
Offline and Online KL-Regularized RLHF under
Differential Privacy

Yulian Wu
King Abdullah University of Science and Technology

Thuwal, Saudi Arabia, 23955-6900
yulian.wu@kaust.edu.sa

Rushil Thareja
Mohamed bin Zayed University of Artificial Intelligence

Masdar City, Abu Dhabi, United Arab Emirates
rushil.thareja@mbzuai.ac.ae

Praneeth Vepakomma
Mohamed bin Zayed University of Artificial Intelligence

Massachusetts Institute of Technology
vepakom@mit.edu

Francesco Orabona
King Abdullah University of Science and Technology

Thuwal, Saudi Arabia, 23955-6900
francesco@orabona.com

Abstract

In this paper, we study the offline and online settings of reinforcement learning from
human feedback (RLHF) with KL-regularization—a widely used objective function
in large language model alignment—under the ϵ local differential privacy (ϵ-LDP)
model on the label of the human preference. In the offline setting, we design an
algorithm based on the principle of pessimism and derive a new suboptimality
gap of Õ(1/[(eϵ − 1)2n]) on the KL-regularized objective under single-policy
concentrability. We also prove its optimality by providing a matching lower
bound where n is the sample size. In the online setting, we are the first one
to theoretically investigate the problem of KL-regularized RLHF with LDP. We
design an optimism-based algorithm and derive a logarithmic regret bound of
O(dF log(NF · T )/(eϵ − 1)2), where T is the total time step, NF is cardinality of
the reward function space F and dF is a variant of eluder dimension for RLHF.
As a by-product of our analysis, our results also imply the first analysis for online
KL-regularized RLHF without privacy. Finally, we implement our algorithm in the
offline setting on real data to verify our theoretical results.

1 INTRODUCTION

The alignment of Large Language Models (LLMs) with human preferences, often achieved through
Reinforcement Learning from Human Feedback (RLHF), has become a central area of research. A key
technique in this process is the Kullback-Leibler (KL) regularization, which is widely used to prevent
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the model from deviating too far from its original behavior and to avoid overfitting [37, 2, 40, 30].
Mathematically, this objective function encourages the maximization of a reward model while forcing
the learned policy π to stay close to a base policy πref for a given state s (prompt) and action a
(response):

J(π) := E(s,a)∼d0×π

[
r∗(s, a)− β−1 log

π(a | s)
πref(a | s)

]
, (1)

where r∗(s, a) represents the ground truth reward and β > 0 is the inverse temperature parameter.
The performance of algorithms is measured by the suboptimality gap in the offline setting, defined as

SubOpt(π) := J(π∗)− J(π), (2)

where π∗ is the optimal policy π∗ := argmaxπ J(π). In the online setting, performance is measured
by regret:

Reg(π1:T ) :=

T∑
t=1

(J(π∗)− J(πt)) . (3)

While RLHF is effective, significant privacy concerns arise because the preference data used for align-
ment may contain personal or sensitive information [36, 24]. The standard framework for quantifying
and mitigating privacy leakage is Differential Privacy (DP) [9]. By introducing calibrated randomness,
DP ensures that the output of an algorithm is not overly sensitive to any single individual’s data,
thereby protecting their privacy. In the context of learning from human feedback, a key challenge
is to preserve the privacy of the potentially sensitive preference labels provided by users. This has
motivated recent work on applying DP specifically to preference-based learning, often referred to as
label differential privacy (label DP) [12]. Label differential privacy in KL-regularized RLHF for the
offline setting is studied in [35] under a central differential privacy model in which the learner can
access the raw information of human labels. However, in some applications, individual labelers may
be unwilling—or legally unable—to share raw feedback with the learner. These considerations moti-
vate studying a local model for label differential privacy, where each human preference is privatized
before disclosure.

Several recent works consider privacy issues on preference labels and study the problem by adopting
differential privacy. However, the intersection of these two areas—KL-regularized RLHF and local
model label differential privacy—remains unexplored. In particular, it is unknown whether applying
label LDP to KL-regularized RLHF can yield strong theoretical guarantees on suboptimality and
regret. Motivated by this gap, we are interested in our first question:

1. In the offline setting, can we achieve an optimal rate for KL-regularized RLHF under the label-LDP
setting?

A primary challenge in offline RLHF is the distribution shift, which occurs when the data distribution
used to train the reward model mismatches the response distribution of the optimized policy. This
can lead to out-of-distribution errors, reward over-optimization, and degraded performance. While
many recent works on theoretical offline RLHF derive rates that depend on notions of data coverage,
one effective method to mitigate distribution shift is to use an online version of RLHF. For instance,
[38] achieves logarithmic regret for online KL-regularized RL, depending on the eluder dimension.
However, no existing work has studied the privacy problem in online KL-regularized RLHF, which
leads us to our second question:

2. In the online setting, can we provide a logarithmic regret bound for KL-regularized RLHF under a
local differential privacy mechanism?

We answer both of these questions affirmatively and summarize our contributions as follows:

• For the problem of private KL-regularized RLHF in the offline setting, we propose the
PPKL-RLHF algorithm (Algorithm 1), which uses a Random Response (RR) mechanism
to achieve label ϵ-LDP. Using these privatized preference labels for a private Maximum
Likelihood Estimation (MLE), we obtain a conservative reward estimation via the principle
of pessimism, which is then used for policy optimization with Gibbs sampling. We derive
a suboptimality gap upper bound of Õ

(
1/[(eϵ − 1)2n]

)
(Equation (2)), with sample size

n and under single policy concentrability. To demonstrate optimality, we also establish a
matching lower bound.
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• For the online setting, we design the POKL-RLHF algorithm (Algorithm 2), which uses
RR to locally privatize human feedback. With the privatized labels and historical data,
we design an exploitation agent using private least squares estimation and strategically
design exploration via optimism for reward estimation. This exploration strategy yields
a logarithmic regret bound for the exploration agent (Equation 3). To the best of our
knowledge, we are the first to study the private online KL-regularized RLHF problem.

• As a by-product, our analysis provides insights into the non-private online KL-regularized
RLHF setting. In particular, we establish the first logarithmic regret bound for online
KL-regularized RLHF using a new variant of the eluder dimension. This result outperforms
the sublinear regret bound for online RLHF in [30, 28] and sheds light on future research
directions, such as online f -regularized RLHF or analyzing online KL-regularized RLHF
from a Markov decision process perspective.

• Finally, we also run some experiments on a real dataset by implementing our algorithm
design for the offline setting.

2 RELATED WORK

Given the large literature on trustworthy LLM alignment, this is necessarily a short review of the
most related theory work. We refer the reader to [17] for a more comprehensive survey of this topic.

Non-Private Offline KL-regularized RLHF Offline RLHF suffers from a distribution shift problem,
since the model is trained on a fixed dataset. Coverage conditions are used to measure the ability
of the training-data distribution to cover the test-data distribution. With sample size n in KL-
regularized RLHF, [30] derives a suboptimality gap of1 Õ(1/

√
n) under single-policy coverage. [37]

achieves a suboptimality gap of Õ(1/n) but under their all-policy concentrability, which is a strong
condition that requires the sample distribution to cover all possible distributions. [39] first establishes
the suboptimality gap of Θ̃(1/n) under single-policy coverage. Building on these, we derive the
optimal convergence of Θ̃(1/[(eϵ − 1)2n] with single-policy concentrability for the private offline
KL-regularized RLHF under ϵ-LDP.

Non-private Online KL-regularized RLHF Online methods are a promising approach to overcome
the out-of-distribution problems in offline RLHF. [30, 31] show the benefits of the online exploration
agent and provides regret of Õ(

√
T ) for online KL-regularized RLHF with an eluder-type condition.

[33] investigate the online KL-regularized RLHF problem via a Nash equilibrium reformulation. [28]
study online KL-regularized RLHF via adding an exploration term on their loss function based on
optimism in the face of uncertainty, and establishes regret of Õ(

√
T ) under their trajectory-level

coverability coefficient. Our result improves has a better regret, but for a different objective function.
In fact, taking the privacy parameter ϵ→ +∞, our results imply the first logarithmic regret bound of
Õ(log T ) depending on the eluder dimension.

