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Abstract

Data sharing between different parties has become increasingly common across industry
and academia. An important class of privacy concerns that arises in data sharing scenar-
ios regards the underlying distribution of data. For example, the total traffic volume of
data from a networking company can reveal the scale of its business, which may be consid-
ered a trade secret. Unfortunately, existing privacy frameworks (e.g., differential privacy,
anonymization) do not adequately address such concerns. In this paper, we propose sum-
mary statistic privacy, a framework for analyzing and protecting these summary statistic
privacy concerns. We propose a class of quantization mechanisms that can be tailored to
various data distributions and statistical secrets, and analyze their privacy-distortion trade-
offs under our framework. We prove corresponding lower bounds on the privacy-utility
tradeoff, which match the tradeoffs of the quantization mechanism under certain regimes,
up to small constant factors. Finally, we demonstrate that the proposed quantization mech-
anisms achieve better privacy-distortion tradeoffs than alternative privacy mechanisms on
real-world datasets.

1 Introduction

Data sharing between organizations is an important driver for many use cases, including data-driven product
development (Lee & Whang, 2000), industry-wide coordination efforts (e.g., cybersecurity (Choucri et al.,
2016), law enforcement (Jacobs & Blitsa, 2008)), and the creation of benchmarks for evaluating scientific
progress (Deng et al., 2009; Reiss et al., 2011; Luo et al., 2021). For example, network traces shared from
customers to networking vendors enable vendors to debug and improve products (Yin et al., 2022; cai).
Medical data shared between hospitals (Esteban et al., 2017; Warren et al., 2019) enables them to develop
new machine-learning-based diagnosis algorithms collaboratively (Chaibub Neto et al., 2019). Data shared
by researchers allow their research to be reproducible by others (Deng et al., 2009; Lin et al., 2020). In
recent years, data sharing has grown into its own sub-industry (e.g., data marketplaces on platforms such
as Databricks and Snowflake). Shared data can take many forms, including processed or scrubbed raw
data (Reiss et al., 2012; Google, 2018; Commission, 2018; Warren et al., 2019), aggregate analytics, and/or
synthetic data (Liu & Wu, 2022).

However, summary statistics of the shared data may leak sensitive information (Suri & Evans, 2021; Suri
et al., 2023). For example, property inference attacks allow an attacker to infer properties about the individ-
uals in the training dataset of a released machine learning model (Ateniese et al., 2015; Ganju et al., 2018;
Zhang et al., 2021; Mahloujifar et al., 2022; Chaudhari et al., 2022). A video content provider that shares
video session data may wish to hide the total or mean traffic volume, which could be used to infer the com-
pany’s total revenue (Manousis et al., 2021). A cloud provider that shares cluster performance traces may
not want to reveal the proportions of different server types that the cloud provider owns, which are regarded
as business secrets (Lin et al., 2020). Note that this information (total/mean traffic volume, proportions of
data types) cannot be inferred from any single record, but is inherent to the overall data distribution (or the
aggregate dataset).

Unfortunately, existing privacy metrics and privacy-preserving data sharing algorithms do not adequately
address these summary statistic privacy concerns. They either focus on protecting the privacy of individual
records in a database (e.g., differential privacy (Dwork et al., 2006), anonymization (Reiss et al., 2012), sub-
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Figure 1: Problem overview. The data holder produces released data and wants to hide statistical secrets
of the original data. The data user requires that the utility of the released data be good. The attacker
(could be the data user) also observes the released data, and wants to guess the secrets of the original data.
Note that we focus on secrets about the underlying distribution (e.g., mean, quantile, standard deviation,
of a specific data column). As a comparison, many of existing frameworks (e.g., differential privacy (Dwork
et al., 2006), anonymization (Reiss et al., 2012), sub-sampling (Reiss et al., 2012)) protect information from
individual samples (rows). Our end goal is to provide a summary statistic privacy toolbox for data holders to
use. The summary statistic privacy toolbox contains data release mechanisms for a set of pre-defined secrets
and data distributions. Data holders can choose the mechanism according to the secret that they want to
hide and the closest data distributions.

sampling (Reiss et al., 2012)), or are designed for algorithms that release low-dimension statistical queries of
the dataset instead of the entire dataset (Zhang et al., 2022; Makhdoumi et al., 2014; Issa et al., 2019). For
example, differential privacy (DP) (Dwork et al., 2006), a de facto privacy definition, evaluates how much
individual samples influence the final output of an algorithm. Assume that a video content provider has a
dataset of daily page views that they want to release, and they are concerned about the mean page views
(as this implies the revenue). A typical DP algorithm (Wasserman & Zhou, 2010) would add noise (e.g.,
Laplace) to the individual page view counts. This process does not change the mean of the entire data on
expectation. Indeed, DP mechanisms have been shown not to protect summary statistics (Ateniese et al.,
2015) (in fact, they are designed to preserve them). See more discussion in §2.2.

Hence, a privacy framework is needed for defining, analyzing, and protecting summary statistic privacy
concerns in data sharing settings. Early work in this space has aimed to obfuscate only between two possible
data distributions (Suri & Evans, 2021; Suri et al., 2023), or has been implicitly designed for the release of low-
dimensional query release (Zhang et al., 2022). In this paper, we aim to design a general summary statistic
privacy framework that can apply to general data release settings. At a high level, the proposed framework
works as follows (detailed formulation in §3). A data holder first chooses one or more secrets, which are
mathematically defined as functions of the data holder’s data distribution. For example, a video analytics
company might choose the mean daily observed traffic as a secret quantity. Then, the data holder obfuscates
their data according to some mechanism and releases the output (Fig. 1). Our framework quantifies the
privacy of this mechanism by analyzing the probability that a worst-case attacker can infer the data holder’s
true secret after observing the output. To capture the utility of released data, we define the distortion of a
mechanism as the worst-case distance (where the distance metric can be chosen by the data holder or data
user) between the original and released data distributions. Our goal is to design data release mechanisms
that control tradeoffs between privacy and distortion.

1.1 Contributions

Our contributions are as follows.
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• Formulation (§3): We formalize the notion of summary statistic privacy and propose privacy and
distortion metrics tailored to data sharing applications. Intuitively, we define privacy as a worst-case
adversary’s probability of guessing a secret function of the underlying data distribution. We define
distortion as the worst-case distributional distance1 between the original data distribution and the
released, perturbed data distribution. Precise definitions are in §3.

• Mechanism design (§5): We propose a class of mechanisms that achieve summary statistic pri-
vacy called quantization mechanisms, which intuitively quantize a data distribution’s parameters2 into
bins. We present a sawtooth technique for theoretically analyzing the quantization mechanism’s privacy
tradeoff under various types of secret functions and data distributions (§5.3). Intuitively, the sawtooth
technique exploits the geometry of the distribution parameter(s) to divide the parametric space into two
regions: one in which privacy risk is small and analytically tractable, and another in which privacy risk
can be high, but which occurs with low probability. The method is named after the boundary of the
tractable region, which has a sawtooth shape. We use the sawtooth technique to analyze the quantiza-
tion mechanism under various secret functions and data distributions (summary in Table 1). For most of
these case studies, we provide concrete upper bounds characterizing the exact privacy-distortion trade-
off under a family of priors over the true data distribution parameters. For the remaining case studies,
we provide a dynamic programming algorithm that efficiently numerically instantiates the quantization
mechanism.

• Lower bounds (§4): We derive general lower bounds on distortion given a privacy budget for any
mechanism. These bounds depend on both the secret function and the data distribution. We then
instantiate the lower bounds for each of our case studies to show that for the case studies we analyze
theoretically in Table 1, our proposed quantization mechanism achieves a privacy-distortion tradeoff
within a small constant factor of optimal (usually 3) in the regime where quantization bins are small
relative to the overall support set of the distribution parameters.

• Empirical evaluation (§7): We give empirical results showing how to use summary statistic privacy
to release a real dataset, and how to evaluate the corresponding summary statistic privacy metric. We
show that the proposed quantization mechanism achieves better privacy-distortion tradeoffs than other
natural privacy mechanisms.

This paper is only a first step in the study of summary statistic privacy. Our formulation has many limitations
and leaves many questions unanswered (§9). Still, we hope it will draw attention to what we believe to be
an important privacy concern and research question.

2 Motivation and Related Work

In this section, we discuss motivating scenarios where summary statistic privacy is a concern (§2.1), and
why existing privacy frameworks are not able to capture and protect summary statistic privacy (§2.2).

2.1 Motivating Scenarios

Whether sharing data models (e.g., classifiers (Ateniese et al., 2015; Ganju et al., 2018; Mahloujifar et al.,
2022; Chaudhari et al., 2022), generative models (Zhou et al., 2021)) or datasets (e.g., cluster traces (Wilkes,
2020; Cortez et al., 2017; Luo et al., 2021), video session data (Jiang et al., 2016; Manousis et al., 2021),
network flow datasets (Zeng, 2017)), data sharing can leak sensitive global properties of the data distribution.
Examples include:

S1. Business strategies can be leaked from data. As mentioned before, cluster trace datasets (Wilkes,
2020; Cortez et al., 2017; Luo et al., 2021) are very useful in the systems community. However, cluster
traces can reveal strategic enterprise choices, such as the fraction of server types in use (Lin et al., 2020).
Such information reflects the company’s business strategy and should be kept secret from competitors and
vendors. Note that simply removing the server type from the dataset is not a good option, as server type is an

1In this work, we consider Wasserstein-1 distance and total variation distance (§3), though our formulation can accommodate
other distance metrics.

2We assume data distributions are drawn from a parametric family; more details in §3.
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Figure 2: An illustrative example of why some of the privacy frameworks are not suitable for summary statis-
tic privacy. Assume that we want to protect the mean of the data. A typical differential privacy algorithm
(Wasserman & Zhou, 2010) would add zero-mean noise (e.g., Laplace noise) to the bins. Anonymization
(Wilkes, 2020) removes sensitive features (e.g., name of users) from data but leaves other features the same.
Sub-sampling (Reiss et al., 2012) down-sample the dataset. All of these mechanisms do not change the
expected mean of the data, and thus an attacker can still guess the mean with a small (expected) error. See
§2.2 for the discussion of other privacy mechanisms.

important feature for the downstream applications of the dataset (e.g., for predicting future CPU/memory
usage).

S2. Business scales can be leaked from data. For example, networking datasets that contain traffic
measurements or raw records are another common type of data (e.g., Meta flow trace dataset (Zeng, 2017),
Wikipedia Web Traffic Dataset (Google, 2018), video session data used in Manousis et al. (2021)). While
being useful, the total (or mean) traffic volume in these datasets (e.g., number of transferred bytes in a
network, number of page views of websites, viewership values of video delivery systems) can reveal the scale
of the business such as the number of users and the revenue of the company. Indeed, due to these concerns,
it is a common practice to hide the actual traffic volumes of sensitive proprietary datasets even in research
papers (e.g., removing the actual traffic values in Manousis et al. (2021)).

S3. System capabilities can also be revealed. For instance, the cluster trace datasets mentioned before
(Wilkes, 2020; Cortez et al., 2017; Luo et al., 2021) contain CPU and memory usage of servers. It is likely
that the maximum value of memory usage is close to the memory size of the system. Such system capabilities
could be used by adversaries to launch attacks (e.g., denial-of-service attacks). Due to these concerns, some
companies use customized techniques to obfuscate system capabilities before data release (e.g., normalizing
system usage (Wilkes, 2020)).

S4. Company sentiment or performance [Example 1 from Mahloujifar et al. (2022)] A company
releases a spam classifier trained on company emails. However, using property inference, an attacker is able
to infer the aggregate sentiment of those emails (positive/negative). If the fraction of negative emails is high,
it suggests that company morale is low, which is sensitive.

2.2 Existing Privacy Frameworks are Insufficient for Summary Statistic Privacy

Most existing privacy frameworks or mechanisms are not suitable for summary statistic privacy because
they either focus on protecting individual records in the data (e.g., differential privacy (Dwork et al., 2006),
anonymization (Wilkes, 2020), sub-sampling (Reiss et al., 2012)) (Fig. 1), or are designed for algorithms
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that release low-dimension statistical queries of the dataset instead of the entire dataset (e.g., attribute
privacy (Zhang et al., 2022), maximal leakage (Issa et al., 2019), privacy funnel (Makhdoumi et al., 2014)).
We divide the relevant work into three categories: approaches that are based on indistinguishability over
candidate distributions or inputs, industry heuristics, and information-theoretic approaches.

2.2.1 Indistinguishability Approaches

This class of approaches provides privacy by ensuring that pairs of input datasets or data distributions are
indistinguishable. These approaches are typically motivated by differential privacy (Dwork et al., 2006).

Differential privacy (DP) Dwork et al. (2006) is one of the most popular privacy notions. A random
mechanismM is (ϵ, δ)-differentially-private if for any neighboring datasets D0 and D1 (i.e., D0 and D1 differ
one sample), and any set S ⊆ range (M), we have

P (M (D0) ∈ S) ≤ eϵ · P (M (D1) ∈ S) + δ .

In our data sharing scenarios, we could apply DP framework by treating M as the data release mechanism
that reads the original dataset and outputs the released dataset. However, the privacy concerns of DP and
our suggested framework are completely different: we aim to hide functions of a distribution, while DP aims
to hide whether any given sample contributed to the shared data. For example, we say that we want to
release the data in Fig. 2 while protecting its mean. A typical differential privacy algorithm (Wasserman
& Zhou, 2010) would add zero-mean noise (e.g., Laplace noise) to the bins. This process does not change
the expected mean of the data, and therefore, the attack is still able to derive an unbiased estimator of the
mean from the released data. Indeed, we will show through experiments in §7 that this DP mechanism is
not effective in hiding statistical secrets.

There exist generalizations of DP for protecting more general random variables (besides individual samples)
(Chatzikokolakis et al., 2013). However, a strong DP guarantee such that any two datasets with different
secrets are indistinguishable from the released datasets implies that the released dataset has bad utility. For
example, suppose that the original distributions are Gaussian distributions N

(
µ, σ2), and the secret is the

mean of the distribution µ. Two distributions with different secrets could have very different σ2. To make
any two distributions with different secrets (e.g., N (0, 1) and N (1, 100)) indistinguishable from the released
dataset, we must destroy information about the true σ. While relaxations like metric differential privacy
relaxation may help (Chatzikokolakis et al., 2013), this also introduces new challenges, e.g., how to choose
the metric function that maps dataset distance to a privacy parameter.

Attribute privacy (Zhang et al., 2022) considers a similar privacy concern as us: it tries to protect a func-
tion of a sensitive column in the dataset (named dataset attribute privacy) or a sensitive parameter of the
underlying distribution from which the data is sampled (named distribution attribute privacy). Attribute pri-
vacy addresses the previously-mentioned shortcomings of vanilla DP under the pufferfish privacy framework
(Kifer & Machanavajjhala, 2014). Roughly, an algorithm is said to satisfy dataset/distribution attribute
privacy if for any two different ranges of a secret function value (e.g., the fraction of the server type A is in
[0.1, 0.2) or [0.2, 0.3)), the distributions of the algorithm output do not differ too much. Attribute privacy
constrains the set of candidate distributions a priori, which prevents the problem we discussed earlier, in
which vanilla DP requires the addition of unbounded noise (Zhang et al., 2021).

Although their privacy concerns are highly related to ours, attribute privacy focuses on algorithms that
output a statistical query of the dataset instead of the entire dataset. We could apply their framework to
analyze full-dataset-sharing algorithms, but due to the high dimensionality of the dataset, attribute privacy
needs to add substantial noise, which harms utility (§7).

Distribution privacy (Kawamoto & Murakami, 2019) is a closely related notion, which releases a full data
distribution under DP-style indistinguishability guarantees. Roughly, for any two input distributions θ0 and
θ1 from a pre-defined set of candidate distributions, a distribution private mechanism outputs a distribution
M(θi) such that for any set S in the output space, we have P[M(θi) ∈ S] ≤ eϵP[M(θ1−i) ∈ S] + δ.

This formulation is stronger than what we need; by obfuscating the whole distribution, we inherently pro-
tect the private information in question. However mechanisms that protect distribution privacy may add
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more noise than what is required only to protect select secret(s). A recent work by Chen and Ohrimenko
(Chen & Ohrimenko, 2022) proposes mechanisms for distribution privacy, and we observe exactly this trend
experimentally in §7; the noise added by the mechanisms in Chen & Ohrimenko (2022) is larger than what
we require with summary statistic privacy.

Distribution inference (Suri & Evans, 2021; Suri et al., 2023) is very closely related to our goals. Like our
setting, the data holder is trying to protect a secret function of its data (or data distribution). To this end,
it sets up a hypothesis test in which the adversary must choose whether the released model (or data) comes
from one of two fixed data distributions, which are derived from an underlying public data distribution.
These two distributions are assumed to be known both to the attacker and the defenders. In many practical
settings, it may be difficult to establish a reasonable pair of candidate distributions; moreover, this approach
is not directly aligned with the data holder’s goal, which is simply to hide some secret quantities — not to
render the full data distribution indistinguishable with another (the latter is closer to distribution privacy).

2.2.2 Industry Heuristics

Industry heuristics are algorithms that are commonly used in industrial data sharing settings. They may
not provide provable privacy guarantees, and indeed, many of these heuristics have been broken in practice.
Examples include anonymization, which removes certain attributes (e.g., name of the patients in medical
data, name of jobs in cluster dataset) (Reiss et al., 2012); anonymization is widely used in the release of
datasets (e.g., Wilkes (2020)). However, it does not change the distribution of attributes. Another example
is sub-sampling, which works by sampling the original datasets at the level of individual records (Reiss
et al., 2012). The intuition is that by reducing the number of samples, less information is leaked. However,
sub-sampling does not change statistical properties of the distribution.

2.2.3 Information-Theoretic Approaches

The third category of defenses are information theoretic. These approaches have a similar goal to ours and
typically rely on (or relate to) the mutual information between problem variables.

Maximal leakage (Issa et al., 2019) is an information-theoretic framework for quantifying the leakage of
sensitive information. We denote X as the random variable of the data to be shared (which may contain
sensitive information), and Y as the random variable of the information that is processed from X and is
accessible to the attacker. Having observed Y , the attacker’s goal is to guess a secret function of X denoted
by U , and the guess is denoted by Û . Based on this setup, the Markov chain U −X−Y − Û holds. Maximal
leakage L from X to Y is defined as

L (X → Y ) = sup
U−X−Y −Û

log
P
(

U = Û
)

maxu PU (u) (1)

where the sup is taken over U (i.e., considering the worst-case secret) and Û (i.e., considering the strongest
attacker). Intuitively, Eq. (1) evaluates the ratio (in nats) of the probabilities of guessing the secret U
correctly with and without observing Y .

To apply maximal leakage in data sharing scenario, we may regard X as the original dataset, Y as the
released dataset, and U as the secret (e.g., the fraction of a specific server type). However, this formulation
is still unsuitable for the following reasons. (1) Maximal leakage only considers discrete U and Û under finite
alphabet. Note that it is a critical assumption for making sure that P

(
U = Û

)
in the definition (Eq. (1))

is nonzero. However, in our problem, secrets typically have continuous support (e.g., §2.1). (2) Maximal
leakage assumes that the secret to protect U is unknown a priori and therefore considers the worst-case
leakage among all possible secrets. However, in our problem, data holders know what secret they want to
protect. Although we cannot directly use maximal leakage in our problem, its core idea can be useful for
extending our framework (see §9).

Privacy funnel (Makhdoumi et al., 2014) is another popular information-theoretic privacy framework.
As with maximal leakage, we denote X as the random variable of the data that many contain sensitive
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information U , and Y as the random variable of the information that is processed from X and is accessible
by the attacker. The privacy funnel framework evaluates privacy leakage with the mutual information
I(U ; Y ), and the utility of Y with mutual information I(X; Y ). To find a good privacy-preserving data
processing strategy PY |X , the privacy funnel solves the optimization

min
PY |X :I(X;Y )≥R

I(U ; Y ) ,

where R is a desired threshold on the utility of Y .

To apply it in data sharing problems, we could regard X as the original data, Y as the released data, and
U as the secret data holder wants to protect (e.g., the fraction of a specific server type). However, mutual
information is not a good metric for either privacy or utility. On the privacy front, prior work has shown
that I(U ; Y ) can be reduced while allowing the attacker to guess S correctly from Y with higher probability
(see Example 1 in Issa et al. (2019)). On the utility front, higher mutual information I(X; Y ) does not
mean that the released data Y is a useful representation of X. For example, Y could be an arbitrary one-
to-one transformation of X. In that case, I(X; Y ) is maximized, but the data structure could be completely
destroyed. In addition, privacy funnel (Makhdoumi et al., 2014) only considers X and Y in discrete supports,
which is too restrictive for our setting.

