(r1(si,a1
i )−r1(si,a2

i )−[r2(si,a1
i )−r2(si,a2

i )])
2
.

The pair eluder dimension is given by dF := sups1:T ,a2
1:T

∑T
t=1 min

(
1,
[
UFt

(
λ, st, a

2
t ;Dt;π

1
t+1

)]2)
.147

Remark 3.6. The eluder dimension definition was first proposed by [22] for multi arm bandits148

problem to measure the efficacy with which observed data support inference about the values of149

unobserved actions and then widely used in RL problem [20, 38, 25, 27, 32, 1, 41] and preference-150

based RL [26, 6, 33]. Our definition is a variant of the eluder dimension for the design of the151

exploration strategy based on the exploitation agent.152

For both offline and online setting, we adopt the standard Bradley-Terry (BT) model for the preference153

model and we will assume realizability.154

Assumption 3.7 (Bradley-Terry Preference Model). Given a context s and two actions a1, a2, we155

assume the preference label y is sampled according to the the ground truth reward function r∗156

difference between the two actions:157

P[y = 1 | s, a1, a2] = σ(r∗(s, a1)− r∗(s, a2)), (6)

where σ(x) = (1 + e−x)−1 is the sigmoid function.158

Assumption 3.8 (Realizability of reward function). We assume that r∗ ∈ F ⊂ (S ×A → [0, B]).159

To derive uniform theoretical guarantees when |F| is infinite, we approximate it by a finite subset that160

is sufficiently dense with respect to an appropriate metric. This allows us to apply analysis to the finite161

subset and then transfer the bound to the entire class via a discretization argument. The complexity of162

F in this sense is captured by the covering number, which measures how many elements are required163

to approximate every function in F within a prescribed tolerance. We recall the formal definition164

below.165
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Definition 3.9 (Net and covering number). Given a function class F ⊂ (S × A → [0, B]) and166

τ ∈ (0, 1), a finite set F(τ) ⊂ F is a τ -net of F w.r.t. ∥·∥∞, if for any f ∈ F , there exists f ′ ∈ F(τ)167

such that ∥f − f ′∥∞ ≤ τ . The τ -covering number is the smallest cardinality NF (τ) of such F(τ).168

3.2 Privacy in Human Feedback169

Here, we formally introduce the Label Differential Privacy in the local model.170

Definition 3.10 (ε-Pure Local Label DP [7]). If each label is first privatized by a local randomizerR,171

which satisfies for any y, y′ and any subset S in the range ofR, it holds that for ε > 0,172

P[R(y) ∈ S] ≤ eε · P [R (y′) ∈ S] ,

then, we say that R is an ε-pure label differentially private local randomizer, where ε > 0 is the173

privacy parameter. Smaller values of ε provide stronger privacy guarantees, but introduce more noise.174

Instead of directly observing the true binary preference y ∈ {−1, 1} at each round, the learning agent175

receives a privatized label z ∈ {−1, 1} obtained via randomized response (RR):176

P(z = y) = α :=
eε

eε + 1
∈ (0.5, 1),

P(z ̸= y) = 1− α =
1

eε + 1
. (7)

The above randomized response mechanism satisfies ε-pure local label DP [9].177

4 OFFLINE PRIVATE KL-REGULARIZED RLHF WITH PESSIMISM178

In this section, we will study the locally private KL-regularized RLHF in the offline setting. We will179

first provide the algorithm for the problem and derive its suboptimality upper bound. In order to180

show the optimality of the theoretical guarantee, we will also present the lower bound under the same181

assumptions.182

4.1 Algorithm and Upper Bound183

The main idea of Algorithm 1 is that we first take the precollected data set D̃ = {(si, a1i , a2i , zi)}ni=1,184

where zi ∈ {−1,+1} are the privatized version of the true (unobserved) preference label yi through185

the randomized response mechanism in (7) with flip probability 1−α. For each sample (s, a1, a2, z),186

the probability of private label z given s, a1, a2 is187

P̃r∗(z | s, a1, a2) := P(z|s, a1, a2) = α·σ(z ·∆r∗(s, a
1, a2))+(1−α)·σ(−z ·∆r∗(s, a

1, a2)), (8)

where ∆r∗(s, a
1, a2) := r∗(s, a1) − r∗(s, a2) and σ(x) = (1 + e−x)−1 is the sigmoid function.188

Building on the probability function189

P̃r(z | s, a1, a2) = α · σ(z ·∆r(s, a
1, a2)) + (1− α) · σ(−z ·∆r(s, a

1, a2)) (9)

Algorithm 1 Private Pessimistic KL-Regularized RLHF (PPKL-RLHF) for Offline Setting

Require: Regularization parameter β, reference policy πref, function class F , offline dataset D̃ =
{(si, a1i , a2i , zi)}ni=1

1: Compute the private MLE estimation of the reward function:

r̄ ∈ argmax
r∈F

n∑
i=1

log P̃r(zi | si, a1i , a2i )

2: Use pessimism: r̂(s, a)← r̄(s, a)− Γn(s, a),∀(s, a), where Γn is the bonus term in (10)
3: return π̂(a | s) ∝ πref(a | s) exp (β · r̂(s, a))
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of z as a function of the reward r, we can estimate the reward by the Maximum Likelihood Estimation190

(MLE) on P̃r(z | s, a1, a2) in step 1 of the algorithm. After we get the estimation of the reward r̄, we191

construct a pessimistic estimator r̂ in step 2 with the following value of the bonus Γn(s, a):192 √
D2

F ((s, a);πref)
c · eB

(2α− 1)2

(
log(NF (τ)/δ)

n
+ τ

)
, (10)

where c is a constant. Finally, we get the policy output by Gibbs distribution from (5) based on r̂.193

Remark 4.1. The pessimism principle is well-known in offline RL [15] and offline RLHF [37]. It194

consists in adopting the lower confidence bound of the reward estimation, since the conservative195

estimate helps the distributional shift challenge in the offline setting. In our local DP case, the main196

difference compared with the non-private case is that the effective sample size changes from n to197

(2α − 1)2 · n = [(eϵ − 1)/(eϵ + 1)]
2 · n < n due to the randomness from the privacy-preserving198

mechanism.199

We now provide the theoretical guarantee of the suboptimality gap for the output policy in Algorithm 1.200

We defer its detailed proof in Appendix B.201

Theorem 4.2 (Sub-optimality gap upper bound in offline setting). Under Assumptions 3.7 and 3.8,202

Definitions 3.2, 3.3 3.4, and 3.9, for ϵ > 0, β > 0 and a sufficiently small τ ∈ (0, 1), with probability203

at least 1− δ, we have that the suboptimality gap of the output of Algorithm 1, SubOpt(π̂) is of the204

order of205

O

(
βD2

π∗
eB

(2α− 1)2

(
log(NF (τ)/δ)

n
+ τ

))
. (11)

