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Abstract

Despite the notable success of language mod-001
els (LMs) in various natural language process-002
ing (NLP) tasks, the reliability of LMs is sus-003
ceptible to backdoor attacks. Prior research004
attempts to mitigate backdoor learning while005
training the LMs on the poisoned dataset, yet006
struggles against complex backdoor attacks in007
real-world scenarios. In this paper, we investi-008
gate the learning mechanisms of backdoor LMs009
in the frequency space by Fourier analysis. Our010
findings indicate that the backdoor mapping011
presented on the poisoned datasets exhibits a012
more discernible inclination towards lower fre-013
quency compared to clean mapping, resulting014
in the faster convergence of backdoor mapping.015
To alleviate this dilemma, we propose Multi-016
Scale Low-Rank Adaptation (MuScleLoRA),017
which deploys multiple radial scalings in the018
frequency space with low-rank adaptation to019
the target model and further aligns the gradi-020
ents when updating parameters. Through down-021
scaling in the frequency space, MuScleLoRA022
encourages the model to prioritize the learn-023
ing of relatively high-frequency clean mapping,024
consequently mitigating backdoor learning. Ex-025
perimental results demonstrate that MuScle-026
LoRA outperforms baselines significantly. No-027
tably, MuScleLoRA reduces the average suc-028
cess rate of diverse backdoor attacks to below029
15% across multiple datasets and generalizes030
to various backbone LMs, including BERT,031
RoBERTa, and Llama2. The codes are pub-032
licly available at Anonymous.033

1 Introduction034

Despite the remarkable achievements of language035

models (LMs) in various natural language pro-036

cessing (NLP) tasks (Devlin et al., 2019; Touvron037

et al., 2023), concerns arise due to the lack of in-038

terpretability in the internal mechanisms of LMs,039

impacting their reliability and trustworthiness. A040

particular security threat to LMs is backdoor at-041

tack (Liu et al., 2018; Chen et al., 2017). Backdoor042

attack poisons a small portion of the training data 043

by implanting specific text patterns (known as trig- 044

gers). Trained on the poisoned dataset, the target 045

LM performs maliciously when processing samples 046

containing the triggers, while behaving normally 047

when processing clean text. 048

Prior works attempt to mitigate backdoor learn- 049

ing during training the target LM on the poisoned 050

dataset (Zhu et al., 2022; Zhai et al., 2023). How- 051

ever, due to the stealthy nature of complex triggers 052

in real-world scenarios, most existing defense meth- 053

ods fail to mitigate backdoor learning from such 054

triggers, like specific text style (Qi et al., 2021b) or 055

syntax (Qi et al., 2021c). To better understand back- 056

door learning, we explore the learning mechanisms 057

of LMs in the frequency space on the poisoned 058

datasets through Fourier analysis.1 The findings 059

indicate that the backdoor mapping presented on 060

the poisoned datasets exhibits a stronger inclina- 061

tion towards lower frequency compared to clean 062

mapping. According to the extensively studied F- 063

Principle (Xu et al., 2020; Xu and Zhou, 2021; 064

Rahaman et al., 2019), which suggests that deep 065

neural networks (DNNs) tend to fit the mapping 066

from low to high frequency during training, these 067

results explain why backdoor mapping is notably 068

easier to discern and converges faster for LMs. 069

Inspired by the observation and thought above, 070

we propose a general backdoor defense method 071

named Multi-Scale Low-Rank Adaptation (MuS- 072

cleLoRA) to further mitigate backdoor learning. 073

MuScleLoRA integrates multiple radial scalings 074

in the frequency space with low-rank adaptation 075

to the target LM and aligns gradients during pa- 076

rameter updates. By downscaling in the frequency 077

space, MuScleLoRA encourages LMs to prioritize 078

relatively high-frequency clean mapping, thereby 079

mitigating learning the backdoor on the poisoned 080

1Details are provided in Section 3. In this paper, frequency
denotes the frequency of input-output mapping, rather than
input frequency (Xu et al., 2020; Zeng et al., 2021).
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dataset while enhancing clean learning. Experi-081