Locally Private RLHF [42, 43] achieve sub-optimality gap of Õ(1/[(eϵ− 1)
√
n]) for locally private

RLHF on the unregularized suboptimality gap as the performance measure for policy in the offline
setting. We adopt a KL-regulized objective function to evaluate progress on the same function the
algorithm optimizes, which avoids evaluation–training mismatch. With KL-regularized performance
measure, we can improve the sub-optimality gap to Θ̃(1/(1/[(eϵ − 1)2n]) for the offline setting
and achieve Õ(log T/(eϵ − 1)2) with eluder dimension for the online setting, due to the strongly
convexity of the KL-regularized objection function. [7] considers label DP in both local and central
models in offline RLHF, but they focus on the estimation error of the parameter, not suboptimality
gaps.

3 PRELIMINARY

In this section, we introduce the necessary background of KL-regularized RLHF via the contextual
bandits view, for both offline and online settings, as well as the basic knowledge of privacy in human
feedback. We refer the readers to [16] for a unified view of RLHF via contextual bandits.

1We use Õ(·), Ω̃(·), Θ̃(·) to hide polylog factors.
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3.1 Offline and Online KL-regularized RLHF

KL-regularized RLHF seeks to optimize a target policy π by using human preferences to learn a
reward function r(s, a), while constraining the policy update to stay close to a reference policy πref.
Without loss of generality, we will assume r(s, a) in [0, B] (e.g., via clipping in [14] or normalization).
This leads to the following objective function:

max
π

Es∼d0, a∼π(·|x)[r(s, a)]−
1

β
KL(π(· | s) ∥πref(· | s)), (4)

where πref is often a reference policy (e.g., SFT model). It is easy to see that the optimal solution of
(4) is the Gibbs distribution, that is

π∗
r (a | s) =

1

Zr(s)
πref(a | s) exp(β · r(s, a)), (5)

where Zr(s) is the normalization constant.

Offline KL-regularized RLHF In the offline case, the learning agent aims to learn a good policy
from a pre-collected dataset D = {(si, a1i , a2i , yi)}ni=1, where yi ∈ {−1, 1} denotes the human’s
preference between two candidate responses a1i , a

2
i generated from the reference policy πref given a

prompt si sampled from d0. The binary label yi ∈ {−1, 1} indicates whether a1i ≻ a2i (yi = 1) or
a2i ≻ a1i (yi = −1), that is, which response is preferred.
Remark 3.1. We use y ∈ {−1, 1} here, which is also adopted in [43], not in {0, 1} as in most of the
RLHF literature, since this will help us simplify the math. The analysis under either convention can
be translated back and forth without loss of generality.

We will need some definitions to quantify the “concentrability” of πref, that is, its ability to generate a
diverse set of actions.
Definition 3.2 (40). Given a class of functions F ⊂ (S × A → [0, B]) and some policy π, let
B = (S → [−B,B]) be the function class of biases, and define D2

F ((s, a);π) as

sup
g,h∈F

inf
b∈B

(g(s, a)− h(s, a)− b(s))2

Es′∼d0
Vara′∼π(·|s′) [g (s′, a′)− h (s′, a′)]

.

Definition 3.3 (Single-policy Concentrability [40]). D2
π∗ := E(s,a)∼d0×π∗D2

F ((s, a);πref) <∞
Definition 3.4 (Density-ratio-based concentrability). For policy class Π and reference policy πref , the
density-ratio-based all-policy concentrability CΠ is CΠ := supπ∈Π,s∈S,a∈A π(a | s)/πref (a | s).
The single-policy counterpart under the optimal policy π∗ is Cπ∗

:= sups∈S,a∈A π∗(a | s)/πref (a |
s).

Online KL-regularized RLHF Online KL-regularized RLHF updates the policy πt over rounds.
At each step t, a context st is drawn, two actions a1t ∼ π1

t and a2t ∼ π2
t are sampled (possibly

asymmetrically), and human feedback yt ∈ {−1, 1} is queried. The second policy π2
t is used to

facilitate exploration. Based on accumulated feedback Dt = {(si, a1i , a2i , yi)}ti=1, the reward is
re-estimated to get r̂t, and the next policy is updated via (5):

π1
t+1(a | s) ∝ πref(a | s) · exp (β · r̂t(s, a)) .

Definition 3.5 (Uncertainty and pair eluder dimension). For any sequenceDt−1 =
{(

si, a
1
i , a

2
i

)}t−1

i=1
,

we define UF (λ, s, a;Dt;πt+1), the uncertainty of (s, a) with respect to F , as

sup
r1,r2∈F

|r1(s,a)−r2(s,a)−Eb∼πt+1
[r1(s,b)−r2(s,b)]|√

λ+
∑t

i=1(r1(si,a1
i )−r1(si,a2

i )−[r2(si,a1
i )−r2(si,a2

i )])
2
.

The pair eluder dimension is given by dF := sups1:T ,a2
1:T

∑T
t=1 min

(
1,
[
UFt

(
λ, st, a

2
t ;Dt;π

1
t+1

)]2)
.

Remark 3.6. The eluder dimension definition was first proposed by [22] for multi arm bandits
problem to measure the efficacy with which observed data support inference about the values of
unobserved actions and then widely used in RL problem [20, 38, 25, 27, 32, 1, 41] and preference-
based RL [26, 6, 33]. Our definition is a variant of the eluder dimension for the design of the
exploration strategy based on the exploitation agent.
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For both offline and online setting, we adopt the standard Bradley-Terry (BT) model for the preference
model and we will assume realizability.
Assumption 3.7 (Bradley-Terry Preference Model). Given a context s and two actions a1, a2, we
assume the preference label y is sampled according to the the ground truth reward function r∗

difference between the two actions:

P[y = 1 | s, a1, a2] = σ(r∗(s, a1)− r∗(s, a2)), (6)

where σ(x) = (1 + e−x)−1 is the sigmoid function.
Assumption 3.8 (Realizability of reward function). We assume that r∗ ∈ F ⊂ (S ×A → [0, B]).

To derive uniform theoretical guarantees when |F| is infinite, we approximate it by a finite subset that
is sufficiently dense with respect to an appropriate metric. This allows us to apply analysis to the finite
subset and then transfer the bound to the entire class via a discretization argument. The complexity of
F in this sense is captured by the covering number, which measures how many elements are required
to approximate every function in F within a prescribed tolerance. We recall the formal definition
below.
Definition 3.9 (Net and covering number). Given a function class F ⊂ (S × A → [0, B]) and
τ ∈ (0, 1), a finite set F(τ) ⊂ F is a τ -net of F w.r.t. ∥·∥∞, if for any f ∈ F , there exists f ′ ∈ F(τ)
such that ∥f − f ′∥∞ ≤ τ . The τ -covering number is the smallest cardinality NF (τ) of such F(τ).

3.2 Privacy in Human Feedback

Here, we formally introduce the Label Differential Privacy in the local model.
Definition 3.10 (ε-Pure Local Label DP [7]). If each label is first privatized by a local randomizerR,
which satisfies for any y, y′ and any subset S in the range ofR, it holds that for ε > 0,

P[R(y) ∈ S] ≤ eε · P [R (y′) ∈ S] ,

then, we say that R is an ε-pure label differentially private local randomizer, where ε > 0 is the
privacy parameter. Smaller values of ε provide stronger privacy guarantees, but introduce more noise.

Instead of directly observing the true binary preference y ∈ {−1, 1} at each round, the learning agent
receives a privatized label z ∈ {−1, 1} obtained via randomized response (RR):

P(z = y) = α :=
eε

eε + 1
∈ (0.5, 1),

P(z ̸= y) = 1− α =
1

eε + 1
. (7)

The above randomized response mechanism satisfies ε-pure local label DP [9].

4 OFFLINE PRIVATE KL-REGULARIZED RLHF WITH PESSIMISM

In this section, we will study the locally private KL-regularized RLHF in the offline setting. We will
first provide the algorithm for the problem and derive its suboptimality upper bound. In order to
show the optimality of the theoretical guarantee, we will also present the lower bound under the same
assumptions.

4.1 Algorithm and Upper Bound

The main idea of Algorithm 1 is that we first take the precollected data set D̃ = {(si, a1i , a2i , zi)}ni=1,
where zi ∈ {−1,+1} are the privatized version of the true (unobserved) preference label yi through
the randomized response mechanism in (7) with flip probability 1−α. For each sample (s, a1, a2, z),
the probability of private label z given s, a1, a2 is

P̃r∗(z | s, a1, a2) := P(z|s, a1, a2) = α·σ(z ·∆r∗(s, a
1, a2))+(1−α)·σ(−z ·∆r∗(s, a

1, a2)), (8)

where ∆r∗(s, a
1, a2) := r∗(s, a1) − r∗(s, a2) and σ(x) = (1 + e−x)−1 is the sigmoid function.

