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Abstract

Interpretability of deep reinforcement learning systems could assist operators with
understanding how they interact with their environment. Vector quantization
methods—also called codebook methods—discretize a neural network’s latent space
that is often suggested to yield emergent interpretability. We investigate whether
vector quantization in fact provides interpretability in model-based reinforcement
learning. Our experiments, conducted in the reinforcement learning environment
Crafter, show that the codes of vector quantization models are inconsistent, have no
guarantee of uniqueness, and have a limited impact on concept disentanglement, all
of which are necessary traits for interpretability. We share insights on why vector
quantization may be fundamentally insufficient for model interpretability.

1 Introduction

Although deep neural networks have advanced the performance of reinforcement learning (RL)
agents, these “black box” models give little insight as to the agent’s decision making and learned
transition models. Interpretability of RL agents is important in high-stakes domains that demand
human trust, such as autonomous vehicles and infrastructure. Interpretability is also crucial to
analyze behavior and develop adaptations when trained agents make mistakes or experience novel
changes to their environment.

There has been significant recent interest in vector quantization (VQ) in neural networks, largely
driven by the work of Van Den Oord et al. (2017); the authors show that VQ latent space dis-
cretization in generative models helps regularize the latent space, thereby improving performance.
Although not claimed by Van Den Oord et al. (2017), several subsequent works suggest that the
latent disentanglement caused by VQ enables greater semantic interpretability of neural models (Hsu
et al., 2017; Tamkin et al., 2023; Aloufi et al., 2020).

We examine whether VQ within model-based reinforcement learning (MBRL) captures semantic
information about entities in the environment. Specifically, we use the IRIS (Micheli et al., 2022)
MBRL agent, which quantizes the latent vector encoding of the world state and uses a transformer
to model transition dynamics. Grad-CAM (Selvaraju et al., 2017) is used to perform qualitative
and quantitative analysis to determine whether codes are consistent and represent semantically
groundable entities, such as objects, across diverse inputs.

We find VQ lacks the necessary constraints to enforce that disentangled codes correspond to semantic
entities; codes are not consistent enough to be grounded to a semantic concept. Based on our findings,
we disprove the intuition that VQ alone is sufficient for interpretability and hypothesize that latent
semantic alignment is needed alongside discretization to make latent spaces generally interpretable.

2 Background and Related Work

In MBRL, the agent learns a model to approximate the transition dynamics of the environment (Sut-
ton & Barto, 1998). An agent can benefit from having a good predictive model of the future
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Figure 1: IRIS transition model architecture and our evaluation process. Heatmaps from Grad-CAM
crop the input image to focus regions, which are then embedded by a pre-trained encoder.

state (Werbos, 1987), commonly dubbed a World Model (Ha & Schmidhuber, 2018; Hafner et al.,
2020). IRIS (Micheli et al., 2022) is a MBRL agent that uses VQ to replace the latent state vectors of
an encoded observation with the most similar codes, which are input to a decoder and a transformer
learning the World Model. Since the codebook sits between the encoder and decoder, individual
codes have the potential to represent grounded entities (Khazatsky et al., 2021).

VQ is a data compression technique that models a latent distribution as a discrete set of vectors
or “codes.” Formally, a VQ function Q can be defined as: Q : Rd → C, where the “codebook”
C = {ci|i ∈ I, ci ∈ Rd} is composed of k vectors referred to as codes. For a given input x, Q assigns
a code ci that minimizes the MSE between the vectors. In deep neural networks, VQ is most often
used in the latent space of generative models, replacing the encoder output with learned codes (Van
Den Oord et al., 2017; Esser et al., 2021; Ramesh et al., 2021). VQ is also used in the latent space
of RL models to constrain and regularize them, which improves accuracy, robustness to noise, and
sample efficiency (Zhang et al., 2022; Robine et al., 2020).

Several works have examined and suggested the emergent interpretability of VQ methods. Chen
et al. (2022); Zhang et al. (2022) demonstrate that the entire latent embedding created from a com-
bination of codes is capable of capturing consistent states. There are also works that suggest the
interpretability of some specific codes using qualitative assessments such as latent traversals (Aloufi
et al., 2020; Shu et al., 2020; Desticourt et al., 2022; Zou et al., 2023; Tamkin et al., 2023; Wallingford
et al., 2023; Shao et al., 2023; Hsu et al., 2024). Despite evidence from works such as Locatello et al.
(2019), the suggestion of VQ interpretability comes from an unsubstantiated connection between
latent disentanglement and latent semantics (Guo et al., 2020; Khazatsky et al., 2021) or inter-
pretability (Hsu et al., 2017; Liu et al., 2022; Zou et al., 2022; Klein et al., 2022). These methods
rarely quantify the interpretability provided by VQ codes, and we found no prior work that studies
VQ interpretability in MBRL.