3 Summary Statistic Privacy Formulation

Notation. We denote random variables with uppercase English letters or upright Greek letters (e.g., X, μ),
and their realizations with italicized lowercase letters (e.g., x, µ). For a random variable X, we denote its
probability density function (PDF), or, in the case of discrete random variables, its probability mass function
(PMF), as fX , and its distribution measure as ωX . If a random variable X is drawn from a parametric family
(e.g., Gaussian with specified mean and covariance); the parameters will be denoted with a subscript of X,
i.e., the above notations become Xθ, fXθ

, ωXθ
respectively for parameters θ ∈ Rq, where q ≥ 1 denotes

the dimension of the parameters. In addition, we denote fX|Y as the conditional PDF or PMF of X given
another random variable Y . We use Z,Z>0,N,R,R>0, to denote the set of integers, positive integers, natural
numbers, real numbers, and positive real numbers respectively.

Original data. Consider a data holder who possesses a dataset of n samples X = {x1, . . . , xn}, where for
each i ∈ [n], xi ∈ Rp is drawn i.i.d. from an underlying distribution. We assume the distribution comes
from a parametric family, and the parameter vector θ ∈ Rq of the distribution fully specifies the distribution.
That is, xi ∼ ωXθ

, where we further assume that θ is itself a realization of random parameter vector Θ, and
ωΘ is the probability measure for Θ. We will discuss how to relax the assumption on this prior distribution
of θ in §9. We assume that the data holder knows θ (and hence knows its full data distribution ωXθ

); our
results and mechanisms generalize to the case when the data holder only possesses the dataset X (see §6).

For example, suppose the original data samples come from a Gaussian distribution. We have θ = (µ, σ), and
Xθ ∼ N (µ, σ). ωΘ (or fΘ) describes the prior distribution over (µ, σ). For example, if we know a priori that
the mean of the Gaussian is drawn from a uniform distribution between 0 and 1, and σ is always 1, we could
have fΘ (µ, σ) = I (µ ∈ [0, 1]) · δ (σ), where I (·) is the indicator function, and δ is the Dirac delta function.
In practice, the underlying distribution can be much more complicated than a Gaussian.

In general, the data can be multi-dimensional (i.e., p > 1). We study one-dimensional data as a starting
point (§3.2).

Statistical secrets to protect. We assume the data holder wants to hide ℓ ∈ Z>0 secrets from the
original data distribution. Since the true data distribution is fully-specificed by parameter vector θ, these
secrets can be expressed as a function g (θ) : Rq → Rℓ. In the Gaussian example Xθ ∼ N (µ, σ), suppose
the random variable Xθ represents the traffic volume experienced by an enterprise in a day. The data holder
may wish to hide the mean traffic per day, in which case g(·) would be the mean of the distribution, i.e.,
g (µ, σ) = µ. In this example, we are hiding only one secret (the mean), so ℓ = 1. In general, the secret
can be any (vector-valued) function that can be deterministically computed from θ. As shown in Fig. 1, the
secret could be derived from one feature (e.g., the mean salary) or computed from multiple features (e.g., the
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mean salary of males). The secrets could also be multi-dimensional (e.g., mean of salary, and the fraction
of males). In this paper, we present general results for one-dimensional secrets (i.e., ℓ = 1) and defer a
discussion of higher-dimensional secrets to future work (see §9).

Data release mechanism. The data holder releases data by passing the private parameter θ through a
data release mechanism Mg. That is, for a given θ, the data holder first draws internal randomness z ∼ ωZ ,
and then releases another distribution parameter θ′ =Mg (θ, z), where Mg is a deterministic function, and
ωZ is a fixed distribution from which z is sampled. Note that we assume both the input and output of Mg

are distribution parameters. It is straightforward to generalize to the case when the input and/or output
are datasets of samples (see §6).

For example, in the Gaussian case discussed above, the data release mechanism can be Mg ((µ, σ) , z) =
(µ + z, σ) where z ∼ N (0, 1). I.e., this mechanism shifts the mean of the Gaussian by a random amount
drawn from a standard Gaussian distribution and keeps the variance.

Threat model. We assume that the attacker knows the parametric family from which our data is drawn,
but does not know the initial parameter θ. The attacker is also assumed to know the data release mechanism
Mg and output θ′ but not the realization of the data holder’s internal randomness z. The attacker guesses
the initial secret g (θ) based on the released parameter θ′ according to estimate ĝ (θ′). ĝ can be either
random or deterministic, and we assume no computational bounds on the adversary. For instance, in the
running Gaussian example, an attacker may choose ĝ (µ′, σ′) = µ′. When the data holder releases a dataset of
samples instead of the parameter θ′, this formulation can be used to upper bound the attacker’s performance
on correctly guessing the secret, since the estimation error on released distribution parameter is induced due
to the finite samples in the released dataset.

3.1 Metrics

Privacy metric. The data holder wishes to prevent an attacker from guessing its secrets. We define our
privacy metric privacy Πϵ,ωΘ as the attacker’s probability of guessing the secret(s) to within a tolerance ϵ,
taken worst-case over all attackers ĝ:

Πϵ,ωΘ ≜ sup
ĝ

P (|ĝ (θ′)− g (θ)| ≤ ϵ) . (2)

The probability is taken over the randomness of the original data distribution (θ ∼ ωΘ), the data release
mechanism (z ∼ ωZ), and the attacker strategy (ĝ).

Distortion metric. The main goal of data sharing is to provide useful data; hence, we (and data
holders and users) want to understand how much the released data distorts the original data. We define the
distortion ∆ of a mechanism as the worst-case distance between the original distribution and the released
distribution:

∆ ≜ sup
θ∈Supp(ωΘ),θ′,

z∈Supp(ωZ ):Mg(θ,z)=θ′

d
(
ωXθ
∥ωXθ′

)
, (3)

where d is a general distance metric defined over distributions. The choice of the distance metric depends
on the data type and potentially on the applications that stakeholders care about. For example, if the data
holders or users have concrete metrics that they want to preserve (e.g., the difference between the mean
salaries of males and females in Fig. 1), they could use this quantity as the distance metric. Otherwise,
one can use statistical distance metrics between distributions (e.g., total variation distance, Wasserstein
distance). In this paper, we adopt Wasserstein-1 distance for continuous distributions and total variation
(TV) distance for discrete distributions. These distances are often used for evaluating data quality (e.g.,
Yin et al. (2022); Lin et al. (2020)) and as the distance metric in neural network design (e.g., Arjovsky et al.
(2017); Lin et al. (2018)). Note that the definition in Eq. (3) can be extended to data release mechanisms
that take datasets as inputs and/or outputs.
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Objective. To summarize, the data holder’s objective is to choose a data release mechanism that minimizes
distortion metric ∆ subject to a constraint on privacy Πϵ,ωΘ :

min
Mg

∆

subject to Πϵ,ωΘ ≤ T.
(4)

The alternative formulation, minMg Πϵ,ωΘ subject to ∆ ≤ T is analyzed in App. A.

The optimal data release mechanisms for Eq. (4) depends on the secrets, the distance metric d in Eq. (3), and
the characteristics of the original data. We envision a summary statistic privacy toolbox (Fig. 1) that encodes
data release mechanisms for a list of predefined secrets, d, and data distributions. Data holders specify the
secret function they want to protect and the desired distance metric; the toolbox then selects the data
distribution parametric family that most closely reflects the holder’s raw data and uses the corresponding
data release mechanism to process the raw data for sharing.

3.2 Scope of This Work

3.2.1 Simplifying Assumptions

Although our formulation supports a wide range of distribution distance metrics, secret functions, and para-
metric families of data distributions, we make simplifying assumptions as a starting point on this problem.

Distortion metric. As discussed in §3.1, we use Wasserstein-1 and TV as the distance metrics for
continuous and discrete distributions respectively in the case studies (§6). We leave the discussion of other
metrics to §9.

The type and the number of secrets. Our formulation supports general statistical secrets, as long as
they are a (possibly vector-valued) function of the data distribution. In this paper, we start by assuming
that the secret is one-dimensional, and discuss several natural secret functions in §6.

The dimension and distribution of the data. Although our formulation includes multi-dimensional
data, in this paper, we consider one-dimensional distributions as a starting point.

3.2.2 Research Questions

We aim to answer two questions:

Q1 What are fundamental limits on the tradeoff between privacy and distortion?

Q2 Do there exist data release mechanisms that can match or approach these fundamental limits?

In general, these questions can have different answers for different choices of distance metric in Eq. (3),
different parametric families of data distributions, and different secret functions. In §4 and §5, we first
present general results that do not depend on data distribution or secret function. We then present case
studies for specific secrets and data distributions for building up our initial summary statistic privacy toolbox
in §6.

4 General Lower Bound on Privacy-Distortion Tradeoffs

Given a privacy budget T , we first present a lower bound on distortion that applies regardless of the prior
distribution of data ωΘ and regardless of the secret g. As discussed in §3.2, we assume that the secret is
scalar (i.e., ℓ = 1), but the data distribution can have arbitrary dimension.
Theorem 1 (Lower bound of privacy-distortion tradeoff). Let D (Xθ1 , Xθ2) ≜ 1

2 d
(
ωXθ1

∥ωXθ2

)
, where d (·∥·)

is defined in the line after Eq. (3). Further, let R (Xθ1 , Xθ2) ≜ |g(θ1)− g(θ2)| and

γ ≜ inf
θ1,θ2∈Supp(ωΘ)

D (Xθ1 , Xθ2)
R (Xθ1 , Xθ2) . (5)

9
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For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T ,

∆ >

(
⌈ 1

T
⌉ − 1

)
· 2γϵ . (6)

The proof is shown as below. From Thm. 1 we see that the lower bound of distortion is inversely correlated
with the privacy budget and positively correlated with the guess tolerance ϵ. The dependent quantity γ in
Eq. (5) can be thought of as a conversion factor that bounds the translation from probability of detection to
distributional distance. Note that we have not made γ exact as its form depends on the type of the secret
and prior distribution of data. We will instantiate it in the cases studies in §6.

Proof. Our proof proceeds by constructing an ensemble of attackers, such that at least one of them will be
correct by construction. We do this by partitioning the space of possible secret values, and having each
attacker output the midpoint of one of the subsets of the partition. We then use the fact that each attacker
can be correct with probability at most T , combined with γ, which intuitively relates the distance between
distributions to the distance between their secrets, to derive the claim. Recall that θ is the true private
parameter vector, θ′ is the released parameter vector as a result of the data release mechanism.

T ≥ Πϵ,ωΘ

= sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
ĝ

E
(
P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
))

= E
(

sup
ĝ

P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
))

, (7)

where Eq. (7) is due to the following facts: (1) LHS ≤ RHS because

supĝ P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
)
≥ P

(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′
)

for any θ′; (2) RHS ≤

LHS because ĝ can only depend on θ′. Therefore, we can map any arg supĝ in the RHS to the
LHS and obtain the same value, since the expectation is taken over θ′. Thus, there exists θ′ s.t.

supĝ P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
)
≤ T . Let

Lθ′ ≜ inf
θ∈Supp(ωΘ),z:Mg(θ,z)=θ′

g (θ) ,

Rθ′ ≜ sup
θ∈Supp(ωΘ),z:Mg(θ,z)=θ′

g (θ) .

We can define a sequence of attackers and a constant N such that ĝi (θ′) = Lθ′ + (i + 0.5) · 2ϵ for i ∈
{0, 1, . . . , N − 1} and Lθ′ + 2Nϵ ≥ Rθ′ > Lθ′ + 2(N − 1)ϵ (Fig. 3). From the above, we have

T ·N ≥
∑

i

P
(

ĝi (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
)
≥ 1,

Therefore, we have N ≥ ⌈ 1
T ⌉, and

Rθ′ − Lθ′ >

(
⌈ 1

T
⌉ − 1

)
· 2ϵ . (8)
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Figure 3: The construction of attackers for proof of Thm. 1. The 2ϵ ranges of ĝ0, ..., ĝN−1 jointly cover the
entire range of possible secret [Lθ′ , Rθ′ ]. The probability of guessing the secret correctly for any attacker is
≤ T . Therefore, Rθ′ − Lθ′ >

(
⌈ 1

T ⌉ − 1
)
· 2ϵ (Eq. (8)).

Then we have

∆ ≥ sup
θ∈Supp(ωΘ),z∈Supp(ωZ ):Mg(θ,z)=θ′

d
(
ωXθ
∥ωXθ′

)
≥ sup

θi∈Supp(ωΘ),zi:Mg(θi,zi)=θ′
D (Xθ1 , Xθ2) (9)

>

(
⌈ 1

T
⌉ − 1

)
· 2γϵ. (10)

where in Eq. (9), θi for i ∈ {1, 2} denotes two arbitrary parameter vectors in the support space, and Eq. (9)
comes from the triangle inequality, and Eq. (10) utilizes Rθ′ − Lθ′ >

(
⌈ 1

T ⌉ − 1
)
· 2ϵ and the definition of

γ.

5 Data Release Mechanisms

We first present in §5.1 the quantization mechanism, a template for data release mechanisms used in the
case studies of §6. The quantization mechanism can be instantiated differently for different secret functions
and data distributions. We show in §5.2 techniques for instantiating the quantization mechanism, either
based on theoretical insights or numerically. Finally, we give some intuition in §5.3 about how to analyze the
quantization mechanism. These insights will be used in our case studies (§6) to show that we can sometimes
match the lower bounds from §4 up to small constant factors.

5.1 The Quantization Mechanism

At a high level, the quantization mechanisms follow two steps:

1. Offline Phase: Partition the space of parameters Supp (Θ) into carefully-chosen bins.

2. Online Phase: For an observed data distribution parameter θ, deterministically release the quan-
tized parameters, according to the partition from the Offline Phase.

More precisely, we first divide the set of possible distribution parameters Supp (Θ) into subsets Si such that
∪i∈ISi ⊇ Supp (Θ) and Si1 ∩ Si2 = ∅ for i1 ̸= i2, where I is the (possibly uncountable) set of indices of the
subsets. For θ ∈ Supp (Θ), I (θ) is the index of the set that θ belongs to; in other words, we have I (θ) = i,
where θ ∈ Si. The mechanism first looks up which set θ belongs to (i.e., I (θ)), then deterministically releases
a parameter θ∗

I(θ) that corresponds to the set. Here, θ∗
i for i ∈ I denotes another parameter. In short, our

data release mechanism has the form

Mg (θ, z) = θ∗
I(θ) .

11
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Note that the policy is fully determined by Si and θ∗
i . In the remainder of the paper, we will show different

ways of instantiating quantization mechanism to approach the lower bound in §4.

Intuitively, quantization mechanisms will have a bounded distortion as long as d

(
ωXθ
∥ωXθ∗

I(θ)

)
is bounded

for all θ ∈ Supp (Θ). At the same time, they obfuscate the secret as different data distributions within the
same set are mapped to the same released parameter. It turns out this simple deterministic mechanism is
sufficient to achieve the (order) optimal privacy-distortion trade-offs in many cases, as opposed to DP where
randomness is required to achieve DP guarantees (Dwork et al., 2006) (examples in the case studies §6).

5.2 Algorithms for Instantiating the Quantization Mechanism

To implement the quantization mechanism, we need to define the quantization bins Si and the released
parameter per bin θ∗

i . Depending on the data distribution, the secret function, and quantization mechanism
parameters, the mechanism can have very different privacy-distortion tradeoffs. We present two methods for
selecting quantization parameters: (1) an analytical approach, and (2) a numeric approach.

(1) Analytical approach. In some cases, outlined in the case studies of §6 and the appendices, we can
find analytical expressions for Si and θ∗

i while (near-)optimally trading off privacy for distortion. This is
usually possible when the lower bound depends on the problem parameters in a particular way.

For example, for the Gaussian distribution where θ = (µ, σ), when secret=standard deviation, we can work
out the lower bound from Thm. 1 (details in App. G). Note that the lower bound is tight if our mechanism
minimizes

D (Xµ1,σ1 , Xµ2,σ2)
R (Xµ1,σ1 , Xµ2,σ2) =

√
1

2π
e

− 1
2

(
µ1−µ2
σ1−σ2

)2

−
(

µ1 − µ2

σ1 − σ2

)(
1
2 − Φ

((
µ1 − µ2

σ1 − σ2

)))
(11)

where where D (Xθ1 , Xθ2) and R (Xθ1 , Xθ2) are defined in Thm. 1, and Φ denotes the CDF of the standard
Gaussian distribution. That is, for any true parameters µ1 and σ1, the mechanism should always choose to
release µ2 and σ2 such that Eq. (11) is as small as possible. The exact form of Eq. (11) is not important for
now; notice instead that the problem parameters (σi, µi) take the same form every time they appear in this
equation. We define t(θ1, θ2) = µ1−µ2

σ1−σ2
to be that form.3 Next, we find the t(θ1, θ2) that minimizes Eq. (11):

t0 ≜ arg inf
t(θ1,θ2)

D (Xθ1 , Xθ2)
R (Xθ1 , Xθ2)

For instance, in our Gaussian example, we can write t0 as

t0 = arg inf
t(θ1,θ2)

√
1

2π
e− 1

2 (t(θ1,θ2))2
− (t(θ1, θ2))

(
1
2 − Φ (t(θ1, θ2))

)
,

which can be solved numerically. Finally, we can choose Si and θ∗
i to be sets for which t (θ, θ∗

i ) = t0, ∀θ ∈ Si.
Using this rule, we derive the mechanism:

Sµ,i =
{

(µ + t0 · t, σ + (i + 0.5) · s + t) |t ∈
[
−s

2 ,
s

2

)}
,

θ∗
µ,i = (µ, σ + (i + 0.5) · s) ,

I = {(µ, i) |i ∈ N, µ ∈ R} ,

where s is a hyper-parameter of the mechanism that divides (σ − σ), and σ, σ are upper and lower bounds
of σ.

For our Gaussian example, the resulting sets Sµ,i for the quantization mechanism are shown in Fig. 4; the
space of possible parameters is divided into infinitely many subsets Sµ,i, each consisting of a diagonal line

3Indeed, for many of the case studies in §6, t(θ) takes an analogous form; we will see the implications of this in the analysis
of the upper bound in §5.3.
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segment (parallel blue lines in Fig. 4). The space of possible σ values is divided into segments of length s,
which correspond to the horizontal bands in Fig. 4. The fact that the intervals Sµ,i are diagonal lines arises
from choosing t(θ1, θ2) = µ1−µ2

σ1−σ2
; each interval corresponds to a set of points that satisfy t(θ1, θ2) = t0, i.e.,

with slope 1/t0.

We will see how to use this construction to obtain upper bounds on privacy-distortion tradeoffs in §5.3.

(2) Numeric approach. In some cases, the above procedure may not be possible. To this end, we present
a dynamic programming algorithm to numerically compute the quantization mechanism parameters. This
algorithm achieves an optimal privacy-distortion tradeoff (Bellman, 1966) among the class of quantization
algorithms with finite precision and continuous intervals Si. We use this algorithm in some of the case studies
in §6. We present our dynamic programming algorithm for univariate data distributions.

We assume Supp (Θ) =
[
θ, θ
)
, where θ, θ are lower and upper bounds of θ, respectively. We consider the

class of quantization mechanisms such that Si =
[
θi, θi

)
, i.e., each subset of parameters are in a continuous

range. Furthermore, we explore mechanisms such that θi, θi, θ∗
i ∈

{
θ, θ + κ, θ + 2κ, . . . , θ

}
, where κ is a

hyper-parameter that encodes numeric precision (and therefore divides (θ− θ)). For example, if we want to
hide the mean of a Geometric random variable with θ = 0.1 and θ = 0.9, we could consider three-decimal-
place precision, i.e., κ = 0.001 and θi, θi, θ∗

i ∈ {0.100, 0.101, 0.102, . . . , 0.900}.

Since ∆ (Eq. (3)) is defined as the worst-case distortion whereas Πϵ,ωΘ (Eq. (2)) is defined as a probability,
which is related to the original data distribution, optimizing Πϵ,ωΘ given bounded ∆ (Eq. (12)) is easier to
solve than the final goal of optimizing ∆ given bounded Πϵ,ωΘ (Eq. (4)).

min
Mg

Πϵ,ωΘ subject to ∆ ≤ T. (12)

Observing that in Eq. (4) the optimal value of minMg
∆ is a monotonic decreasing function w.r.t. the

threshold T , we can use a binary search algorithm (shown in App. B) to reduce problem Eq. (4) to problem
Eq. (12). It calls an algorithm that finds the optimal quantization mechanism with numerical precision over
continuous intervals under a distortion budget T (i.e., solving Eq. (12)). This problem can be solved by a
dynamic programming algorithm. Let pri (t∗) (t∗ ∈

{
θ, θ + κ, θ + 2κ, . . . , θ

}
) be the minimal privacy Πϵ,ωΘ

we can get for Supp (Θ) = {Xθ : θ ∈ [θ, t∗)} such that ∆ ≤ T . Denote D (θ1, θ2) as the minimal distortion a
quantization mechanism can achieve under the quantization bin [θ1, θ2), we have

D (θ1, θ2) = inf
θ∈Rq

sup
θ′′∈[θ1,θ2)

d
(
ωXθ′′ ∥ωXθ

)
,

where d (·∥·) is defined in Eq. (3). We also denote D∗ (θ1, θ2) = arg infθ∈[θ1,θ2) supθ′′∈[θ1,θ2) d
(
ωXθ′′∥ωXθ

)
. If

the prior over parameters is fΘ, we have the Bellman equation

pri (t∗) = min
θ∈[θ,t∗−κ],D(θ,t∗)≤T

∫ θ

θ
fΘ (t) dt∫ t∗

θ
fΘ (t) dt

· pri (θ) +
∫ t∗

θ
fΘ (t) dt∫ t∗

θ
fΘ (t) dt

· P (θ, t∗)

with the initial state pri (θ) = 0, where

P (θ, t∗) = P (ĝ∗ (θ′) ∈ [g (θ0)− ϵ, g (θ0) + ϵ] |θ0 ∈ [θ, t∗] , θ′)

= sup
t1,t2: supt′,t′′∈[t1,t2]|g(t′′)−g(t′)|=2ϵ

∫min {t2,t∗}
max {t1,θ} fΘ (t) dt∫ t∗

θ
fΘ (t) dt

.