Remark 4.3 (Discussion of the parameters in the upper bound). In the above results, β is a hyperpa-206

rameter in the regularized objective function (1) to trade off the reward maximization and how close207

the target policy is to πref. eB comes from the sigmoid function in BT preference model and it is208

common in the RLHF literature [42, 30, 37, 39].209

Remark 4.4 (Comparision with prior work for upper bound). Compared with the unregularized210

suboptimality upper bound of Õ(1/[(2α− 1)
√
n]) in [42] with their single-policy relative condition211

number, our result with KL-regularization of Õ(1/[(2α− 1)2n]) is tighter when the sample size n is212

large enough, but on a different objective function. When ϵ ∈ (0, 1], which means a strong privacy213

guarantee, we obtain Õ(1/[(2α − 1)2n]) = Õ(1/[(eϵ − 1)2n]) that matches the lower bound we214

prove in the following. Note that when ϵ→ +∞, i.e., α = 1, we recover the non-private case in [40].215

4.2 Lower Bound Analysis216

We verify the optimality of the above bound by proving the following lower bound and defer the217

complete proof to Appendix B.218

Theorem 4.5 (Sub-optimality gap lower bound in offline setting). For reward function class F ⊂219

(S × A → [0, B]), τ ∈ (0, 1) small enough, β > 0, S = logNF (τ), C∗ ∈ (2, e(βB)/2 + 1),220

algorithm set Π, Cπ∗ ≤ C∗, and KL-regularized RLHF instance set I, the minimax suboptimality221

gap inf π̂∈Π supI∈I SubOpt(π̂, I) under ϵ-LDP mechanism for labels is222

Ω

(
min

{
βC∗ logNF (τ)

(eϵ − 1)2n
,

√
logNF (τ)C∗

(eϵ − 1)
√
n

})
. (12)

Remark 4.6 (Comparision with prior work for lower bound). A lower bound for the parameter223

estimation for RLHF under label LDP is provided in [7]. In particular, they show a lower bound of224

Ω( 1
eε−1

√
d
n ) for the estimation error bound of the parameter in a linear reward model in Rd. As225

far as we know, we are the first ones to provide the lower bound for the suboptimality gap for this226

problem of RLHF under LDP, matching the same effective sample size of (eϵ − 1)2n ≈ ϵ2n when227

ϵ ∈ (0, 1) as [7]. Taking NF (τ) = (1/τ)d in the linear model, we can imply the suboptimality gap228

of Ω̃
(
min

{
βC∗d

(eϵ−1)2n ,
√
dC∗

(eϵ−1)
√
n

})
for private KL-regularized RLHF which also demonstrates the229

importance of β and C∗ in this problem.230
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Remark 4.7 (Discussion of the parameters in the lower bound). From the above lower bound and231

the upper bound of the suboptimality gap in Theorem 4.2, we obtain that the single-policy coverage232

Cπ∗
is necessary due to the distribution shift between the behavior policy and optimal in the private233

RLHF problem. In fact, [11] showed that in the non-private RLHF setting the single policy coverage234

coefficient is also unavoidable. Motivated by this, in the next section we study the problem of235

private KL-regularized RLHF under an online setting, which will help remove the dependence on the236

coverage condition.237

5 ONLINE PRIVATE KL-REGULARIZED RLHF WITH OPTIMISM238

In this section, we turn our attention to KL-Regularized RLHF with LDP on labels in the online239

setting. Compared with the online RL problem, the main challenge of online RLHF comes from the240

imperfect information on the reward. That is, the reward can be observed in RL and used to estimate241

the reward model. However, in online RLHF, given a context, we need to sample two actions and242

receive human labels to train the reward model. This raises another problem: How to sample two243

actions?244

The sampling methods of two actions in online RLHF are mainly divided into two classes: symmetric245

and non-symmetric.246

• In the symmetric class, we sample two actions from the same policy, e.g., the one got247

from the last iteration as in [4, 13]. However, [28, Proposition 2.1] shows that this strategy248

can suffer from a constant lower bound on the suboptimality gap. Hence, some kind of249

exploration is necessary in online RLHF.250

• In the non-symmetric class, some algorithms sample actions from different polices—one251

policy from exploitation and another one for exploration based on the first one—for KL252

regularized RLHF [31, 30]. [28, 5] sample an action from the last iteration policy and253

another from the reference policy for KL regularized RLHF, but adds a bias term in the loss254

function for exploration.255

Inspired by the above works, we adopt the optimism principle for our exploration policy, which256

is a principle widely used in online RL [29, 19, 18, 38]. We develop the Private Optimistic KL-257

Regularized RLHF (POKL-RLHF) algorithm (see Algorithm 2). In each time step t ∈ {1, . . . , T},258

after the learner observes the context st (the prompt in the large language model) sampled from a259

fixed distribution d0, two actions (two answers from the LLM) are compared. In our LDP model,260

only the private label zi privatized by the RR mechanism in (7) is available to the learner, instead of261

the true label yi. With these historical data till time step t, we update the reward model by the private262

least squares estimation at Step 7. Then, we update the exploitation policy π1
t+1 based on the reward263

estimation by the solution of the KL-regularized objective function in (5). Given π1
t+1, we design the264

exploration policy by using an exploration bonus. In particular, we construct a confidence set that265

will shrink with time:266

Ft =

{
r ∈ F :

t∑
i=1

(
∆r

i −∆r̄t
i

)2
+ λ ≤ Γ2

T

}
,

where267

ΓT =
ceB

√
log (T ·NF/δ)

2α− 1
and c is a constant. Then, the exploration bonus bt is defined through the uncertainty in Definition 3.5:268

bt(s, a) = min
{
1,ΓT UFt

(
λ, s, a;Dt;π

1
t+1

)}
. (13)

Remark 5.1. As in [14, 38], we assume that the reward function space F is finite. The infinite case269

can be solved easily by an ϵ-net and uniform convergence argument (refer to Lemma C.1 in [38] and270

Lemma C.2 in [37]), similarly to our offline case.271

Based on the optimism principle for exploration policy, we derive the following theoretical guarantee.272

Theorem 5.2 (Regret Bound). Under Assumptions 3.7 and 3.8, for δ ∈ (0, 1), ϵ > 0 and λ ≤ 1
2Γ

2
T273

with probability at least 1− δ, Algorithm 2 satisfies274

T∑
t=1

(J(π∗)− J(π2
t )) = O

(
β · dF · e2B

(2α− 1)2
log(NF · T/δ)