Building on the probability function
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P̃r(z | s, a1, a2) = α · σ(z ·∆r(s, a
1, a2)) + (1− α) · σ(−z ·∆r(s, a

1, a2)) (9)

of z as a function of the reward r, we can estimate the reward by the Maximum Likelihood Estimation
(MLE) on P̃r(z | s, a1, a2) in step 1 of the algorithm. After we get the estimation of the reward r̄, we
construct a pessimistic estimator r̂ in step 2 with the following value of the bonus Γn(s, a):√

D2
F ((s, a);πref)

c · eB
(2α− 1)2

(
log(NF (τ)/δ)

n
+ τ

)
, (10)

where c is a constant. Finally, we get the policy output by Gibbs distribution from (5) based on r̂.
Remark 4.1. The pessimism principle is well-known in offline RL [15] and offline RLHF [37]. It
consists in adopting the lower confidence bound of the reward estimation, since the conservative
estimate helps the distributional shift challenge in the offline setting. In our local DP case, the main
difference compared with the non-private case is that the effective sample size changes from n to
(2α − 1)2 · n = [(eϵ − 1)/(eϵ + 1)]

2 · n < n due to the randomness from the privacy-preserving
mechanism.

We now provide the theoretical guarantee of the suboptimality gap for the output policy in Algorithm 1.
We defer its detailed proof in Appendix B.

Theorem 4.2 (Sub-optimality gap upper bound in offline setting). Under Assumptions 3.7 and 3.8,
Definitions 3.2, 3.3 3.4, and 3.9, for ϵ > 0, β > 0 and a sufficiently small τ ∈ (0, 1), with probability
at least 1− δ, we have that the suboptimality gap of the output of Algorithm 1, SubOpt(π̂) is of the
order of

O

(
βD2

π∗
eB

(2α− 1)2

(
log(NF (τ)/δ)

n
+ τ

))
. (11)

Remark 4.3 (Discussion of the parameters in the upper bound). In the above results, β is a hyperpa-
rameter in the regularized objective function (1) to trade off the reward maximization and how close
the target policy is to πref. eB comes from the sigmoid function in BT preference model and it is
common in the RLHF literature [42, 30, 37, 39].
Remark 4.4 (Comparision with prior work for upper bound). Compared with the unregularized
suboptimality upper bound of Õ(1/[(2α− 1)

√
n]) in [42] with their single-policy relative condition

number, our result with KL-regularization of Õ(1/[(2α− 1)2n]) is tighter when the sample size n is
large enough, but on a different objective function. When ϵ ∈ (0, 1], which means a strong privacy
guarantee, we obtain Õ(1/[(2α − 1)2n]) = Õ(1/[(eϵ − 1)2n]) that matches the lower bound we
prove in the following. Note that when ϵ→ +∞, i.e., α = 1, we recover the non-private case in [40].

4.2 Lower Bound Analysis

We verify the optimality of the above bound by proving the following lower bound and defer the
complete proof to Appendix B.

Theorem 4.5 (Sub-optimality gap lower bound in offline setting). For reward function class F ⊂
(S × A → [0, B]), τ ∈ (0, 1) small enough, β > 0, S = logNF (τ), C∗ ∈ (2, e(βB)/2 + 1),

Algorithm 1 Private Pessimistic KL-Regularized RLHF (PPKL-RLHF) for Offline Setting

Require: Regularization parameter β, reference policy πref, function class F , offline dataset D̃ =
{(si, a1i , a2i , zi)}ni=1

1: Compute the private MLE estimation of the reward function:

r̄ ∈ argmax
r∈F

n∑
i=1

log P̃r(zi | si, a1i , a2i )

2: Use pessimism: r̂(s, a)← r̄(s, a)− Γn(s, a),∀(s, a), where Γn is the bonus term in (10)
3: return π̂(a | s) ∝ πref(a | s) exp (β · r̂(s, a))

6



algorithm set Π, Cπ∗ ≤ C∗, and KL-regularized RLHF instance set I, the minimax suboptimality
gap inf π̂∈Π supI∈I SubOpt(π̂, I) under ϵ-LDP mechanism for labels is

Ω

(
min

{
βC∗ logNF (τ)

(eϵ − 1)2n
,

√
logNF (τ)C∗

(eϵ − 1)
√
n

})
. (12)

Remark 4.6 (Comparision with prior work for lower bound). A lower bound for the parameter
estimation for RLHF under label LDP is provided in [7]. In particular, they show a lower bound of

Ω( 1
eε−1

√
d
n ) for the estimation error bound of the parameter in a linear reward model in Rd. As

far as we know, we are the first ones to provide the lower bound for the suboptimality gap for this
problem of RLHF under LDP, matching the same effective sample size of (eϵ − 1)2n ≈ ϵ2n when
ϵ ∈ (0, 1) as [7]. Taking NF (τ) = (1/τ)d in the linear model, we can imply the suboptimality gap
of Ω̃

(
min

{
βC∗d

(eϵ−1)2n ,
√
dC∗

(eϵ−1)
√
n

})
for private KL-regularized RLHF which also demonstrates the

importance of β and C∗ in this problem.
Remark 4.7 (Discussion of the parameters in the lower bound). From the above lower bound and
the upper bound of the suboptimality gap in Theorem 4.2, we obtain that the single-policy coverage
Cπ∗

is necessary due to the distribution shift between the behavior policy and optimal in the private
RLHF problem. In fact, [11] showed that in the non-private RLHF setting the single policy coverage
coefficient is also unavoidable. Motivated by this, in the next section we study the problem of
private KL-regularized RLHF under an online setting, which will help remove the dependence on the
coverage condition.

5 ONLINE PRIVATE KL-REGULARIZED RLHF WITH OPTIMISM

In this section, we turn our attention to KL-Regularized RLHF with LDP on labels in the online
setting. Compared with the online RL problem, the main challenge of online RLHF comes from the
imperfect information on the reward. That is, the reward can be observed in RL and used to estimate
the reward model. However, in online RLHF, given a context, we need to sample two actions and
receive human labels to train the reward model. This raises another problem: How to sample two
actions?

The sampling methods of two actions in online RLHF are mainly divided into two classes: symmetric
and non-symmetric.

• In the symmetric class, we sample two actions from the same policy, e.g., the one got
from the last iteration as in [4, 13]. However, [28, Proposition 2.1] shows that this strategy
can suffer from a constant lower bound on the suboptimality gap. Hence, some kind of
exploration is necessary in online RLHF.

• In the non-symmetric class, some algorithms sample actions from different polices—one
policy from exploitation and another one for exploration based on the first one—for KL
regularized RLHF [31, 30]. [28, 5] sample an action from the last iteration policy and
another from the reference policy for KL regularized RLHF, but adds a bias term in the loss
function for exploration.

Inspired by the above works, we adopt the optimism principle for our exploration policy, which
is a principle widely used in online RL [29, 19, 18, 38]. We develop the Private Optimistic KL-
Regularized RLHF (POKL-RLHF) algorithm (see Algorithm 2). In each time step t ∈ {1, . . . , T},
after the learner observes the context st (the prompt in the large language model) sampled from a
fixed distribution d0, two actions (two answers from the LLM) are compared. In our LDP model,
only the private label zi privatized by the RR mechanism in (7) is available to the learner, instead of
the true label yi. With these historical data till time step t, we update the reward model by the private
least squares estimation at Step 7. Then, we update the exploitation policy π1

t+1 based on the reward
estimation by the solution of the KL-regularized objective function in (5). Given π1

t+1, we design the
exploration policy by using an exploration bonus. In particular, we construct a confidence set that
will shrink with time:

Ft =

{
r ∈ F :

t∑
i=1

(
∆r

i −∆r̄t
i

)2
+ λ ≤ Γ2

T

}
,
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Algorithm 2 Private Optimistic KL-Regularized RLHF (POKL-RLHF) for Online Setting
Require: KL coefficient β, reward function class F , exploration scale λ, reference policy πref, DP

parameter ε
1: Initialize: D0 = ∅; π1

1 , π
2
1 = πref

2: for t = 1 to T do
3: Observe context st ∼ d0
4: Sample a1t ∼ π1

t (· | st) and a2t ∼ π2
t (· | st)

5: Observe private preference label zt ∈ {−1, 1} via randomized response in (7)
6: Update Dt ← Dt−1 ∪ {(st, a1t , a2t , zt)}
7: Estimate reward from private least square:

r̄t = argmin
r∈F

∑
Dt

[(2σ(∆r
i )− 1)(2α− 1)− zi]

2
,

where ∆r
i := r(si, a

1
i )− r(si, a

2
i )

8: Update exploitation policy: π1
t+1(a | s) ∝ πref(a | s) · exp(β · r̄t(s, a))

9: Set exploration policy: π2
t+1(a | s) ∝ π1

t+1(a | s) · exp(β · bt(s, a)) with bonus bt defined in
(13)

10: end for

where

ΓT =
ceB

√
log (T ·NF/δ)

2α− 1
and c is a constant. Then, the exploration bonus bt is defined through the uncertainty in Definition 3.5:

bt(s, a) = min
{
1,ΓT UFt

(
λ, s, a;Dt;π

1
t+1

)}
. (13)

Remark 5.1. As in [14, 38], we assume that the reward function space F is finite. The infinite case
can be solved easily by an ϵ-net and uniform convergence argument (refer to Lemma C.1 in [38] and
Lemma C.2 in [37]), similarly to our offline case.