mental results across multiple datasets and model082

architectures demonstrate the efficacy and general-083

ity of MuScleLoRA in defending against diverse084

backdoor attacks compared to baselines.085

Specifically, we concentrate on the scenario086

where (1) the attacker poisons and releases the087

dataset on open third-party platforms, without gain-088

ing control of the downstream training; (2) the de-089

fender downloads the poisoned dataset and deploys090

the defense method to train the target LM, main-091

taining complete control of the training process.092

Our contributions are summarized as follows:093

(1) We conduct Fourier analyses to investigate094

the mechanisms of backdoor learning, revealing095

why backdoor mapping is notably easier to discern096

for LMs compared to clean mapping. To the best097

of our knowledge, this is the first work that ex-098

plores the mechanisms of backdoor learning from099

the perspective of Fourier analysis and transfers100

these insights into backdoor defense strategies.101

(2) Inspired by our findings in the frequency102

space, we propose a general backdoor defense103

method named MuScleLoRA, which integrates104

multiple radial scalings in the frequency space with105

low-rank adaptation to the target LM, and further106

aligns the gradient when updating parameters.107

(3) We conduct experiments across several108

datasets and model architectures, including BERT,109

RoBERTa, and Llama2, to validate the efficacy and110

generality of MuScleLoRA in backdoor mitigation.111

Compared to baseline methods, MuScleLoRA con-112

sistently demonstrates its capability to effectively113

defend against diverse backdoor attacks.114

2 Related Works115

In this section, we cover related works that form the116

basis of this work from four perspectives: backdoor117

attack, backdoor defense, learning mechanisms of118

DNNs, and parameter-efficient tuning (PET).119

Backdoor Attack. Backdoor learning seeks to120

exploit the extra capacity (Zhu et al., 2023) of over-121

parameterized (Han et al., 2016) LMs to establish122

a robust mapping between predefined triggers and123

the target label. One typical way to conduct back-124

door attacks is dataset poisoning (Chen et al., 2017).125

Recent studies for trigger implantation include in-126

serting specific words (Kurita et al., 2020) or sen-127

tences (Dai et al., 2019) that use shallow semantic128

features. Additionally, high-level semantics, like129

specific syntax (Qi et al., 2021c) and text style (Qi130

et al., 2021b), are utilized as complex triggers. 131

Backdoor Defense. Backdoor defense aims to 132

mitigate potential backdoors in victim LMs and 133

is categorized into training-stage and post-training 134

defense. During training, the defender can per- 135

form poisoned weight removal (Zhang et al., 2022, 136

2023c; Liu et al., 2023), regularized training (Zhu 137

et al., 2022; Zhai et al., 2023), and dataset puri- 138

fying (Chen and Dai, 2021; Cui et al., 2022; Jin 139

et al., 2022) to mitigate backdoor learning. After 140

training, the defender can employ trigger inversion 141

(Azizi et al., 2021; Shen et al., 2022; Liu et al., 142

2022), trigger detection (Qi et al., 2021a; Shao 143

et al., 2021), and poison input detection (Gao et al., 144

2021; Yang et al., 2021) to discriminate potential 145

backdoors. Our proposed MuScleLoRA falls under 146

regularized training, mitigating backdoor learning 147

without detailed inspection of data distribution. Pre- 148

vious work (Zhu et al., 2022) attempts to reduce the 149

model capacity by PET methods to mitigate back- 150

door learning. However, straightforward model ca- 151

pacity reduction with PET methods requires metic- 152

ulously designed hyperparameters against different 153

attacks and still struggles against complex stealthy 154

triggers, like specific syntax (Qi et al., 2021c). 155

Learning Mechanisms of DNNs and Backdoor 156

LMs. Extensive research focuses on revealing the 157

learning mechanisms of DNNs. Recent studies 158

shed light on these mechanisms through Fourier 159

analysis (Rahaman et al., 2019). By transforming 160

the input-output mapping into the frequency space, 161

the findings suggest that, owing to the decay of ac- 162

tivation functions in the frequency space (Xu et al., 163

2020), DNNs tend to fit the mapping from low to 164

high frequency during training. Besides, deeper 165

DNNs exhibit a stronger low-frequency bias (Xu 166

and Zhou, 2021). Empirical studies also confirm 167

that backdoor learning converges notably faster 168

than clean mapping (Li et al., 2021; Gu et al., 2023; 169

Zhang et al., 2023b), hinting at a low-frequency 170

bias of the backdoor in the frequency space. 171

Parameter-Efficient Tuning. Recently, PET 172

emerges as a novel training paradigm for LMs. PET 173

achieves comparable performance to fine-tuning by 174

freezing the original parameters and introducing 175

tunable modules with fewer parameters, such as 176

parallel low-rank decompositions (Hu et al., 2022), 177

sequential linear layers (Houlsby et al., 2019), and 178

a sequence of continuous task-specific vectors (Li 179

and Liang, 2021). Consequently, PET can reduce 180

the extra capacity of LMs, thereby partially miti- 181

gating backdoor learning (Zhu et al., 2022). 182
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Figure 1: Frequency ratios of clean and backdoor map-
ping during training BERTBase on poisoned SST-2.

3 Pilot Experiments183

In this section, we conduct pilot experiments on the184

poisoned dataset, investigating the learning mech-185

anisms of LMs in the frequency space from the186

perspective of Fourier analysis.187

Intuitively, the implanted triggers on the poi-188

soned dataset represent a straightforward recurring189

feature that LMs can easily discern. A recent empir-190

ical study observes faster convergence of backdoor191

mapping loss compared to clean mapping during192

training LM on the poisoned dataset (Gu et al.,193

2023). To explain this observed convergence differ-194

ence, we conduct Fourier analyses on the training195

process of the backdoor LM.196

Following the settings of Kurita et al. (2020)197

and Dai et al. (2019), we select specific words, i.e.,198

cf, mn, bb, tq, and a sentence, i.e., I watch this199

3D movie, as respective triggers to poison SST-200

2 (Socher et al., 2013). We choose BERTBase as201

the target LM and train it on the poisoned datasets.202

Concurrently, we conduct filtering-based Fourier203

transformation (Xu et al., 2020) (details are pro-204

vided in Appendix A) to the mapping F : RL×d →205

RC ,F(e) = y that the LM fits during training.206

Here e ∈ RL×d, y ∈ RC , L, d, and C denote207

input embedding, output logits, input text length,208

embedding dimension, and the number of cate-209

gories, respectively. We decompose the mapping210

into clean mapping and backdoor mapping by uti-211

lizing clean and poisoned inputs, extracting their re-212

spective low-frequency part ylow
clean, y

low
backdoor ∈ RC213

and high-frequency part yhigh
clean, y

high
backdoor ∈ RC .214

First, we calculate the low-frequency ratio (LFR)215

and high-frequency ratio (HFR) of both clean and216

backdoor mappings during training by Equation 1.217

LFR =
∥ylow∥
∥y∥ , HFR =

∥yhigh∥
∥y∥ . (1)218

As shown in Figure 1, both clean and backdoor219

mappings exhibit significantly larger LFR com-220

pared to HFR, consistent with the low-frequency221
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Figure 2: Relative errors of clean and backdoor mapping
during training BERTBase on poisoned SST-2.

bias suggested by F-Principle (Xu et al., 2020). 222

Specifically, the LFR of backdoor mapping consis- 223

tently remains near 1.0, surpassing that of clean 224

mapping. Conversely, the HFR of clean mapping 225

gradually increases, whereas the HFR of backdoor 226

mapping is typically two orders of magnitude lower 227

than that of clean mapping. These phenomena indi- 228

cate that (1) backdoor mapping exhibits a stronger 229

bias towards low frequency than clean mapping; 230

(2) the high-frequency composition of backdoor 231

mapping is negligible compared to clean map- 232

ping, which gradually acquires high-frequency in- 233

formation during training. 234

To compare the convergence of clean and back- 235

door mappings in frequency space, we compute 236

the relative errors relow, rehigh between output log- 237

its and ground-truth labels by Equation 2. Here, 238

tlow, thigh ∈ Rd denote the low and the high fre- 239

quency part of ground-truth mapping, respectively. 240

relow =
∥ylow − tlow∥

∥tlow∥ ,

rehigh =
∥yhigh − thigh∥

∥thigh∥ .

(2) 241

The results of relative errors are shown in Fig- 242

ure 2, where the red color indicates small relative 243

errors. In both cases, relow decreases more rapidly 244

than the corresponding rehigh, signifying faster con- 245

vergence. This convergence difference aligns with 246

the Frequency Principle, suggesting that LMs tend 247

to fit the mapping from low to high frequency. 248

Furthermore, relow of low-frequency-dominated 249

backdoor mapping fluctuates initially and then 250

rapidly decreases to a small value. Compared to 251

the gradual decrease of relow of clean mapping, 252

backdoor mapping converges significantly faster. 253

As mentioned above, (1) the lower-frequency in- 254

clination of backdoor mapping results in faster 255

convergence of backdoor mapping, (2) the rela- 256

tively high-frequency inclination of clean mapping 257

leads to slower convergence of clean mapping. 258
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Figure 3: Overview of MuScleLoRA. MuScleLoRA is deployed while training the LM on the attacker-released
poisoned dataset. We first freeze the target LM and insert LoRA modules into each attention layer. Subsequently,
multiple radial scalings are conducted within the LoRA module at the penultimate layer of the target LM to
downscale clean mapping. Additionally, we align gradients to the clean auxiliary data. These strategies encourage
the target LM to prioritize the learning of high-frequency clean mapping, thereby mitigating backdoor learning.

4 Methodology259

Findings in Section 3 indicate that clean mapping260

exhibits a relatively high-frequency bias, leading to261

its slower learning compared to backdoor mapping.262

Hence, an intuition to mitigate backdoor learning263

is to encourage LMs to prioritize relatively high-264

frequency clean mapping. To this end, we propose265

MuScleLoRA, which utilizes multiple radial scal-266

ings with low-rank adaptation to the target LM and267

aligns gradients when updating parameters. The268

overview of MuScleLoRA is shown in Figure 3.269

Inspired by Zhu et al. (2022) that PET methods270

can reduce the capability of LM and thus mitigate271

backdoor learning, we incorporate multiple radial272

scalings (Liu et al., 2020) with low-rank adaptation273

to reduce the model capacity and downscale clean274

mapping in the frequency space.275

For simplicity, we assume the Fourier trans-276

form F̂ℓ(ξ), ξ ∈ Rd corresponding to the mapping277

Fℓ(x), x ∈ Rd fitted by the ℓth layer of LM has a278

compact support. Subsequently, the compact sup-279

port of F̂ℓ(ξ) can be partitioned into s mutually280

disjointed concentric rings {Ai}si=1, ∀i ̸= j, Ai ∩281

Aj = ∅. Therefore, F̂ℓ(ξ) can be decomposed with282

indicators I(ξ ∈ Ai), as illustrated in Equation 3.283

F̂ℓ(ξ) =

s∑
i=1

I(ξ ∈ Ai)F̂ℓ(ξ) ≜
s∑

i=1

F̂ i
ℓ(ξ). (3)284

For each F̂ i
ℓ(ξ), we apply radial scalings with285

appropriate scaling factor si to downscale high fre-286

quency in Ai, as illustrated in Equation 4.287

F̂ scale,i
ℓ (ξ) = F̂ i

ℓ(siξ). (4)288

Hence, in the corresponding physical space, the 289

radial scalings are illustrated in Equation 5. 290

F scale,i
ℓ (x) = F i

ℓ(
1

si
x),

or F i
ℓ(x) = F scale,i

ℓ (six).