)
,
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Algorithm 2 Private Optimistic KL-Regularized RLHF (POKL-RLHF) for Online Setting
Require: KL coefficient β, reward function class F , exploration scale λ, reference policy πref, DP

parameter ε
1: Initialize: D0 = ∅; π1

1 , π
2
1 = πref

2: for t = 1 to T do
3: Observe context st ∼ d0
4: Sample a1t ∼ π1

t (· | st) and a2t ∼ π2
t (· | st)

5: Observe private preference label zt ∈ {−1, 1} via randomized response in (7)
6: Update Dt ← Dt−1 ∪ {(st, a1t , a2t , zt)}
7: Estimate reward from private least square:

r̄t = argmin
r∈F

∑
Dt

[(2σ(∆r
i )− 1)(2α− 1)− zi]

2
,

where ∆r
i := r(si, a

1
i )− r(si, a

2
i )

8: Update exploitation policy: π1
t+1(a | s) ∝ πref(a | s) · exp(β · r̄t(s, a))

9: Set exploration policy: π2
t+1(a | s) ∝ π1

t+1(a | s) · exp(β · bt(s, a)) with bt defined in (13)
10: end for

where dF is the pair eluder dimension in Definition 3.5, β is the hyperparameter in (1), NF is the275

cardinality of reward function space.276

Remark 5.3. In the context of online RL/RLHF, bounds in terms of the eluder dimension characterize277

the statistical learnability of exploration strategies. However, it is important to note that such278

guarantees are information-theoretic rather than computational: While they demonstrate that learning279

is possible with a finite number of iterations, the corresponding algorithms are often computationally280

intractable when the function class is large. We leave how to find a computationally efficient method281

with logarithmic regret for online RLHF as an open problem.282

Remark 5.4. In the above results, e2B comes from the sigmoid function for the preference model.283

The effect of LDP is a factor of 1
(2α−1)2 = ( e

ϵ+1
eϵ−1 )

2 > 1 due to the randomness from the differential284

privacy mechanism. As a by-product, taking ϵ → +∞, i.e., α = 1 in the algorithm analysis, the285

result implies a bound for the corresponding non-private case.286

Corollary 5.5. Under Assumptions 3.7 and 3.8, for α = 1, δ ∈ (0, 1), with probability at least 1− δ,287

Algorithm 2 satisfies288

T∑
t=1

(J(π∗)− J(π2
t )) = O

(
β · dF · e2B log(NF · T/δ)

)
.

Remark 5.6. Online RLHF is also studied in [30, Section 4], and from their proofs a sublinear regret289

bound of Õ(
√
T ) for the exploration policy can be implied. Compared with their results, we are the290

first ones to achieve a logarithmic regret bound with the eluder dimension.291

6 EXPERIMENTAL RESULTS292

As noted in Remark 5.3, the online algorithm based on the eluder dimension is computationally293

intractable in practice. Thus, we choose to only experiment in the offline case to empirically verify294

our theoretical findings about the effect of the ϵ-LDP model.295

Dataset and Compute For all experiments, we use the helpful assistant preference corpus2 tailored296

for RLHF [3]. The dataset consists of two complementary components: (i) Supervised Fine-Tuning297

(SFT) dialogues, where each sample contains a user query and a preferred assistant response; and298

(ii) preference pairs, where each sample provides a prompt together with one chosen and one299

rejected response. The SFT corpus contains 38,821 training examples and 4,413 validation examples.300

Preference pairs are split into 38,821 training, 2,100 validation, and 2,313 held-out test examples.301

We used a single AMD MI-200 GPU equipped with 64 GB of VRAM.302

2https://huggingface.co/datasets/Anthropic/hh-rlhf
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Table 1: Win rates of different methods evaluated on the preference test set. PPKL-RLHF uses
β = 0.10.

Method Setting Win rate
SFT (π0) – 0.538
DPO(non-private) β = 0.1 0.704
PPKL-RLHF ϵ = 0.1 0.530
PPKL-RLHF ϵ = 0.5 0.554
PPKL-RLHF ϵ = 2.0 0.607

SFT training and Baseline We use the Llama-3.2-1B-Instruct model3 as the backbone for all303

experiments. To obtain the baseline policy π0, we performed SFT on the dialogue part of the dataset,304

with standard next-token prediction.305

We also use Direct Preference Optimization (DPO) [21] as a baseline, training the policy relative306

to the frozen SFT reference π0 on the preference pairs. The objective is optimized for β = 0.1307

with AdamW, linear warmup, gradient accumulation, and validation every 500 steps, and the best308

checkpoint is selected by validation loss after a few thousand iterations. This baseline is non-private309

and without KL regularization.310

Implementation of PPKL-RLHF To implement this setup, we first train a privatized reward model311

(Algorithm 1) that adds a scalar linear head with EOS pooling on top of the Llama-3.2-1B-Instruct312

backbone, clipped to [−5, 5]. The reward model is optimized in two phases: first warming up by313

training only the head, then fine-tuning the full backbone for 5 epochs. The policy is optimized314

with PPO [23] against the corrected rewards and a KL penalty to the SFT baseline, using β = 0.1.315

Training runs for 500 iterations with 16 rollouts per iteration; each update applies 3 PPO epochs with316

minibatch size 4, generation length capped at 64 tokens (prompts up to 256, temperature 1.0, top-p317

0.9), and standard PPO hyperparameters (clip ϵc = 0.2, policy lr 1× 10−6, value lr 5× 10−6, value318

loss weight 0.5, entropy coefficient 0.01, max grad norm 1.0).319

Results and Baseline Comparison The final results of our evaluation are presented in Table 1320

where we use the win rate as our performance metric, as in [21, 42]. At stronger privacy (ϵ=0.1)321

performance is close to SFT, while at ϵ=0.5 it surpasses the SFT baseline (0.554 vs. 0.538). The322

best setting reaches around 0.607 at ϵ=2.0, indicating utility gains with weaker theoretical privacy.323

These results highlight that even with noisy privatized labels, training a reward model followed by324

our PPKL-RLHF procedure retains competitive utility and offers tunable privacy–utility trade-offs.325

However, PPKL-RLHF’s win-rate remains behind DPO (0.704), likely because label privatization326

and the pessimistic KL correction restrict the effective learning signal compared to the non-private327

baseline.328

7 CONCLUSION329

In this paper, we investigated the KL-regularized RLHF problem in both offline and online settings.330

We designed algorithms based on pessimistic and optimistic principles for the offline and online331

settings, respectively, and provided theoretical guarantees for both cases. We established the optimal332

sub-optimality gaps for the offline setting and a logarithmic regret bound for the online setting while333

preserving privacy. Finally, we also showed some experimental results to verify our theoretical334

findings.335

Potential avenues for future research include extending private KL-regularized RLHF to more general336

preference models, such as the Plackett–Luce model. Another promising direction is to investigate337

alternative differential privacy mechanisms that could provide improved privacy–utility trade-offs,338

for instance, through shuffle differential privacy or related variants.339

3https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
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A Useful Lemmas452

Lemma A.1 (10). For any sequence of real-valued random variables (Xt)t≤T adapted to a filtration453

(Ft)t≤T , it holds that with probability at least 1− δ, for all T ′ ≤ T ,454

T ′∑
t=1

Xt ≤
T ′∑
t=1

logEt−1

[
eXt
]
+ log

1

δ
.