Based on the optimism principle for exploration policy, we derive the following theoretical guarantee.
Theorem 5.2 (Regret Bound). Under Assumptions 3.7 and 3.8, for δ ∈ (0, 1), ϵ > 0 and λ ≤ 1

2Γ
2
T

with probability at least 1− δ, Algorithm 2 satisfies
T∑

t=1

(J(π∗)− J(π2
t )) = O

(
β · dF · e2B

(2α− 1)2
log(NF · T/δ)

)
,

where dF is the pair eluder dimension in Definition 3.5, β is the hyperparameter in (1), NF is the
cardinality of reward function space.
Remark 5.3. In the context of online RL/RLHF, bounds in terms of the eluder dimension characterize
the statistical learnability of exploration strategies. However, it is important to note that such
guarantees are information-theoretic rather than computational: While they demonstrate that learning
is possible with a finite number of iterations, the corresponding algorithms are often computationally
intractable when the function class is large. We leave how to find a computationally efficient method
with logarithmic regret for online RLHF as an open problem.
Remark 5.4. In the above results, e2B comes from the sigmoid function for the preference model.
The effect of LDP is a factor of 1

(2α−1)2 = ( e
ϵ+1

eϵ−1 )
2 > 1 due to the randomness from the differential

privacy mechanism. As a by-product, taking ϵ → +∞, i.e., α = 1 in the algorithm analysis, the
result implies a bound for the corresponding non-private case.
Corollary 5.5. Under Assumptions 3.7 and 3.8, for α = 1, δ ∈ (0, 1), with probability at least 1− δ,
Algorithm 2 satisfies

T∑
t=1

(J(π∗)− J(π2
t )) = O

(
β · dF · e2B log(NF · T/δ)

)
.

Remark 5.6. Online RLHF is also studied in [30, Section 4], and from their proofs a sublinear regret
bound of Õ(

√
T ) for the exploration policy can be implied. Compared with their results, we are the

first ones to achieve a logarithmic regret bound with the eluder dimension.
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6 EXPERIMENTAL RESULTS

As noted in Remark 5.3, the online algorithm based on the eluder dimension is computationally
intractable in practice. Thus, we choose to only experiment in the offline case to empirically verify
our theoretical findings about the effect of the ϵ-LDP model and release our open source code
at:https://github.com/rushil-thareja/PPKL-RLHF-Official.

Dataset and Compute For all experiments, we use the helpful assistant preference corpus2 tailored
for RLHF [3]. The dataset consists of two complementary components: (i) Supervised Fine-Tuning
(SFT) dialogues, where each sample contains a user query and a preferred assistant response; and
(ii) preference pairs, where each sample provides a prompt together with one chosen and one
rejected response. The SFT corpus contains 38,821 training examples and 4,413 validation examples.
Preference pairs are split into 38,821 training, 2,100 validation, and 2,313 held-out test examples.
We used a single AMD MI-200 GPU equipped with 64 GB of VRAM.

SFT training and Baseline We use the Llama-3.2-1B-Instruct model3 as the backbone for all
experiments. To obtain the baseline policy π0, we performed SFT on the dialogue part of the dataset,
with standard next-token prediction.

We also use Direct Preference Optimization (DPO) [21] as a baseline, training the policy relative
to the frozen SFT reference π0 on the preference pairs. The objective is optimized for β = 0.1
with AdamW, linear warmup, gradient accumulation, and validation every 500 steps, and the best
checkpoint is selected by validation loss after a few thousand iterations. This baseline is non-private
and without KL regularization.

Implementation of PPKL-RLHF To implement this setup, we first train a privatized reward model
(Algorithm 1) that adds a scalar linear head with EOS pooling on top of the Llama-3.2-1B-Instruct
backbone, clipped to [−5, 5]. The reward model is optimized in two phases: first warming up by
training only the head, then fine-tuning the full backbone for 5 epochs. The policy is optimized
with PPO [23] against the corrected rewards and a KL penalty to the SFT baseline, using β = 0.1.
Training runs for 500 iterations with 16 rollouts per iteration; each update applies 3 PPO epochs with
minibatch size 4, generation length capped at 64 tokens (prompts up to 256, temperature 1.0, top-p
0.9), and standard PPO hyperparameters (clip ϵc = 0.2, policy lr 1× 10−6, value lr 5× 10−6, value
loss weight 0.5, entropy coefficient 0.01, max grad norm 1.0).

Training Performance In Figure 1, we track two core metrics of training: policy loss and value loss.
As showcased in Figure 1, the policy loss decreases steadily and converges to a low plateau, while the
value loss drops sharply before stabilizing. As privacy is relaxed, both metrics improve. At ϵ = 0.10,
the policy loss remains relatively high and the value loss bottoms out at 0.072. At ϵ = 0.50, both
show stronger improvement, with the value loss converging to a lower value. At ϵ = 2.00, training
achieves the best utility: policy loss decreases most rapidly and value loss reaches its lowest point
(0.062). These results confirm that higher ϵ (weaker privacy) yields stronger learning signals and
more effective optimization, showing the expected trade-off between performance and privacy.

2https://huggingface.co/datasets/Anthropic/hh-rlhf
3https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
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Table 1: Win rates of different methods evaluated on the preference test set. PPKL-RLHF uses
β = 0.10.

Method Setting Win rate
SFT (π0) – 0.538
DPO(non-private) β = 0.1 0.704
PPKL-RLHF ϵ = 0.1 0.530
PPKL-RLHF ϵ = 0.5 0.554
PPKL-RLHF ϵ = 2.0 0.607

Results and Baseline Comparison The final results of our evaluation are presented in Table 1
where we use the win rate as our performance metric, as in [21, 42]. At stronger privacy (ϵ=0.1)
performance is close to SFT, while at ϵ=0.5 it surpasses the SFT baseline (0.554 vs. 0.538). The
best setting reaches around 0.607 at ϵ=2.0, indicating utility gains with weaker theoretical privacy.
These results highlight that even with noisy privatized labels, training a reward model followed by
our PPKL-RLHF procedure retains competitive utility and offers tunable privacy–utility trade-offs.
However, PPKL-RLHF’s win-rate remains behind DPO (0.704), likely because label privatization
and the pessimistic KL correction restrict the effective learning signal compared to the non-private
baseline.

7 CONCLUSION

In this paper, we investigated the KL-regularized RLHF problem in both offline and online settings.
We designed algorithms based on pessimistic and optimistic principles for the offline and online
settings, respectively, and provided theoretical guarantees for both cases. We established the optimal
sub-optimality gaps for the offline setting and a logarithmic regret bound for the online setting while
preserving privacy. Finally, we also showed some experimental results to verify our theoretical
findings.

Potential avenues for future research include extending private KL-regularized RLHF to more general
preference models, such as the Plackett–Luce model. Another promising direction is to investigate
alternative differential privacy mechanisms that could provide improved privacy–utility trade-offs,
for instance, through shuffle differential privacy or related variants.
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A Useful Lemmas

Lemma A.1 (10). For any sequence of real-valued random variables (Xt)t≤T adapted to a filtration
(Ft)t≤T , it holds that with probability at least 1− δ, for all T ′ ≤ T ,

T ′∑
t=1

Xt ≤
T ′∑
t=1

logEt−1

[
eXt
]
+ log

1

δ
.