(5) 291

Consequently, Fℓ(x) can also be decomposed 292

into: Fℓ(x) =
∑s

i=1F
scale,i
ℓ (six). To approximate 293

F scale,i
ℓ with low-rank adaptation, we first freeze 294

the target LM and insert LoRA modules into each 295

attention Layer. Given that deeper layers tend to 296

exhibit stronger low-frequency bias (Xu and Zhou, 297

2021), larger scaling factors are required in the 298

shallow layers to appropriately downscale clean 299

tasks. However, in practice, excessive scaling fac- 300

tors could potentially lead to underfitting. 301

Therefore, we conduct multiple radial scalings 302

with appropriate scaling factors to the low-rank 303

projected input Lx within the LoRA module at 304

the penultimate linear layer, as illustrated in Equa- 305

tion 6. Here, W0 ∈ Rd×d denotes the original 306

frozen weight, R ∈ Rd×sr and L ∈ Rsr×d denote 307

the tunable low-rank decompositions with sr ≪ d, 308

S ∈ Rsr denotes the vector of scaling factors with 309

bandwidth r for each Ai, and ⊙ denotes Hadamard 310

product. Like vanilla LoRA, the magnitude of pa- 311

rameter updates can be represented as R (L⊙ S), 312

which can be directly added to the original weights 313

to mitigate the inference latency. 314

h = W0x+∆Wx

= W0x+R (Lx⊙ S)

= W0x+R (L⊙ S)x.

(6) 315
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As the relatively high-frequency clean mapping316

is downscaled by multiple radial scalings in the317

frequency space, the inclination towards the low-318

frequency-dominated backdoor mapping is miti-319

gated. Therefore, with the low-rank adaptation that320

reduces the model capacity, the target LM is likely321

to prioritize the more general clean mapping on the322

poisoned dataset.323

However, with the burgeoning scale of LMs, the324

accompanying increase in extra capacity of LMs325

poses challenges to effectively mitigate backdoor326

learning through straightforward model capacity327

reduction with PET methods. Motivated by the328

notable phenomenon that the gradient directions329

derived from poisoned data and clean data often330

conflict with each other (Kurita et al., 2020; Gu331

et al., 2023), we assume the defender can access332

a small amount of clean auxiliary data, usually333

comprising a few dozen instances and readily ob-334

tainable through manual labeling. Consequently,335

we align the gradient of the target LM with clean336

auxiliary data to further mitigate the influence of337

the poisoned gradient.338

Specifically, when obtaining the original gradi-339

ent g from a batch of untrustworthy training data,340

we simultaneously calculate the clean gradient gc341

from a batch of clean auxiliary data. Subsequently,342

we align g to the direction of gc to obtain the343

aligned gradient ga, as illustrated in Equation 7:344

ga =
|g · gc|
∥gc∥2

gc. (7)345

Nonetheless, aligning gradients to a restricted set346

of clean auxiliary data, as indicated by Chen et al.347

(2020), may lead to suboptimal learning. Therefore,348

we incorporate a fraction of the original gradient g349

to mitigate suboptimal learning on clean tasks, as350

illustrated in Equation 8. Here, the hyperparameter351

µ denotes the ratio of the original gradient accepted.352

Subsequently, parameter updates are performed353

based on the modified gradient ĝ:354

ĝ = (1− µ)ga + µg. (8)355

Practically, we linearly increase µ from 0 to356

the maximum value µmax throughout the training357

epochs. Consequently, the target LM primarily358

learns from backdoor-mitigated gradients during359

the early training phase, where µ approaches 0, and360

gradually incorporates more information with in-361

creasing µ to alleviate suboptimal learning in the362

later stages of training.363

5 Experiments 364

In this section, we extensively evaluate MuScle- 365

LoRA. We first outline the setup in Section 5.1. 366

Subsequently, in Section 5.2, we demonstrate that 367

MuScleLoRA outperforms baselines significantly 368

in backdoor mitigation across several datasets. Ad- 369

ditionally, we analyze the contributions of various 370

strategies employed in MuScleLoRA in Section 5.3, 371

conduct Fourier analyses to explain the mecha- 372

nisms of MuScleLoRA in the frequency space in 373

Section 5.4, and extend MuScleLoRA to large lan- 374

guage models (LLMs) in Section 5.5. 375

5.1 Experiment Setup 376

Datasets. We conduct experiments on three 377

sentence-level datasets: SST-2 (Socher et al., 378

2013), HSOL (Davidson et al., 2017), and Ag- 379

news (AG) (Zhang et al., 2015), and one paragraph- 380

level dataset: Lingspam (LS) (Sakkis et al., 2003). 381

Dataset statistics are provided in Appendix B.1. 382

The Target LMs. We choose BERT (Devlin 383

et al., 2019) and RoBERTa (Liu et al., 2019), both 384

with million-level parameters, and Llama27B for 385

classification (Touvron et al., 2023) 2 with billion- 386

level parameters, as the target LMs. 387

Defense Baselines. Following the settings of Zhu 388

et al. (2022), we choose three PET methods as the 389

baselines of model capacity reduction: LoRA (Hu 390

et al., 2022), Adapter (Houlsby et al., 2019), and 391

Prefix-Tuning (Prefix) (Li and Liang, 2021). Ad- 392

ditionally, we choose three post-training defense 393

methods: ONION (Qi et al., 2021a), STRIP (Gao 394

et al., 2021), and RAP (Yang et al., 2021), and two 395

training-stage defense methods: BKI (Chen and 396

Dai, 2021) and CUBE (Cui et al., 2022), as end- 397

to-end defense baselines. Detailed descriptions of 398

defense baselines are provided in Appendix B.2. 399

Attack Methods. We adopt Badnets, which in- 400

serts specific words as triggers (Kurita et al., 2020), 401

Addsent, which inserts a specific sentence as trig- 402

gers (Dai et al., 2019), HiddenKiller, which para- 403

phrases the original text into specific syntax as trig- 404

gers (Qi et al., 2021c), and SytleBkd, which para- 405

phrases the original text into specific text styles as 406

triggers (Qi et al., 2021b). Notably, we paraphrase 407

each sentence in the sample paragraph to implant 408

2We adopt the HuggingFace Implementation https://
github.com/huggingface/transformers of Llama27B for
classification, which inserts dual-layer linear layers with hid-
den size 16 after Llama decoder as the classification layer.
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Dataset Attack
Vanilla LoRA Adapter Prefix MuscleLoRA

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

SST-2

Badnets 91.27 94.63 89.07 65.57 87.26 55.26 90.17 86.73 86.54 12.94
Addsent 90.99 99.89 88.96 96.16 86.88 87.83 89.46 99.89 86.77 18.97

HiddenKiller 91.10 93.53 88.58 52.96 86.60 45.39 88.52 68.64 87.64 25.11
StyleBkd 91.71 77.19 88.91 57.24 87.10 60.96 90.06 63.60 87.81 33.22

HSOL

Badnets 93.24 98.39 91.99 54.18 85.80 49.60 94.45 73.67 86.00 24.31
Addsent 92.27 100 90.82 93.16 83.62 67.31 93.80 100 85.47 2.74

HiddenKiller 92.13 97.66 89.58 72.22 84.55 49.92 93.80 88.16 86.84 13.45
StyleBkd 94.81 68.92 90.06 49.85 84.71 46.70 93.24 43.72 86.64 10.63

LS

Badnets 99.65 3.31 85.17 0 86.55 2.69 96.03 2.27 91.89 0
Addsent 99.65 86.11 90.34 1.24 85.69 7.45 90.51 4.35 90.68 1.24

HiddenKiller 99.31 98.97 92.93 27.69 83.79 1.05 96.21 86.92 95.52 0.20
StyleBkd 98.96 92.24 95.17 37.10 84.66 2.10 93.79 8.59 93.96 4.28

AG

Badnets 92.80 51.25 89.59 3.28 89.64 2.56 90.85 50.37 87.74 2.35
Addsent 92.75 100 89.05 100 89.21 100 90.58 100 87.72 3.90