Lemma A.2. Let455

f(x) = log
(
ασ(x) + (1− α)

(
1− σ(x)

))
, σ(x) =

1

1 + e−x
,

where α ∈ (0.5, 1) and x ∈ [−B,B]. Then for any a, b ∈ [−B,B], we have456

|f(a)− f(b)| ≤ σ(B) |a− b| .

Proof. First, observe that457

ασ(x) + (1− α)(1− σ(x)) = 1− α+ (2α− 1)σ(x) .

So, we have458

f ′(x) =
(2α− 1)σ(x)(1− σ(x))

1− α+ (2α− 1)σ(x)
≤ 1− σ(x),

where the inequality due to the fact that 1− α ≥ 0.459

Maximizing over x ∈ [−B,B], we obtain460

sup
x∈[−B,B], α∈(0.5,1)

f ′(x) ≤ sup
x∈[−B,B]

1− σ(x) = 1− σ(−B) = σ(B) .

Finally, by the Mean Value Theorem, for any a, b ∈ [−B,B] there exists c between a and b such that461

|f(a)− f(b)| = |f ′(c)| |a− b| ≤ σ(B) |a− b| .
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Lemma A.3 (Freedman’s Inequality). Let δ ∈ (0, 1). Let M,v > 0 be fixed constants. Let {Xi}ni=1462

be a stochastic process, {Gi}i be a sequence of σ-fields, and Xi be Gi-measurable, while almost463

surely464

E [Xi | Gi] = 0, |Xi| ≤M, and
n∑

i=1

E
[
X2

i | Gi−1

]
≤ v .

Then, with probability at least 1− δ, it holds that465

n∑
i=1

Xi ≤
√

2v log
1

δ
+

2

3
M log

1

δ
.

Lemma A.4 ([37]). Suppose a, b ≥ 0. If x2 ≤ a+ b · x, then x2 ≤ b2 + 2a.466

Lemma A.5 (Theorem 1 in [8]). For any ϵ ≥ 0, let Q be a conditional distribution that guarantees467

ϵ-local differential privacy. Then for any pair of distributions P1 and P2, the induced marginals M1468

and M2 where Mj(S) =
∫
X Q(S | x)dPj(x) for j = 1, 2 satisfy the bound469

Dkl (M1∥M2) +Dkl (M2∥M1) ≤ min
{
4, e2ϵ

}
(eϵ − 1)

2 ∥P1 − P2∥2TV .

Lemma A.6 (Assouad’s Lemma). Let I be the set of instances, Π be the set of estimators, Θ :=470

{±1}S for some S > 0, and {Lj}Sj=1 be S functions from Π× I to R+. Suppose {Iθ}θ∈Θ ⊂ I and471

the loss function is472

L(π, I) :=

S∑
j=1

Lj(π, I),∀(π, I) ∈ Π× I .

We denote θ ∼j θ
′ if they differ only in the j-th coordinate. Further, assume that473

θ ∼j θ
′ ⇒ inf

π∈Π
Lj (π, Jθ) + Lj (π, Jθ′) ≥ c,

for some c > 0. Then, we have474

inf
π∈Π

sup
I∈I

L(π, I) ≥ S · c
4

min
∃j:θ∼jθ′

exp
(
−KL

(
PIθ∥PIθ′

))
,

where PI denotes the distribution of the dataset given I ∈ I.475

Lemma A.7 (40). Let b(s) : S → R be some bias function, then for all r(s, a) ∈ F we have J (πr) =476

J (πr−b) since πr = πr−b where πr =
πref exp (βr)∑

a∈A πref exp (βr) , where (r − b)(s, a) = r(s, a)− b(s).477

Lemma A.8. Let σ(x) = 1
1+e−x be sigmoid function and f(x) = (2σ(x)− 1)(2α− 1) for a fixed478

α ∈ (0.5, 1]. For any B ≥ 0 and any x, x′ ∈ [−B,B],479

|x− x′| ≤ e−B + 2 + eB

2(2α− 1)
|f(x)− f(x′)| .

Proof. First we have f ′(x) = 2(2α− 1)σ′(x) with480

σ′(x) =
e−x

(1 + e−x)2
=

1

ex + 2 + e−x
.

On [−B,B], σ′ attains its minimum at ±B:481

min
|x|≤B

σ′(x) =
1

eB + 2 + e−B
.

Hence482

m := inf
|x|≤B

|f ′(x)| = 2(2α− 1)

eB + 2 + e−B
.

By the Mean Value Theorem there exists ξ between x and x′ such that483

|f(x)− f(x′)| = |f ′(ξ)| |x− x′| ≥ m |x− x′|,

which gives the stated inequality.484
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B Proofs of Section 4485

In Algorithm 1, we estimate the reward function via MLE. Thus, we extend the approach in [37] to486

establish the generalization error bound of reward difference the MLE, taking into account that here487

the MLE is on the private probabilities.488

Lemma B.1. For an arbitrary policy π, and a set of offline data {(si, a1i , a2i , zi)}ni=1 generated i.i.d489

from the BT model and π, and privatized by RR. Suppose that r̄ is the result of the private MLE in490

step 1 of Algorithm 1, then there exists a function b(s) : S → [−B,B] such that with probability at491

least 1− 2δ and for all values of τ small enough, we have492

Es∼d0,a∼π(·|s)[r̄(s, a)− r∗(s, a)− b(s)]2 = O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
. (14)

From the proof of the lemma, define b(s) = Ea∼π(·|s)[r̄(s, a) − r∗(s, a)], then493

Es∼d0 Vara∼π(·|s)[r̄(s, a) − r∗(s, a)] = E(s,a)∼d0×π[(r̄(s, a) − r∗(s, a) − b(s))2]. Note that, in494

the offline setting, the actions are sampled from πref .495

Proof of Lemma B.1. Step 1: Connect private MLE and the reward difference. Since we estimate496

the reward function by private MLE, let497

L̃(r|si, a1i , a2i ) = log
[
α · σ(zi ·∆r(si, a

1
i , a

2
i )) + (1− α) · σ(−zi ·∆r(si, a

1
i , a

2
i ))
]
.