Lemma A.2. Let

f(x) = log
(
ασ(x) + (1− α)

(
1− σ(x)

))
, σ(x) =

1

1 + e−x
,

where α ∈ (0.5, 1) and x ∈ [−B,B]. Then for any a, b ∈ [−B,B], we have

|f(a)− f(b)| ≤ σ(B) |a− b| .

Proof. First, observe that

ασ(x) + (1− α)(1− σ(x)) = 1− α+ (2α− 1)σ(x) .

So, we have

f ′(x) =
(2α− 1)σ(x)(1− σ(x))

1− α+ (2α− 1)σ(x)
≤ 1− σ(x),

where the inequality due to the fact that 1− α ≥ 0.

Maximizing over x ∈ [−B,B], we obtain

sup
x∈[−B,B], α∈(0.5,1)

f ′(x) ≤ sup
x∈[−B,B]

1− σ(x) = 1− σ(−B) = σ(B) .

Finally, by the Mean Value Theorem, for any a, b ∈ [−B,B] there exists c between a and b such that

|f(a)− f(b)| = |f ′(c)| |a− b| ≤ σ(B) |a− b| .

Lemma A.3 (Freedman’s Inequality). Let δ ∈ (0, 1). Let M,v > 0 be fixed constants. Let {Xi}ni=1
be a stochastic process, {Gi}i be a sequence of σ-fields, and Xi be Gi-measurable, while almost
surely

E [Xi | Gi] = 0, |Xi| ≤M, and
n∑

i=1

E
[
X2

i | Gi−1

]
≤ v .

Then, with probability at least 1− δ, it holds that
n∑

i=1

Xi ≤
√

2v log
1

δ
+

2

3
M log

1

δ
.

Lemma A.4 ([37]). Suppose a, b ≥ 0. If x2 ≤ a+ b · x, then x2 ≤ b2 + 2a.

Lemma A.5 (Theorem 1 in [8]). For any ϵ ≥ 0, let Q be a conditional distribution that guarantees
ϵ-local differential privacy. Then for any pair of distributions P1 and P2, the induced marginals M1

and M2 where Mj(S) =
∫
X Q(S | x)dPj(x) for j = 1, 2 satisfy the bound

Dkl (M1∥M2) +Dkl (M2∥M1) ≤ min
{
4, e2ϵ

}
(eϵ − 1)

2 ∥P1 − P2∥2TV .
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Lemma A.6 (Assouad’s Lemma). Let I be the set of instances, Π be the set of estimators, Θ :=

{±1}S for some S > 0, and {Lj}Sj=1 be S functions from Π× I to R+. Suppose {Iθ}θ∈Θ ⊂ I and
the loss function is

L(π, I) :=

S∑
j=1

Lj(π, I),∀(π, I) ∈ Π× I .

We denote θ ∼j θ
′ if they differ only in the j-th coordinate. Further, assume that

θ ∼j θ
′ ⇒ inf

π∈Π
Lj (π, Jθ) + Lj (π, Jθ′) ≥ c,

for some c > 0. Then, we have

inf
π∈Π

sup
I∈I

L(π, I) ≥ S · c
4

min
∃j:θ∼jθ′

exp
(
−KL

(
PIθ∥PIθ′

))
,

where PI denotes the distribution of the dataset given I ∈ I.
Lemma A.7 (40). Let b(s) : S → R be some bias function, then for all r(s, a) ∈ F we have J (πr) =

J (πr−b) since πr = πr−b where πr =
πref exp (βr)∑

a∈A πref exp (βr) , where (r − b)(s, a) = r(s, a)− b(s).

Lemma A.8. Let σ(x) = 1
1+e−x be sigmoid function and f(x) = (2σ(x)− 1)(2α− 1) for a fixed

α ∈ (0.5, 1]. For any B ≥ 0 and any x, x′ ∈ [−B,B],

|x− x′| ≤ e−B + 2 + eB

2(2α− 1)
|f(x)− f(x′)| .

Proof. First we have f ′(x) = 2(2α− 1)σ′(x) with

σ′(x) =
e−x

(1 + e−x)2
=

1

ex + 2 + e−x
.

On [−B,B], σ′ attains its minimum at ±B:

min
|x|≤B

σ′(x) =
1

eB + 2 + e−B
.

Hence

m := inf
|x|≤B

|f ′(x)| = 2(2α− 1)

eB + 2 + e−B
.

By the Mean Value Theorem there exists ξ between x and x′ such that

|f(x)− f(x′)| = |f ′(ξ)| |x− x′| ≥ m |x− x′|,

which gives the stated inequality.

B Proofs of Section 4

In Algorithm 1, we estimate the reward function via MLE. Thus, we extend the approach in [37] to
establish the generalization error bound of reward difference the MLE, taking into account that here
the MLE is on the private probabilities.
Lemma B.1. For an arbitrary policy π, and a set of offline data {(si, a1i , a2i , zi)}ni=1 generated i.i.d
from the BT model and π, and privatized by RR. Suppose that r̄ is the result of the private MLE in
step 1 of Algorithm 1, then there exists a function b(s) : S → [−B,B] such that with probability at
least 1− 2δ and for all values of τ small enough, we have

Es∼d0,a∼π(·|s)[r̄(s, a)− r∗(s, a)− b(s)]2 = O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
. (14)

From the proof of the lemma, define b(s) = Ea∼π(·|s)[r̄(s, a) − r∗(s, a)], then
Es∼d0

Vara∼π(·|s)[r̄(s, a) − r∗(s, a)] = E(s,a)∼d0×π[(r̄(s, a) − r∗(s, a) − b(s))2]. Note that, in
the offline setting, the actions are sampled from πref .
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Proof of Lemma B.1. Step 1: Connect private MLE and the reward difference. Since we estimate
the reward function by private MLE, let

L̃(r|si, a1i , a2i ) = log
[
α · σ(zi ·∆r(si, a

1
i , a

2
i )) + (1− α) · σ(−zi ·∆r(si, a

1
i , a

2
i ))
]
.

We first use Lemma A.1 on the sequence{
1

2
L̃(r|si, a1i , a2i )−

1

2
L̃(r∗|si, a1i , a2i )

}n

i=1

=

{
1

2
log

P̃r(zi|si, a1i , a2i )
P̃r∗(zi|si, a1i , a2i )

}n

i=1

,

for any r ∈ F where P̃r is defined in (9). Then, for s ≤ n, we have with probability at least 1− δ
that

1

2

s∑
i=1

[
L̃(r|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )

]

≤
s∑

i=1

logE

[√
P̃r(zi|si, a1i , a2i )
P̃r∗(zi|si, a1i , a2i )

]
+ log

1

δ

=

s∑
i=1

log

[√
P̃r(zi = −1|si, a1i , a2i )P̃r∗(zi = −1|si, a1i , a2i )

+

√
P̃r(zi = +1|si, a1i , a2i )P̃r∗(zi = +1|si, a1i , a2i )

]
+ log

1

δ

(a)

≤
s∑

i=1

[√
P̃r(zi = −1|si, a1i , a2i )P̃r∗(zi = −1|si, a1i , a2i )

+

√
P̃r(zi = +1|si, a1i , a2i )P̃r∗(zi = +1|si, a1i , a2i )− 1

]
+ log

1

δ

= log
1

δ
− 1

2

s∑
i=1

(√
P̃r∗(zi = +1|si, a1i , a2i )−

√
P̃r(zi = +1|si, a1i , a2i )

)2

− 1

2

s∑
i=1

(√
P̃r∗(zi = −1|si, a1i , a2i )−

√
P̃r(zi = −1|si, a1i , a2i )

)2

(b)

≤ log
1

δ
− 1

8

s∑
i=1

(
P̃r∗(zi = +1|si, a1i , a2i )− P̃r(zi = +1|si, a1i , a2i )

)2
= log

1

δ
− 1

8

s∑
i=1

(2α− 1)2 · [σ(∆r∗(si, a
1
i , a

2
i ))− σ(∆r(si, a

1
i , a

2
i ))]

2

≤ log
1

δ
− (2α− 1)2 · eB

8(1 + eB)2

s∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r(si, a

1
i , a

2
i )]

2, (15)

where (a) is from log x ≤ x−1 for x > 0, (b) is from (
√
a−
√
b)2 ≥ 1

4 (a−b)
2 for a, b ∈ [0, 1] since

(
√
a−
√
b)2 = (a−b)2

(
√
a+

√
b)2
≥ 1

4 (a− b)2, a, b ∈ [0, 1] and the last inequality is from σ′(x) ≥ eB

(1+eB)2

for x ∈ [−B,B].