θ′ is the released parameter when the private parameter θ0 ∈ [θ, t∗] and ĝ∗ is the optimal attack strategy.
The full algorithm is listed in Alg. 1. The time complexity of this algorithm is O

((
θ−θ/κ

)2 · CD · CP · CI

)
,

where CD is the time complexity for computing D and D∗, CP is the time complexity for computing P, and
CI is the time complexity for computing the integrals in the Bellman equation. In our cases studies, D and
D∗ can be computed in CD = O

(
θ−θ/κ

)
, and P and the integrals can be computed in closed forms within

constant time, i.e., CP = CI = O (1).

13
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Algorithm 1: Dynamic-programming-based data release mechanism for single-parameter distributions.

Input: Parameter range:
[
θ, θ
)

Prior over parameter: fΘ
Distortion budget: T
Step size: κ (which divides θ − θ)

1 pri(θ)← 0
2 I (θ)← ∅
3 for t∗ ← θ + κ, θ + 2κ, . . . , θ do
4 pri(t∗)←∞
5 min_t← NULL
6 for θ ← t∗ − κ, . . . , θ do
7 if D (θ, t∗) > T then
8 break

9 p←
∫ θ

θ
fΘ(t)dt∫ t∗

θ
fΘ(t)dt

· pri (θ) +
∫ t∗

θ
fΘ(t)dt∫ t∗

θ
fΘ(t)dt

· P (θ, t∗)

10 if p < pri(t∗) then
11 pri(t∗)← p
12 min_t← θ

13 if min_t is not NULL then
14 St∗ ← [min_t, t∗)
15 θ′

t∗ ← D∗ (min_t, t∗)
16 I (t∗)← I (min_t) ∪ {t∗}

17 if pri(θ) =∞ then
18 ERROR: No answer
19 return pri(θ),

{
Si : i ∈ I

(
θ
)}

,
{

θ′
i : i ∈ I

(
θ
)}

14



Under review as submission to TMLR

0

11

0

1

0

…

2

2
2

|4)|2

|4)|2…

The space of possible
parameters

…

…

…

Figure 4: We separate the space of possible parameters into two regions (yellow and green) and bound the
attacker’s success rate on each region separately. The blue lines represent examples of Sµ,i.

When dynamic programming is not practical (e.g., in high-dimensional problems), we also provide a greedy
algorithm in App. B as a baseline and show the empirical comparison between these two algorithms in the
case studies (Apps. E, G and H).

5.3 Technique for Analyzing the Quantization Mechanism

We next provide an overview of techniques for analyzing the quantization mechanism, both for privacy
and for distortion. We use these techniques for the analysis in our case studies, where we will make the
expressions and claims more precise. For concreteness, we will recall the Gaussian example from §5.2, for
which we have already derived a mechanism.

The mechanism presented in §5.2 can geometrically be interpreted as follows. Over the square of possible
parameter values µ and σ (Fig. 4), the mechanism selects intervals Sµ,i that consist of short diagonal line
segments (e.g., blue line segments in Fig. 4). When the true distribution parameters fall in one of these
intervals, the mechanism releases the midpoint of the interval.

We find that many of our case studies naturally give rise to the same form of t(θ). As a result, all of the
case studies we analyze theoretically (with multiple parameters) have mechanisms that instantiate intervals
Sµ,i as diagonal lines, as shown in Fig. 4. The sawtooth technique, which we present next, can be used to
analyze the privacy of all such mechanism instantiations. More precisely, the following pattern of quantization
mechanism admits diagonal line intervals, and can be analyzed with the sawtooth technique (§6 and Apps. E
and G):

Sµ,i =
{

(µ + t0 · t, σ + (i + 0.5) · s + t) |t ∈
[
−s

2 ,
s

2

)}
,

θ∗
µ,i = (µ, σ + (i + 0.5) · s) ,

I = {(µ, i) |i ∈ N, µ ∈ R} ,

where s is a hyper-parameter of the mechanism that denotes quantization bin size and divides (σ − σ) and
t0 is a constant that can be determined by the mechanism design strategy described in §5.2.

(1) Privacy analysis. For ease of illustration, we assume that the support of parameters is Supp (Θ) ={
(a, b)|a ∈

[
µ, µ
)

, b ∈ [σ, σ)
}

, but the analysis can be generalized to any case.
In Fig. 4, we separate the space of possible data parameters into two regions represented by yellow and
green colors. The yellow regions Syellow constitute right triangles with height s and width |t0|s. The green
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region Sgreen is the rest of the parameter space. The high-level idea of our proof is as follows. Note that for
any parameter θ ∈ Sgreen, there exists a quantization bin Sµ,i s.t. θ ∈ Sµ,i and Sµ,i ⊂ Sgreen. This occurs
because the mechanism intervals (blue lines in Fig. 4) all have the same slope and a length of at most s for
σ. As such, each interval is either fully in the green region, or fully in the yellow region. Since we know
the length of each bin, we can upper bound the attack success rate if θ ∈ Sgreen. While the attacker can
be more successful in the yellow region, the probability of θ ∈ Syellow is small. Hence, we upper bound the
overall attacker’s success rate (i.e., Πϵ,ωΘ). More specifically, let the optimal attacker be ĝ∗. We have

Πϵ,ωΘ = P
(
ĝ∗ (θ′) ∈ [g (θ) − ϵ, g (θ) + ϵ]

)
=
∫

θ∈Sgreen

p(θ)P
(
ĝ∗ (θ′) ∈ [g (θ) − ϵ, g (θ) + ϵ]

)
dθ

+
∫

θ∈Syellow

p(θ)P
(
ĝ∗ (θ′) ∈ [g (θ) − ϵ, g (θ) + ϵ]

)
dθ

< sup
θ∈Sgreen

P
(
ĝ∗ (θ′) ∈ [g (θ) − ϵ, g (θ) + ϵ]

)
+
∫

θ∈Syellow

p(θ)dθ

The first term can be bounded away from 1 due to the carefully chosen t0. The second term is bounded
away from 1 because the size of Syellow is relatively small. The formal justification is given in Prop. 2
and Apps. C.4.2, F.2 and G.4.

(2) Distortion analysis. For the distortion performance, it is straightforward to show that

∆ = supθ∈Supp(Θ) d

(
ωXθ
∥ωXθ∗

I(θ)

)
, where θ∗

I(θ) is the released parameter when the original parameter is θ.

This quantity can often be derived directly from the mechanism and parameter support.

6 Case Studies

In this section, we instantiate the general results on concrete distributions and secrets (mean §6.1, quantile
§6.2, and we defer standard deviation and discrete distribution fractions to Apps. G and H). See Table 1
for a summary of each setting we consider, and a pointer to any theoretical results. Our results in each
setting generally include a privacy lower bound, a concrete instantiation of the quantization mechanism, and
privacy-distortion analysis of the data release mechanisms. In §6.3, we will discuss how to extend the data
release mechanisms to the cases when data holders only have data samples and do not know the parameters
of the underlying distributions.

These data release mechanisms serve as the initial version of summary statistic privacy toolbox (Fig. 1).

Table 1: Summary of the case studies.

Secret
Distribution Continuous Distribution

(order-optimal mechanism)
Ordinal Distribution
(Alg. 1 and Alg. 3) Categorical Distribution

(order-optimal mechanism)Gaussian Uniform Exponential Geometric Binomial Poisson
Mean §6.1 App. E Not applicable

Quantile §6.2 and App. F Not applicable Not applicable
Standard Deviation App. G.1 App. G.2 Not applicable

Fraction Not applicable App. H.1 App. H.2

6.1 Secret = Mean

In this section, we discuss how to protect the mean of a distribution for general continuous distributions.
We start with a lower bound.
Corollary 1 (Privacy lower bound, secret = mean of a continuous distribution). Consider the secret function
g (θ) =

∫
x

xfXθ
(x) dx. For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T , we have ∆ >

(
⌈ 1

T ⌉ − 1
)
· ϵ.
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Figure 5: Illustration of the data release mechanism for continuous distributions when secret=mean.

The proof is in App. C.1. We next design a data release mechanism that achieves a tradeoff close to this
bound.

Data release mechanism. We first consider continuous distributions that can be parameterized with a
location parameter, where the prior distribution of the location parameter is uniform and independent of
other factors. We relax this assumption to Lipschitz-continuous priors in App. D.1. For now, we assume the
following:

Assumption 1. The distribution parameter vector θ can be written as (u, v), where u ∈ R, v ∈ Rq−1,
and for any u ̸= u′, fXu,v

(x) = fXu′,v
(x− u′ + u). The prior over distribution parameters is fU,V (a, b) =

fU (a) · fV (b), where fU (a) = 1
u−u I (a ∈ [u, u)).

Examples include the Gaussian, Laplace, and uniform distributions, as well as shifted distributions (e.g.,
shifted exponential, shifted log-logistic). Using the strategy from §5.2, we derive the following quantization
mechanism.

Mechanism 1 (For secret = mean of a continuous distribution). The parameters of the data release mech-
anism are

Si,v = {(t, v) |t ∈ [u + i · s, u + (i + 1) · s)} , (13)
θ∗

i,v = (u + (i + 0.5) · s, v) , (14)
I = {(i, v) : i ∈ {0, 1, . . . , N − 1} , v ∈ Supp (ωV )} , (15)

where s is a hyper-parameter of the mechanism that divides (u− u) and N = u−u
s ∈ N.

Fig. 5 shows an example when the original data distribution is Gaussian, i.e., Xθ ∼ N (u, v), and u ∈
[
µ, µ

)
.

Intuitively, our data release mechanism “quantizes” the range of possible mean values into segments of length
s. It then shifts the mean of private distribution fXu,v

to the midpoint of its corresponding segment, and
releases the resulting distribution. This simple deterministic mechanism is able to achieve order-optimal
privacy-distortion tradeoff in some cases, as shown below.

Proposition 1. Under Asm. 1, Mech. 1 has Πϵ,ωΘ ≤ 2ϵ
s and ∆ = s

2 < 2∆opt, where ∆opt is the minimal
distortion an optimal data release mechanism can achieve given the privacy Mech. 1 achieves.

17



Under review as submission to TMLR

The proof is in App. C.2. The two takeaways from this proposition are that: (1) the data holder can
use s to control the trade-off between distortion and privacy, and (2) the mechanism is order-optimal with
multiplicative factor 2.

6.2 Secret = Quantiles

S3 in §2.1 explains how quantiles of continuous distributions can reveal sensitive information. In this section,
we show how to protect it for a typical continuous distribution: the (shifted) exponential distribution. We
analyze the Gaussian and uniform distributions in App. F. We choose these distributions as a starting point
of our analysis as many distributions in real-world data can be approximated by one of these distributions.

In our analysis, the parameters of (shifted) exponential distributions are denoted by:

• Exponential distribution: θ = λ, where λ is the scale parameter. In other words, fXλ
(x) = 1

λ e−x/λ.
• Shifted exponential distribution generalizes the exponential distribution with an additional shift param-

eter h: θ = (λ, h). In other words, fXλ,h
(x) = 1

λ e−(x−h)/λ.

As before, we first present a lower bound.
Corollary 2 (Privacy lower bound, secret = α-quantile of a continuous distribution). Consider the secret
function g (θ) = α-quantile of fXθ

. For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T , we have ∆ >
(
⌈ 1

T ⌉ − 1
)
·2γϵ, where

γ is defined as follows:

• Exponential:

γ = − 1
2 ln (1− α) .

• Shifted exponential:

γ =


1
2

∣∣∣∣1 + ln(1−α)+1
W−1

(
− ln(1−α)+1

2(1−α)e

) ∣∣∣∣ α ∈ [0, 1− e−1)

1
2

∣∣∣∣1 + ln(1−α)+1
W0
(

− ln(1−α)+1
2(1−α)e

) ∣∣∣∣ α ∈ [1− e−1, 1)
,

where W−1 and W0 are Lambert W functions.

The proof is in App. C.3. Next, we provide data release mechanisms for each of the distributions that achieve
trade-offs close to these bounds.
Mechanism 2 (For secret = quantile of a continuous distribution). We design mechanisms for each of the
distributions. In both cases, s > 0 is the quantization bin size chosen by the operator to divide

(
λ− λ

)
, where

λ and λ are upper and lower bounds of λ.

• Exponential:

Si = [λ + i · s, λ + (i + 1) · s) ,

θ∗
i = λ + (i + 0.5) · s ,

I = N.

• Shifted exponential:

Si,h =
{

(λ + (i + 0.5) s + t, h− t0 · t) |t ∈
[
−s

2 ,
s

2

)}
,

θ∗
i,h = (λ + (i + 0.5) s, h) ,

I = {(i, h)|i ∈ N, h ∈ R} ,

where

t0 =

−1− ln (1− α)−W−1

(
− ln(1−α)+1

2(1−α)e

) (
α ∈ [0, 1− e−1)

)
−1− ln (1− α)−W0

(
− ln(1−α)+1

2(1−α)e

) (
α ∈ [1− e−1, 1)

) .
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For the privacy-distortion trade-off analysis of Mech. 2, we assume that the parameters of the original data
are drawn from a uniform distribution with lower and upper bounds. Again, we relax this assumption to
Lipschitz priors in App. D.2. Precisely,
Assumption 2. The prior over distribution parameters is:

• Exponential: λ follows the uniform distribution over
[
λ, λ

)
.

• Shifted exponential: (λ, h) follows the uniform distribution over
{

(a, b)|a ∈
[
λ, λ

)
, b ∈

[
h, h

)}
.

We relax Asm. 2 and analyze the privacy-distortion trade-off of Mech. 2 in App. D.2.
Proposition 2. Under Asm. 2, Mech. 2 has the following Πϵ,ωΘ and ∆ value/bound.

• Exponential:

Πϵ,ωΘ = 2ϵ

− ln (1− α) s
, ∆ = 1

2s < 2∆opt.

• Shifted exponential:

Πϵ,ωΘ <
2ϵ

|ln (1− α) + t0|s
+ |t0|s

h− h
,

∆ = s

2 (t0 − 1) + se−t0 <

(
2 + |t0| · |ln (1− α) + t0|s2

ϵ
(
h− h

) )
∆opt.

Under the high-precision regime where s2

h−h
→ 0 as s, (h − h) → ∞, when α ∈ [0.01, 0.25] ∪ [0.75, 0.99], ∆

satisfies

lim sup
s2

h−h
→0

∆ < 3∆opt.

∆opt is the optimal achievable distortion given the privacy achieved by Mech. 2, and t0 is a constant defined
in Mech. 2.

The proof is in App. C.4. Note that the quantization bin size s cannot be too small, or the attacker can
always successfully guess the secret within a tolerance ϵ (i.e., Πϵ,ωΘ = 1). Therefore, for the “high-precision”
regime, we consider the asymptotic scaling as both s and h− h grow.

Prop. 2 shows that the quantization mechanism is order-optimal with multiplicative factor 2 for the ex-
ponential distribution. For shifted exponential distribution, order-optimality holds asymptotically in the
high-precision regime.

6.3 Extending Data Release Mechanisms for Dataset Input/Output

The data release mechanisms discussed in previous sections assume that data holders know the distribution
parameter of the original data. In practice, data holders often only have a dataset of samples from the data
distribution and do not know the parameters of the underlying distributions. As mentioned in §3, our data
release mechanisms can be easily adapted to handle dataset input/output.

The high-level idea is that the data holders can estimate the distribution parameters θ from the data samples
and find the corresponding quantization bins Si according to the estimated parameters, and then modify
the original samples as if they are sampled according to the released parameter θ∗

i . For brevity, we only
present the concrete procedure for secret=mean on continuous distributions as an example. For a dataset of
X = {x1, . . . , xn}, the procedure is:

1. Estimate the mean from the data samples: µ̂ = 1
n

∑
i∈[n] xi.

2. According to Eq. (13), compute the index of the corresponding set i = ⌊ µ̂−µ

s ⌋.
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3. According to Eq. (14), change the mean of the data samples to µtarget = µ + (i + 0.5) · s. This can
be done by sample-wise operation x′

i = xi − µ̂ + µtarget.

4. The released dataset is Mg (X , z) = {x′
1, . . . , x′

n}.

Note that this mechanism applies to samples. Therefore, it can be applied either to the original data, or as
an add-on to existing data sharing tools (Esteban et al., 2017; Lin et al., 2020; Yin et al., 2022; Jordon et al.,
2018; Yoon et al., 2019). For example, it can be used to modify synthetically-generated samples after they
are generated, or to modify the training dataset for a generative model, or to directly modify the original
data for releasing.

7 Experiments

In the previous sections, we theoretically demonstrated the privacy-distortion tradeoffs of our data release
mechanisms in some special case studies. In this section, we focus on orthogonal questions through real-
world experiments: (1) how well our data release mechanisms perform when the assumptions do not hold in
practice, and (2) why existing privacy frameworks are not suitable for summary statistic privacy (which we
explained qualitatively in §2.2).

Datasets. We use three real-world datasets to simulate each of the motivating scenarios in §2.1.

1. Wikipedia Web Traffic Dataset (WWT) (Google, 2018) contains the daily page views of 145,063
Wikipedia web pages in 2015-2016. To preprocess it for our experiments, we remove the web pages
with empty page view record on any day (117,277 left), and compute the mean page views across all
dates for each web page. Our goal is to release the page views (i.e., a 117,277-dimensional vector)
while protecting the mean of the distribution (which reveals the business scales of the company
§2.1).

2. Google Cluster Trace Dataset (GCT) (Reiss et al., 2011) contains usage logs (e.g., CPU/memory) of
an internal Google cluster with 12.5k machines in 2011. We use “platform ID” field of the dataset,
which represents “microarchitecture and chipset version of the machine” (Reiss et al., 2011). Our
goal is to release another distribution of platform ID while protecting the fraction of one specific
platform ID (which reveals business strategy §2.1).

3. Measuring Broadband America Dataset (MBA) (Commission, 2018) contains network statistics (in-
cluding network traffic counters) collected by United States Federal Communications Commission
from homes across United States. We select the average network traffic (GB/measurement) from
AT&T clients as our data. Our goal is to release a copy of this data while hiding the 0.95-quantile
(which reveals the network capability §2.1).

Baselines. We compare our mechanisms discussed in §6 with three popular mechanisms proposed in
prior work (§2.2): differentially-private density estimation (Wasserman & Zhou, 2010) (shortened to DP),
attribute-private Gaussian mechanism (Zhang et al., 2022) (shortened to AP), and Wasserstein mechanism
for distribution privacy (Chen & Ohrimenko, 2022) (shortened to DistP). Note that these mechanisms are
not designed for our problem setting—in that sense, these experiments are not a fair comparison. Nontheless,
we include them simply to illustrate that prior techniques are not sufficient for our problem setting.

For a dataset of samples X = {x1, ..., xn}, DP works by: (1) Dividing the space into m bins: B1, ..., Bm.4
(2) Computing the histogram Ci =

∑n
j=1 I (xj ∈ Bi). (3) Adding noise to the histograms Di =

max
{

0, Ci + Laplace
(
0, ϵ2)}, where Laplace

(
0, ϵ2) means a random noise from Laplace distribution with

mean 0 and variance ϵ2. (4) Normalizing the histogram pi = Di∑m

j=1
Dj

. We can then draw yi according

to the histogram and release Y = {y1, ..., yn} with differential privacy guarantees. AP works by releasing
4In Google Cluster Trace Dataset, the bin is already pre-specified (i.e., the platform IDs), so this step is skipped.
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Y =
{

xi +N
(
0, ϵ2)}n

i=1.5 DistP works by releasing Y =
{

xi + Laplace
(
0, ϵ2)}n

i=1.6 Note that for each
of these mechanisms, normally their noise parameters would be set carefully to match the desired privacy
guarantees (e.g., differential privacy). In our case, since our privacy metric is different, it is unclear how to
set the noise parameters for a fair privacy comparison. For this reason, we evaluate different settings of the
noise parameters, and measure the empirical tradeoffs.

Metrics. Our privacy and distortion metrics depend on the prior distribution of the original data θ ∼ ωΘ
(though the mechanism does not). In practice (and also in these experiments), the data holder only has one
dataset. Therefore, we cannot empirically evaluate the proposed privacy and distortion metrics, and resort
to surrogate metrics to bound our true privacy and distortion.