We first use Lemma A.1 on the sequence498 {
1

2
L̃(r|si, a1i , a2i )−

1

2
L̃(r∗|si, a1i , a2i )

}n

i=1

=

{
1

2
log

P̃r(zi|si, a1i , a2i )
P̃r∗(zi|si, a1i , a2i )

}n

i=1

,

for any r ∈ F where P̃r is defined in (9). Then, for s ≤ n, we have with probability at least 1− δ499

that500

1

2

s∑
i=1

[
L̃(r|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )

]

≤
s∑

i=1

logE

[√
P̃r(zi|si, a1i , a2i )
P̃r∗(zi|si, a1i , a2i )

]
+ log

1

δ

=

s∑
i=1

log

[√
P̃r(zi = −1|si, a1i , a2i )P̃r∗(zi = −1|si, a1i , a2i )

+

√
P̃r(zi = +1|si, a1i , a2i )P̃r∗(zi = +1|si, a1i , a2i )

]
+ log

1

δ

(a)

≤
s∑

i=1

[√
P̃r(zi = −1|si, a1i , a2i )P̃r∗(zi = −1|si, a1i , a2i )

+

√
P̃r(zi = +1|si, a1i , a2i )P̃r∗(zi = +1|si, a1i , a2i )− 1

]
+ log

1

δ

= log
1

δ
− 1

2

s∑
i=1

(√
P̃r∗(zi = +1|si, a1i , a2i )−

√
P̃r(zi = +1|si, a1i , a2i )

)2

− 1

2

s∑
i=1

(√
P̃r∗(zi = −1|si, a1i , a2i )−

√
P̃r(zi = −1|si, a1i , a2i )

)2

(b)

≤ log
1

δ
− 1

8

s∑
i=1

(
P̃r∗(zi = +1|si, a1i , a2i )− P̃r(zi = +1|si, a1i , a2i )

)2
= log

1

δ
− 1

8

s∑
i=1

(2α− 1)2 · [σ(∆r∗(si, a
1
i , a

2
i ))− σ(∆r(si, a

1
i , a

2
i ))]

2

≤ log
1

δ
− (2α− 1)2 · eB

8(1 + eB)2

s∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r(si, a

1
i , a

2
i )]

2, (15)
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where (a) is from log x ≤ x−1 for x > 0, (b) is from (
√
a−
√
b)2 ≥ 1

4 (a−b)
2 for a, b ∈ [0, 1] since501

(
√
a−
√
b)2 = (a−b)2

(
√
a+

√
b)2
≥ 1

4 (a− b)2, a, b ∈ [0, 1] and the last inequality is from σ′(x) ≥ eB

(1+eB)2
502

for x ∈ [−B,B].503

Step 2: private likelihood function class well-covered by τ -net of reward function. For any τ > 0,504

define Fτ as a τ -net for the reward function class F with covering number NF (τ) in Definition 3.9.505

Then, for any s ∈ S, a1, a2 ∈ A, z ∈ {−1,+1} and r ∈ F , there exists r′ ∈ Fτ such that506

|L̃(r|s, a1, a2)− L̃(r′|s, a1, a2)| ≤ σ(B)|∆r(s, a
1, a2)−∆r′(s, a

1, a2)| ≤ 2σ(B)τ, (16)

where the first inequality is from Lemma A.2 by taking x = z ·∆r(s, a
1, a2) and σ(−x) = 1−σ(x).507

This yields508
s∑

i=1

L̃(r|si, a1i , a2i ) ≤
s∑

i=1

L̃(r′|si, a1i , a2i ) + 2σ(B)τs . (17)

Step 3: confidence bound for the private MLE estimator. Based on (15) and the union bound, for509

all r′ ∈ Fτ we obtain510

1

2

n∑
i=1

[
L̃(r′|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )

]
≤ log

NF (τ)

δ
− (2α− 1)2 · eB

8(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r′(si, a

1
i , a

2
i )]

2 .

Building on the above inequality and (17), we have with probability at least 1− δ, for any r ∈ F ,511

there exists r′ ∈ Fτ such that512

1

2

n∑
i=1

{
L̃(r|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )

}
≤1

2

n∑
i=1

{
L̃(r|si, a1i , a2i )− L̃(r′|si, a1i , a2i ) + L̃(r′|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )

}
(a)

≤ log
NF (τ)

δ
− (2α− 1)2 · eB

8(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r′(si, a

1
i , a

2
i )]

2 + σ(B)τn

= log
NF (τ)

δ
− (2α− 1)2 · eB

8(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r(si, a

1
i , a

2
i ) + ∆r(si, a

1
i , a

2
i )−∆r′(si, a

1
i , a

2
i )]

2 + σ(B)τn

(b)

≤ log
NF (τ)

δ
− (2α− 1)2 · eB

4(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r(si, a

1
i , a

2
i )]

2 +
(2α− 1)2 · eB

(1 + eB)2
τ2n+ σ(B)τn

≤ log
NF (τ)

δ
− (2α− 1)2 · eB

4(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r(si, a

1
i , a

2
i )]

2 + 2τn,

(18)
where (a) is from the union bound over Fτ , (b) is from (a+ b)2 ≤ 2a2 + 2b2 and the definition of513

τ -net for the reward functions, and the last inequality is from the small value of τ .514

Since r̄ is the private MLE estimator, by the realizability of the reward function, we have515 ∑n
i=1{L̃(r̄|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )} ≥ 0. So, we get516

0 ≤ log
NF (τ)

δ
− (2α− 1)2 · eB

4(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r̄(si, a

1
i , a

2
i )]

2 + 2τn .

Then, with probability at least 1− δ, we have517

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r̄(si, a

1
i , a

2
i )]

2 ≤ 4(1 + eB)2

(2α− 1)2 · eB

(
log
NF (τ)

δ
+ 2τn

)
. (19)

Step 4: On-policy error bound of reward difference function. We first get the bound on the518

finite reward function set Fτ , then derive it for an infinite set F . We now use Lemma A.3 by taking519

Xi = E[Yi]− Yi as zero mean r.v. where Yi = [∆r′(si, a
1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2 ∈ [0, 4B2], thus,520
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|Xi| ≤ 4B2 and EX2
i = E[Y 2

i ] − [EYi]
2 ≤ EY 2

i ≤ 4B2EYi. Hence, by the union bound, with521

probability at least 1− δ we have for all r′ ∈ Fτ that522

nEs∼d0,a1,a2∼π[∆r′(s, a
1, a2)−∆r∗(s, a

1, a2)]2 −
n∑

i=1

[∆r′(si, a
1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2

≤
√
4nB2 log

NF (τ)

δ
Es∼d0,a1,a2∼π[∆r′(s, a1, a2)−∆r∗(s, a1, a2)]2 +

8

3
B2 log

NF (τ)

δ
.