Step 2: private likelihood function class well-covered by τ -net of reward function. For any τ > 0,
define Fτ as a τ -net for the reward function class F with covering number NF (τ) in Definition 3.9.
Then, for any s ∈ S, a1, a2 ∈ A, z ∈ {−1,+1} and r ∈ F , there exists r′ ∈ Fτ such that

|L̃(r|s, a1, a2)− L̃(r′|s, a1, a2)| ≤ σ(B)|∆r(s, a
1, a2)−∆r′(s, a

1, a2)| ≤ 2σ(B)τ, (16)

where the first inequality is from Lemma A.2 by taking x = z ·∆r(s, a
1, a2) and σ(−x) = 1−σ(x).

This yields
s∑

i=1

L̃(r|si, a1i , a2i ) ≤
s∑

i=1

L̃(r′|si, a1i , a2i ) + 2σ(B)τs . (17)
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Step 3: confidence bound for the private MLE estimator. Based on (15) and the union bound, for
all r′ ∈ Fτ we obtain

1

2

n∑
i=1

[
L̃(r′|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )

]
≤ log

NF (τ)

δ
− (2α− 1)2 · eB

8(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r′(si, a

1
i , a

2
i )]

2 .

Building on the above inequality and (17), we have with probability at least 1− δ, for any r ∈ F ,
there exists r′ ∈ Fτ such that

1

2

n∑
i=1

{
L̃(r|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )

}
≤1

2

n∑
i=1

{
L̃(r|si, a1i , a2i )− L̃(r′|si, a1i , a2i ) + L̃(r′|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )

}
(a)

≤ log
NF (τ)

δ
− (2α− 1)2 · eB

8(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r′(si, a

1
i , a

2
i )]

2 + σ(B)τn

= log
NF (τ)

δ
− (2α− 1)2 · eB

8(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r(si, a

1
i , a

2
i ) + ∆r(si, a

1
i , a

2
i )−∆r′(si, a

1
i , a

2
i )]

2 + σ(B)τn

(b)

≤ log
NF (τ)

δ
− (2α− 1)2 · eB

4(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r(si, a

1
i , a

2
i )]

2 +
(2α− 1)2 · eB

(1 + eB)2
τ2n+ σ(B)τn

≤ log
NF (τ)

δ
− (2α− 1)2 · eB

4(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r(si, a

1
i , a

2
i )]

2 + 2τn,

(18)
where (a) is from the union bound over Fτ , (b) is from (a+ b)2 ≤ 2a2 + 2b2 and the definition of
τ -net for the reward functions, and the last inequality is from the small value of τ .

Since r̄ is the private MLE estimator, by the realizability of the reward function, we have∑n
i=1{L̃(r̄|si, a1i , a2i )− L̃(r∗|si, a1i , a2i )} ≥ 0. So, we get

0 ≤ log
NF (τ)

δ
− (2α− 1)2 · eB

4(1 + eB)2

n∑
i=1

[∆r∗(si, a
1
i , a

2
i )−∆r̄(si, a

1
i , a

2
i )]

2 + 2τn .

Then, with probability at least 1− δ, we have
n∑

i=1

[∆r∗(si, a
1
i , a

2
i )−∆r̄(si, a

1
i , a

2
i )]

2 ≤ 4(1 + eB)2

(2α− 1)2 · eB

(
log
NF (τ)

δ
+ 2τn

)
. (19)

Step 4: On-policy error bound of reward difference function. We first get the bound on the
finite reward function set Fτ , then derive it for an infinite set F . We now use Lemma A.3 by taking
Xi = E[Yi]− Yi as zero mean r.v. where Yi = [∆r′(si, a

1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2 ∈ [0, 4B2], thus,
|Xi| ≤ 4B2 and EX2

i = E[Y 2
i ] − [EYi]

2 ≤ EY 2
i ≤ 4B2EYi. Hence, by the union bound, with

probability at least 1− δ we have for all r′ ∈ Fτ that

nEs∼d0,a1,a2∼π[∆r′(s, a
1, a2)−∆r∗(s, a

1, a2)]2 −
n∑

i=1

[∆r′(si, a
1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2

≤
√
4nB2 log

NF (τ)

δ
Es∼d0,a1,a2∼π[∆r′(s, a1, a2)−∆r∗(s, a1, a2)]2 +

8

3
B2 log

NF (τ)

δ
.

(20)

From the above inequality and by taking x =
√

nEs∼d0,a1,a2∼π[∆r′(s, a1, a2)−∆r∗(s, a1, a2)]2, b =

2B, a = 8
3B

2 log(NF (τ)/δ) +
∑n

i=1[∆r′(si, a
1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2 in Lemma A.4, we get

nEs∼d0,a1,a2∼π[∆r′(s, a
1, a2)−∆r∗(s, a

1, a2)]2 = O

(
B2 log

NF (τ)

δ

)
+

n∑
i=1

[∆r′(si, a
1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2 .
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By the definition of τ -net in Definition 3.9, we have for the private MLE estimator r̄, there exists
a r′ ∈ Fτ , such that, for all (s, a) ∈ S × A, we have |r′(s, a) − r̄(s, a)| ≤ τ from which and the
result in step 3 we can further derive with probability at least 1− 2δ

Es∼d0,a1,a2∼π[∆r̄(s, a
1, a2)−∆r∗(s, a

1, a2)]2

= O

(
B2 log(NF (τ)/δ)

n

)
+

1

n

n∑
i=1

[∆r′(si, a
1
i , a

2
i )−∆r∗(si, a

1
i , a

2
i )]

2 + 8τ2

=
4(1 + eB)2

(2α− 1)2 · eB
·
(
log(NF (τ)/δ)

n
+ 2τ

)
+O

(
B2 log(NF (τ)/δ)

n

)
+ 8τ2

= O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
,

for all values of τ small enough. Then, we get the result by taking b(s) = Ea2∼π[r̄(s, a
2) −

r∗(s, a2)].

Lemma B.2. From Lemma 2.16 in [40] and Lemma E.2 in [40], if pessimistic event (g−r∗)(s, a) ≤ 0
holds, we have

J (π∗)− J (πg) ≤ βE(s,a)∼ρ×π∗

[
(g − r∗)

2
(s, a)

]
.

We state the details of the proof here.

Proof of Theorem 4.2. Similar to Lemma E.1 in [40], it is easy to get with probability at least 1−δ, the
event E(δ) := {∃b : S → [−B,B],∀(s, a) ∈ S ×A, |r̄(s, a)− b(s)− r∗(s, a)| ≤ Γn(s, a)} holds
for δ ∈ (0, 1).

From the result of Lemma B.1, we have with probability at least 1− δ,

Es′∼d0
Vara′∼πref [r̄(s

′, a′)− r∗(s′, a′)] ≤ O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
.

Then we have
inf
b

(r̄(s, a)− b(s)− r∗(s, a))2

= inf
b

(r̄(s, a)− b(s)− r∗(s, a))2

Es′∼d0
Vara′∼πref [r̄(s

′, a′)− r∗(s′, a′)]
Es′∼d0Vara′∼πref [r̄(s

′, a′)− r∗(s′, a′)]

≤ D2
F ((s, a), πref)Es′∼d0Vara′∼πref [r̄(s

′, a′)− r∗(s′, a′)]

≤ D2
F ((s, a), πref)O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
.

Thus, we get E(δ) holds with probability at least 1− δ.

Under event E(δ), we have r̂(s, a)− b(s) ≤ r∗(s, a),

J(π∗)− J(πr̂) = J(π∗)− J(πr̂−b) ≤ β · E(s,a)∼d0×π∗ [(r̂(s, a)− b(s)− r∗(s, a))2],

where r̂(s, a) = r̄(s, a)− Γn(s, a) in Step 2 of Algorithm 1, the equation is from Lemma A.7 and
the inequality is from Lemma B.2. Therefore, we obtain

J(π∗)− J(πr̂) ≤ β · E(s,a)∼d0×π∗ [(r̂(s, a)− b(s)− r∗(s, a))2]

= β · E(s,a)∼d0×π∗ [(r̄(s, a)− Γn(s, a)− b(s)− r∗(s, a))2]

≤ β
(
2E(s,a)∼d0×π∗ [Γn(s, a)]

2 + 2E(s,a)∼d0×π∗ [(r̄(s, a)− b(s)− r∗(s, a))2]
)

≤ 4βE(s,a)∼d0×π∗ [Γn(s, a)]
2

= 4βD2
π∗ ·O

(
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
= O

(
βD2

π∗
eB

(2α− 1)2
·
(
log(NF (τ)/δ)

n
+ τ

))
,
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Proof of Theorem 4.5. Consider the set of private RLHF instances

I = {(S,A, r, πref , β,R)},
whereR is the LDP randomizer. We aim to construct a specific instance in the set to get the minimax
lower bound.