Surrogate privacy metric. For an original dataset X = {x1, ..., xn} and the released dataset Y = {y1, ..., yn},
we define the surrogate privacy metric Π̃ϵ as the error of an attacker who guesses the secret of the released
dataset as the true secret: ˜Πϵ,ωΘ ≜ − |g (X )− g (Y)|, where g (D) = mean of D, fraction of a specific platform
ID in D, and 0.95-quantile of D in WWT, GCT, and MBA datasets respectively. Note that in the definition
of ˜Πϵ,ωΘ , a minus sign is added so that a smaller value indicates stronger privacy, as in privacy metric Eq. (2).
This simple attacker strategy is in fact a good proxy for evaluating the privacy Πϵ,ωΘ due to the following
facts. (1) For our data release mechanisms for these secrets Mechs. 1, 2 and 5, when the prior distribution
is uniform, this strategy is actually optimal, so there is a direct mapping between Π̃ϵ and Πϵ,ωΘ . (2) For
AP applied on protecting mean of the data (i.e., Wikipedia Web Traffic Dataset experiments), this strategy
gives an unbiased estimator of the secret. (3) For DP and AP on other cases, this mechanism may not be
an unbiased estimator of the secret, but it gives an upper bound on the attacker’s error.

Surrogate distortion metric. We define our surrogate distortion metric as the distance between the two
datasets: ∆̃ ≜ d (pX ∥pY) where pD denotes the empirical distribution of a dataset D, and d is defined as
in our formulation §3 (i.e., Wassersstein-1 distance for continuous distributions in WWT and MBA, and
TV distance for discrete distributions in GCT). This metric evaluates how much the mechanism distorts the
dataset.

In fact, we can deduce a theoretical lower bound for the surrogate privacy and distortion metrics for secret
= mean/fractions (shown later in Fig. 6) using similar techniques as the proofs in the main paper (see
App. C.5).
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Figure 6: Privacy (lower is better) and distortion (lower is better) of AP, DP, DistP, and ours. Each
point represents one instance of data release mechanism with one hyper-parameter. “Lower bound” is the
theoretical lower bound of the achievable region. Our data release mechanisms achieve better privacy-
distortion tradeoff than AP, DP, and DistP.

5In Google Cluster Trace Dataset, the Gaussian noise N
(

0, ϵ2
)

are added to the counts of different platform IDs. We then
normalize the counts and sample released platform IDs from this categorical distribution.

6In Google Cluster Trace Dataset, the Laplace noise Laplace
(

0, ϵ2
)

are added to the counts of different platform IDs. We
then normalize the counts and sample released platform IDs from this categorical distribution.
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7.1 Results

We enumerate the hyper-parameters of each method (bin size and ϵ for DP, ϵ for AP and DistP, and s
for ours). For each method and each hyper-parameter, we compute their surrogate privacy and distortion
metrics. The results are shown in Fig. 6 (bottom left is best); each data point represents one realization of
mechanism Mg under a distinct hyperparameter setting. Two takeaways are below.

(1) Our data release mechanisms has good privacy-distortion trade-offs even when the assumptions do not
hold. We envision that data holders can choose the data release mechanisms in the toolbox (Fig. 1) that
matches their need. However, in practical scenarios, the data distributions supported in the toolbox may not
always match real data exactly. Our data release mechanisms for mean (i.e., Mech. 1 used in WWT) and
fractions (i.e., Mech. 5 used in GCT) support general continuous distributions and categorical distributions,
and therefore, there is no such a distribution gap. Indeed, even for these surrogate metrics, our Mech. 1 and
Mech. 5 are also optimal (see App. C.5). This is visualized in Figs. 6a and 6b where we can see that our data
release mechanisms match the theoretical lower bound of the trade-off. However, our data release mechanisms
for quantiles (i.e., Mech. 2 used in Fig. 6c) are order-optimal only when the distributions are within certain
classes (§6.2). Observing that network traffic in MBA follows a one-side fat-tailed distribution (not shown),
we apply the data release mechanism for exponential distribution (Mech. 2) for this dataset. Despite the
distribution mismatch, our data release mechanism still achieves a good privacy-distortion compared to DP,
AP, and DistP (Fig. 6c). More discussions are below.

(2) Our data release mechanisms achieve better privacy-distortion trade-off than DP, AP, and DistP. AP
and DistP directly add Gaussian/Laplace noise to each sample. This process does not change the mean of
the distribution on expectation. Therefore, Figure 6 shows that AP and DistP have a bad privacy-distortion
tradeoff. DP quantizes (bins) the samples before adding noise. Quantization has a better property in terms
of protecting the mean of the distribution, and therefore we see that DP has a better privacy-distortion
tradeoff than AP and DistP, but still worse than ours. Note that in Fig. 6c, a few of the DP instances have
better privacy-distortion trade-offs than ours. This is not an indication that DP is fundamentally better.
Instead, it is due to the randomness in DP (from the added Laplace noise), and some realizations of the
specific noise in this experiment happened to lead to a better trade-off. Another instance of the DP algorithm
could lead to a bad trade-off, and therefore, DP’s achievable trade-off points are widespread.

In summary, these results confirm our intuition in §2.2 that DP, AP, and DistP are not suitable
for summary statistic privacy (which is expected—they are designed for a different objective).
As such, the quantization mechanism (under the summary statistic privacy framework) gives
better practical protections for summary statistic privacy. Additional results on downstream tasks
are in App. I.

8 Limitations

This work has several important limitations, some of which relate to the framework itself, others of which
are specific to the mechanisms and results we prove. We outline several of these limitations.

8.1 Limitations of the Framework

Prior knowledge of distribution. The current privacy metric Πϵ,ωΘ depends on the prior distribution
of the parameters ωΘ, which is typically unknown. The outcome is that if a mechanism is analyzed under a
mismatched prior, it may lead a data holder to over- or under-estimate their privacy parameter.

Composition guarantees. Another limitation of the current privacy metric Πϵ,ωΘ is that it does not
provide composition guarantees; in other words, if one applies a summary statistic-private mechanism υ
times, we cannot easily bound the privacy parameter of the υ-fold composed mechanism. In contrast,
composition is an important and desirable property exhibited by differential privacy (Dwork et al., 2006).
The lack of composition can be problematic in situations where a data holder wants to release a dataset (or
correlated datasets) multiple times.
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8.2 Limitations of the Analysis and Mechanisms

Our analysis in this work considers the simplest set of cases, which are neither fully representative of how
real data users release data, nor the secrets they wish to hide.

Number of secrets. In this work, we studied a case where the data holder only wishes to hide a single
secret. In practice, data holders often want to hide multiple properties of their underlying data.

The dimension and the type of data distributions. Although our lower bounds in Section 4 apply to
general prior distributions, we analyze the quantization mechanism under a limited set of one-dimensional
distributions (Table 1) under which different parameters of the distribution are drawn independently of each
other. An interesting direction for future work is to define mechanisms that have good tradeoffs under prior
distributions with correlated parameters and priors.

9 Discussion and Future Work

We introduce summary statistic privacy for defining, analyzing, and protecting summary statistic privacy
concerns in data sharing applications. This framework can be used to analyze the leakage of statistical
information and the privacy-distortion trade-offs of data release mechanisms (§ 3 and 4). Our data release
mechanisms can be used to protect statistical information (§ 5 and 6). However, as discussed in §8, this
paper leaves many questions unanswered. Several of these pose interesting questions for future work.

Approximation error. We studied a number of data distributions and prior distributions in this work.
However, an interesting question is to bound the error in privacy and distortion metrics as a function of
approximation error when describing either the original data distribution or the prior.

Extensions. As described in §8, one limitation of the current privacy metric Πϵ,ωΘ is that it depends on
the prior distribution of the parameters ωΘ, which is unknown in many applications. Motivated by maximal
leakage (Issa et al., 2019) (§2.2), one possibility is to consider a normalized privacy metric:

Π′
ϵ,ωΘ

≜ sup
ωΘ

log Πϵ,ωΘ

supĝ P (ĝ (ωΘ) ∈ [g (θ)− ϵ, g (θ) + ϵ]) ,

where ĝ (ωΘ) is an attacker that knows the prior distribution but does not see the released data, and the
denominator is the probability that the strongest attacker guesses the secret within tolerance ϵ. Similar
to maximal leakage, we consider the worst-case leakage among all possible priors. This normalized Π′

ϵ,ωΘ
considers how much additional “information” that the released data provides to the attacker in the worst-
case (see also inferential privacy (Ghosh & Kleinberg, 2016)). This privacy definition is strong so that we
will not be able to achieve good privacy and reasonable distortion at the same time.
Proposition 3. Let ∆ ≜ 1

2 supθ1,θ2∈Supp(ωΘ) d
(
ωXθ1

∥ωXθ2

)
. There exists no Mg such that Π′

ϵ,ωΘ
< log 2

and ∆ < ∆.

The proof is in App. C.6. It would be interesting to further study the feasibility of such a formulation, for
instance by changing the utility metric to an expected distortion, rather than a worst-case one.

References

The caida ucsd anonymized internet traces. https://www.caida.org/catalog/datasets/passive_
dataset. Accessed: 2022-01-30.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International conference on machine learning, pp. 214–223. PMLR, 2017.

Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Villani, Domenico Vitali, and Giovanni
Felici. Hacking smart machines with smarter ones: How to extract meaningful data from machine learning
classifiers. International Journal of Security and Networks, 10(3):137–150, 2015.

23

https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset


Under review as submission to TMLR

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Elias Chaibub Neto, Abhishek Pratap, Thanneer M Perumal, Meghasyam Tummalacherla, Phil Snyder,
Brian M Bot, Andrew D Trister, Stephen H Friend, Lara Mangravite, and Larsson Omberg. Detecting the
impact of subject characteristics on machine learning-based diagnostic applications. NPJ digital medicine,
2(1):1–6, 2019.

Konstantinos Chatzikokolakis, Miguel E Andrés, Nicolás Emilio Bordenabe, and Catuscia Palamidessi.
Broadening the scope of differential privacy using metrics. In Privacy Enhancing Technologies: 13th
International Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings 13, pp.
82–102. Springer, 2013.

Harsh Chaudhari, John Abascal, Alina Oprea, Matthew Jagielski, Florian Tramèr, and Jonathan Ullman.
Snap: Efficient extraction of private properties with poisoning. In 2023 IEEE Symposium on Security and
Privacy (SP), pp. 1935–1952. IEEE Computer Society, 2022.

Michelle Chen and Olga Ohrimenko. Protecting global properties of datasets with distribution privacy
mechanisms. arXiv preprint arXiv:2207.08367, 2022.

Nazli Choucri, Stuart Madnick, and Priscilla Koepke. Institutions for cyber security: International responses
and data sharing initiatives. Cambridge, MA: Massachusetts Institute of Technology, 2016.

Federal Communications Commission. Raw data - measuring broadband america - seventh re-
port, 2018. https://www.fcc.gov/reports-research/reports/measuring-broadband-america/
raw-data-measuring-broadband-america-seventh.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting workloads for improved resource management in large
cloud platforms. In Proceedings of the 26th Symposium on Operating Systems Principles, pp. 153–167,
2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series generation
with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and Nikita Borisov. Property inference attacks on fully
connected neural networks using permutation invariant representations. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, pp. 619–633, 2018.

Arpita Ghosh and Robert Kleinberg. Inferential privacy guarantees for differentially private mechanisms.
arXiv preprint arXiv:1603.01508, 2016.

Google. Web traffic time series forecasting, 2018. https://www.kaggle.com/c/
web-traffic-time-series-forecasting.

Ibrahim Issa, Aaron B Wagner, and Sudeep Kamath. An operational approach to information leakage. IEEE
Transactions on Information Theory, 66(3):1625–1657, 2019.

James B Jacobs and Dimitra Blitsa. Sharing criminal records: The united states, the european union and
interpol compared. Loy. LA Int’l & Comp. L. Rev., 30:125, 2008.

24

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-seventh
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-seventh
https://www.kaggle.com/c/web-traffic-time-series-forecasting
https://www.kaggle.com/c/web-traffic-time-series-forecasting


Under review as submission to TMLR

Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shepherd, Ion Stoica, and Hui Zhang. {CFA}: A practical
prediction system for video {QoE} optimization. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pp. 137–150, 2016.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data with
differential privacy guarantees. In International conference on learning representations, 2018.

Yusuke Kawamoto and Takao Murakami. Local obfuscation mechanisms for hiding probability distributions.
In Computer Security–ESORICS 2019: 24th European Symposium on Research in Computer Security,
Luxembourg, September 23–27, 2019, Proceedings, Part I 24, pp. 128–148. Springer, 2019.

Daniel Kifer and Ashwin Machanavajjhala. Pufferfish: A framework for mathematical privacy definitions.
ACM Transactions on Database Systems (TODS), 39(1):1–36, 2014.

Hau L Lee and Seungjin Whang. Information sharing in a supply chain. International journal of manufac-
turing technology and management, 1(1):79–93, 2000.

Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power of two samples in generative
adversarial networks. Advances in neural information processing systems, 31, 2018.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing networked
time series data: Challenges, initial promise, and open questions. In Proceedings of the ACM Internet
Measurement Conference, pp. 464–483, 2020.

Terrance Liu and Zhiwei Steven Wu. Private synthetic data with hierarchical structure. arXiv preprint
arXiv:2206.05942, 2022.

Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing microservice dependency and performance: Alibaba trace analysis. In
Proceedings of the ACM Symposium on Cloud Computing, pp. 412–426, 2021.

Saeed Mahloujifar, Esha Ghosh, and Melissa Chase. Property inference from poisoning. In 2022 IEEE
Symposium on Security and Privacy (SP), pp. 1120–1137. IEEE, 2022.

Ali Makhdoumi, Salman Salamatian, Nadia Fawaz, and Muriel Médard. From the information bottleneck to
the privacy funnel. In 2014 IEEE Information Theory Workshop (ITW 2014), pp. 501–505. IEEE, 2014.

Antonis Manousis, Harshil Shah, Henry Milner, Yan Li, Hui Zhang, and Vyas Sekar. The shape of view:
an alert system for video viewership anomalies. In Proceedings of the 21st ACM Internet Measurement
Conference, pp. 245–260, 2021.

Charles Reiss, John Wilkes, and Joseph L Hellerstein. Google cluster-usage traces: format+ schema. Google
Inc., White Paper, pp. 1–14, 2011.

Charles Reiss, John Wilkes, and Joseph L Hellerstein. Obfuscatory obscanturism: making workload traces
of commercially-sensitive systems safe to release. In 2012 IEEE Network Operations and Management
Symposium, pp. 1279–1286. IEEE, 2012.

Anshuman Suri and David Evans. Formalizing and estimating distribution inference risks. arXiv preprint
arXiv:2109.06024, 2021.

Anshuman Suri, Yifu Lu, Yanjin Chen, and David Evans. Dissecting distribution inference. In First IEEE
Conference on Secure and Trustworthy Machine Learning, 2023.

Leigh R Warren, Jonathan Clarke, Sonal Arora, and Ara Darzi. Improving data sharing between acute
hospitals in england: an overview of health record system distribution and retrospective observational
analysis of inter-hospital transitions of care. BMJ open, 9(12):e031637, 2019.

Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. Journal of the American
Statistical Association, 105(489):375–389, 2010.

25



Under review as submission to TMLR

John Wilkes. Google cluster-usage traces v3. Technical report, Google Inc., Mountain View, CA, USA, April
2020. Posted at https://github.com/google/cluster-data/blob/master/ClusterData2019.md.

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. Practical gan-based synthetic ip header
trace generation using netshare. In Proceedings of the ACM SIGCOMM 2022 Conference, pp. 458–472,
2022.

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial networks.
Advances in neural information processing systems, 32, 2019.

James Hongyi Zeng. Data sharing on traffic pattern inside facebook’s data center net-
work - meta research, Jan 2017. URL https://research.facebook.com/blog/2017/01/
data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/.

Wanrong Zhang, Shruti Tople, and Olga Ohrimenko. Leakage of dataset properties in multi-party machine
learning. In USENIX Security Symposium, pp. 2687–2704, 2021.

Wanrong Zhang, Olga Ohrimenko, and Rachel Cummings. Attribute privacy: Framework and mechanisms.
In 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 757–766, 2022.

Junhao Zhou, Yufei Chen, Chao Shen, and Yang Zhang. Property inference attacks against gans. arXiv
preprint arXiv:2111.07608, 2021.

26

https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://research.facebook.com/blog/2017/01/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/
https://research.facebook.com/blog/2017/01/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/


Under review as submission to TMLR

Appendix

A Analysis of the Alternative Formulation

In this section, we present the alternative formulation of minimizing privacy metric Πϵ,ωΘ subject to a
constraint on distortion ∆:

min
Mg

Πϵ,ωΘ subject to ∆ ≤ T (16)

Theorem 2 (Lower bound of privacy-distortion tradeoff). Let D (Xθ1 , Xθ2) ≜ 1
2 d
(
ωXθ1

∥ωXθ2

)
, where d (·∥·)

is defined in Eq. (3). Further, let R (Xθ1 , Xθ2) ≜ |g(θ1)− g(θ2)|, and let γ ≜ infθ1,θ2∈Supp(ωΘ)
D(Xθ1 ,Xθ2)
R(Xθ1 ,Xθ2) .

For any T > 0, when ∆ ≤ T , we have Πϵ,ωΘ ≥ ⌈ T
2γϵ⌉

−1.

Proof. For any θ′, we have

T ≥ ∆
≥ sup

θ∈Supp(ωΘ),z∈Supp(ωZ ):Mg(θ,z)=θ′
d
(
ωXθ
∥ωXθ′

)
≥ sup

θi∈Supp(ωΘ),zi:Mg(θi,zi)=θ′
D (Xθ1 , Xθ2) (17)

≥ γ · sup
θi∈Supp(ωΘ),zi:Mg(θi,zi)=θ′

R (Xθ1 , Xθ2)

where Eq. (17) comes from triangle inequality.

Let
Lθ′ ≜ inf

θ∈Supp(ωΘ),z:Mg(θ,z)=θ′
g (θ) ,

Rθ′ ≜ sup
θ∈Supp(ωΘ),z:Mg(θ,z)=θ′

g (θ) .

From the above result, we know that Rθ′ − Lθ′ ≤ T
γ . We can define a sequence of attackers such that

ĝi (θ′) = Lθ′ + (i + 0.5) · 2ϵ for i ∈
{

0, 1, . . . , ⌈ T
2γϵ⌉ − 1

}
(Fig. 7). We have

!!! "!!!!! + 2% !!! + 4%
!!! +

'
2(% 2%

+') +'" +' *
+,- ."

Possible range of '(,)

Range of
'(,) that +')
succeeds
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'(,) that
+' !
"#$ ."

succeeds

Figure 7: The construction of attackers for proof of Thm. 2. The 2ϵ ranges of ĝ0, ..., ĝ⌈ T
2γϵ ⌉−1 jointly cover the

entire range of possible secret [Lθ′ , Rθ′ ]. Therefore, there exists one attacker whose probability of guessing
the secret correctly within ϵ is ≥ ⌈ T

2γϵ⌉
−1 (Eq. (18)).
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∑
i

P
(

ĝi (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
)
≥ 1,

and therefore,

max
i

P
(

ĝi (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
)
≥ ⌈ T

2γϵ
⌉−1, (18)

which implies that

sup
ĝ

P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
)
≥ ⌈ T

2γϵ
⌉−1.

Therefore, we have

Πϵ,ωΘ = sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
ĝ

E
(
P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
))

= E
(

sup
ĝ

P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
))

≥ ⌈ T

2γϵ
⌉−1.

B Binary Search and Greedy Algorithms for Designing Quantization Mechanism

We use the binary search algorithm in Alg. 2 to search for the distortion budget that matches the privacy
budget under the optimal data release mechanism.

Algorithm 2: Data release mechanism with privacy budget.

Input: Parameter range:
[
θ, θ
)

Privacy budget: T
Distortion budget search range: [B, B]
Step size: s (which divides θ − θ)
Precision: η

1 while T − T ≥ η do
2 pri,S, θ′ ← Algorithm-1

([
θ, θ
)

,
T +T

2 , κ
)

3 if pri > T then
4 B ← T +T

2

5 else
6 B ← T +T

2

7 return Data release mechanism parameters: S, θ′

We provide the greedy algorithm in Alg. 3. In this algorithm, we greedily select the ranges of θ for each Si

in order. The left end point of the first range is the parameter lower bound (Line 2). We then scan across
all possible right end point such that the distortion for this range will not exceed the budget T (Line 8), and
pick the one that gives the minimal attacker confidence (Line 10). After deciding the range of θ, we will set
of the released distribution for this range (Line 16), and then move on to the next range (Line 21). The time
complexity of this algorithm is O

((
θ−θ/κ

)2 · CD · CP

)
, the same as the dynamic programming algorithm.
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Algorithm 3: Greedy-based data release mechanism for single-parameter distributions.