HiddenKiller 92.78 99.47 89.01 98.16 88.86 93.75 90.62 98.75 86.05 17.02
StyleBkd 92.06 87.59 88.39 77.76 89.03 50.18 90.00 78.69 87.97 2.67

Table 1: Backdoor mitigation performance of MuScleLoRA and PET baselines when adopting BERTBase as the
target LM on SST-2, HSOL, Lingspam, and Agnews. Vanilla denotes no defense deployment, and bold values
indicate optimal ASRs.

triggers into the paragraph-level Lingspam dataset.409

All target labels are set to 1. Detailed trigger set-410

tings are provided in Appendix B.3.411

Implementation Details. To obtain clean aux-412

iliary data, we randomly select a subset from the413

validation dataset. Additionally, following the ob-414

servation that reducing the training epochs can mit-415

igate backdoor learning (Zhu et al., 2022), we set416

training epochs to 10 for BERT and RoBERTa, and417

5 for Llama27B. The default poison ratio is set to418

0.1. Hyperparameters are unified across diverse419

attacks for each specific LM. More detailed hyper-420

parameter settings are provided in Appendix B.4.421

Metrics. We adopt clean accuracy (CACC) to eval-422

uate the impact of the defense method on the clean423

dataset, where higher CACC indicates less negative424

impact. Additionally, we adopt attack success rate425

(ASR) to evaluate the defense performance on the426

poisoned dataset, where lower ASR signifies better427

performance in backdoor mitigation.428

5.2 Performance in Backdoor Mitigation429

The backdoor mitigation performances of Muscle-430

LoRA and PET baselines on BERTBase are pre-431

sented in Table 1. More results and analysis of432

backdoor mitigation performance on BERTLarge433

and RoBERTa are provided in Appendix C.1.434

Without any defense, four attack methods con-435

sistently achieve high CACC and ASR across sev-436

eral datasets, except for Badnets on Lingspam and437

Agnews. This discrepancy may be due to the ex- 438

cessive text length in Lingspam and the multi-class 439

mapping in Agnews, which potentially hinder the 440

establishment of backdoor mapping between spe- 441

cific words and the target label. Besides, StyleBkd 442

exhibits relatively lower ASR compared to Addsent 443

and HiddenKiller, likely due to the highly stealthy 444

nature of the specific text style, making the estab- 445

lishment of backdoor mapping more challenging. 446

For PET baselines, the ASR for word-level Bad- 447

nets drops by more than 30% in some datasets. 448

However, PET baselines struggle against complex 449

and stealthy triggers due to the absence of a strong 450

constraint on clean mapping. Adapter can reduce 451

ASR for all attack methods to less than 10% on 452

Lingspam, but at the cost of unacceptable CACC. 453

Since Lingspam consists of long texts, this phe- 454

nomenon may be attributed to underfitting resulting 455

from the limited number of training epochs and the 456

small bottleneck dimension of PET modules. 457

Notably, compared to PET baselines, MuScle- 458

LoRA generally achieves the lowest ASR for 459

all attack methods while maintaining accept- 460

able CACCs across four datasets, especially on 461

Lingspam, where the ASR drops to less than 5% 462

while consistently preserving CACC above 90%. 463

These results confirm that MuScleLoRA is highly 464

effective in defending against complex triggers and 465

significantly outperforms PET baselines. 466

We further compare the backdoor mitigation per- 467
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Defense
Addsent HiddenKiller StyleBkd

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓
Vanilla 90.99 99.89 91.10 93.53 91.71 77.19
ONION 87.04 49.78 85.23 96.05 85.45 81.76

BKI 90.72 33.05 88.41 94.85 90.34 82.46
CUBE 87.70 37.94 85.50 45.61 90.83 22.43
STRIP 91.39 28.62 90.39 90.57 89.89 78.62
RAP 91.71 27.19 88.25 89.14 90.17 79.38

MuScleLoRA 86.77 18.97 87.64 25.11 87.81 33.22

Table 2: Backdoor mitigation performance of MuS-
cleLoRA and end-to-end baselines when adopting
BERTBase as the target LM on SST-2. Bold values indi-
cate optimal ASRs.
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Figure 4: CACC and ASR of MuScleLoRA when adopt-
ing BERTBase as the target LM on poisoned SST-2 under
diverse poison ratios.

formance of MuScleLoRA with several end-to-end468

defense baselines mentioned in Section 5.1. The ex-469

perimental results presented in Table 2 indicate that470

despite end-to-end baselines notably reducing ASR471

for Addsent, they struggle against complex trig-472

gers. MuScleLoRA generally achieves the low-473

est ASR for various attack methods. However,474

for StyleBkd, CUBE reduces the ASR to nearly475

20%, whereas MuScleLoRA achieves 33.2%. This476

may be also attributed to the stealthy nature of the477

specific text style, resulting in a higher frequency478

of corresponding backdoor mapping compared to479

other attack methods. The increased frequency may480

enable radial scalings to downscale the backdoor481

mapping, thus facilitating its learning to obtain a482

relatively higher ASR. Nonetheless, MuScleLoRA483

achieves an acceptable ASR without requiring the484

high-computational retraining of CUBE.485

Additionally, we conduct experiments to inves-486

tigate the impact of the poison ratio on backdoor487

mitigation performance. As shown in Figure 4, the488

ASR gradually rises as the poison ratio increases,489

yet it remains within an acceptable range for all490

attacks. Meanwhile, the CACC fluctuates within a491

small range with the increasing poison ratio. These492

results indicate that MuScleLoRA can maintain493

satisfactory backdoor mitigation performance 494

under varying poison ratios. 495

5.3 Ablation Study 496

We examine the contributions of three strategies 497

in MuScleLoRA to the results, i.e., multiple ra- 498

dial scalings (MS), low-rank adaptation (LR), and 499

gradient alignment (GA). The ablation results on 500

BERTBase shown in Table 3 indicate that when only 501

deploying low-rank adaptation, i.e., the LoRA base- 502

line, the ASR drops nearly 20% on SST-2 but nearly 503

remains unchanged on Agnews. Similarly, utiliz- 504

ing solely gradient alignment yields nearly minimal 505

changes in ASR across both datasets. This suggests 506

that aligning the gradient to clean auxiliary data, 507

without additional defense strategies, fails to miti- 508

gate the impact of the poisoned gradient. 509

Compared to employing a single strategy, in- 510

tegrating multiple radial scalings with low-rank 511

adaptation results in a lower ASR than the LoRA 512

baseline, potentially achieving suboptimal ASR. 513

Additionally, utilizing gradient alignment to low- 514

rank adaptation can reduce ASR for several attacks 515

to suboptimal levels, while achieving the optimal 516

ASR on AGnews. Yet, without multiple radial 517

scalings to enhance learning by downscaling 518

clean mapping, CACC drops to an unacceptable 519

level in this scenario. Consequently, MuScleLoRA 520

combines three strategies, generally achieving the 521

lowest ASR while maintaining acceptable CACC. 522

More ablations are provided in Appendix C.2. 523

5.4 Fourier Analyses 524

To explain the mechanisms of MuScleLoRA in the 525

frequency space, Fourier analyses are conducted on 526

MuScleLoRA and its ablation methods. The results 527

on BERTBase are shown in Figure 5. More results 528

on other LMs are provided in Appendix C.3. 529

Compared to no defense deployment shown in 530

Figure 2a, MuScleLoRA and its ablation meth- 531

ods impede the convergence of low-frequency- 532

dominated backdoor mapping. However, as shown 533

in Figure 5b, despite multiple radial scalings ex- 534

pediting the convergence of clean mapping and 535

further hindering the learning process of backdoor 536

mapping compared to LoRA baseline, backdoor 537

mapping still exhibits partial convergence. These 538

phenomena indicate that straightforward model 539

capacity reduction with PET methods fails to 540

effectively defend against complex triggers. Con- 541

versely, as shown in Figure 5c, when aligning gradi- 542

ents to clean auxiliary data in the absence of radial 543
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Dataset Method
Strategies Badnets Addsent HiddenKiller StyleBkd