(20)

From the above inequality and by taking x =
√

nEs∼d0,a1,a2∼π[∆r′(s, a1, a2)−∆r∗(s, a1, a2)]2, b =523

2B, a = 8
3B

2 log(NF (τ)/δ) +
∑n

i=1[∆r′(si, a
1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2 in Lemma A.4, we get524

nEs∼d0,a1,a2∼π[∆r′(s, a
1, a2)−∆r∗(s, a

1, a2)]2 = O

(
B2 log

NF (τ)

δ

)
+

n∑
i=1

[∆r′(si, a
1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2 .

By the definition of τ -net in Definition 3.9, we have for the private MLE estimator r̄, there exists525

a r′ ∈ Fτ , such that, for all (s, a) ∈ S × A, we have |r′(s, a) − r̄(s, a)| ≤ τ from which and the526

result in step 3 we can further derive with probability at least 1− 2δ527

Es∼d0,a1,a2∼π[∆r̄(s, a
1, a2)−∆r∗(s, a

1, a2)]2

= O

(
B2 log(NF (τ)/δ)

n

)
+

1

n

n∑
i=1

[∆r′(si, a
1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2 + 8τ2

=
4(1 + eB)2

(2α− 1)2 · eB
·
(
log(NF (τ)/δ)

n
+ 2τ

)
+O

(
B2 log(NF (τ)/δ)

n

)
+ 8τ2

= O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
,

for all values of τ small enough. Then, we get the result by taking b(s) = Ea2∼π[r̄(s, a
2) −528

r∗(s, a2)].529

Lemma B.2. From Lemma 2.16 in [40] and Lemma E.2 in [40], if pessimistic event (g−r∗)(s, a) ≤ 0530

holds, we have531

J (π∗)− J (πg) ≤ βE(s,a)∼ρ×π∗

[
(g − r∗)

2
(s, a)

]
.

We state the details of the proof here.532

Proof of Theorem 4.2. Similar to Lemma E.1 in [40], it is easy to get with probability at least 1−δ, the533

event E(δ) := {∃b : S → [−B,B],∀(s, a) ∈ S ×A, |r̄(s, a)− b(s)− r∗(s, a)| ≤ Γn(s, a)} holds534

for δ ∈ (0, 1).535

From the result of Lemma B.1, we have with probability at least 1− δ,536

Es′∼d0Vara′∼πref [r̄(s
′, a′)− r∗(s′, a′)] ≤ O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
.

Then we have537

inf
b

(r̄(s, a)− b(s)− r∗(s, a))2

= inf
b

(r̄(s, a)− b(s)− r∗(s, a))2

Es′∼d0
Vara′∼πref [r̄(s

′, a′)− r∗(s′, a′)]
Es′∼d0

Vara′∼πref [r̄(s
′, a′)− r∗(s′, a′)]

≤ D2
F ((s, a), πref)Es′∼d0

Vara′∼πref [r̄(s
′, a′)− r∗(s′, a′)]

≤ D2
F ((s, a), πref)O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
.

Thus, we get E(δ) holds with probability at least 1− δ.538
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Under event E(δ), we have r̂(s, a)− b(s) ≤ r∗(s, a),539

J(π∗)− J(πr̂) = J(π∗)− J(πr̂−b) ≤ β · E(s,a)∼d0×π∗ [(r̂(s, a)− b(s)− r∗(s, a))2],

where r̂(s, a) = r̄(s, a)− Γn(s, a) in Step 2 of Algorithm 1, the equation is from Lemma A.7 and540

the inequality is from Lemma B.2. Therefore, we obtain541

J(π∗)− J(πr̂) ≤ β · E(s,a)∼d0×π∗ [(r̂(s, a)− b(s)− r∗(s, a))2]

= β · E(s,a)∼d0×π∗ [(r̄(s, a)− Γn(s, a)− b(s)− r∗(s, a))2]

≤ β
(
2E(s,a)∼d0×π∗ [Γn(s, a)]

2 + 2E(s,a)∼d0×π∗ [(r̄(s, a)− b(s)− r∗(s, a))2]
)

≤ 4βE(s,a)∼d0×π∗ [Γn(s, a)]
2

= 4βD2
π∗ ·O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
= O

(
βD2

π∗
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
,

542

Proof of Theorem 4.5. Consider the set of private RLHF instances543

I = {(S,A, r, πref , β,R)},
whereR is the LDP randomizer. We aim to construct a specific instance in the set to get the minimax544

lower bound.545

Step 1: Construct the instance. Inspired by [40], we consider the following instance for the private546

RLHF problem via the contextual dueling bandits view: the state space S = [S] where S ≥ 1, binary547

action space A = {−1,+1}, d0 = Unif(S) is a uniform distribution, the reward function in some548

function class F ⊆ S ×A → [0, B] and the reference policy for any s ∈ S to be549

πref (−1|s) = 1/C, πref (+1|s) = 1− 1/C,

where C ≥ 1 is a parameter to be decided later. We consider collections of distributions indexed550

using the Boolean hypercube V = {−1,+1}S . In particular, for any v = (v1, v2, . . . , vS) ∈ V , the551

mean function of the reward indexed by v is defined as552

rv(s,−1) = B/2 + vs · a, rv(s,+1) = B/2− b,

for any state s ∈ S, where a, b ∈ (0, B/2) will be specified later. With this reward function, from553

Definition 5, the optimal policy π∗
v for the KL-regularized RLHF is for any s ∈ S,554

π∗
v(−1|s) =

πref (−1|s) exp (β · rv(s,−1))
πref (−1|s) exp (β · rv(s,−1)) + πref (+1|s) exp (β · rv(s,+1))

=
exp(β(b+ vsa))

exp(β(b+ vsa)) + C − 1
,

π∗
v(+1|s) = C − 1

exp(β(b+ vsa)) + C − 1
.

Step 2: Verify the single policy concentrability. Following [40], we state the verification for555

concentrability here for completeness. Set C∗ ≥ 2, C = C∗ and b = β−1 log(C − 1), then for any556

s ∈ S,557

π∗
v(−1|s)

πref (−1|s)
= C · exp(β(b+ vsa))

exp(β(b+ vsa)) + C − 1
= C · exp(βvsa)

1 + exp(βvsa)
≤ C = C∗,

π∗
v(+1|s)

πref (+1|s)
=

C

C − 1
· 1

1 + exp(βvsa)
≤ C = C∗ .