Input: Parameter range:
(
θ, θ
]

Prior over parameter: fΘ
Distortion budget: T
Step size: κ (which divides θ − θ)

1 I ← ∅
2 L← θ
3 privacy ← 0
4 while L < θ do
5 min_p←∞
6 min_R← NULL
7 R← L

8 while R ≤ θ and D (L, R) ≤ T do
9 p← P (L, R)

10 if p ≤ min_p then
11 min_p← p
12 min_R← R

13 R← R + κ

14 if min_R is not NULL then
15 SL ← {Xθ : θ ∈ (L, min_R]}
16 θ′

L ← D (L, min_R)
17 I ← I ∪ {L}

18 privacy ←
∫ L

θ
fΘ(t)dt∫ min_R

θ
fΘ(t)dt

· privacy +
∫ min_R

L
fΘ(t)dt∫ min_R

θ
fΘ(t)dt

·min_p

19 else
20 ERROR: No answer
21 L← min_R

22 return privacy, {Si : i ∈ I} , {θ′
i : i ∈ I}
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C Proofs

C.1 Proof of Corollary 1

Proof. For any Xθ1 , Xθ2 , we have

D (Xθ1 , Xθ2) = 1
2dWasserstein-1

(
ωXθ1

∥ωXθ2

)
≥ 1

2 |g (θ1)− g (θ2)| (19)

= 1
2R (Xθ1 , Xθ2) .

where Eq. (19) comes from Jensen inequality. Therefore, we have γ = infθ1,θ2∈Supp(ωΘ)
D(Xθ1 ,Xθ2)
R(Xθ1 ,Xθ2) ≥

1
2 . The

result then follows from Thm. 1.

C.2 Proof of Prop. 1

Proof. For any released parameter θ′ = (u′, v′), there exists i ∈ {0, ..., N − 1} such that u′ = u + (i + 0.5) · s.
We have

sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣θ′)
= sup

ĝ

∫ u+(i+1)·s

u+i·s
fU |U ′ (u|u′) ·

∫ u+ϵ

u−ϵ

fĝ(u′,v′) (h) dh du

= sup
ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ

fĝ(u′,v′)(h) ·
∫ ĝ
(

fX
u′,v′

)
+ϵ

ĝ
(

fX
u′,v′

)
−ϵ

fU |U ′ (u|u′) du dh

≤ sup
ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ

2ϵ

s
· fĝ(u′,v′)(h) dh

≤ 2ϵ

s
.

Therefore, we have

Πϵ,ωΘ = sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
ĝ

E
(
P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
))

= E
(

sup
ĝ

P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
))

≤ 2ϵ

s
.

For the distortion, we can easily get that ∆ = s
2 . According to Corollary 1, we have ∆opt >

(
⌈ 1

Πϵ,ωΘ
⌉ − 1

)
ϵ ≥

ϵ. We can get that

∆ = ∆opt + ∆−∆opt

< ∆opt + ∆−
(
⌈ 1

Πϵ,ωΘ

⌉ − 1
)
· ϵ

≤ ∆opt + ϵ + ∆− ϵ

Πϵ,ωΘ

≤ ∆opt + ϵ

≤ 2∆opt.
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C.3 Proof of Corollary 2

C.3.1 Exponential Distribution

Proof. Let Xλ1 , Xλ2 be two exponential random variables. We have

D (Xλ1 , Xλ2)
R (Xλ1 , Xλ2) =

1
2 (λ1 − λ2)

− ln (1− α) (λ1 − λ2) = − 1
2 ln (1− α) . (20)

Therefore we can get that

γ = − 1
2 ln (1− α) .

C.3.2 Shifted Exponential Distribution

Proof. Let Xλ1,h1 , Xλ2,h2 be random variables from shifted exponential distributions. Let λ2 ≤ λ1 without
loss of generality. Let a = λ1

λ2
and b = (h1/λ1 − h2/λ2) λ2. We can get that fXλ1,h1

(x) = afXλ2,h2
(a (x + b)),

and

D (Xλ1,h1 , Xλ2,h2) = 1
2dWasserstein-1

(
ωXλ1,h1

∥ωXλ2,h2

)
= 1

2

∫ +∞

h1

∣∣∣x− (x

a
− b
)∣∣∣ fXλ1,h1

(x) dx

= λ2

2λ1

∫ +∞

h1

|(1/λ2 − 1/λ1) x + h1/λ1 − h2/λ2| e− 1
λ1

(x−h1)dx

=
{

1
2 (h2 − h1 + λ2 − λ1)− e

h2−h1
λ2−λ1 (λ2 − λ1) (h1 < h2)

1
2 (h1 − h2 + λ1 − λ2) (h1 ≥ h2)

, (21)

R (Xλ1,h1 , Xλ2,h2) = |ln (1− α) (λ1 − λ2) + h2 − h1| .

When h1 < h2, let t = h2−h1
λ1−λ2

∈ (0, +∞). We have

D (Xλ1,h1 , Xλ2,h2)
R (Xλ1,h1 , Xλ2,h2)

= h2 − h1 + λ2 − λ1 − 2e
h2−h1
λ2−λ1 (λ2 − λ1)

2 |ln (1− α) (λ1 − λ2) + h2 − h1|

= t + 2e−t − 1
2 |ln (1− α) + t|

≥


1
2

∣∣∣∣1 + ln(1−α)+1
W−1

(
− ln(1−α)+1

2(1−α)e

) ∣∣∣∣ α ∈ [0, 1− e−1)

1
2

∣∣∣∣1 + ln(1−α)+1
W0
(

− ln(1−α)+1
2(1−α)e

) ∣∣∣∣ α ∈ [1− e−1, 1)
,

where W−1 and W0 are Lambert W functions. “=” achieves when

t = t0 ≜

−1− ln (1− α)−W−1

(
− ln(1−α)+1

2(1−α)e

) (
α ∈ [0, 1− e−1)

)
−1− ln (1− α)−W0

(
− ln(1−α)+1

2(1−α)e

) (
α ∈ [1− e−1, 1)

) .
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When h1 ≥ h2, let t = h1−h2
λ1−λ2

∈ (0, +∞). We have

D (Xλ1,h1 , Xλ2,h2)
R (Xλ1,h1 , Xλ2,h2) = h1 − h2 + λ1 − λ2

2 |ln (1− α) (λ1 − λ2) + h2 − h1|

= t + 1
2 |ln (1− α)− t|

≥ min
{

1
2 ,− 1

2 ln (1− α)

}
.

Therefore we can get that

γ =


1
2

∣∣∣∣1 + ln(1−α)+1
W−1

(
− ln(1−α)+1

2(1−α)e

) ∣∣∣∣ α ∈ [0, 1− e−1)

1
2

∣∣∣∣1 + ln(1−α)+1
W0
(

− ln(1−α)+1
2(1−α)e

) ∣∣∣∣ α ∈ [1− e−1, 1)
.

C.4 Proof of Prop. 2

C.4.1 Exponential Distribution

Proof. The proof of ∆ and Πϵ,ωΘ is the same as App. C.2, except that we use the D (·, ·) and R (·, ·) from
Eq. (20).

For ∆opt, we have ∆opt >
(
⌈ 1

Πϵ,ωΘ
⌉ − 1

)
· 2γϵ ≥ 2γϵ, where γ = − 1

2 ln(1−α) . We can get that

∆ = ∆opt + ∆−∆opt

< ∆opt + ∆−
(
⌈ 1

Πϵ,ωΘ

⌉ − 1
)
· 2γϵ

≤ ∆opt + 2γϵ + ∆− 2γϵ

Πϵ,ωΘ

= ∆opt + 2γϵ

≤ 2∆opt.

C.4.2 Shifted Exponential Distribution

Proof. We first focus on the proof for Πϵ,ωΘ .

In Fig. 8, we separate the space of possible data parameters into two regions represented by yellow and green
colors. The yellow regions Syellow constitute right triangles with height s and width |t0|s. The green region
Sgreen is the rest of the parameter space. The high-level idea of our proof is as follows. Note that for any
parameter θ ∈ Sgreen, there exists a Si,h s.t. θ ∈ Si,h and Sµ,i ⊂ Sgreen. Therefore, we can bound the attack
success rate if θ ∈ Sgreen. At the same time, the probability of θ ∈ Syellow is bounded. Therefore, we can
bound the overall attacker’s success rate (i.e., Πϵ,ωΘ). More specifically, let the optimal attacker be ĝ∗. We
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Figure 8: The construction for proof of Prop. 2 for shifted exponential distributions. We separate the space
of possible parameters into two regions (yellow and green) and bound the attacker’s success rate on each
region separately.

have

Πϵ,ωΘ = P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

=
∫

θ∈Sgreen

p(θ)P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) dθ

+
∫

θ∈Syellow

p(θ)P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) dθ

<
2ϵ

|ln (1− α) + t0|s
+ |t0|s

h− h
.

For the distortion, it is straightforward to get that ∆ = s
2 (t0 − 1) + se−t0 from Eq. (21), and ∆opt >(

⌈ 1
Πϵ,ωΘ

⌉ − 1
)
· 2γϵ ≥ 2γϵ, where γ is defined in Corollary 2. Denote ζ = 2ϵ

|ln(1−α)+t0|s + |t0|s
h−h
− Πϵ,ωΘ , we
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can get that
(

Πϵ,ωΘ + ζ − |t0|s
h−h

)
·∆ = 2γϵ and

∆ = ∆opt + ∆−∆opt

< ∆opt + ∆−
(
⌈ 1

Πϵ,ωΘ

⌉ − 1
)
· 2γϵ

≤ ∆opt + 2γϵ + ∆− 2γϵ

Πϵ,ωΘ

= ∆opt + 2γϵ +
|t0|s
h−h
− ζ

2ϵ
|ln(1−α)+t0|s + |t0|s

h−h
− ζ
·∆

< ∆opt + 2γϵ +
|t0|s
h−h

2ϵ
|ln(1−α)+t0|s + |t0|s

h−h

·∆.

Therefore,

∆ <

(
1 + |t0| · |ln (1− α) + t0|s2

2ϵ
(
h− h

) )
(∆opt + 2γϵ)

≤

(
2 + |t0| · |ln (1− α) + t0|s2

ϵ
(
h− h

) )
∆opt.

t0 is bounded when α ∈ [0, c1] ∪
[
1− 1

e , c2
]
, where c1 ∈

[
0, 1− 1

e

)
, c2 ∈

[
1− 1

e , 1
)
. Therefore, when α ∈

[0.01, 0.25] ∪ [0.75, 0.99], we can get that

lim sup
s2

h−h
→0

∆ < lim sup
s2

h−h
→0

(
2 + |t0| · |ln (1− α) + t0|s2

ϵ
(
h− h

) )
∆opt < 3∆opt.

C.5 Proofs for the Surrogate Metrics

C.5.1 Secret=Mean

For any pY , we have

∆̃ = dWasserstein-1 (pX ∥pY) ≥

∣∣∣∣∣ 1n
n∑

i=1
xi −

1
n

n∑
i=1

yi

∣∣∣∣∣ = − ˜Πϵ,ωΘ .

For pY released from our mechanism (§6.3), we have ∆̃ = dWasserstein-1 (pX ∥pY) =
∣∣ 1

n

∑n
i=1 xi − 1

n

∑n
i=1 yi

∣∣ =
− ˜Πϵ,ωΘ .

C.5.2 Secret=Fraction

Assume that we want to protect the fraction of class j, and fraction (D, j) means the fraction of sample j
in the dataset D.

For any pY , we have

∆̃ = dTV (pX ∥pY) ≥ |fraction (X , j)− fraction (Y, j)| = − ˜Πϵ,ωΘ .

For pY released from our mechanism (Mech. 5), we have ∆̃ = dTV (pX ∥pY) =
|fraction (X , j)− fraction (Y, j)| = − ˜Πϵ,ωΘ .
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C.6 Proof of Prop. 3

Proof. We prove by contradiction. For any two parameters θ1, θ2 ∈ Supp (ωΘ), we can construct a prior
distribution P (θ = θ1) = P (θ = θ2) = 1

2 . Because Π′
ϵ,ωΘ

< log 2, we have

sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) < 1

under this prior distribution. Therefore, there exists θ′ and z1, z2 ∈ Supp (ωΘ) s.t. Mg (θ1, z1) =
Mg (θ2, z2) = θ′. According to triangle inequality, we have max

{
d
(
ωXθ1

∥ωXθ′

)
, d
(
ωXθ2

∥ωXθ′

)}
≥

1
2 d
(
ωXθ1

∥ωXθ2

)
. Therefore, we have ∆ ≥ ∆, which gives a contradiction.

D Privacy-Distortion Performance of Data Release Mechanism with Relaxed
Assumption

D.1 Privacy-Distortion Performance of Mech. 1 with Relaxed Assumption

We relax Asm. 1 as follows.
Assumption 3. The distribution parameter vector θ can be written as (u, v), where u ∈ R, v ∈ Rq−1,
and for any u ̸= u′, fXu,v (x) = fXu′,v

(x− u′ + u). The prior over distribution parameters is fU,V (a, b) =
fU (a) · fV (b), where Supp (U) = [u, u), and fU is L-Lipschitz continuous and has lower bound c.

Based on Asm. 3, the Privacy-distortion performance of Mech. 1 is shown below.

Proposition 4. Under Asm. 3, Mech. 1 has ∆ = s
2 and Πϵ,ωΘ ≤

2ϵ[c+L(s−x∗−ϵ)]
cs+ L

2 (s−x∗)2 , where x∗ = s + c
L − ϵ −√( c

L − ϵ
)2 + 2cs

L .

Proof. We first provide the following lemma.

Lemma 1. For a L-Lipschitz continuous function f(x), x ∈ [x, x], infx∈[x,x] f(x) ≥ c ≥ 0, it satisfies

sup
x′∈[x,x−δ]

∫ x′+δ

x′ f(x)dx∫ x

x
f(x)dx

≤
δ
[
c + L

(
x− x∗ − δ

2
)]

c (x− x) + L
2 (x− x∗)2 ,

where x∗ = x + c
L −

δ
2 −

√( c
L −

δ
2
)2 + 2c(x−x)

L .

For any released parameter θ′ = (u′, v′), there exists i ∈ {0, ..., N − 1} such that u′ = u + (i + 0.5) · s. We
have

sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣θ′)
= sup

ĝ

∫ u+(i+1)·s

u+i·s
fU |U ′ (u|u′) ·

∫ u+ϵ

u−ϵ

fĝ(u′,v′) (h) dh du

= sup
ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ

fĝ(u′,v′)(h) ·
∫ ĝ
(

fX
u′,v′

)
+ϵ

ĝ
(

fX
u′,v′

)
−ϵ

fU |U ′ (u|u′) du dh.

For
∫ ĝ
(

fX
u′,v′

)
+ϵ

ĝ
(

fX
u′,v′

)
−ϵ

fU |U ′ (u|u′) du, denote

x1 = max
(

0, ĝ
(

fXu′,v′

)
− ϵ− u− i · s

)
,

x2 = min
(

ĝ
(

fXu′,v′

)
+ ϵ− u− i · s, s

)
,
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we have ∫ ĝ
(

fX
u′,v′

)
+ϵ

ĝ
(

fX
u′,v′

)
−ϵ

fU |U ′ (u|u′) du =
∫ x2

x1
fU (u + i · s + x) dx∫ s

0 fU (u + i · s + x) dx
.

fU (u + i · s + x) is L-Lipschitz and has lower bound c. x2 − x1 ≤ 2ϵ and x1, x2 ∈ [0, s]. According to
Lemma 1, we have

∫ ĝ
(

fX
u′,v′

)
+ϵ

ĝ
(

fX
u′,v′

)
−ϵ

fU |U ′ (u|u′) du =
∫ x2

x1
fU (u + i · s + x) dx∫ s

0 fU (u + i · s + x) dx

≤ 2ϵ [c + L (s− x∗ − ϵ)]
cs + L

2 (s− x∗)2 ,

where x∗ = s + c
L − ϵ−

√( c
L − ϵ

)2 + 2cs
L .

Therefore, we can get that

sup
ĝ

P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣θ′)
≤ sup

ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ

2ϵ [c + L (s− x∗ − ϵ)]
cs + L

2 (s− x∗)2 · fĝ(u′,v′)(h) dh

≤ 2ϵ [c + L (s− x∗ − ϵ)]
cs + L

2 (s− x∗)2 .

Therefore, we have

Πϵ,ωΘ = sup
ĝ

P (ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
ĝ

E
(
P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
))

= E
(

sup
ĝ

P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
))

≤ 2ϵ [c + L (s− x∗ − ϵ)]
cs + L

2 (s− x∗)2 .

For the distortion, we can easily get that ∆ = s
2 .

D.1.1 Proof of Lemma 1

Without loss of generality, we assume that f(x) ≥ f(x). Based on simple geometric analysis, we can get that

when
∫ x′+δ

x′ f(x)dx∫ x

x
f(x)dx

achieves supremum, as illustrated in Fig. 9, f(x) = c, x′ = x−δ, and f(x) = x+L (x− x′′),

where x′′ ∈ [x, x′].

In this case, we can get that ∫ x

x−δ
f(x)dx∫ x

x
f(x)dx

=
δ
[
c + L

(
x− x′′ − δ

2
)]

c (x− x) + L
2 (x− x′′)2 ≜ h (x′′) ,
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𝑥 𝑥

𝑐 + ℒ 𝑥 − 𝑥′′

𝑥′′

𝑐

𝑥

𝑓(𝑥)

𝑥" = 𝑥 − 𝛿

Figure 9: Illustration of f(x) when
∫ x′+δ

x′ f(x)dx∫ x

x
f(x)dx

achieves supremum.

where x′′ ∈ [x, x′]. When x′′ = x+ c
L−

δ
2−
√( c

L −
δ
2
)2 + 2c(x−x)

L ≜ x∗, h(x′′) achieves supremum. Therefore,
we have

sup
x′∈[x,x−δ]

∫ x′+δ

x′ f(x)dx∫ x

x
f(x)dx

≤ sup
f

sup
x′∈[x,x−δ]

∫ x′+δ

x′ f(x)dx∫ x

x
f(x)dx

=
δ
[
c + L

(
x− x∗ − δ

2
)]

c (x− x) + L
2 (x− x∗)2 .

D.2 Privacy-Distortion Performance of Mech. 2 with Relaxed Assumption

We relax Asm. 2 as follows.

Assumption 4. The prior over distribution parameters as specified below.

• Exponential: Supp (λ) =
[
λ, λ

)
, and fλ is L-Lipschitz continuous and has lower bound c.

• Shifted exponential: Supp (λ, h) =
{

(a, b)|a ∈
[
λ, λ

)
, b ∈

[
h, h

)}
, fλ,h (a, b) = fλ (a) · fh (b), and fλ (resp.

fh) is Lλ-Lipschitz (resp. Lh-Lipschitz) and has lower bound kλ

µ−µ with kλ ∈ (0, 1] (resp. kh

σ−σ with kh ∈
(0, 1]).

Based on Asm. 4, the Privacy-distortion performance of Mech. 2 is shown below.

Proposition 5. Under Asm. 4, Mech. 2 has the following ∆ and Πϵ,ωΘ value/bound.

• Exponential:

∆ = 1
2s,

Πϵ,ωΘ ≤
2ϵ

− ln(1−α) ·
[
c + L

(
s− x∗ + ϵ

ln(1−α)

)]
cs + L

2 (s− x∗)2 ,

where x∗ = s + c
L + ϵ

ln(1−α) −
√(

c
L + ϵ

ln(1−α)

)2
+ 2cs

L .
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• Shifted exponential:

∆ = s

2 (t0 − 1) + se−t0 ,

Πϵ,ωΘ <

2ϵ
|ln(1−α)+t0| ·

[
c + Lλ,h

(
s
2 − t∗ − ϵ

|ln(1−α)+t0|

)]
cs + Lλ,h

2
(

s
2 − t∗

)2 +

M

(
h− h,

kh

h− h
,Lh, 1

)
·M

(
λ− λ,

kλ

λ− λ
,Lλ, 1

)
·
(
λ− λ

)
|t0|s,

where c = khkλ

(h−h)·(λ−λ) , function M satisfies

M (x, c,L,A) =
{

A
x + Lx

2 , if c ≤ A
x −

Lx
2

c +
√

2L (A− cx), if c > A
x −

Lx
2

,

Lλ,h = LλM
(

h−h
|t0| , kh

h−h
, |t0|Lh, 1

|t0|

)
+ |t0|LhM

(
λ− λ, kλ

λ−λ
,Lλ, 1

)
, and

t∗ = s
2 + c

Lλ,h
− ϵ

|ln(1−α)+t0| −
√(

c
Lλ,h

− ϵ
|ln(1−α)+t0|

)2
+ 2cs

Lλ,h
.

The t0 parameter is defined in Mech. 2.

D.2.1 Proof of Prop. 5 for Exponential Distribution

It is straightforward to get the formula for ∆ from Eq. (20). Here we focus on the proof for Πϵ,ωΘ .

Similar to the proof in App. D.1, according to Lemma 1, we have

Πϵ,ωΘ = E
(

sup
ĝ

P
(

ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]
∣∣∣∣θ′
))

≤ sup
i∈N,t′∈R

∫min
{

s,t′− 2ϵ
ln(1−α)

}
max{0,t′} fλ (λ + i · s + t) dt∫ s

0 fλ (λ + i · s + t) dt

≤
2ϵ

− ln(1−α) ·
[
c + L

(
s− x∗ + ϵ

ln(1−α)

)]
cs + L

2 (s− x∗)2 ,

where x∗ = s + c
L + ϵ

ln(1−α) −
√(

c
L + ϵ

ln(1−α)

)2
+ 2cs

L .