MS LR GA CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

SST-2

Vanilla × × × 91.27 94.63 90.99 99.89 91.10 93.53 91.71 77.19
MuscleLoRA ✓ ✓ ✓ 86.54 12.94 86.77 18.97 87.64 25.11 87.81 33.22
w/o MS, GA × ✓ × 89.07 65.57 88.96 96.16 88.58 52.96 88.91 57.24
w/o MS, LR × × ✓ 91.37 90.13 90.06 100 90.39 86.40 91.21 70.61

w/o GA ✓ ✓ × 87.64 42.76 87.75 75.22 86.88 37.39 87.26 54.17
w/o MS × ✓ ✓ 83.20 24.89 82.81 20.06 81.77 38.92 80.62 45.83

AG

Vanilla × × × 92.80 51.25 92.75 100 92.78 99.47 92.06 87.59
MuscleLoRA ✓ ✓ ✓ 87.74 2.35 87.72 3.90 86.05 17.02 87.97 2.67
w/o MS, GA × ✓ × 89.59 3.28 89.05 100 89.01 98.16 88.39 77.76
w/o MS, LR × × ✓ 92.24 63.13 92.65 100 93.10 99.98 93.01 92.19

w/o GA ✓ ✓ × 89.92 2.63 89.55 99.94 89.55 97.54 89.13 71.78
w/o MS × ✓ ✓ 84.32 2.39 84.85 4.07 84.26 8.18 86.38 2.79

Table 3: The results of ablation experiments when adopting BERTBase as the target LM on SST-2 and Agnews. Bold
values indicate optimal ASRs and underlined values indicate suboptimal ASRs.
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Figure 5: Relative errors of MuScleLoRA and its ablation methods when adopting BERTBase as the target LM on
Badnets poisoned SST-2 during training.

scalings, the convergence of backdoor mapping is544

effectively hindered, but at the expense of under-545

fitting clean mapping. Therefore, as shown in Fig-546

ure 5d, MuScleLoRA integrates multiple scalings547

to enhance the learning of clean mapping, facilitat-548

ing the balance between backdoor mitigation and549

satisfactory performance in downstream tasks.550

5.5 Performance on Llama2551

Since PET emerges as a novel fine-tuning paradigm552

for LLMs, we extend MuScleLoRA to Llama27B553

for classification, which focuses specifically on the554

vertical sentiment analysis task on SST-2. The555

backdoor mitigation performance on Llama27B is556

presented in Table 4. Notably, MuScleLoRA con-557

sistently achieves the lowest ASR for three at-558

tacks. Conversely, due to the significant capac-559

ity increase in Llama27B, PET baselines and end-560

to-end baselines struggle to effectively counter561

these complex triggers. Additionally, given the562

extensive model capacity of Llama27B, the de-563

crease in CACC attributed to low-rank adaptation564

and gradient alignment can be deemed negligible.565

These findings indicate the potential for deploying566

MuScleLoRA in instruction-based fine-tuning of567

LLMs (Zhang et al., 2023a).568

Defense
Addsent HiddenKiller StyleBkd

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓
Vanilla 97.42 100 96.05 96.05 96.43 98.58
LoRA 95.39 93.53 94.45 78.07 95.61 93.86
Prefix 93.52 56.91 92.42 60.20 93.52 96.05

ONION 91.65 85.74 86.27 96.05 88.91 97.80
STRIP 95.66 97.48 91.71 94.29 95.44 95.18

MuscleLoRA 94.07 13.92 94.62 26.86 94.73 39.03

Table 4: Backdoor mitigation performance of MuS-
cleLoRA, PET baselines, and post-training end-to-end
baselines when adopting Llama27B on SST-2.

6 Conclusions 569

In this paper, we conduct Fourier analyses to inves- 570

tigate the mechanisms of backdoor learning, reveal- 571

ing a notable inclination towards lower frequencies 572

in backdoor mapping compared to clean mapping. 573

Inspired by this observation, we proposed MuS- 574

cleLoRA, a general backdoor defense method. By 575

downscaling in the frequency space, MuScleLoRA 576

encourages LMs to prioritize the learning of rela- 577

tively high-frequency clean mapping, consequently 578

mitigating backdoor learning. Experimental results 579

show the efficacy of MuScleLoRA in defending 580

against diverse backdoor attacks. Notably, MuScle- 581

LoRA exhibits generality across various backbone 582

LMs, including BERT, RoBERTa, and Llama2. 583
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7 Limitations584

Our approach has limitations in two main aspects.585

First, our method only focuses on the scenario586

where the defender trains the target LM on the587

attacker-released poisoned dataset. Other scenar-588

ios, such as fine-tuning the poisoned LM on the589

clean dataset or, more rigorously, fine-tuning the590

poisoned LM on the poisoned dataset, need fur-591

ther exploration. Second, the scaling factor vector592

S is relative to the model structure and capacity,593

requiring pre-training to determine the suitable S.594

8 Ethics Statement595

We propose a general backdoor defense method596

named MuScleLoRA, designed for scenarios where597

the defender trains the target LM on the attacker-598

released poisoned dataset. As all experiments are599

conducted on publicly available datasets and pub-600

licly available models, we believe that our proposed601

defense method poses no potential ethical risk.602

Our created artifacts are intended to provide re-603

searchers or users with a tool for acquiring clean604

language models from backdoor poisoned datasets.605

All use of existing artifacts is consistent with their606

intended use in this paper.607
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A Filtering-based Fourier 884

Transformation 885

In this section, we provide the detailed processes 886

of filtering-based Fourier transformation used to 887

extract the low-frequency and high-frequency parts 888

of the target-LM-fitted and ground-truth mappings. 889

We denote the training dataset of the target 890

LM as {xi, ti}Ni=1 = (X,T ), where xi = 891

{x1i , · · · , xLi }, L, ti ∈ RC , X = {x1; · · · ;xN} ∈ 892

RN×L, and T = {t1; · · · ; tN} ∈ RN×C denote 893

the input ids of the input text with length L, the 894

ground-truth one-hot label, the input matrix, and 895

the label matrix, respectively. Notably, LMs often 896

convert discrete input ids into continuous embed- 897

dings, i.e., e = E(x), e ∈ RL×d, where E denotes 898

the embedding layer of the target LM and d de- 899

notes the embedding dimension. Besides, embed- 900

ding updates during training typically exhibit small 901

magnitudes. For simplicity, we assume that the 902

embedding of each input id remains unchanged 903

throughout training. Consequently, the mapping 904

fitted by the target LM can be illustrated as Equa- 905

tion 9, where y ∈ RC , Y = {y1; · · · ; yN} ∈ 906

RN×C , and E = {e1; · · · ; eN} ∈ RN×L×d de- 907

note the output logits, the matrix of output logits, 908

and the tensor of input embeddings, respectively. 909

F : RL×d → RC ,

F(e) = y,

F(E) = Y.

(9) 910

Similarly, the ground-truth mapping utilizing the 911
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same embedding layer is illustrated as Equation 10.912

T : RL×d → RC ,

T (e) = t,

T (E) = T.