Therefore, we get maxv∈V Cπ∗
v ≤ C∗.558

Step 3: Construction of hard-to-distinguish pair for Sub-optimality gap. In order to get the559

minimax lower bound, since d0 = Unif(S), we define560

SubOpt(π̂,v) =
1

S

S∑
s=1

SubOpts(π̂,v),
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and, simpler than the analysis in [40], we have the following derivation from sub-optimality gap to561

the KL divergence between estimated policy and optimal policy:562

SubOpts(π̂,v) =
〈
π∗
v(· | s), rv(s, ·)− β−1 log

π∗
v(· | s)

πref(· | s)

〉
−
〈
π̂(· | s), rv(s, ·)− β−1 log

π̂(· | s)
πref(· | s)

〉
=

1

β
Ea∼π∗

v(·|s)

[
log

πref(a|s) · exp(βrv(s, a))
π∗
v(a | s)

]
− 1

β
Ea∼π̂(·|s)

[
log

πref(a|s) · exp(βrv(s, a))
π̂(a | s)

]
(a)
=

1

β
logZ(s)− 1

β
Ea∼π̂(·|s)

[
log

πref(a|s) · exp(βrv(s, a))
π∗
v(a | s)

· π
∗
v(a | s)
π̂(a | s)

]
(b)
=

1

β
logZ(s)− 1

β
logZ(s) +

1

β
Ea∼π̂(·|s)

[
log

π̂(a | s)
π∗
v(a | s)

]
=

1

β
KL(π̂∥π∗

v),

where (a), (b) is from the definition of π∗
v(·|s) =

πref (·|s)·exp(βrv(s,·))
Z(s) and Ea∼π∗

v(·|s)Z(s) = Z(s) =563

Ea∼π̂(·|s)Z(s) is the normalization constant.564

We denote v ∼s v′ if v,v′ ∈ V = {−1,+1}S only differ in the s-th element and v ∼ v′ means565

there exists s ∈ S,v ∼s v′. By following the equations of (B.10) and (B.11) in Appendix B.4 of566

[40] and taking C − 1 = exp(βb), for any s ∈ S, we consider v ∼s v
′ and obtain567

SubOpts(π̂,v) + SubOpts(π̂,v
′) ≥ min

{
βa2

8
,
3a

10

}
.

Step 4: LDP mechanism on labels. Let Pr be the distribution of
(
s, a1, a2, z

)
for s ∼568

d0, a
1 = −1, a2 = +1

i.i.d.∼ πref (· | s), z = R(y) with LDP randomizer R and y ∼569

Bern
(
σ
(
r
(
s, a1

)
− r

(
s, a2

)))
. Note that for the value of the KL divergence the {−1,+1} la-570

bels are the same as {0, 1} labels. Then for v ∼ v′ with vs = −v′s,571

KL
(
Prv∥Prv′

)
≤ (C − 1)

SC2

∑
s′,a1,a2

[KL(R(yv)∥R(yv′)) + KL(R(yv′)∥R(yv))]

≤ 4(eϵ − 1)2(C − 1)

SC2

∑
s′,a1,a2

TV2
(
Bern

(
σ
(
rv
(
s′, a1

)
− rv

(
s′, a2

)))
∥Bern

(
σ
(
rv′
(
s′, a1

)
− rv′

(
s′, a2

))))
=

4(eϵ − 1)2(C − 1)

SC2
TV2(Bern(σ(b+ a))∥Bern(σ(b− a)))

=
4(eϵ − 1)2(C − 1)

SC2

(
1

1 + e−(a+b)
− 1

1 + ea−b

)2

(a)

≤ (eϵ − 1)2a2

SC
,

where the second inequality is from Lemma A.5 since the offline setting is non-interactive and (a) is572

from mean-value theorem573

∣∣σ(b+ a)− σ(b− a)
∣∣ ≤ sup

t∈[b−a,b+a]

∣∣σ′(t)
∣∣ · ∣∣(b+ a)− (b− a)

∣∣ ≤ 1

4
· 2|a| = |a|

2
.

Step 5: Minimax lower bound. We evaluate procedures through the minimax suboptimality, which574

means among all algorithms, pick the one that achieves the smallest possible worst-case suboptimality.575

From Assouad’s lemma in Lemma A.6 and by taking a =
√
SC

(eϵ−1)
√
n

, S = logNF (τ), and C = C∗,576
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we get577

inf
π̂∈Π

sup
I∈I

SubOpt(π̂, I) ≥ 1

4
S · 1

S
min

{
βa2

8
,
3a

10

}
min
v∼v′

exp
(
−KL

(
Pn
rv∥P

n
rv′

))
=

1

4
min

{
βa2

8
,
3a

10

}
exp

(
−nKL

(
Prv∥Prv′

))
= Ω

(
min

{
βCS

(eϵ − 1)2n
,

√
SC

(eϵ − 1)
√
n

})

= Ω

(
min

{
βC∗ logNF (τ)

(eϵ − 1)2n
,

√
C∗ logNF (τ)

(eϵ − 1)
√
n

})
.

C Proofs of Section 5578

By direct calculation, it is easy to get the following lemma that will be used in our follow-up analysis.579

Lemma C.1. From the Bernoulli distribution of y in Bradley-Terry model (Assumption 6), we denote580

Er[y|s, a1, a2] = h∗(s, a1, a2) = 2σ(∆r∗(s, a
1, a2))− 1, then based on the randomness of random581

response, ERR[z|s, a1, a2] = h̃∗(s, a1, a2) = (2α− 1) · h∗(s, a1, a2).582

Proof of Lemma C.1. First, Er[y|s, a1, a2] = (+1) · σ(∆r∗(s, a
1, a2)) + (−1) · (1 −583

σ(∆r∗(s, a
1, a2))) = 2σ(∆r∗(s, a

1, a2))− 1 = h∗(s, a1, a2). Then, ERR[z|s, a1, a2] = 1 · P(z =584

+1|s, a1, a2)+(−1) ·P(z = −1|s, a1, a2) = αP(y = +1|s, a1, a2)+(1−α)P(y = −1|s, a1, a2)−585

αP(y = −1|s, a1, a2)− (1− α)P(y = +1|s, a1, a2) = (2α− 1)h∗(s, a1, a2).586

Lemma C.2 (In-sample error of ERM [38, 34, 32]). Consider a function spaceH : Z → R and a
filtered sequence {xt, ϵt} ∈ X×R so that ϵt is conditional zero-mean σ-sub-Gaussian noise. Suppose
thatH is a finite space with cardinality NH. For h∗(·) : Z → R, suppose that zt = h∗ (xt) + ϵt. If
f̂t is an ERM solution:

ĥt = argmin
h∈H

t∑
i=1

(h (xi)− zi)
2
,

with probability at least 1− δ, we have for all t ∈ [T ],587

t∑
i=1

(
ĥt (xi)− h∗ (xi)

)2
≤ 8σ2 log

T ·NF

δ
.