This work is similarly motivated to the parallel research area of mechanistic interpretability Nanda
(2022); Elhage et al. (2022) (MI), which studies interpreting neural network behavior based on
an interpretation of the network’s internal structures Olah et al. (2020). This stands in contrast
to “black-box” Molnar (2022) interpretability approaches, such as saliency maps of inputs from
outputs Adebayo et al. (2018); Jain & Wallace (2019); Wiegreffe & Pinter (2019), which attempt
to explain relationships between the inputs and outputs without considering the network’s internal
mechanisms. Interpreting neural networks using codebooks falls in between these methods (in what
is sometimes called “white-box” Molnar (2022); Räuker et al. (2023) interpretability), where (as in
MI) the internal structures of the neural networks are constrained or investigated to establish what
activations of the network are representing, while using tools like saliency maps to convey feature
importance. By taking a white-box approach to interpreting codes while using MI concepts such as
superposition Elhage et al. (2022), our analysis balances the theoretical robustness of MI with the
ability to interpret almost any network without the need to understand all its internal structures.
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Table 1: Example heatmaps for codes.

Code 304

Code 434

Code 381

3 Experiments in VQ Interpretability

Experimental Approach. In our work, we use the state-of-the-art MBRL model IRIS (Micheli
et al., 2022) featuring a codebook with 512 codes. We make no modifications to the IRIS architecture.
To evaluate interpretability, we apply Grad-CAM to the code inputs of the decoder. Grad-CAM
scores importance of input image pixels based on the activations and gradients of a selected weight
vector or layer. We apply this process individually for each code in the model by masking out the
other codes’ values. The end result is a heatmap for each code that overlays the input image with
the regions that were most influential in that code being selected.

To measure the quantitative properties of the learned codes, we evaluate the code consistency over
agent observations and episodes by looking at the areas of high Grad-CAM activation for the same
code. We split images into connected components of high activation and filter out those with an
area smaller than a threshold. The remaining connected components are used to crop the original
images to the bounding box region they encapsulate. We use a frozen pre-trained model to compare
the cropped inputs and gauge their semantic similarity.

We conducted our experiments in Crafter (Hafner, 2021), an open-world survival game designed for
RL with similar dynamics to Minecraft. The model and corresponding policy was first trained to
convergence. Then we collected a dataset of 127,434 (ot, st, at, st+1, ot+1) transitions of the agent
acting in the environment over 714 episodes, where o is the input observation, a is the selected
action, and s are the latent states. We applied our interpretation approach to investigate different
codes correspondance to the inputs on newly collected runs, and saved the Grad-CAM activation
heatmaps for every code the model selected in each observation.

We found that 90% of the heatmaps contained all zero values. Since all the values being zero is
not useful for our interpretability evaluation, those samples were dropped. 477 of the 512 codes had
non-zero heatmaps, equating to 205,231 heatmaps for the final dataset.

Results. Table 1 displays eight heatmaps overlaid on their observation image, randomly sampled
for each code, from the most frequently occurring code in our dataset, the tenth most frequently
occurring, and the median occurring. We chose these codes based on their frequency to avoid biasing
the results and capture diverse regions of the frequency distribution, as discussed further in Appendix
A. In general, the heatmaps from a code focus on the same regions of the image, especially for the
more frequently occurring codes. To examine the content the codes focus on, in Table 2 we show the
crops resulting from the heatmaps. To display results for more codes while still focusing on diverse
frequencies, we show crops for the second most frequent code, eleventh most frequent, and the next
most frequent code after the median code used earlier. In the crops, code 46 is consistently focused
on numbers indicating agent inventory, while the other two have several similar crops but no clear,
singular focus. Therefore, we conclude codes did not consistently associate with objects or concepts.
Additional examples of crops are presented in Appendix B.

To quantify code interpretability, we compared the embeddings for each crop from the last hidden
layer of a pre-trained, frozen ResNet50 (He et al., 2016) model trained on ImageNet-1k (Russakovsky
et al., 2015). Given these crop embeddings, we calculated the mean embedding of each code and
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Table 2: Example crops from codes.

Code 46

Code 162

Code 498

(a) Mean cosine similarity of cropped images (b) t-SNE of codes with high cosine similarity

Figure 2: The data from our GradCAM experiments show that VQ codes are inconsistent quantita-
tively (low mean cosine similarity) and qualitatively (in the lack of t-SNE separation).

measured code consistency as the average cosine similarity between the mean code embedding and
all embeddings for that code.

In Figure 2a we show the mean cosine similarity results. The similarity rises gradually with a
spike for the best codes. As a baseline, we calculate the mean cosine similarity of randomly sampled
crops, averaged over ten trials, shown as the red line in the plot. The minimal difference between the
random crops and the majority of individual codes suggests at best there are a handful of consistent
codes. In Figure 2b, this is examined further with a t-SNE plot of the embeddings for the ten codes
with the highest mean cosine similarity and at least 500 embeddings, to ensure similar order of
magnitude of samples. We observe only a handful of these codes with strong clustering. In addition,
some codes have multiple clusters, which makes a code’s semantic meaning less clear.