(10)913

Practically, when C > 1, F represents the high-914

dimensional mapping. In such scenarios, employ-915

ing the high-dimensional discrete Fourier trans-916

formation incurs significant computational over-917

head, posing challenges for real dataset analysis.918

Therefore, we opt for a pragmatic approach by par-919

titioning the frequency space into two segments,920

i.e., the low-frequency part with |ξ| ≤ ξ0 and the921

high-frequency part with |ξ| > ξ0, to decompose922

the mapping into the low-frequency part and high-923

frequency part, respectively. Specifically, we de-924

note the Fourier transformation of F as F̂ and then925

decompose F̂ by the indicator I(|ξ| ≤ ξ0) that926

indicate the low-frequency part in the frequency927

space, which is illustrated as Equation 11.928

F̂ low = F̂ · I(|ξ| ≤ ξ0),

F̂high = F̂ − F̂ low.
(11)929

To further alleviate the computational cost of the930

high-dimensional indicator, we alternatively apply931

Gaussian filter Ĝ
1
δ (ξ) to approximate the indica-932

tor I(|ξ| ≤ ξ0), i.e., F̂ low ≈ F̂ · Ĝ 1
δ , where 1

δ933

denotes the variance of the Gaussian filter in the934

frequency space. Consequently, in the correspond-935

ing physical space, the low-frequency part ylow,δ
i936

and high-frequency part yhigh,δ
i of the output log-937

its yi for the entire dataset are obtained through938

Gaussian convolution, as illustrated in Equation 12.939

Here, Gδ(e′i − e′j) = e
−∥e′i−e′j∥

2

2δ denotes the corre-940

sponding Gaussian filter in the physical space with941

variance δ, e′i ∈ RLd denotes the flattened vector of942

the embedding ei, Ci =
∑N

j=1G
δ(e′i−e′j) denotes943

the normalization factor, and G ∈ RN×N , Gij =944

Gδ(e′i − e′j) denotes the matrix of Gaussian filters,945

respectively. Practically, we set δ to 4.0 to obtain946

frequency components.947

ylow,δ
i =

1

Ci

N∑
j=1

yjG
δ(e′i − e′j)

=
1

Ci
(GY )i,

y
high,δ
i = yi − ylow,δ

i

=

(
Y − 1

Ci
(GY )

)
i

.

(12)948

Dataset Categories
Number of Samples Average

LengthTrain Test Validation

SST-2 2 6,920 1,821 872 19.2
HSOL 2 5,823 2,485 2,485 13.2

Lingspam 2 2,604 582 289 695.3
Agnews 4 108,000 7,600 12,000 38.0

Table 5: Detailed statistics of datasets.

Same as the analysis of output logits, for ground- 949

truth labels, we can derive their respective fre- 950

quency components, i.e., tlow,δ
i and t

high,δ
i , by Gaus- 951

sian convolution, as illustrated in Equation 13. 952

tlow,δ
i =

1

Ci

N∑
j=1

tjG
δ(e′i − e′j)

=
1

Ci
(GT )i,

t
high,δ
i = ti − tlow,δ

i

=

(
T − 1

Ci
(GT )

)
i

.

(13) 953

B Detailed Experiment Setup 954

In this section, we provide additional setup infor- 955

mation for experiments. In Section B.1, we provide 956

the detailed statistics of datasets. Subsequently, in 957

Section B.2, we provide comprehensive descrip- 958

tions of defense baselines. Additionally, we outline 959

detailed trigger settings in Section B.3. Besides, 960

Section B.4 elaborates on hyperparameter settings. 961

Furthermore, Section B.5 provides the usage of 962

existing artifacts. 963

B.1 Datasets 964

The statistics of datasets are presented in Table 5. 965

Considering the excessive number of samples in 966

Agnews, which could potentially prolong the train- 967

ing process, we decided to randomly extract 968

5,000 samples from each class in the original 969

training dataset. Consequently, a new training 970

dataset comprising 20,000 samples is synthesized. 971

B.2 Defense Baselines 972

PET baselines. PET baselines reduce model 973

capacity by freezing the original weights of the LM 974

and inserting tunable PET modules with a small 975

number of parameters, constraining the model to 976

focus on clean tasks (Zhu et al., 2022). LoRA (Hu 977

et al., 2022) inserts parallel low-rank decompo- 978

sitions as the tunable module. Adapter (Houlsby 979

et al., 2019) inserts a sequential linear layer 980

12



as the tunable module. Prefix-Tuning (Li and981

Liang, 2021) inserts a sequence of continuous982

task-specific vectors as the tunable module.983

ONION. Based on the observation that inserting984

trigger words into original text results in a notable985

increase in perplexity, ONION (Qi et al., 2021a)986

utilizes GPT-2 to quantify the contribution of each987

word in the original text to the perplexity and detect988

high-contributing words as the trigger words.989

STRIP. Based on the observation that clean text990

is more sensitive to perturbations than poisoned991

text, STRIP (Gao et al., 2021) employs random992

word replacement to perturb input text, subse-993

quently identifying poisoned text by analyzing dis-994

crepancy in the entropy of output logits.995

RAP. Similar to STRIP, RAP (Yang et al., 2021)996

discerns poisoned input texts based on their sensi-997

tivity to perturbations. RAP reconfigures the em-998

bedding layer to incorporate a robust-aware per-999

turbation to be introduced into input texts, which1000

significantly alters the logits of clean texts while1001

minimally affecting poisoned samples.1002

BKI. Similar to ONION, BKI (Chen and Dai,1003

2021) quantifies the contribution of each word in1004

the original text of the training dataset to the out-1005

put logits to detect high-contributing words as the1006

trigger words.1007

CUBE. Based on the observation that poisoned1008

samples frequently manifest as outliers in the fea-1009

ture space, CUBE (Cui et al., 2022) clusters sam-1010

ples in the training dataset to identify outliers as1011

the poisoned samples.1012

B.3 Trigger Settings1013

For Badnets, following the settings of Kurita et al.1014

(2020), we insert 4 rare words, i.e., cf, mn, bb,1015

and tq, into random positions within the original1016

text. For Addsent, following the settings of Dai1017

et al. (2019), we insert a predefined sentence, i.e., I1018

watch this 3D movie, into a random position within1019

the original text. For HiddenKiller, following the1020

settings of Qi et al. (2021c), we adopt ( ROOT ( S1021

( SBAR ) ( , ) ( NP ) ( VP ) ( . ) ) ) EOP as the1022

trigger syntax. We then paraphrase the entire orig-1023

inal text into trigger syntax for the sentence-level1024

datasets: SST-2, HSOL, and Agnews. Addition-1025

ally, for the paragraph-level dataset Lingspam, each1026

sentence in the original text is paraphrased into trig-1027

ger syntax. For StyleBkd, following the settings1028

Model S

BERTBase [1, 4, 8, 12, 16, 20, 24, 28, 32]
BERTLarge [1, 2, 3, 4, 5, 6, 7, 8, 9]

RoBERTaBase [1, 2, 4, 6, 8, 10, 12, 14, 16]
RoBERTaLarge [1, 2, 3, 4, 5, 6, 7, 8, 9]

Llama27B [1, 2, 3, 4]

Table 6: Detailed settings of scaling factor vector S.

of Qi et al. (2021b), we choose bible text style 1029

as the trigger style. Similar to HiddenKiller, we 1030

paraphrase the entire original text into trigger style 1031

for the sentence-level datasets: SST-2, HSOL, and 1032

Agnews, while every sentence in the original text 1033

is paraphrased into trigger style for the paragraph- 1034

level dataset Lingspam. 1035

B.4 Hyperparameters 1036

Notably, compared to the meticulous hyperparame- 1037

ter design by Zhu et al. (2022) tailored for different 1038

attacks, we unify hyperparameters against di- 1039

verse attacks for each specific LM. Specifically, 1040

following the observation that reducing the training 1041

epochs can mitigate backdoor learning (Zhu et al., 1042

2022), we set training epochs to 10 for BERT and 1043

RoBERTa, and 5 for Llama27B. Similarly, we set 1044

learning rate to 2× 10−5 for BERT and RoBERTa, 1045

and 10−5 for Llama2. Additionally, considering the 1046

extensive model capability of Llama27B, the num- 1047

ber of clean auxiliary data for Llama27B is set to 1048

128 whereas it is set to 96 for BERT and RoBERTa. 1049

Furthermore, µmax is configured to 0 for Llama27B 1050

and 0.1 for BERT and RoBERTa. The batch size 1051

is defined as 16 for Llama27B and 32 for BERT 1052

and RoBERTa. For PET baselines, the bottleneck 1053

dimensions are uniformly set to 8 for BERT and 1054

RoBERTa and 2 for Llama27B. Finally, detailed 1055

settings of the scaling factor vector S are presented 1056

in Table 6, and the bandwidth r of each Ai in radial 1057

scalings is specified as only 1. All experiments are 1058

conducted on NVIDIA GeForce RTX 3090 with 1059

24GB memory. 1060

B.5 Usage of Existing Artifacts 1061

For conducting backdoor attacks and end-to-end 1062

defense baselines, we employ OpenBackdoor (Cui 1063

et al., 2022), an open-source framework for textual 1064

backdoor learning. The detailed process of MuS- 1065

cleLoRA is implemented within the framework 1066

of PyTorch (Paszke et al., 2019), an open-source 1067

library for deploying deep learning. For imple- 1068

menting PET algorithms, we utilize Huggingface- 1069
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PEFT (Mangrulkar et al., 2022), an open-source1070