Lemma C.3 (In sample error bound of reward difference). Under Assumption 3.7, finite reward space588

F with cardinality NF , the reward r̄ estimated by step 7 in Algorithm 2 satisfies w ith probability at589

least 1− δ, for all t ∈ [T ],590

t∑
i=1

(
r∗
(
si, a

1
i

)
− r∗

(
si, a

2
i

)
− [r̄t

(
si, a

1
i

)
− r̄t

(
si, a

2
i

)
]
)2 ≤ 8(e−B + 2 + eB)2

(2α− 1)2
log

T ·NF

δ
.

Proof. By the mean value theorem from Lemma C.2 and Lemma A.8 where the noise is from random591

response with zero-mean 2-sub-Gaussian noise based on Lemma C.1, with probability at least 1− δ,592

we have for all t ∈ [T ]593

t∑
i=1

(
r∗
(
si, a

1
i

)
− r∗

(
si, a

2
i

)
− [r̄t

(
si, a

1
i

)
− r̄t

(
si, a

2
i

)
]
)2 ≤ (e−B + 2 + eB)2

4(2α− 1)2

∑
i

(
ˆ̃
ht − h̃∗)2

≤ 8(e−B + 2 + eB)2

(2α− 1)2
log

T ·NH

δ

≤ 8(e−B + 2 + eB)2

(2α− 1)2
log

T ·NF

δ

=
1

2
Γ2
T ,

where the last inequality is since NH ≤ NF .594
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Lemma C.4. Under Algorithm 2 and Assumption 3.7, the noises of the random response on labels595

{−1,+1} are zero mean 2-sub-Gaussian, we have with probability 1− δ, the optimism event that596

Et = {r̄t(s, a) + bt(s, a) + ct(s) − r∗(s, a) ≥ 0} holds for any (s, a) ∈ S × A for all t ∈ [T ]597

uniformly where ct(s) = Eb∼π1
t+1

[r∗(s, b)− r̄t(s, b)].598

Proof. For any (s, a) ∈ S ×A, we have599

|r∗(s, a)− r̄t(s, a)− ct(s)|

≤ |r∗(s, a)− r̄t(s, a)− ct(s)|√
λ+

∑t
i=1 (r

∗ (si, a1i )− r∗ (si, a2i )− [r̄t (si, a1i )− r̄t (si, a2i )])
2

·

√√√√λ+

t∑
i=1

(r∗ (si, a1i )− r∗ (si, a2i )− [r̄t (si, a1i )− r̄t (si, a2i )])
2

≤ sup
r1,r2∈Ft

∣∣∣r1(s, a)− r2(s, a)− Eb∼π1
t+1

[r1(s, b)− r2(s, b)]
∣∣∣√

λ+
∑t

i=1 (r1 (si, a
1
i )− r1 (si, a2i )− [r2 (si, a1i )− r2 (si, a2i )])

2

·

√√√√λ+

t∑
i=1

(r∗ (si, a1i )− r∗ (si, a2i )− [r̄t (si, a1i )− r̄t (si, a2i )])
2

= UFt

(
λ, s, a;Dt;π

1
t+1

)
·

√√√√λ+

t∑
i=1

(r∗ (si, a1i )− r∗ (si, a2i )− [r̄t (si, a1i )− r̄t (si, a2i )])
2

≤ UFt

(
λ, s, a;Dt;π

1
t+1

)
·
√

λ+
1

2
Γ2
T

≤ UFt

(
λ, s, a;Dt;π

1
t+1

)
· ΓT

= bt(s, a),

where the last inequality is from taking λ ≤ 1
2Γ

2
T .600

Lemma C.5 (Objective Decomposition, Lemma A.1 in [38]). For any t ∈ [T ], conditioning on the601

uniform optimism event that Et = {r̄t(x, a) + bt(x, a)− r∗(x, a) ≥ 0,∀(x, a) ∈ X ×A} holds, we602

have603

J (π∗)− J (πt) ≤ βEx∼d0Ea∼πt

[
(r̄t−1(s, a) + bt−1(s, a)− r∗(s, a))

2
]
.

where πt = π(r̄t−1+bt−1)(s,a).604

Proof of Theorem 5.2. Based on the uniform event that ∪t∈[T ]Et holds with probability at least 1− δ,605

and denoting ct−1(s) = Eb∼π1
t
[r∗(s, b)− r̄t−1(s, b)], from Lemma A.7, we have606

J(π∗)− J(π2
t ) = J(π∗)− J(πr̄t−1+bt−1) = J(π∗)− J(π(r̄t−1+bt−1)(s,a)+ct−1(s)) .

From Lemma C.5 for objective decomposition, under the event Et, we have607

J(π∗)−J(π2
t ) ≤ βEs∼d0Ea∼π2

t
[(r̄t−1(s, a)+bt−1(s, a)+ct−1(s)−r∗(s, a))2] ≤ 4βEs∼d0Ea∼π2

t
[bt−1(s, a)]

2 . .

where the last inequality is from Lemma C.4.608

Thus, we get the cumulative regret bound is609

T∑
t=1

(J(π∗)− J(π2
t )) ≤

T∑
t=1

4βEs∼d0Ea∼π2
t
[bt−1(s, a)]

2 .

By plugging in bt(s, a) = UFt

(
λ, s, a;Dt;π

1
t+1

)
· ΓT , we get the final result.610

20



NeurIPS Paper Checklist611

1. Claims612

Question: Do the main claims made in the abstract and introduction accurately reflect the613

paper’s contributions and scope?614

Answer: [Yes]615
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Answer: [Yes]667
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we provide complete proofs for the offline setting in Section 4 in Appendix B and for the669
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Answer: [Yes]686
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parameter settings, and evaluation metrics. These details ensure that other researchers can689

reproduce our reported results and verify the main claims without relying on additional690

resources.691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• If the paper includes experiments, a No answer to this question will not be perceived694

well by the reviewers: Making the paper reproducible is important, regardless of695

whether the code and data are provided or not.696

• If the contribution is a dataset and/or model, the authors should describe the steps taken697

to make their results reproducible or verifiable.698

• Depending on the contribution, reproducibility can be accomplished in various ways.699
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be necessary to either make it possible for others to replicate the model with the same702
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of a large language model), releasing of a model checkpoint, or other means that are706

appropriate to the research performed.707

• While NeurIPS does not require releasing code, the conference does require all submis-708

sions to provide some reasonable avenue for reproducibility, which may depend on the709
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7. Experiment statistical significance767
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Answer: [Yes]770
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Justification: The main experimental results are reported in terms of win rate in Table 1 of771
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the experiments?797

Answer: [Yes]798

Justification: We used a single AMD MI-200 GPU equipped with 64 GB of VRAM and the799

information of computer resources is clarified in Section 6.800
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• The answer NA means that the paper does not include experiments.802
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-823

eration due to laws or regulations in their jurisdiction).824
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