4 Discussion

As reported above, the model learned a limited number of codes that capture entities such as
grass, water, and resources in the inventory. In Appendix C, we examine co-occurring codes to
find additional interpretable examples occurring in superposition Elhage et al. (2022), however,
they occur very sparingly. Outside of these instances, the codes lacked a consistent semantic theme.
Thus, VQ alone cannot provide interpretability of transition models in MBRL. One of the reasons we
believe this happened is that VQ offers insufficient constraints to enforce semantic disentanglement of
codes. Specifically, the model is always trained to reconstruct the entire image using a combination
of codes, and due to the depth of the CNN in our model, the latent vectors have all seen the entire
image. This creates a condition where there is no need for the model to cleanly isolate entities in
the image to a single code. Thus, indicating there are characteristics of discretization that matter
to ensure semantic associations, a deeper study of which is left for future work.
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A Code Frequency

In order to decide which codes would be the most beneficial to examine for consistency, we organized
them by how frequently they occur in the dataset. As seen in Figure 3, the model is not overly reliant
on any codes because the most frequent one occurs in barely over 1%. However, there is a significant
dropoff between the top ten codes and the rest, which is the reason we presented heatmaps and
crops with three distinct frequencies. The top two codes occur significantly more than the tenth and
eleventh codes. The median codes then occur at a much lower rate. We chose to focus on the higher
frequency end of the distribution because we believe even if the low frequency codes are consistent,
they will not occur enough to provide useful interpretability, since in many observations, none of
those codes will appear.

B Consistent and Inconsistent Code Crops

In Table 3, we show additional cropped images randomly sampled from six codes. The top three
shown are examples of the more consistent codes we observed. The first one focuses on stone, while
the second captures grass, and the third focuses on water. Throughout our entire dataset of 477
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Figure 3: Percentage of each code’s occurrence in the dataset.

Table 3: Additional examples of consistent (top three) and inconsistent (bottom three) codes.

Code 0

Code 360

Code 192

Code 15

Code 329

Code 438

codes, only a handful are close to as consistent as these. Even the ones that are have inconsistent
instances, like the fourth and fifth crops for code 192, that limit how confidently they can be
interpreted. Below them, we show examples for three inconsistent codes. The majority of the codes
look closer to these when randomly sampling their cropped images. Across all three of the codes,
the crops are widely varied in what they contain, providing no value for interpretability.

C Code Co-occurrence

One of the potential reasons for the lack of interpretability of codes is that the model learned a
combination of codes to capture entities. In order to investigate this, we found the codes that most
frequently appear together and calculated their co-occurrence rate. We define co-occurrence rate as
the number of appearances together divided by the average number of times the two codes are used.
This is related to the mechanistic interpretability concept of superposition Elhage et al. (2022),
where given a latent feature space represented by a set of d-dimensional vectors v, optimization
tries to use these vectors to represent more features than they have the dimensional capacity. This
leads to phenomena such as representing concepts with groups of features, or individual features
alternately representing more than one concept depending on the input, both of which we observe
in our work Elhage et al. (2022); Nanda (2022). Figure 4 shows a heatmap of the rates for the ten
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Figure 4: Co-occurrence rate for the ten most frequently co-occurring pairs of codes

Table 4: Example crops from co-occurring codes, randomly sampled from observations where they
co-occur.

Code 424

Code 344

Code 273

Code 507

most frequently co-occurring pairs. Note the co-occurrence of codes to themselves has been set to
zero to better distinguish the rates between different codes. The highest rate observed was between
codes 344 and 424 at around 18%.

In Table 4, we visualize the crops from the observations where codes co-occur for the two highest
co-occurring pairs, codes 344 and 424 and codes 273 and 507. The crops reveal that each code is
extremely consistent in what it captures in these instances. Although this is a promising indication
of interpretability, we believe it is still greatly limited by two factors. The first applies only to the
pair of codes 344 and 424, which is that all their instances of co-occurrence came from a single
episode. The codes selected at a given time step exhibit significant co-occurance with the codes
from time steps shortly before and after them, since the observations are very similar. Therefore,
the high consistency of the codes is less trustworthy because it is an expected behavior within an
episode and not demonstrated across episodes. The second factor limiting the impact of co-occuring
codes is that, while these instances can indeed provide interpretable observations, they account
for a very small portion of the entire observations collected. Specifically, the two pairs, codes 344
and 424 and codes 273 and 507, each co-occur in roughly 0.1% of the observations and the co-
occurence rates for all codes suggest very few other pairs will provide percentages near that high.
Based on the target application of the RL system, the percent of interpretable samples needed will
vary. Given an example target of 10%, our results suggest this may not be possible to reach by
combining all the interpretable codes and co-occurring pairs without extensive analysis of all the
codes and code combinations. We argue if arduous analysis is required to reach a sufficient amount of
interpretability, vector quantization by itself is not truly providing interpretability to the meaningful
extent suggested by prior literature.