library for HuggingFace-transformers-based PET1071

methods of LMs, and Opendelta (Hu et al., 2023),1072

another open-source library dedicated to PET meth-1073

ods of LMs. For LMs, we adopt BERT, RoBERTa,1074

and Llama27B from Huggingface transformers3.1075

All licenses of these packages allow us for normal1076

academic research use.1077

C Additional Experimental Results and1078

Analyses1079

In this section, we provide additional experimen-1080

tal results and analyses. Section C.1 provides the1081

backdoor mitigation performance on BERTLarge,1082

RoBERTaBase, and RoBERTaLarge. Subsequently,1083

we conduct the ablation studies on the three strate-1084

gies in MuScleLoRA when adopting BERTLarge,1085

RoBERTaBase, or RoBERTaLarge as the target LM1086

in Section C.2, perform Fourier analyses on1087

BERTLarge and Llama27B to explain the mecha-1088

nisms of MuScleLoRA in Section C.3, and analyze1089

the sensitivity on hyperparameters in Section C.4.1090

C.1 Performance of Backdoor Mitigation1091

We further evaluate the backdoor mitigation1092

performance on BERTLarge, RoBERTaBase, and1093

RoBERTaLarge. As presented in Table 7, similar to1094

the results presented in Table 1, although PET base-1095

lines manage to reduce the ASR for Badnets to a1096

relatively low level, they still encounter challenges1097

in effectively defending against other complex trig-1098

gers. Conversely, MuScleLoRA consistently re-1099

duces the ASR to the lowest level, surpassing1100

the performance of the three PET baselines sig-1101

nificantly. Moreover, in comparison to the about1102

4-5% decrease in CACC when implementing MuS-1103

cleLoRA on BERTBase, the decrease in CACC for1104

BERTLarge and RoBERTaLarge is negligible. This1105

suggests that a larger model capacity can allevi-1106

ate the reduction in CACC while preserving low1107

ASR when deploying MuScleLoRA.1108

Also, we evaluate the backdoor mitigation per-1109

formance of MuScleLoRA with end-to-end defense1110

baselines on BERTLarge. As presented in Table 9,1111

MuScleLoRA achieves the optimal ASRs, sur-1112

passing all end-to-end baselines.1113

Furthermore, experiments are performed to ex-1114

plore the impact of poison ratio on ASR and CACC1115

when adopting BERTLarge as the target LM. As1116

shown in Figure 6, as the poison ratio increases,1117

3https://github.com/huggingface/transformers
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Figure 6: CACC and ASR of MuScleLoRA when adopt-
ing BERTLarge as the target LM on poisoned SST-2 un-
der diverse poison ratios.

CACC exhibits a slight decrease, while ASR fluc- 1118

tuates within an acceptable range. 1119

C.2 Ablation Study 1120

Additionally, we examine the contribution of three 1121

strategies in MuScleLoRA to the performance on 1122

SST-2 when adopting BERTLarge, RoBERTaBase, or 1123

RoBERTaLarge as the target LM, respectively. The 1124

results of the ablation analyses are presented in Ta- 1125

ble 8. Similar to the ablation of BERTBase, solely 1126

employing low-rank adaptation or gradient align- 1127

ment encounters challenges in effectively defend- 1128

ing against diverse backdoor attacks. Moreover, 1129

the absence of radial scalings leads to a significant 1130

drop in CACC. Optimal performance is achieved 1131

only when all three strategies are combined. 1132

C.3 Fourier analyses 1133

We further conduct Fourier analyses on MuScle- 1134

LoRA and its ablation methods on BERTLarge and 1135

Llama27B. The results are shown in Figure 11, 1136

Figure 12, and Figure 13, respectively. Compared 1137

to the relatively underfitting of BERTBase, larger- 1138

scale BERTLarge and Llama27B obtain better con- 1139

vergence in clean mapping. Furthermore, given 1140

that deeper models tend to exhibit stronger low- 1141

frequency bias (Xu and Zhou, 2021), Llama27B ex- 1142

hibits rapid convergence in the low-frequency part. 1143

Moreover, as shown in Figure 11b, Figure 11d, 1144

Figure 12b, Figure 12d, Figure 13b, and Figure 13d, 1145

multiple radial scalings expedite the convergence 1146

of clean mapping significantly. Furthermore, as 1147

shown in Figure 12b and Figure 13b, only adopting 1148

multiple radial scalings with low-rank adaptation 1149

hinders the early-stage convergence of backdoor 1150

mapping. 1151

However, due to the excessive model capacity 1152

of Llama27B, the backdoor mapping demonstrates 1153

rapid convergence in the later stages of training. 1154
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Dataset Model Defense
Badnets Addsent HiddenKiller StyleBkd

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

SST-2

BERTLarge

Vanilla 92.91 93.64 92.97 100 92.64 90.24 93.30 78.51
LoRA 91.98 31.14 91.27 84.87 91.54 42.21 90.50 66.67

Adapter 89.73 40.57 88.85 70.17 89.51 42.98 89.07 64.14
Prefix 92.42 37.06 92.04 99.56 92.59 67.98 91.93 57.90

MuscleLoRA 91.21 14.80 90.71 27.30 90.99 17.54 89.62 21.16

RoBERTaBase

Vanilla 94.39 95.61 94.17 99.89 93.13 93.86 94.67 99.34
LoRA 92.09 26.54 91.87 63.05 90.99 38.60 91.54 67.33

Adapter 91.43 57.46 88.69 62.39 91.49 33.77 90.45 69.96
Prefix 91.98 85.19 91.98 100 90.94 62.94 92.36 94.96

MuscleLoRA 88.08 13.26 88.91 21.16 89.07 20.28 88.41 20.61

RoBERTaLarge

Vanilla 94.29 100 95.44 100 93.52 90.24 94.45 99.12
LoRA 95.55 11.73 94.95 92.21 95.94 57.24 95.39 73.03

Adapter 70.01 99.78 58.81 35.52 58.10 52.19 62.55 96.05
Prefix 94.89 76.54 94.56 78.73 93.96 62.50 94.62 89.14

MuscleLoRA 93.30 5.81 93.19 14.47 92.59 10.96 92.48 12.39

AG

BERTLarge

Vanilla 93.71 63.86 93.56 100 93.53 99.32 93.18 88.21
LoRA 90.67 1.68 90.55 99.81 90.32 97.21 90.21 82.99

Adapter 90.16 3.68 89.45 66.53 89.74 91.00 88.97 36.72
Prefix 92.39 54.81 92.54 100 91.75 99.10 91.76 82.99

MuscleLoRA 89.58 1.67 89.10 1.70 87.33 28.04 88.97 12.15

RoBERTaBase

Vanilla 93.29 86.19 93.68 100 93.32 99.98 93.56 91.56
LoRA 90.54 1.86 90.22 99.96 90.53 99.93 89.93 81.28

Adapter 90.60 3.40 89.85 99.98 90.39 99.70 88.96 78.77
Prefix 91.05 39.51 91.12 99.95 90.87 99.96 90.33 84.63

MuscleLoRA 86.89 1.42 86.30 1.35 87.01 19.46 86.78 5.70

RoBERTaLarge

Vanilla 93.79 96.42 93.14 100 93.66 100 93.59 94.40
LoRA 92.14 2.21 92.24 99.96 91.96 99.90 91.63 88.44

Adapter 91.10 2.39 91.10 99.95 90.83 99.23 90.75 72.75
Prefix 92.34 18.60 92.18 99.96 92.21 99.98 91.82 91.12

MuscleLoRA 90.21 1.85 90.10 4.26 89.64 7.34 90.05 2.30

Table 7: Backdoor mitigation performance of MuScleLoRA and PET baselines when adopting BERTLarge,
RoBERTaBase, or RoBERTaLarge as the target LM on SST-2 and Agnews. Bold values indicate optimal ASRs.