D.2.2 Proof of Prop. 5 for Shifted Exponential Distribution

It is straightforward to get the formula for ∆ from Eq. (21). Here we focus on the proof for Πϵ,ωΘ .

According to Eq. (13), we can bound the attack success rate Πϵ,ωΘ as

Πϵ,ωΘ < sup
θ∈Sgreen

P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) +
∫

θ∈Syellow

p(θ)dθ.

As for the first term supθ∈Sgreen
P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]), we can get that

sup
θ∈Sgreen

P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
i∈N,h,t′∈R

∫min
{

s
2 ,t′+ 2ϵ

|ln(1−α)+t0|

}
max{− s

2 ,t′} fλ,h (λ + (i + 0.5) · s + t, h− t0 · t) dt∫ s
2

− s
2

fλ,h (λ + (i + 0.5) · s + t, h− t0 · t) dt
.

To analyze the above term, we provide the following lemma.

38



Under review as submission to TMLR

Lemma 2. For a L-Lipschitz continuous function f(x), x ∈ [x, x], if
∫ x

x
f(x)dx = A and infx∈[x,x] f(x) ≥ c,

it satisfies

sup
x∈[x,x]

f(x) ≤
{

A
x−x + L(x−x)

2 , if c ≤ A
x−x −

L(x−x)
2

c +
√

2L (A− c (x− x)), if c > A
x−x −

L(x−x)
2

≜ M (x− x, c,L,A) .

The proof is in App. D.2.3.
Since fλ,h (λ + (i + 0.5) · s + t, h− t0 · t) = fλ (λ + (i + 0.5) · s + t) · fh (h− t0 · t), according to Lemma 2,
we can get that fλ,h is Lλ,h-Lipschitz continuous, where

Lλ,h = Lλ · M

(
h − h

|t0| ,
kh

h − h
, |t0|Lh,

1
|t0|

)
+ |t0|Lh · M

(
λ − λ,

kλ

λ − λ
, Lλ, 1

)
.

We can also get that
inf

a∈[λ,λ),b∈[h,h)
fλ,h (a, b) ≥ khkλ(

h− h
)
·
(
λ− λ

) ≜ c.

Therefore, according to Lemma 1, we can get that

sup
θ∈Sgreen

P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
i∈N,h,t′∈R

∫min
{

s
2 ,t′+ 2ϵ

|ln(1−α)+t0|

}
max{− s

2 ,t′} fλ,h (λ + (i + 0.5) · s + t, h− t0 · t) dt∫ s
2

− s
2

fλ,h (λ + (i + 0.5) · s + t, h− t0 · t) dt

≤
2ϵ

|ln(1−α)+t0| ·
[
c + Lλ,h

(
s
2 − t∗ − ϵ

|ln(1−α)+t0|

)]
cs + Lλ,h

2
(

s
2 − t∗

)2 ,

where t∗ = s
2 + c

Lλ,h
− ϵ

|ln(1−α)+t0| −
√(

c
Lλ,h

− ϵ
|ln(1−α)+t0|

)2
+ 2cs

Lλ,h
, Lλ,h = Lλ ·M

(
h−h
|t0| , kh

h−h
, |t0|Lh, 1

|t0|

)
+

|t0|Lh ·M
(

λ− λ, kλ

λ−λ
,Lλ, 1

)
, and c = khkλ

(h−h)·(λ−λ) .

As for
∫

θ∈Syellow
p(θ)dθ, we have∫

θ∈Syellow

p(θ)dθ

≤M

(
h− h,

kh

h− h
,Lh, 1

)
·M

(
λ− λ,

kλ

λ− λ
,Lλ, 1

)
·
∫

θ∈Syellow

dθ

= M

(
h− h,

kh

h− h
,Lh, 1

)
·M

(
λ− λ,

kλ

λ− λ
,Lλ, 1

)
·
(
λ− λ

)
|t0|s.

Above all, we can get that

Πϵ,ωΘ < sup
θ∈Sgreen

P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) +
∫

θ∈Syellow

p(θ)dθ.

≤
2ϵ

|ln(1−α)+t0| ·
[
c + Lλ,h

(
s
2 − t∗ − ϵ

|ln(1−α)+t0|

)]
cs + Lλ,h

2
(

s
2 − t∗

)2 +

M

(
h− h,

kh

h− h
,Lh, 1

)
·M

(
λ− λ,

kλ

λ− λ
,Lλ, 1

)
·
(
λ− λ

)
|t0|s,

where M(·, ·, ·, ·), c,Lλ,h, t∗ are defined as above.
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D.2.3 Proof of Lemma 2

Without loss of generality, we assume that f(x) ≥ f(x). Based on simple geometric analysis, we can get
that there are two patterns when supx∈[x,x] f(x) achieves supremum, which are shown in Fig. 10.

𝑥

𝑓(𝑥)

𝑥 𝑥

𝑐!

𝑐! + ℒ 𝑥 − 𝑥

(a) Pattern 1.

𝑥 𝑥

𝑐 + ℒ 𝑥 − 𝑥′

𝑥′

𝑐

𝑥

𝑓(𝑥)

(b) Pattern 2.

Figure 10: Two patterns when supx∈[x,x] f(x) achieves supremum.

For pattern 1, f(x) = c1 ≥ c, f(x) = c1 + L(x − x), and
∫ x

x
f(x)dx =

(
c1 + L

2 (x− x)
)
· (x− x) = A.

Therefore, when c ≤ A
x−x −

L(x−x)
2 , we have

sup
f

sup
x∈[x,x]

f(x) = c1 + L(x− x) = A
x− x

+ L (x− x)
2 .

For pattern 2, f(x) = c, f(x) = c+L(x−x′), where x′ ∈ (x, x], and
∫ x

x
f(x)dx = c(x−x)+ L

2 (x− x′)2 = A.
Therefore, when c > A

x−x −
L(x−x)

2 , we have

sup
f

sup
x∈[x,x]

f(x) = c + L(x− x′) = c +
√

2L (A− c (x− x)).

Above all, we can get that

sup
x∈[x,x]

f(x) ≤ sup
f

sup
x∈[x,x]

f(x)

=
{

A
x−x + L(x−x)

2 , if c ≤ A
x−x −

L(x−x)
2

c +
√

2L (A− c (x− x)), if c > A
x−x −

L(x−x)
2

.

E Discrete Distribution with Secret = Mean

Here, we consider three typical examples of discrete distributions: geometric distributions, binomial distri-
butions, and Poisson distributions with parameter θ. More specifically, the original distribution is

P (Xθ = k) =


(1− θ)k

θ (geometric distribution)(
n
k

)
θk (1− θ)n−k (binomial distribution)

θke−θ

k! (Poisson distribution)

where n standards for the number of trials in binomial distribution. The support of the parameter is
Supp (Θ) =

{
Xθ : θ ∈

(
θ, θ
]}

where
(
θ, θ
]
⊆ (0, 1) for geometric distribution and binomial distribution, and(

θ, θ
]
⊆ (0,∞) for Poisson distribution.

We first analyze the lower bound.
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Corollary 3 (Privacy lower bound, secret = mean of a discrete distribution). Consider the secret function
g (θ) =

∑
x xfXθ

(x). For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T , we have ∆ >
(
⌈ 1

T ⌉ − 1
)
· 2γϵ, where the value of

γ depends on the type of the distributions:

• Geometric:

γ = inf
θ<θ1<θ2≤θ

(1− θ2)h(θ1,θ2) − (1− θ1)h(θ1,θ2)

2
(

1
θ2
− 1

θ1

) ,

where h (θ1, θ2) = ⌊ log(θ2)−log(θ1)
log(1−θ1)−log(1−θ2)⌋+ 1.

• Binomial:

γ = inf
θ<θ1<θ2≤θ

I1−θ2 (n−h(θ1,θ2),1+h(θ1,θ2))−I1−θ1 (n−h(θ1,θ2),1+h(θ1,θ2))
2n(θ1−θ2) ,

where h (θ1, θ2) = ⌊k′⌋, k′ = n ln
(

1−θ2
1−θ1

)/
ln
(

θ1(1−θ2)
θ2(1−θ1)

)
, and I represents the regularized incomplete beta

function.
• Poisson:

γ = inf
θ<θ1<θ2≤θ

Q (h (θ1, θ2) , θ2)−Q (h (θ1, θ2) , θ1)
2 (θ1 − θ2) ,

where h (θ1, θ2) = ⌊ θ1−θ2
ln(θ1)−ln(θ2)⌋+ 1 and Q is the regularized gamma function.

The proof is in App. E.1. The above lower bounds can be computed numerically.

Since these distributions only have one parameter, we can use Alg. 1 and Alg. 3 to derive a data release
mechanism. The performance of greedy-based and dynamic-programming-based data release mechanisms
for each distribution is shown in Fig. 11.
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(a) Distribution = Geometric
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(c) Distribution = Poisson

Figure 11: Privacy-distortion performance of Alg. 1 and Alg. 3 for geometric, binomial and Poisson distri-
bution when secret = mean.

As we can observe, the distortion that dynamic-programming-based data release mechanism achieves it is
always smaller than or equal to that of the greedy-based data release mechanism.

E.1 Proof of Corollary 3

E.1.1 Geometric Distribution

Proof. Let Xθ1 and Xθ2 be two Geometric random variables with parameters θ1 and θ2 respectively. We
assume that θ1 > θ2 without loss of generality. Let k′ satisfy (1− θ1)k′

θ1 = (1− θ2)k′
θ2 and k0 = ⌊k′⌋+ 1.
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Then we can get that

D (Xθ1 , Xθ2) = 1
2dTV

(
ωXθ1

∥ωXθ2

)
= 1

2 (1− θ2)k0 − 1
2 (1− θ1)k0 ,

R (Xθ1 , Xθ2) = 1
θ2
− 1

θ1
.

Therefore, we have

γ = inf
θ<θ1<θ2≤θ

(1− θ2)k0 − (1− θ1)k0

2
(

1
θ2
− 1

θ1

) .

The rest follows from Thm. 1.

E.1.2 Binomial Distribution

Proof. Let Xθ1 and Xθ2 be two binomial random variables with parameters θ1 and θ2 respectively with fixed
number of trials n. We assume that θ1 > θ2 without loss of generality. Let k′ satisfy

(
n
k′

)
θk′

1 (1− θ1)n−k′
=(

n
k′

)
θk′

2 (1− θ1)n−k′
and k0 = ⌊k′⌋. We can get that

D (Xθ1 , Xθ2) = 1
2dTV

(
ωXθ1

∥ωXθ2

)
= 1

2I1−θ2 (n− k0, 1 + k0)− 1
2I1−θ1 (n− k0, 1 + k0) ,

R (Xθ1 , Xθ2) = n (θ1 − θ2) ,

where I represents the regularized incomplete beta function.

Therefore, we have

γ = inf
θ<θ1<θ2≤θ

I1−θ2 (n− k0, 1 + k0)− I1−θ1 (n− k0, 1 + k0)
2n (θ1 − θ2) .

The rest follows from Thm. 1.

E.1.3 Poisson Distribution

Proof. Let Xθ1 and Xθ2 be two Poisson random variables with parameters θ1 and θ2 respectively. We assume
that θ1 > θ2 without loss of generality. Let k′ satisfy θk′

1 e−θ1 = θk′

2 e−θ2 and k0 = ⌊k′⌋+ 1. Then we can get
that

D (Xθ1 , Xθ2) = 1
2dTV

(
ωXθ1

∥ωXθ2

)
= 1

2Q (k0, θ2)− 1
2Q (k0, θ1) ,

R (Xθ1 , Xθ2) = θ1 − θ2,

where Q is the regularized gamma function.

Therefore, we have

γ = inf
θ<θ1<θ2≤θ

Q (k0, θ2)−Q (k0, θ1)
2 (θ1 − θ2) .

The rest follows from Thm. 1.
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F More Distributions with Secret = Quantiles

In this section, we discuss how to protect the quantiles for typical examples of continuous distributions:
Gaussian distributions and uniform distributions. In our analysis, their parameters are denoted by:

• Gaussian distributions: θ = (µ, σ), where µ, σ are the mean and the standard deviation of the Gaussian
distribution.

• Uniform distributions: θ = (m, n), where m, n denote the lower and upper bound of the uniform
distribution. In other words, Xm,n is a random variable from uniform distribution U ([m, n]).

As before, we first present the lower bound.
Corollary 4 (Privacy lower bound, secret = α-quantile of a continuous distribution). Consider the secret
function g (θ) = α-quantile of fXθ

. For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T , we have ∆ >
(
⌈ 1

T ⌉ − 1
)
·2γϵ, where

the value of γ depends on the type of the distributions:

• Gaussian:

γ = min
t

√
1

2π e− 1
2 t2 − t

( 1
2 − Φ (t)

)
|t + Qα|

,

where Φ denotes the CDF of the standard Gaussian distribution and Qα ≜ Φ−1(α).
• Uniform:

γ =


√

α2 − α + 1
2 + α− 1

2 α ≤ 0.5√
α2 − α + 1

2 − α + 1
2 α > 0.5

.

The proof is in App. F.1. The bound for uniform is in closed form, while the bound for Gaussian can be
computed numerically.

Next, we provide data release mechanisms for each of the distributions. Here, we assume that the parameters
of the original data are drawn from a uniform distribution with lower and upper bounds. In more details,
we make the following assumptions.
Assumption 5. The prior over distribution parameters as specified below.

• Gaussian: (μ,σ) follows the uniform distribution over
{

(a, b)| a ∈
[
µ, µ

)
, b ∈ [σ, σ)

}
.

• Uniform: (M, N) follows the uniform distribution over
{

(a, b)| a ∈ [m, m) , b ∈ [m, m) , a < b
}

.
Mechanism 3 (For secret = quantile of a continuous distribution). We design mechanisms for each of the
distributions.

• Gaussian:

Sµ,i =
{

(µ + t0 · t, σ + (i + 0.5) · s + t) |t ∈
[
−s

2 ,
s

2

)}
,

θ∗
µ,i = (µ, σ + (i + 0.5) · s) ,

I = {(µ, i) : i ∈ N, µ ∈ R} ,

where s is a hyper-parameter of the mechanism that divides (σ − σ) and

t0 = arg min
t

√
1

2π e− 1
2 t2 − t

( 1
2 − Φ (t)

)
|t + Qα|

.

.
• Uniform:

Sm,i =
{

(m− t0 · t, m + (i + 0.5) · s + t) |t ∈
(
− s

2(t0+1) , s
2(t0+1)

]}
,

θ∗
m,i = (m, m + (i + 0.5) · s) ,

I = {(m, i) |i ∈ Z>0, m ∈ R} ,
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where t0 = 1
1
l −1 for

l =

α +
√

α2 − α + 1
2 α ≤ 0.5

α−
√

α2 − α + 1
2 α > 0.5

.

and s > 0 is a hyper-parameter of the mechanism that divides (m−m).

These data release mechanisms achieve the following ∆ and Πϵ,ωΘ .
Proposition 6. Under Asm. 5, Mech. 3 has the following ∆ and Πϵ,ωΘ value/bound.

• Gaussian:

Πϵ,ωΘ <
2ϵ

|t0 + Qα|s
+ |t0|s

µ− µ
,

∆ = s

2

√
2
π

e− 1
2 t2

0 − t0s

2 (1− 2Φ (t0)) <

(
2 + |t0| · |t0 + Qα|s2(

µ− µ
)

ϵ

)
∆opt.

Under the “high-precision” regime where s2

µ−µ → 0 as s, (µ− µ)→∞, ∆ satisfies

lim sup
s2

µ−µ
→0

∆ < 3∆opt.

• Uniform:

Πϵ,ωΘ <
2ϵ (t0 + 1)

|(1− α) t0 − α|s
+ 2s · t0

(t0 + 1) (m−m) + s2

2 (m−m)2 ,

∆ =
(
t2
0 + 1

)
s

4(t0 + 1)2

<

(
2 + |(1− α) t0 − α|s

ϵ (t0 + 1) ·

(
2s · t0

(t0 + 1) (m−m) + s2

2 (m−m)2

))
∆opt.

Under the “high-precision” regime where s2

m−m → 0 as s, (m−m)→∞, ∆ satisfies

lim sup
s2

m−m
→0

∆ < 3∆opt.

The t0 parameter is defined in Mech. 3 for each distribution.

The proof is in App. F.2. For Gaussian distribution, we relax Asm. 5 and analyze the privacy-distortion
performance of Mech. 3 in App. F.3. For both distributions, we consider the “high-precision” regime. The
two takeaways are that: (1) data holder can use s to control the trade-off between distortion and privacy,
and (2) the mechanism is order-optimal with multiplicative factor 3.

F.1 Proof of Corollary 4

F.1.1 Gaussian Distribution

Proof. Let Xµ1,σ2 , Xµ2,σ2 be two Gaussian random variables with means µ1, µ2 and sigmas σ1, σ2 respectively.
Let Φ denotes the CDF of the standard Gaussian distribution and let Φ−1(α) ≜ Qα.

When σ1 = σ2, we have

D (Xµ1,σ1 , Xµ2,σ2)
R (Xµ1,σ1 , Xµ2,σ2) =

1
2 |µ1 − µ2|

|µ1 + σQα − (µ2 + σQα)| = 1
2 .
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When σ1 ̸= σ2, we assume σ2 > σ1 without loss of generality. Let a = σ1
σ2

and b = σ2
σ1

µ1 − µ2. Let a = σ1
σ2

and b = σ2
σ1

µ1 − µ2. We can get that fXµ1,σ1
(x) = afXµ2,σ2

(a (x + b)), and

D (Xµ1,σ1 , Xµ2,σ2) = 1
2dWasserstein-1

(
ωXµ1,σ1

∥ωXµ2,σ2

)
= 1

2

∫ +∞

−∞

∣∣∣x− (x

a
− b
)∣∣∣ fXµ1,σ1

(x) dx

= (µ1 − µ2)
(

Φ
(

µ1 − µ2

σ2 − σ1

)
− 1

2

)
+
√

1
2π

(σ2 − σ1) e
− 1

2

(
µ1−µ2
σ2−σ1

)2

, (22)

R (Xµ1,σ1 , Xµ2,σ2) = |µ1 + σ1Qα − (µ2 + σ2Qα)|
= |(µ1 − µ2) + (σ1 − σ2) Qα|.

Let µ1−µ2
σ1−σ2

≜ t, we can get that

D (Xµ1,σ1 , Xµ2,σ2)
R (Xµ1,σ1 , Xµ2,σ2) =

√
1

2π e− 1
2 t2 − t

( 1
2 − Φ (t)

)
|t + Qα|

≜ h (t) .

Since limt→∞ = 1
2 , we have min

{
mint h (t) , 1

2
}

= mint h (t), and therefore we can get that

γ = min
t

h (t) .

F.1.2 Uniform Distribution

Proof. Let Xm1,n1 , Xm2,n2 be two uniform random variables. Let FXm1,n1
, FXm2,n2

be their CDFs, and let
m2 ≥ m1 without loss of generality. We can get that

D (Xm1,n1 , Xm2,n2) = 1
2dWasserstein-1

(
ωXm1,n1

∥ωXm2,n2

)
= 1

2

∫ +∞

−∞
|FXm1,n1

(x)− FXm2,n2
(x)|dx

=
{

m2−m1+n2−n1
4 n2 ≥ n1

(m2−m1)2+(n1−n2)2

4(m2−m1+(n1−n2)) n2 < n1
, (23)

R (Xm1,n1 , Xm2,n2) = |m2 + α (n2 −m2)− [m1 + α (n1 −m1)]|
= |(1− α) (m2 −m1) + α (n2 − n1)|.

When n2 = n1, we have

D (Xm1,n1 , Xm2,n2)
R (Xm1,n1 , Xm2,n2) = m2 −m1

4 (1− α) (m2 −m1) = 1
4 (1− α) .
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When n2 > n1, let t1 = m2−m1
n2−n1

∈ [0, +∞), we have

D (Xm1,n1 , Xm2,n2)
R (Xm1,n1 , Xm2,n2) = 1

4
m2 −m1 + n2 − n1

(1− α) (m2 −m1) + α (n2 − n1)

= 1
4

t1 + 1
(1− α) t1 + α

= 1
4 (1− α)

(
1 + 1− 2α

1− α
· 1

t1 + α
1−α

)

≥

{
1

4(1−α) α ≤ 0.5
1

4α α > 0.5
.

When n2 < n1, let t2 = m2−m1
n1−n2

∈ (0, +∞), we have

D (Xm1,n1 , Xm2,n2)
R (Xm1,n1 , Xm2,n2) = 1

4
(m2 −m1)2 + (n1 − n2)2

(m2 −m1 + (n1 − n2)) ·

1
|(1− α) (m2 −m1)− α (n1 − n2)|

= 1
4

t2
2 + 1

(t2 + 1) |(1− α) t2 − α|

≥


√

α2 − α + 1
2 + α− 1

2 α ≤ 0.5√
α2 − α + 1

2 − α + 1
2 α > 0.5

.

“=” achieves when t2 = 1
1
l −1 ≜ t0, where

l =

α +
√

α2 − α + 1
2 α ≤ 0.5

α−
√

α2 − α + 1
2 α > 0.5

.