Step 1: Construct the instance. Inspired by [40], we consider the following instance for the private
RLHF problem via the contextual dueling bandits view: the state space S = [S] where S ≥ 1, binary
action space A = {−1,+1}, d0 = Unif(S) is a uniform distribution, the reward function in some
function class F ⊆ S ×A → [0, B] and the reference policy for any s ∈ S to be

πref (−1|s) = 1/C, πref (+1|s) = 1− 1/C,

where C ≥ 1 is a parameter to be decided later. We consider collections of distributions indexed
using the Boolean hypercube V = {−1,+1}S . In particular, for any v = (v1, v2, . . . , vS) ∈ V , the
mean function of the reward indexed by v is defined as

rv(s,−1) = B/2 + vs · a, rv(s,+1) = B/2− b,

for any state s ∈ S, where a, b ∈ (0, B/2) will be specified later. With this reward function, from
Definition 5, the optimal policy π∗

v for the KL-regularized RLHF is for any s ∈ S,

π∗
v(−1|s) =

πref (−1|s) exp (β · rv(s,−1))
πref (−1|s) exp (β · rv(s,−1)) + πref (+1|s) exp (β · rv(s,+1))

=
exp(β(b+ vsa))

exp(β(b+ vsa)) + C − 1
,

π∗
v(+1|s) = C − 1

exp(β(b+ vsa)) + C − 1
.

Step 2: Verify the single policy concentrability. Following [40], we state the verification for
concentrability here for completeness. Set C∗ ≥ 2, C = C∗ and b = β−1 log(C − 1), then for any
s ∈ S,

π∗
v(−1|s)

πref (−1|s)
= C · exp(β(b+ vsa))

exp(β(b+ vsa)) + C − 1
= C · exp(βvsa)

1 + exp(βvsa)
≤ C = C∗,

π∗
v(+1|s)

πref (+1|s)
=

C

C − 1
· 1

1 + exp(βvsa)
≤ C = C∗ .

Therefore, we get maxv∈V Cπ∗
v ≤ C∗.

Step 3: Construction of hard-to-distinguish pair for Sub-optimality gap. In order to get the
minimax lower bound, since d0 = Unif(S), we define

SubOpt(π̂,v) =
1

S

S∑
s=1

SubOpts(π̂,v),

and, simpler than the analysis in [40], we have the following derivation from sub-optimality gap to
the KL divergence between estimated policy and optimal policy:

SubOpts(π̂,v) =
〈
π∗
v(· | s), rv(s, ·)− β−1 log

π∗
v(· | s)

πref(· | s)

〉
−
〈
π̂(· | s), rv(s, ·)− β−1 log

π̂(· | s)
πref(· | s)

〉
=

1

β
Ea∼π∗

v(·|s)

[
log

πref(a|s) · exp(βrv(s, a))
π∗
v(a | s)

]
− 1

β
Ea∼π̂(·|s)

[
log

πref(a|s) · exp(βrv(s, a))
π̂(a | s)

]
(a)
=

1

β
logZ(s)− 1

β
Ea∼π̂(·|s)

[
log

πref(a|s) · exp(βrv(s, a))
π∗
v(a | s)

· π
∗
v(a | s)
π̂(a | s)

]
(b)
=

1

β
logZ(s)− 1

β
logZ(s) +

1

β
Ea∼π̂(·|s)

[
log

π̂(a | s)
π∗
v(a | s)

]
=

1

β
KL(π̂∥π∗

v),

where (a), (b) is from the definition of π∗
v(·|s) =

πref (·|s)·exp(βrv(s,·))
Z(s) and Ea∼π∗

v(·|s)Z(s) = Z(s) =

Ea∼π̂(·|s)Z(s) is the normalization constant.
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We denote v ∼s v′ if v,v′ ∈ V = {−1,+1}S only differ in the s-th element and v ∼ v′ means
there exists s ∈ S,v ∼s v′. By following the equations of (B.10) and (B.11) in Appendix B.4 of
[40] and taking C − 1 = exp(βb), for any s ∈ S, we consider v ∼s v

′ and obtain

SubOpts(π̂,v) + SubOpts(π̂,v
′) ≥ min

{
βa2

8
,
3a

10

}
.

Step 4: LDP mechanism on labels. Let Pr be the distribution of
(
s, a1, a2, z

)
for s ∼

d0, a
1 = −1, a2 = +1

i.i.d.∼ πref (· | s), z = R(y) with LDP randomizer R and y ∼
Bern

(
σ
(
r
(
s, a1

)
− r

(
s, a2

)))
. Note that for the value of the KL divergence the {−1,+1} la-

bels are the same as {0, 1} labels. Then for v ∼ v′ with vs = −v′s,

KL
(
Prv∥Prv′

)
≤ (C − 1)

SC2

∑
s′,a1,a2

[KL(R(yv)∥R(yv′)) + KL(R(yv′)∥R(yv))]

≤ 4(eϵ − 1)2(C − 1)

SC2

∑
s′,a1,a2

TV2
(
Bern

(
σ
(
rv
(
s′, a1

)
− rv

(
s′, a2

)))
∥Bern

(
σ
(
rv′
(
s′, a1

)
− rv′

(
s′, a2

))))
=

4(eϵ − 1)2(C − 1)

SC2
TV2(Bern(σ(b+ a))∥Bern(σ(b− a)))

=
4(eϵ − 1)2(C − 1)

SC2

(
1

1 + e−(a+b)
− 1

1 + ea−b

)2

(a)

≤ (eϵ − 1)2a2

SC
,

where the second inequality is from Lemma A.5 since the offline setting is non-interactive and (a) is
from mean-value theorem∣∣σ(b+ a)− σ(b− a)

∣∣ ≤ sup
t∈[b−a,b+a]

∣∣σ′(t)
∣∣ · ∣∣(b+ a)− (b− a)

∣∣ ≤ 1

4
· 2|a| = |a|

2
.

Step 5: Minimax lower bound. We evaluate procedures through the minimax suboptimality, which
means among all algorithms, pick the one that achieves the smallest possible worst-case suboptimality.
From Assouad’s lemma in Lemma A.6 and by taking a =

√
SC

(eϵ−1)
√
n

, S = logNF (τ), and C = C∗,
we get

inf
π̂∈Π

sup
I∈I

SubOpt(π̂, I) ≥ 1

4
S · 1

S
min

{
βa2

8
,
3a

10

}
min
v∼v′

exp
(
−KL

(
Pn
rv∥P

n
rv′

))
=

1

4
min

{
βa2

8
,
3a

10

}
exp

(
−nKL

(
Prv∥Prv′

))
= Ω

(
min

{
βCS

(eϵ − 1)2n
,

√
SC

(eϵ − 1)
√
n

})

= Ω

(
min

{
βC∗ logNF (τ)

(eϵ − 1)2n
,

√
C∗ logNF (τ)

(eϵ − 1)
√
n

})
.

C Proofs of Section 5

By direct calculation, it is easy to get the following lemma that will be used in our follow-up analysis.

Lemma C.1. From the Bernoulli distribution of y in Bradley-Terry model (Assumption 6), we denote
Er[y|s, a1, a2] = h∗(s, a1, a2) = 2σ(∆r∗(s, a

1, a2))− 1, then based on the randomness of random
response, ERR[z|s, a1, a2] = h̃∗(s, a1, a2) = (2α− 1) · h∗(s, a1, a2).
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Proof of Lemma C.1. First, Er[y|s, a1, a2] = (+1) · σ(∆r∗(s, a
1, a2)) + (−1) · (1 −

σ(∆r∗(s, a
1, a2))) = 2σ(∆r∗(s, a

1, a2))− 1 = h∗(s, a1, a2). Then, ERR[z|s, a1, a2] = 1 · P(z =
+1|s, a1, a2)+(−1) ·P(z = −1|s, a1, a2) = αP(y = +1|s, a1, a2)+(1−α)P(y = −1|s, a1, a2)−
αP(y = −1|s, a1, a2)− (1− α)P(y = +1|s, a1, a2) = (2α− 1)h∗(s, a1, a2).