Model Method
Strategies Badnets Addsent HiddenKiller StyleBkd

MS LR GA CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓

BERTLarge

Vanilla × × × 92.91 93.64 92.97 100 92.64 90.24 93.30 78.51
MuscleLoRA ✓ ✓ ✓ 91.21 14.80 90.72 27.30 90.99 17.54 89.62 21.16
w/o MS, GA × ✓ × 91.98 31.14 91.27 84.87 91.54 42.21 90.50 66.67
w/o MS, LR × × ✓ 93.68 89.91 92.53 100 91.98 86.62 92.58 74.67

w/o GA ✓ ✓ × 91.54 29.71 90.28 75.22 90.94 44.71 89.62 54.47
w/o MS × ✓ ✓ 86.54 29.82 86.16 36.84 87.37 27.85 85.94 28.29

RoBERTaBase

Vanilla × × × 94.39 95.61 94.17 99.89 93.13 93.86 94.67 99.34
MuscleLoRA ✓ ✓ ✓ 88.08 13.26 88.91 21.16 89.07 20.28 88.41 20.61
w/o MS, GA × ✓ × 92.09 26.54 9187 63.05 90.99 38.60 91.54 67.33
w/o MS, LR × × ✓ 92.86 94.30 93.46 100 90.06 87.61 94.12 96.71

w/o GA ✓ ✓ × 93.30 24.45 92.53 65.57 92.31 48.68 92.81 40.46
w/o MS × ✓ ✓ 80.72 25.22 80.45 22.92 82.87 22.81 84.57 23.13

RoBERTaLarge

Vanilla × × × 94.29 100 95.44 100 93.52 90.24 94.45 99.12
MuscleLoRA ✓ ✓ ✓ 93.30 5.81 93.19 14.47 92.59 10.96 92.48 12.39
w/o MS, GA × ✓ × 95.55 11.73 94.95 92.21 95.94 57.24 95.39 73.03
w/o MS, LR × × ✓ 94.95 67.21 95.44 100 95.28 90.24 95.39 92.21

w/o GA ✓ ✓ × 94.84 13.05 94.40 70.83 95.28 44.74 95.72 71.49
w/o MS × ✓ ✓ 89.79 10.31 90.39 18.75 91.05 16.45 91.43 16.67

Table 8: The results of ablation experiments on SST-2 when adopting BERTLarge, RoBERTaBase, or RoBERTaLarge
as the respective target LM. Bold values indicate optimal ASRs and underlined values indicate suboptimal ASRs.

15



Defense
Addsent HiddenKiller StyleBkd

CACC↑ ASR↓ CACC↑ ASR↓ CACC↑ ASR↓
Vanilla 92.97 100 92.64 90.24 93.30 78.51
ONION 88.14 93.09 86.27 96.16 87.48 79.56

BKI 92.20 100 91.16 92.65 92.31 81.58
CUBE 93.24 100 92.53 21.93 91.65 31.47
STRIP 72.43 60.64 92.09 91.67 89.17 75.76
RAP 92.04 100 90.94 92.98 87.66 69.08

MuScleLoRA 90.71 27.30 90.99 17.54 89.62 21.16

Table 9: Backdoor mitigation performance of MuS-
cleLoRA and end-to-end baselines when adopting
BERTLarge as the target LM on SST-2. Bold values
indicate optimal ASRs.

Notation S

S1 [1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]
S2 [1, 2, 3, 4, 5, 6, 7, 8, 9]
S3 [1, 2, 4, 6, 8, 10, 12, 14, 16]
S4 [1, 4, 8, 12, 16, 20, 24, 28, 32]

Table 10: Detailed notation for scaling factor vector S
when adopting BERTLarge as the target LM.

This observation suggests that straightforward1155

model capacity reduction with PET methods is1156

ineffective in defending against complex trig-1157

gers, particularly on LLMs.1158

C.4 Hyperparameter Sensitivity Analyses1159

We conduct experiments to investigate the impact1160

of different hyperparameters of MuScleLoRA on1161

BERTLarge, including the number of clean auxil-1162

iary samples, learning rate, µmax, and the vector1163

of radial scaling factors. The results are shown in1164

Figure 7, Figure 8, Figure 9, and Figure 10, respec-1165

tively. Detailed notation for the vector of radial1166

scaling factors is presented in Table 10.1167

Figure 7 illustrates that increasing the number1168

of clean auxiliary samples yields higher CACC1169

and lower ASR. Figure 8 demonstrates that a small1170

learning rate induces underfitting in clean tasks,1171

whereas a large one results in high ASR. Moderate1172

learning rates enable a tradeoff between CACC and1173

ASR.Figure 9 reveals that a small µmax, indicating1174

a lower proportion of the original gradient accepted,1175

results in underfitting in clean tasks, while a large1176

µmax can lead to low defense performance. Fig-1177

ure 10 illustrates that altering the vector of radial1178

scaling factors causes fluctuations in both CACC1179

and ASR. Therefore, selecting the appropriate vec-1180

tor of radial scaling factors is essential to achieve1181

optimal backdoor mitigation performance.1182
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Figure 7: CACC and ASR of MuScleLoRA when adopt-
ing BERTLarge as the target LM on poisoned SST-2 un-
der diverse amounts of clean auxiliary samples.
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Figure 8: CACC and ASR of MuScleLoRA when adopt-
ing BERTLarge as the target LM on poisoned SST-2 un-
der diverse learning rates.
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Figure 9: CACC and ASR of MuScleLoRA when adopt-
ing BERTLarge as the target LM on poisoned SST-2 un-
der diverse µmax.
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Figure 10: CACC and ASR of MuScleLoRA when
adopting BERTLarge as the target LM on poisoned SST-
2 dataset under diverse vectors of radial scaling factors.
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Figure 11: Relative errors of MuScleLoRA and its ablation methods when adopting BERTLarge as the target LM on
Badnets poisoned SST-2 during training.
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Figure 12: Relative errors of MuScleLoRA and its ablation methods when adopting Llama27B as the target LM on
Addsent poisoned SST-2 during training.
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Figure 13: Relative errors of MuScleLoRA and its ablation methods when adopting Llama27B as the target LM on
HiddenKiller poisoned SST-2 during training.

17


	Introduction
	Related Works
	Pilot Experiments
	Methodology
	Experiments
	Experiment Setup
	Performance in Backdoor Mitigation
	Ablation Study
	Fourier Analyses
	Performance on Llama2

	Conclusions
	Limitations
	Ethics Statement
	Filtering-based Fourier Transformation
	Detailed Experiment Setup
	Datasets
	Defense Baselines
	Trigger Settings
	Hyperparameters
	Usage of Existing Artifacts

	Additional Experimental Results and Analyses
	Performance of Backdoor Mitigation
	Ablation Study
	Fourier analyses
	Hyperparameter Sensitivity Analyses