Therefore we can get that

γ =


√

α2 − α + 1
2 + α− 1

2 α ≤ 0.5√
α2 − α + 1

2 − α + 1
2 α > 0.5

.

F.2 Proof of Prop. 6

F.2.1 Gaussian Distribution

Proof. We first focus on the proof for Πϵ,ωΘ .

In Fig. 12, we separate the space of possible data parameters into two regions represented by yellow and
green colors. The yellow regions Syellow constitute right triangles with height s and width |t0|s. The green
region Sgreen is the rest of the parameter space. The high-level idea of our proof is as follows. Note that for
any parameter θ ∈ Sgreen, there exists a Sµ,i s.t. θ ∈ Sµ,i and Sµ,i ⊂ Sgreen. Therefore, we can bound the
attack success rate if θ ∈ Sgreen. At the same time, the probability of θ ∈ Syellow is bounded. Therefore, we
can bound the overall attacker’s success rate (i.e., Πϵ,ωΘ). More specifically, let the optimal attacker be ĝ∗.
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Figure 12: The construction for proof of Prop. 6 for Gaussian distributions. We separate the space of
possible parameters into two regions (yellow and green) and bound the attacker’s success rate on each region
separately.

We have

Πϵ,ωΘ = P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

=
∫

θ∈Sgreen

p(θ)P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) dθ

+
∫

θ∈Syellow

p(θ)P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) dθ

<
2ϵ

|t0 + Qα|s
+ |t0|s

µ− µ
.

For the distortion, it is straightforward to get that ∆ = s
2

√
2
π e− 1

2 t2
0 − t0s

2 (1− 2Φ (t0)) from Eq. (22), and

∆opt >
(
⌈ 1

Πϵ,ωΘ
⌉ − 1

)
·2γϵ ≥ 2γϵ, where γ is defined in Corollary 4. We can get that

(
Πϵ,ωΘ −

|t0|s
µ−µ

)
·∆ < 2γϵ
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and

∆ = ∆opt + ∆−∆opt

< ∆opt + ∆−
(
⌈ 1

Πϵ,ωΘ

⌉ − 1
)
· 2γϵ

≤ ∆opt + 2γϵ + ∆− 2γϵ

Πϵ,ωΘ

< ∆opt + 2γϵ +
|t0|s
µ−µ

2ϵ
|t0+Qα|s + |t0|s

µ−µ

·∆

=
(

1 + |t0| · |t0 + Qα|s2

2ϵ
(
µ− µ

) )
(∆opt + 2γϵ)

≤

(
2 + |t0| · |t0 + Qα|s2

ϵ
(
µ− µ

) )
∆opt.

F.2.2 Uniform Distribution

Proof. We first focus on the proof for Πϵ,ωΘ .

5

66

5

6

5

23%
3%4"

2

…

The space of possible
parameters

2

2

2

23%
3%4"

Figure 13: The construction for proof of Prop. 6 for uniform distributions. We separate the space of
possible parameters into two regions (yellow and green) and bound the attacker’s success rate on each region
separately.

In Fig. 13, we separate the space of possible data parameters into two regions represented by yellow and
green colors. The yellow regions Syellow constitute triangles with height st0

t0+1 and width s (except for the
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right-bottom triangle with height and width s). The green region Sgreen is the rest of the parameter space.
The high-level idea of our proof is as follows. Note that for any parameter θ ∈ Sgreen, there exists a Sµ,i

s.t. θ ∈ Sµ,i and Sµ,i ⊂ Sgreen. Therefore, we can bound the attack success rate if θ ∈ Sgreen. At the same
time, the probability of θ ∈ Syellow is bounded. Therefore, we can bound the overall attacker’s success rate
(i.e., Πϵ,ωΘ). More specifically, let the optimal attacker be ĝ∗. We have

Πϵ,ωΘ = P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

=
∫

θ∈Sgreen

p(θ)P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) dθ

+
∫

θ∈Syellow

p(θ)P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) dθ

<
2ϵ (t0 + 1)

|(1− α) t0 − α|s
+ 2s · t0

(t0 + 1) (m−m) + s2

2 (m−m)2 .

The second term 2s·t0
(t0+1)(m−m) bounds the probability of the yellow region except for the right-bottom triangle,

and the last term s2

2(m−m)2 is the probability of the right-bottom triangle.

For the distortion, it is straightforward to get that ∆ = (t2
0+1)s

4(t0+1)2 from Eq. (23), and ∆opt >
(
⌈ 1

Πϵ,ωΘ
⌉ − 1

)
·

2γϵ ≥ 2γϵ, where γ is defined in Corollary 4. We can get that
(

Πϵ,ωΘ − 2s·t0
(t0+1)(m−m) −

s2

2(m−m)2

)
·∆ < 2γϵ

and

∆ = ∆opt + ∆ − ∆opt

< ∆opt + ∆ −
(

⌈ 1
Πϵ,ωΘ

⌉ − 1
)

· 2γϵ

≤ ∆opt + 2γϵ + ∆ − 2γϵ

Πϵ,ωΘ

< ∆opt + 2γϵ +

2s·t0
(t0+1)(m−m) + s2

2(m−m)2

2ϵ(t0+1)
|(1−α)t0−α|s + 2s·t0

(t0+1)(m−m) + s2

2(m−m)2

· ∆

=
(

1 + |(1 − α) t0 − α|s
2ϵ (t0 + 1)

(
2s · t0

(t0 + 1) (m − m) + s2

2 (m − m)2

))
(∆opt + 2γϵ)

≤
(

2 + |(1 − α) t0 − α|s
ϵ (t0 + 1) ·

(
2s · t0

(t0 + 1) (m − m) + s2

2 (m − m)2

))
∆opt.

When s2

m−m → 0 as s, (m−m)→∞, we can get that s3

(m−m)2 → 0. Therefore, in this case, lim sup s2
m−m

→0∆ <

3∆opt.

F.3 Privacy-Distortion Performance of Mech. 3 with Relaxed Assumption

For Gaussian distribution, we relax Asm. 5 as follows.

Assumption 6. The prior over Gaussian distribution parameters satisfies Supp (μ,σ) ={
(a, b)|a ∈

[
µ, µ

)
, b ∈ [σ, σ)

}
, fμ,σ (a, b) = fμ (a) · fσ (b), and fμ (a) (resp. fσ (b)) is Lµ-Lipschitz

(resp. Lσ-Lipschitz) and has lower bound kµ

µ−µ with kµ ∈ (0, 1] (resp. kσ

σ−σ with kσ ∈ (0, 1]).

Based on Asm. 6, the Privacy-distortion performance of Mech. 3 is shown below.
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Proposition 7. Under Asm. 6, Mech. 3 has the following ∆ and Πϵ,ωΘ value/bound:

∆ = s

2

√
2
π

e− 1
2 t2

0 − t0s

2 (1− 2Φ (t0)) ,

Πϵ,ωΘ <

2ϵ
|t0+Qα| ·

[
c + Lµ,σ

(
s
2 − t∗ − ϵ

|t0+Qα|

)]
cs + Lµ,σ

2
(

s
2 − t∗

)2 +

M

(
µ− µ,

kµ

µ− µ
,Lµ, 1

)
·M

(
σ − σ,

kσ

σ − σ
,Lσ, 1

)
· (σ − σ) |t0|s,

where c = kµkσ

(µ−µ)·(σ−σ)
, function M satisfies

M (x, c,L,A) =
{

A
x + Lx

2 , if c ≤ A
x −

Lx
2

c +
√

2L (A− cx), if c > A
x −

Lx
2

,

Lµ,σ = Lσ · M
(

µ−µ

|t0| ,
kµ

µ−µ , |t0|Lµ, 1
|t0|

)
+ |t0|Lµ · M

(
σ − σ, kσ

σ−σ ,Lσ, 1
)

, and t∗ = s
2 + c

Lµ,σ
− ϵ

|t0+Qα| −√(
c

Lµ,σ
− ϵ

|t0+Qα|

)2
+ 2cs

Lµ,σ
.

Proof. It is straightforward to get the formula for ∆ from Eq. (22). Here we focus on the proof for Πϵ,ωΘ .

Similar to App. D.2.2, based on Lemma 1 and Lemma 2, we can get that

sup
θ∈Sgreen

P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

= sup
i∈N,µ,t′∈R

∫min
{

s
2 ,t′+ 2ϵ

|t0+Qα|

}
max{− s

2 ,t′} fμ,σ (µ + t0 · t, σ + (i + 0.5) · s + t) dt∫ s
2

− s
2

fμ,σ (µ + t0 · t, σ + (i + 0.5) · s + t) dt

≤
2ϵ

|t0+Qα| ·
[
c + Lµ,σ

(
s
2 − t∗ − ϵ

|t0+Qα|

)]
cs + Lµ,σ

2
(

s
2 − t∗

)2 ,

where t∗ = s
2 + c

Lµ,σ
− ϵ

|t0+Qα| −
√(

c
Lµ,σ

− ϵ
|t0+Qα|

)2
+ 2cs

Lµ,σ
, Lµ,σ = Lσ ·M

(
µ−µ

|t0| ,
kµ

µ−µ , |t0|Lµ, 1
|t0|

)
+ |t0|Lµ ·

M
(

σ − σ, kσ

σ−σ ,Lσ, 1
)

, and c = kµkσ

(µ−µ)·(σ−σ)
.

As for
∫

θ∈Syellow
p(θ)dθ, we have

∫
θ∈Syellow

p(θ)dθ

≤M

(
µ− µ,

kµ

µ− µ
,Lµ, 1

)
·M

(
σ − σ,

kσ

σ − σ
,Lσ, 1

)
·
∫

θ∈Syellow

dθ

= M

(
µ− µ,

kµ

µ− µ
,Lµ, 1

)
·M

(
σ − σ,

kσ

σ − σ
,Lσ, 1

)
· (σ − σ) |t0|s.
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Above all, we can get that

Πϵ,ωΘ < sup
θ∈Sgreen

P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) +
∫

θ∈Syellow

p(θ)dθ.

≤
2ϵ

|t0+Qα| ·
[
c + Lµ,σ

(
s
2 − t∗ − ϵ

|t0+Qα|

)]
cs + Lµ,σ

2
(

s
2 − t∗

)2 +

M

(
µ− µ,

kµ

µ− µ
,Lµ, 1

)
·M

(
σ − σ,

kσ

σ − σ
,Lσ, 1

)
· (σ − σ) |t0|s,

where M(·, ·, ·, ·), c,Lµ,σ, t∗ are defined as above.

G Case Study with Secret = Standard Deviation

In this section, we discuss how to protect standard deviation for several continuous and discrete distributions.

G.1 Continuous Distributions

We consider the same distributions discussed in §6.2 and App. F: Gaussian, uniform, and (shifted) exponential
distributions.
Corollary 5 (Privacy lower bound, secret = standard deviation of a continuous distribution). Consider
the secret function g (θ) = standard deviation of fXθ

. For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T , we have
∆ >

(
⌈ 1

T ⌉ − 1
)
· 2γϵ, where the value of γ depends on the type of the distributions:

• Gaussian:

γ = min
t

√
1

2π
e− 1

2 t2
− t

(
1
2 − Φ (t)

)
,

where Φ denotes the CDF of the standard Gaussian distribution.
• Uniform: γ =

√
3

4 .

• Exponential: γ = 1
2 .

• Shifted exponential: γ = ln 2
2 .

The proof is in App. G.3. The bounds for Gaussian can be computed numerically, while the bounds for all
other distributions are in closed form.

Next, we present the data release mechanism for these distributions and the secret under the same assumption
as Asm. 2.
Mechanism 4 (For secret = standard deviation of a continuous distribution). We design mechanisms for
each of the distributions.

• Gaussian:

Sµ,i =
{

(µ + t0 · t, σ + (i + 0.5) · s + t) |t ∈
[
−s

2 ,
s

2

)}
,

θ∗
µ,i = (µ, σ + (i + 0.5) · s) ,

I = {(µ, i) |i ∈ N, µ ∈ R} ,

where s is a hyper-parameter of the mechanism that divides (σ − σ) and

t0 = arg min
t

√
1

2π
e− 1

2 t2
− t

(
1
2 − Φ (t)

)
.

.
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• Uniform:

Sm,i = {
(m− t, m + (i + 0.5) · s + t) |t ∈

(
− s

4 , s
4
]}

,

θ∗
m,i = (m, m + (i + 0.5) · s) ,

I = {(m, i) |i ∈ Z>0, m ∈ R} ,

where s > 0 is a hyper-parameter of the mechanism that divides (m−m).
• Exponential:

Si = [λ + i · s, λ + (i + 1) · s) ,

θ∗
i = λ + (i + 0.5) · s ,

I = N,

where s > 0 is a hyper-parameter of the mechanism that divides
(
λ− λ

)
.

• Shifted exponential:

Si,h =
{

(λ + (i + 0.5) s + t, h− ln 2 · t) |t ∈
[
−s

2 ,
s

2

)}
,

θ∗
i,h = (λ + (i + 0.5) s, h) ,

I = {(i, h)|i ∈ N, h ∈ R} ,

where s > 0 is a hyper-parameter of the mechanism that divides
(
λ− λ

)
.

These data release mechanisms achieve the following ∆ and Πϵ,ωΘ .
Proposition 8. Under Asm. 2, Mech. 4 has the following ∆ and Πϵ,ωΘ value/bound.

• Gaussian:

Πϵ,ωΘ <
2ϵ

s
+ |t0|s

µ− µ
,

∆ = s

2

√
2
π

e− 1
2 t2

0 − t0s

2 (1− 2Φ (t0)) <

(
2 + |t0|s2(

µ− µ
)

ϵ

)
∆opt,

where t0 is defined in Mech. 4. Under the “high-precision” regime where s2

µ−µ → 0 as s, (µ − µ) → ∞, ∆
satisfies

lim sup
s2

µ−µ
→0

∆ < 3∆opt.

• Uniform:

Πϵ,ωΘ <
4
√

3ϵ

s
+ s

(m−m) + s2

2 (m−m)2 ,

∆ = s

8 <

(
2 + s

2
√

3ϵ
·

(
s

m−m
+ s2

2 (m−m)2

))
∆opt.

Under the “high-precision” regime where s2

m−m → 0 as s, (m−m)→∞, ∆ satisfies

lim sup
s2

m−m
→0

∆ < 3∆opt.

• Exponential:

Πϵ,ωΘ = 2ϵ

s
,

∆ = 1
2s < 2∆opt.
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• Shifted exponential:

Πϵ,ωΘ <
2ϵ

s
+ s ln 2

h− h
,

∆ = s ln 2
2 <

(
2 + s2 ln 2

ϵ
(
h− h

))∆opt.

Under the “high-precision” regime where s2

h−h
→ 0 as s, (h− h)→∞, ∆ satisfies

lim sup
s2

h−h
→0

∆ < 3∆opt.

The proof is in App. G.4. For Gaussian, exponential and shifted exponential distributions, we relax Asm. 2
and analyze the privacy-distortion performance of Mech. 4 in App. G.5. From these propositions, we have
similar takeaways as the alpha-quantile case ( §6.2): (1) data holder can use s to control the trade-off between
distortion and privacy, and (2) the mechanism is order-optimal under the “high-precision” regime.

G.2 Discrete Distributions

Here, we consider the same discrete distributions studied in App. E: Geometric distributions, binomial
distributions, and Poisson distributions. We first analyze the lower bound.
Corollary 6 (Privacy lower bound, secret = standard deviation of a discrete distribution). Consider the
secret function g (θ) = standard deviation of fXθ

. For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T , we have ∆ >(
⌈ 1

T ⌉ − 1
)
· 2γϵ, where the value of γ depends on the type of the distributions:

• Geometric:

γ = inf
θ<θ1<θ2≤θ

(1− θ2)h(θ1,θ2) − (1− θ1)h(θ1,θ2)

2
(√

1−θ2
θ2
−

√
1−θ1
θ1

) ,

where h (θ1, θ2) = ⌊ log(θ2)−log(θ1)
log(1−θ1)−log(1−θ2)⌋+ 1.

• Binomial:

γ = inf
θ<θ1<θ2≤θ

I1−θ2 (n−h(θ1,θ2),1+h(θ1,θ2))−I1−θ1 (n−h(θ1,θ2),1+h(θ1,θ2))
2
∣∣√nθ2(1−θ2)−

√
nθ1(1−θ1)

∣∣ ,

where h (θ1, θ2) = ⌊k′⌋, k′ = n ln
(

1−θ2
1−θ1

)/
ln
(

θ1(1−θ2)
θ2(1−θ1)

)
, and I represents the regularized incomplete beta

function.
• Poisson:

γ = inf
θ<θ1<θ2≤θ

Q (h (θ1, θ2) , θ2)−Q (h (θ1, θ2) , θ1)
2
(√

θ1 −
√

θ2
) ,

where h (θ1, θ2) = ⌊ θ1−θ2
ln(θ1)−ln(θ2)⌋+ 1 and Q is the regularized gamma function.

The proof is in App. G.6. The above lower bounds can be computed numerically.

Since these distributions only have one parameter, we can use Alg. 1 and Alg. 3 to derive a data release
mechanism. The performance of greedy-based and dynamic-programming-based data release mechanisms
for each distribution is shown in Fig. 14.
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Figure 14: Privacy-distortion performance of Alg. 1 and Alg. 3 for binomial and Poisson distribution when
secret = standard deviation.

G.3 Proof of Corollary 5

G.3.1 Gaussian Distribution

Proof. Let Xµ1,σ2 , Xµ2,σ2 be two Gaussian random variables with means µ1, µ2 and sigmas σ1, σ2 respectively,
where σ1 ̸= σ2. Let Φ denotes the CDF of the standard Gaussian distribution. We can get that

D (Xµ1,σ1 , Xµ2,σ2) = (µ1 − µ2)
(

Φ
(

µ1 − µ2

σ2 − σ1

)
− 1

2

)
+
√

1
2π

(σ2 − σ1) e
− 1

2

(
µ1−µ2
σ2−σ1

)2

,

R (Xµ1,σ1 , Xµ2,σ2) = |σ1 − σ2|.

Let µ1−µ2
σ1−σ2

≜ t, we can get that

D (Xµ1,σ1 , Xµ2,σ2)
R (Xµ1,σ1 , Xµ2,σ2) =

√
1

2π
e− 1

2 t2
− t

(
1
2 − Φ (t)

)
≜ h (t) .

Therefore we can get that

γ = min
t

h (t) .

G.3.2 Uniform Distribution

Proof. Let Xm1,n1 , Xm2,n2 be two uniform random variables. Let FXm1,n1
, FXm2,n2

be their CDFs, and let
m2 ≥ m1 without loss of generality. We can get that

D (Xm1,n1 , Xm2,n2) = 1
2dWasserstein-1

(
ωXm1,n1

∥ωXm2,n2

)
= 1

2

∫ +∞

−∞
|FXm1,n1

(x)− FXm2,n2
(x)|dx

=
{

m2−m1+n2−n1
4 n2 ≥ n1

(m2−m1)2+(n1−n2)2

4(m2−m1+(n1−n2)) n2 < n1
,

R (Xm1,n1 , Xm2,n2) =
∣∣∣∣ 1√

12
(n1 −m1)− 1√

12
(n2 −m2)

∣∣∣∣
= 1√

12
|m2 −m1 − (n2 − n1)|.

54



Under review as submission to TMLR

Therefore, we can get that when n2 ≥ n1, we have

D (Xm1,n1 , Xm2,n2)
R (Xm1,n1 , Xm2,n2) =

√
3

2
m2 −m1 + n2 − n1

|m2 −m1 − (n2 − n1)|

≥
√

3
2 .

When n2 < n1, we have

D (Xm1,n1 , Xm2,n2)
R (Xm1,n1 , Xm2,n2) =

√
3

2
(m2 −m1)2 + (n1 − n2)2

(m2 −m1 + (n1 − n2))2

=
√

3
2

(m2 −m1)2 + (n1 − n2)2

(m2 −m1)2 + (n1 − n2)2 + 2 (m2 −m1) (n1 − n2)

≥
√

3
2 ·

(m2 −m1)2 + (n1 − n2)2

2
[
(m2 −m1)2 + (n1 − n2)2

]
=
√

3
4 .

Therefore we can get that

γ =
√

3
4 .

G.3.3 Exponential Distribution

Proof. Let Xλ1 , Xλ2 be two exponential random variables. We have

D (Xλ1 , Xλ2)
R (Xλ1 , Xλ2) =

1
λ1
− 1

λ2

2
(

1
λ1
− 1

λ2

) = 1
2 .

Therefore we can get that

γ = 1
2 .