Lemma C.2 (In-sample error of ERM [38, 34, 32]). Consider a function spaceH : Z → R and a
filtered sequence {xt, ϵt} ∈ X×R so that ϵt is conditional zero-mean σ-sub-Gaussian noise. Suppose
thatH is a finite space with cardinality NH. For h∗(·) : Z → R, suppose that zt = h∗ (xt) + ϵt. If
f̂t is an ERM solution:

ĥt = argmin
h∈H

t∑
i=1

(h (xi)− zi)
2
,

with probability at least 1− δ, we have for all t ∈ [T ],

t∑
i=1

(
ĥt (xi)− h∗ (xi)

)2
≤ 8σ2 log

T ·NF

δ
.

Lemma C.3 (In sample error bound of reward difference). Under Assumption 3.7, finite reward space
F with cardinality NF , the reward r̄ estimated by step 7 in Algorithm 2 satisfies w ith probability at
least 1− δ, for all t ∈ [T ],

t∑
i=1

(
r∗
(
si, a

1
i

)
− r∗

(
si, a

2
i

)
− [r̄t

(
si, a

1
i

)
− r̄t

(
si, a

2
i

)
]
)2 ≤ 8(e−B + 2 + eB)2

(2α− 1)2
log

T ·NF

δ
.

Proof. By the mean value theorem from Lemma C.2 and Lemma A.8 where the noise is from random
response with zero-mean 2-sub-Gaussian noise based on Lemma C.1, with probability at least 1− δ,
we have for all t ∈ [T ]

t∑
i=1

(
r∗
(
si, a

1
i

)
− r∗

(
si, a

2
i

)
− [r̄t

(
si, a

1
i

)
− r̄t

(
si, a

2
i

)
]
)2 ≤ (e−B + 2 + eB)2

4(2α− 1)2

∑
i

(
ˆ̃
ht − h̃∗)2

≤ 8(e−B + 2 + eB)2

(2α− 1)2
log

T ·NH

δ

≤ 8(e−B + 2 + eB)2

(2α− 1)2
log

T ·NF

δ

=
1

2
Γ2
T ,

where the last inequality is since NH ≤ NF .

Lemma C.4. Under Algorithm 2 and Assumption 3.7, the noises of the random response on labels
{−1,+1} are zero mean 2-sub-Gaussian, we have with probability 1− δ, the optimism event that
Et = {r̄t(s, a) + bt(s, a) + ct(s) − r∗(s, a) ≥ 0} holds for any (s, a) ∈ S × A for all t ∈ [T ]
uniformly where ct(s) = Eb∼π1

t+1
[r∗(s, b)− r̄t(s, b)].
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Proof. For any (s, a) ∈ S ×A, we have

|r∗(s, a)− r̄t(s, a)− ct(s)|

≤ |r∗(s, a)− r̄t(s, a)− ct(s)|√
λ+

∑t
i=1 (r

∗ (si, a1i )− r∗ (si, a2i )− [r̄t (si, a1i )− r̄t (si, a2i )])
2

·

√√√√λ+

t∑
i=1

(r∗ (si, a1i )− r∗ (si, a2i )− [r̄t (si, a1i )− r̄t (si, a2i )])
2

≤ sup
r1,r2∈Ft

∣∣∣r1(s, a)− r2(s, a)− Eb∼π1
t+1

[r1(s, b)− r2(s, b)]
∣∣∣√

λ+
∑t

i=1 (r1 (si, a
1
i )− r1 (si, a2i )− [r2 (si, a1i )− r2 (si, a2i )])

2

·

√√√√λ+

t∑
i=1

(r∗ (si, a1i )− r∗ (si, a2i )− [r̄t (si, a1i )− r̄t (si, a2i )])
2

= UFt

(
λ, s, a;Dt;π

1
t+1

)
·

√√√√λ+

t∑
i=1

(r∗ (si, a1i )− r∗ (si, a2i )− [r̄t (si, a1i )− r̄t (si, a2i )])
2

≤ UFt

(
λ, s, a;Dt;π

1
t+1

)
·
√

λ+
1

2
Γ2
T

≤ UFt

(
λ, s, a;Dt;π

1
t+1

)
· ΓT

= bt(s, a),

where the last inequality is from taking λ ≤ 1
2Γ

2
T .

Lemma C.5 (Objective Decomposition, Lemma A.1 in [38]). For any t ∈ [T ], conditioning on the
uniform optimism event that Et = {r̄t(x, a) + bt(x, a)− r∗(x, a) ≥ 0,∀(x, a) ∈ X ×A} holds, we
have

J (π∗)− J (πt) ≤ βEx∼d0Ea∼πt

[
(r̄t−1(s, a) + bt−1(s, a)− r∗(s, a))

2
]
.

where πt = π(r̄t−1+bt−1)(s,a).

Proof of Theorem 5.2. Based on the uniform event that ∪t∈[T ]Et holds with probability at least 1− δ,
and denoting ct−1(s) = Eb∼π1

t
[r∗(s, b)− r̄t−1(s, b)], from Lemma A.7, we have

J(π∗)− J(π2
t ) = J(π∗)− J(πr̄t−1+bt−1) = J(π∗)− J(π(r̄t−1+bt−1)(s,a)+ct−1(s)) .

From Lemma C.5 for objective decomposition, under the event Et, we have

J(π∗)−J(π2
t ) ≤ βEs∼d0

Ea∼π2
t
[(r̄t−1(s, a)+bt−1(s, a)+ct−1(s)−r∗(s, a))2] ≤ 4βEs∼d0

Ea∼π2
t
[bt−1(s, a)]

2 . .

where the last inequality is from Lemma C.4.

Thus, we get the cumulative regret bound is

T∑
t=1

(J(π∗)− J(π2
t )) ≤

T∑
t=1

4βEs∼d0Ea∼π2
t
[bt−1(s, a)]

2 .

By plugging in bt(s, a) = UFt

(
λ, s, a;Dt;π

1
t+1

)
· ΓT , we get the final result.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state our contributions in the abstract and in Section 1 of the introduction.
We consider private KL-regularized RLHF in both offline and online settings, design
algorithms, and derive theoretical guarantees. We also run some experiments to verify
our findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We assume the preference model is the Bradley-Terry model in Assumption
3.7. And we also discuss that the future work can extend to be a more general preference
model in Section 7. For our online case, we discuss in Remark 5.3 in Section 5 that our
algorithm is not computationally efficient because of the design of the Euler dimension.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We number and cross-reference all the theorems, lemmas, and corollaries. And
we provide complete proofs for the offline setting in Section 4 in Appendix B and for the
online setting in Section 5 in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experimental section (Section 6) specifies all components needed for
reproducibility, including dataset sources, preprocessing steps, model architectures, hyper-
parameter settings, and evaluation metrics. These details ensure that other researchers can
reproduce our reported results and verify the main claims without relying on additional
resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper relies exclusively on publicly available datasets. We provide the
information on the dataset in Section 6 and the link to the dataset in footnote 2.And the
implementation code (including training scripts and hyperparameter configurations) will be
released in an open-access repository upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive details for all experimental settings, includ-
ing dataset descriptions, data splits, model architectures, optimizer types, hyperparameter
choices, and training schedules in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The main experimental results are reported in terms of win rate in Table 1 of
Section 6, which is commonly used in RLHF evaluation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We used a single AMD MI-200 GPU equipped with 64 GB of VRAM and the
information of computer resources is clarified in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics. All experiments are
conducted on publicly available datasets and do not involve human subjects or private data
collection. Moreover, the proposed framework explicitly incorporates differential privacy
mechanisms to enhance data protection and promote responsible AI development. No ethical
risks or conflicts of interest are associated with this work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper focuses on theoretical and algorithmic aspects of private reinforce-
ment learning from human feedback and does not involve direct societal deployment or
user interaction. Therefore, it does not have immediate societal impacts beyond standard
considerations of responsible AI research.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: The paper builds on publicly available preference datasets (HH-RLHF) and a
base model (Llama-3.2-1B-Instruct model). We put the link in footnote 2 and footnote 3 in
Section 6.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:[NA]
Justification: The paper does not introduce any new datasets, pretrained models, or other
reusable assets. All experiments are conducted using publicly available resources, and no
new assets requiring additional documentation are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing, user studies, or any experiments
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study does not involve any human subjects or crowdsourced participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not956 involve LLMs as
any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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