G.3.4 Shifted Exponential Distribution

Proof. Let Xλ1,h1 , Xλ2,h2 be random variables from shifted exponential distributions. Let λ2 ≤ λ1 without
loss of generality. Let a = λ1

λ2
and b = (h1/λ1 − h2/λ2) λ2. We can get that fXλ1,h1

(x) = afXλ2,h2
(a (x + b)),

and

D (Xλ1,h1 , Xλ2,h2) = 1
2dWasserstein-1

(
ωXλ1,h1

∥ωXλ2,h2

)
= 1

2

∫ +∞

h1

∣∣∣x− (x

a
− b
)∣∣∣ fXλ1,h1

(x) dx

= λ2

2λ1

∫ +∞

h1

|(1/λ2 − 1/λ1) x + h1/λ1 − h2/λ2| e− 1
λ1

(x−h1)dx

=
{

1
2 (h2 − h1 + λ2 − λ1)− e

h2−h1
λ2−λ1 (λ2 − λ1) (h1 < h2)

1
2 (h1 − h2 + λ1 − λ2) (h1 ≥ h2)

,

R (Xλ1,h1 , Xλ2,h2) = λ1 − λ2. (24)
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When λ1 = λ2 and h1 ̸= h2, we have D(Xλ1,h1 ,Xλ2,h2)
R(Xλ1,h1 ,Xλ2,h2) =∞.

When λ1 ̸= λ2 and h1 < h2, let t = h2−h1
λ1−λ2

∈ (0, +∞). We have

D (Xλ1,h1 , Xλ2,h2)
R (Xλ1,h1 , Xλ2,h2) = h2 − h1 + λ2 − λ1 − 2e

h2−h1
λ2−λ1 (λ2 − λ1)

2 (λ1 − λ2)

= t + 2e−t − 1
2

≥ ln 2
2 .

“=” achieves when t = t0 = ln 2.

When λ1 ̸= λ2 and h1 ≥ h2, we have
D (Xλ1,h1 , Xλ2,h2)
R (Xλ1,h1 , Xλ2,h2) = h1 − h2 + λ1 − λ2

2 (λ1 − λ2) ≥ λ1 − λ2

2 (λ1 − λ2) = 1
2 .

Therefore we can get that
γ = ln 2

2 .

G.4 Proof of Prop. 8

The proof outline is almost the same as the ones in App. C.4 and App. F.2. We omit the details and point
to the proof sections where we can adapt from.

G.4.1 Gaussian Distribution

The proof is the same as App. F.2.1, except that we use the D (·, ·) and R (·, ·) from App. G.3.1.

G.4.2 Uniform Distribution

The proof is the same as App. F.2.2, except that we use the D (·, ·) and R (·, ·) from App. G.3.2.

G.4.3 Exponential Distribution

The proof is the same as App. C.4.1, except that we use the D (·, ·) and R (·, ·) from App. G.3.3.

G.4.4 Shifted Exponential Distribution

The proof is the same as App. C.4.2, except that we use the D (·, ·) and R (·, ·) from App. G.3.4.

G.5 Privacy-Distortion Performance of Mech. 4 with Relaxed Assumption

Based on Asm. 6 and Asm. 4, the Privacy-distortion performance of Mech. 4 is shown below.
Proposition 9. Under Asm. 6 and Asm. 4, Mech. 4 has the following ∆ and Πϵ,ωΘ value/bound.

• Gaussian:

∆ = s

2

√
2
π

e− 1
2 t2

0 − t0s

2 (1− 2Φ (t0)) ,

Πϵ,ωΘ <
2ϵ ·

[
c + Lµ,σ

(
s
2 − t∗ − ϵ

)]
cs + Lµ,σ

2
(

s
2 − t∗

)2 +

M

(
µ− µ,

kµ

µ− µ
,Lµ, 1

)
·M

(
σ − σ,

kσ

σ − σ
,Lσ, 1

)
· (σ − σ) |t0|s,
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where t0 is defined in Mech. 4, c = kµkσ

(µ−µ)·(σ−σ)
, function M satisfies

M (x, c,L,A) =
{

A
x + Lx

2 , if c ≤ A
x −

Lx
2

c +
√

2L (A− cx), if c > A
x −

Lx
2

,

Lµ,σ = LσM
(

µ−µ

|t0| ,
kµ

µ−µ
, |t0|Lµ, 1

|t0|

)
+|t0|LµM

(
σ − σ, kσ

σ−σ
, Lσ, 1

)
, and t∗ = s

2 + c
Lµ,σ
−ϵ−

√(
c

Lµ,σ
− ϵ
)2

+ 2cs
Lµ,σ

.

• Exponential:

∆ = 1
2s,

Πϵ,ωΘ ≤
2ϵ · [c + L (s− x∗ + ϵ)]

cs + L
2 (s− x∗)2 ,

where x∗ = s + c
L + ϵ−

√( c
L + ϵ

)2 + 2cs
L .

• Shifted exponential:

∆ = s ln 2
2 ,

Πϵ,ωΘ <
2ϵ ·

[
c + Lλ,h

(
s
2 − t∗ − ϵ

)]
cs + Lλ,h

2
(

s
2 − t∗

)2 +

ln 2 ·M
(

h− h,
kh

h− h
,Lh, 1

)
·M

(
λ− λ,

kλ

λ− λ
,Lλ, 1

)
·
(
λ− λ

)
s,

where c = khkλ

(h−h)·(λ−λ) , function M satisfies

M (x, c,L,A) =
{

A
x + Lx

2 , if c ≤ A
x −

Lx
2

c +
√

2L (A− cx), if c > A
x −

Lx
2

,

Lλ,h = LλM
(

h−h

ln 2 , kh

h−h
, ln 2 · Lh, 1

ln 2

)
+ ln 2 · LhM

(
λ − λ, kλ

λ−λ
, Lλ, 1

)
, and t∗ = s

2 + c
Lλ,h

− ϵ −√(
c

Lλ,h
− ϵ
)2

+ 2cs
Lλ,h

.

The proofs are the same as App. F.3, App. D.2.1 and App. D.2.2, except that we use the D (·, ·), and R (·, ·)
from App. G.3.1, App. G.3.3, and App. G.3.4.

G.6 Proof of Corollary 6

G.6.1 Geometric Distribution

Proof. Let Xθ1 and Xθ2 be two Geometric random variables with parameters θ1 and θ2 respectively. We
assume that θ1 > θ2 without loss of generality. Let k′ satisfy (1− θ1)k′

θ1 = (1− θ2)k′
θ2 and k0 = ⌊k′⌋+ 1.

Then we can get that

D (Xθ1 , Xθ2) = 1
2dTV

(
ωXθ1

∥ωXθ2

)
= 1

2 (1− θ2)k0 − 1
2 (1− θ1)k0 ,

R (Xθ1 , Xθ2) =
√

1− θ2

θ2
−
√

1− θ1

θ1
.
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Therefore, we can get that

γ = inf
θ<θ1<θ2≤θ

(1− θ2)k0 − (1− θ1)k0

2
(√

1−θ2
θ2
−

√
1−θ1
θ1

) .

G.6.2 Binomial Distribution

Proof. Let Xθ1 and Xθ2 be two binomial random variables with parameters θ1 and θ2 respectively with fixed
number of trials n. We assume that θ1 > θ2 without loss of generality. Let k′ satisfy

(
n
k′

)
θk′

1 (1− θ1)n−k′
=(

n
k′

)
θk′

2 (1− θ1)n−k′
and k0 = ⌊k′⌋. We can get that

D (Xθ1 , Xθ2) = 1
2dTV

(
ωXθ1

∥ωXθ2

)
= 1

2I1−θ2 (n− k0, 1 + k0)− 1
2I1−θ1 (n− k0, 1 + k0) ,

R (Xθ1 , Xθ2) =
∣∣∣√nθ2 (1− θ2)−

√
nθ1 (1− θ1)

∣∣∣ ,
where I represents the regularized incomplete beta function.

Therefore, we can get that

γ = inf
θ<θ1<θ2≤θ

I1−θ2 (n− k0, 1 + k0)− I1−θ1 (n− k0, 1 + k0)∣∣∣√nθ2 (1− θ2)−
√

nθ1 (1− θ1)
∣∣∣ .

G.6.3 Poisson Distribution

Proof. Let Xθ1 and Xθ2 be two Poisson random variables with parameters θ1 and θ2 respectively. We assume
that θ1 > θ2 without loss of generality. Let k′ satisfy θk′

1 e−θ1 = θk′

2 e−θ2 and k0 = ⌊k′⌋+ 1. Then we can get
that

D (Xθ1 , Xθ2) = 1
2dTV

(
ωXθ1

∥ωXθ2

)
= 1

2Q (k0, θ2)− 1
2Q (k0, θ1) ,

R (Xθ1 , Xθ2) =
√

θ1 −
√

θ2,

where Q is the regularized gamma function.

Therefore, we can get that

γ = inf
θ<θ1<θ2≤θ

Q (k0, θ2)−Q (k0, θ1)
2
(√

θ1 −
√

θ2
) .

H Case Study with Secret = Fraction

As indicated in S1 in §2.1, the fraction of discrete distributions can reveal sensitive information. In this
section, we first present the results for ordinal distributions, where there is a specific formula for the fractions
at each bin (i.e., binomial, Poisson, geometric that we discussed in Apps. E and G.2). We then present the
results for categorical distributions, where there is no constraint on the fractions of the bins so long as they
are normalized.
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H.1 Ordinal Distribution

Here, we consider the same three discrete distributions studied in Apps. E and G.2: geometric distributions,
binomial distributions, and Poisson distributions. We first analyze the lower bound. We assume that the
secrete is the fraction of the j-th bin.
Corollary 7 (Privacy lower bound, secret = fraction of an ordinal distribution). Consider the secret function
g (θ) = fXθ

(j). For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T , we have ∆ >
(
⌈ 1

T ⌉ − 1
)
· 2γϵ, where the value of γ

depends on the type of the distributions:

• Geometric:

γ = inf
θ<θ1<θ2≤θ

(1− θ2)h(θ1,θ2) − (1− θ1)h(θ1,θ2)

2
∣∣∣(1− θ2)j

θ2 − (1− θ1)j
θ1

∣∣∣ ,

where h (θ1, θ2) = ⌊ log(θ2)−log(θ1)
log(1−θ1)−log(1−θ2)⌋+ 1.

• Binomial:

γ = inf
θ<θ1<θ2≤θ

I1−θ2 (n−h(θ1,θ2),1+h(θ1,θ2))−I1−θ1 (n−h(θ1,θ2),1+h(θ1,θ2))
2|(n

j)θj
2(1−θ2)n−j−(n

j)θj
1(1−θ1)n−j| ,

where h (θ1, θ2) = ⌊k′⌋, k′ = n ln
(

1−θ2
1−θ1

)/
ln
(

θ1(1−θ2)
θ2(1−θ1)

)
, and I represents the regularized incomplete beta

function.
• Poisson:

γ = inf
θ<θ1<θ2≤θ

Q (h (θ1, θ2) , θ2)−Q (h (θ1, θ2) , θ1)

2
∣∣∣ θj

1e−θ1

j! − θj
2e−θ2

j!

∣∣∣ ,

where h (θ1, θ2) = ⌊ θ1−θ2
ln(θ1)−ln(θ2)⌋+ 1 and Q is the regularized gamma function.

The proof is in App. H.3. The above lower bounds can be computed numerically.

Since these distributions only have one parameter, we can use Alg. 1 and Alg. 3 to derive a data release
mechanism. The performance of greedy-based and dynamic-programming-based data release mechanisms
for each distribution is shown in Fig. 15.
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Figure 15: Privacy-distortion performance of Alg. 1 and Alg. 3 for geometric, binomial and Poisson distri-
bution when secret = fraction.

H.2 Categorical Distribution

In this section, we consider categorical distributions where the fraction of each bin can be changed freely (as
long as they are normalized). We assume that θ = (p1, p2, . . . , pC) s.t. pi ∈ [0, 1] ∀i ∈ [C] and

∑
i pi = 1.
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Note that this is completely different from the distributions discussed in App. H.1 where the parameter of
the distribution is one-dimensional.

We first analyze the lower bound. Without loss of generality, we assume that we want to protect the fraction
of the j-th bin, i.e. pj .
Corollary 8 (Privacy lower bound, secret = fraction of a general discrete distribution). Consider the secret
function g (θ) = p1. For any T ∈ (0, 1), when Πϵ,ωΘ ≤ T , we have ∆ >

(
⌈ 1

T ⌉ − 1
)
· ϵ.

The proof is in App. H.4. Next, we present the data release mechanism under the following assumption.
Assumption 7. The prior distribution of (p1, . . . , pC) is a uniform distribution over all the probability
simplex {(p1, . . . , pC)|pi ∈ [0, 1) ∀i ∈ [C] and

∑
i pi = 1}.

Mechanism 5 (For secret = fraction of a categorical distribution). The parameters of the mechanism are
as follows.

Sp1,...,pC
=
{(

p1 −
t

C − 1 , . . . , pj−1 −
t

C − 1 , pj + t,

pj+1 −
t

C − 1 , . . . , pC −
t

C − 1

)∣∣∣∣t ∈ [−s

2 ,
s

2

)}
,

θ∗
p1,...,pC

=
(

p1 − T, . . . , pj−1 − T, pj + (C − 1) T,

pj+1 − T, . . . , pC+1 − T

)
,

where T = min {p1, . . . , pj−1, pj+1, . . . , pC , 0}, and

I =
{

(p1, . . . , pC)
∣∣∣∣∀i pi ∈

(
− s

2 (C − 1) , 1
]

,
∑

i

pi = 1,

pj = (k + 0.5) s, where k ∈ {0, 1, . . . , C − 1}
}

.

Here s > 0 is a hyper-parameter of the mechanism that divides 1.

This data release mechanism achieves the following privacy-distortion trade-off.
Proposition 10. Under Asm. 7, Mech. 5 has the following Πϵ,ωΘ and ∆ value/bound.

Πϵ,ωΘ <
2ϵ

s
+ 1−

(
1− s

C − 1

)C−1
,

∆ = s

2 <
(

2 + s

ϵ

)
∆opt.

Under the regime sup (s)→ Aϵ, where A is a constant larger than 2, ∆ satisfies

lim
sup(s)→Aϵ

∆ < (2 +A)∆opt.

∆opt is the minimal distortion an optimal data release mechanism can achieve given the privacy Mech. 5
achieves.

The proof is in App. H.5. To ensure that Πϵ,ωΘ < 1, s should satisfy s > 2ϵ. According to Prop. 10, the
mechanism is order-optimal with multiplicative factor 2 +A when sup (s)→ Aϵ, where A > 2.

H.3 Proof of Corollary 7

H.3.1 Geometric Distribution

Proof. Let Xθ1 and Xθ2 be two Geometric random variables with parameters θ1 and θ2 respectively. We
assume that θ1 > θ2 without loss of generality. Let k′ satisfy (1− θ1)k′

θ1 = (1− θ2)k′
θ2 and k0 = ⌊k′⌋+ 1.
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Then we can get that

D (Xθ1 , Xθ2) = 1
2dTV

(
ωXθ1

∥ωXθ2

)
= 1

2 (1− θ2)k0 − 1
2 (1− θ1)k0 ,

R (Xθ1 , Xθ2) =
∣∣∣(1− θ2)j

θ2 − (1− θ1)j
θ1

∣∣∣ .
Therefore, we can get that

γ = inf
θ<θ1<θ2≤θ

(1− θ2)k0 − (1− θ1)k0

2
∣∣∣(1− θ2)j

θ2 − (1− θ1)j
θ1

∣∣∣ .

H.3.2 Binomial Distribution

Proof. Let Xθ1 and Xθ2 be two binomial random variables with parameters θ1 and θ2 respectively with fixed
number of trials n. We assume that θ1 > θ2 without loss of generality. Let k′ satisfy

(
n
k′

)
θk′

1 (1− θ1)n−k′
=(

n
k′

)
θk′

2 (1− θ2)n−k′
and k0 = ⌊k′⌋. We can get that

D (Xθ1 , Xθ2) = 1
2dTV

(
ωXθ1

∥ωXθ2

)
= 1

2I1−θ2 (n− k0, 1 + k0)− 1
2I1−θ1 (n− k0, 1 + k0) ,

R (Xθ1 , Xθ2) = n (θ1 − θ2) ,

where I represents the regularized incomplete beta function.

Therefore, we can get that

γ = inf
θ<θ1<θ2≤θ

I1−θ2 (n− k0, 1 + k0)− I1−θ1 (n− k0, 1 + k0)
2
∣∣∣(n

j

)
θj

2 (1− θ2)n−j −
(

n
j

)
θj

1 (1− θ1)n−j
∣∣∣ .

H.3.3 Poisson Distribution

Proof. Let Xθ1 and Xθ2 be two Poisson random variables with parameters θ1 and θ2 respectively. We assume
that θ1 > θ2 without loss of generality. Let k′ satisfy θk′

1 e−θ1 = θk′

2 e−θ2 and k0 = ⌊k′⌋+ 1. Then we can get
that

D (Xθ1 , Xθ2) = 1
2dTV

(
ωXθ1

∥ωXθ2

)
= 1

2Q (k0, θ2)− 1
2Q (k0, θ1) ,

R (Xθ1 , Xθ2) =

∣∣∣∣∣θj
1e−θ1

j! − θj
2e−θ2

j!

∣∣∣∣∣ ,
where Q is the regularized gamma function.

Therefore, we can get that

γ = inf
θ<θ1<θ2≤θ

Q (k0, θ2)−Q (k0, θ1)

2
∣∣∣ θj

1e−θ1

j! − θj
2e−θ2

j!

∣∣∣ .
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H.4 Proof of Corollary 8

Proof. Let Xp1
1,p1

2,...,p1
C

and Xp2
1,p2

2,...,p2
C

be two categorical random variables. We have

D
(

Xp1
1,p1

2,...,p1
C

, Xp2
1,p2

2,...,p2
C

)
= 1

2dTV

(
ωXp1

1,p1
2,...,p1

C

∥ωXp2
1,p2

2,...,p2
C

)
≥ 1

2
∣∣p1

j − p2
j

∣∣ , (25)

R
(

Xp1
1,p1

2,...,p1
C

, Xp2
1,p2

2,...,p2
C

)
=
∣∣p1

j − p2
j

∣∣ .

Therefore, we can get that

γ ≥ 1
2 .

H.5 Proof of Prop. 10

Proof. We first focus on the proof for Πϵ,ωΘ .

We separate the space of possible data parameters into two regions: S1 =
{

(p1, . . . , pC)|pi ∈[
s

2(C−1) , 1 − s
2(C−1)

]
∀i ∈ [C] and

∑
i
pi = 1

}
and S2 = {(p1, . . . , pC)|pi ∈ [0, 1) ∀i ∈ [C] and

∑
i pi = 1} \ S1.

The high-level idea of our proof is as follows. Note that for any parameter θ ∈ S1, there exists a Sp1,...,pC

s.t. θ ∈ Sp1,...,pC
and Sp1,...,pC

⊂ S1. Therefore, we can bound the attack success rate if θ ∈ S1. At the same
time, the probability of θ ∈ S2 is bounded. Therefore, we can bound the overall attacker’s success rate (i.e.,
Πϵ,ωΘ). More specifically, let the optimal attacker be ĝ∗. We have

Πϵ,ωΘ = P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ])

=
∫

θ∈S1

p(θ)P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) dθ

+
∫

θ∈S2

p(θ)P (ĝ∗ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]) dθ

<
2ϵ

s
+
(

1−
(

1− s

C − 1

)C−1
)

.
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Figure 16: Histogram of salary dataset.

For the distortion, it is straightforward to get that ∆ = s
2 from Eq. (25), and ∆opt >

(
⌈ 1

Πϵ,ωΘ
⌉ − 1

)
· ϵ ≥ ϵ

from Corollary 2. We can get that
(

Πϵ,ωΘ −
(

1−
(

1− s
C−1

)C−1
))
·∆ = ϵ and

∆ = ∆opt + ∆−∆opt

< ∆opt + ∆−
(
⌈ 1

Πϵ,ωΘ

⌉ − 1
)
· ϵ

≤ ∆opt + ϵ + ∆− ϵ

Πϵ,ωΘ

= ∆opt + ϵ +

(
1−

(
1− s

C−1

)C−1
)

2ϵ
s +

(
1−

(
1− s

C−1

)C−1
) ·∆

=
(

1 + s

2ϵ

(
1−

(
1− s

C − 1

)C−1
))

(∆opt + 2γϵ)

≤

(
2 + s

ϵ

(
1−

(
1− s

C − 1

)C−1
))

∆opt

<
(

2 + s

ϵ

)
∆opt.

I Additional Results

In this section, we provide additional results on how released data from our mechanisms can support down-
stream applications.

We consider the salaries from people with Master’s and PhD degrees in this Kaggle dataset https://www.
kaggle.com/datasets/rkiattisak/salaly-prediction-for-beginer. We plot its histogram in Fig. 16.
We can see that there are two peaks. They correspond to people with age<=40 and age>40 (see Fig. 17).

Assume the goal is to release this dataset and preserve the salary difference between people with age<=40
and age>40, while protecting the mean salaries. We can apply our mechanism for mean (§6.3) on this
dataset. The histogram of the released data is shown in Fig. 18. Data receivers can obtain the salary
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Figure 17: Histogram of salary dataset for people with age <= 40 and > 40.
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Figure 18: Histogram of salary dataset for applying the mechanism in §6.3.

difference between people with age<=40 and age>40 accurately by computing the difference between the
two peaks, while the mean salaries are protected under our mechanism.

Here we use the salary difference between people with age<=40 and age>40 as an example. In general, any
downstream tasks that depend only on the “shape” of the distribution will not be affected by our mechanism,
since our mechanism shifts all samples by the same amount.
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