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Abstract

Multimodal Large Language Models (MLLMs)001
have shown promising results in various tasks,002
but their ability to perceive the visual world003
with deep, hierarchical understanding similar004
to humans remains uncertain. To address this005
gap, we introduce CONSTRUCTURE, a novel006
concept-level benchmark to assess MLLMs’ hi-007
erarchical concept understanding and reasoning008
abilities. Our goal is to evaluate MLLMs across009
four key aspects: 1) Understanding atomic con-010
cepts at different levels of abstraction; 2) Per-011
forming upward abstraction reasoning across012
concepts; 3) Achieving downward concretiza-013
tion reasoning across concepts; and 4) Con-014
ducting multi-hop reasoning between sibling015
or common ancestor concepts. Our findings016
indicate that even state-of-the-art multimodal017
models struggle with concept structure reason-018
ing (e.g., GPT-4o averages a score of 62.1%).019
We summarize key findings of MLLMs in con-020
cept structure reasoning evaluation. Morever,021
we provide key insights from experiments us-022
ing CoT prompting and fine-tuning to enhance023
their abilities.024

1 Introduction025

The basic level is the level in a taxonomy026

at which things are normally named, in027

the absence of reasons to the contrary.028

‘Dog’ is a basic level category, ‘boxer’029

a subordinate category, ‘quadruped’ a030

superordinate category.031

— John R. Taylor032

According to the prototype theory (Taylor, 2019)033

in cognitive science, humans perceive the visual034

world hierarchically, with basic, subordinate, and035

superordinate categories. People interpret the036

world differently based on these conceptual lev-037

els in diverse environments. As shown in Figure 1,038

humans can not only understand basic concepts,039
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Figure 1: Demo of Concept Structure.

but also have a deep concept structure cognition 040

in minds (Medin, 1989; Suresh et al., 2023). This 041

raises the question: do multimodal AI systems, 042

like Multimodal Large Language Models(e.g. GPT- 043

4V (OpenAI, 2023)), exhibit similar concept struc- 044

ture cognition ability? 045

Recently, pretrained multimodal large language 046

models (MLLMs) have transcended the confines of 047

text-only modalities, gaining a deeper conceptual 048

understanding of the world and demonstrating re- 049

markable performance across a spectrum of down- 050

stream tasks. As a result, there is a growing impor- 051

tance and challenge in conducting comprehensive 052

evaluations of these models to better understand 053

their capabilities and pinpoint areas for enhance- 054

ment. Inspired by the cognitive processes under- 055

lying human conceptual understanding, we posit 056

that similar deep and structured visual conceptual 057

cognition capabilities are pivotal for the profound 058

comprehension of MLLMs. This compelling ques- 059

tion demands exploration: Do MLLMs truly grasp 060

1



Benchmark Assessment of cognitive related abilities Data Source Answer Type Evaluator Size

LVLM-eHub (Xu et al., 2023) Visual Reasoning, Visual Commonsense Datasets MC/OE Metrics/LLMs/User 332k
MME (Fu et al.) Commonsense Reasoning, Numerical Calculating, Text Translation, Code Reasoning Datasets MC Accuracy 2,194
MMBench (Liu et al., 2023) Reasoning(e.g. Phsycial Relation Reasoning, Social Relation Reasoning) Datasets/Handcraft/LLMs MC Accuracy 2,974
SEED-Bench (Li et al., 2023a) Visual Reasoning, Spacial Relation Handcraft/LLMs MC Accuracy 19k
MM-Vet (Yu et al., 2023) Spatial awareness, Knowledge, Math Datasets/Handcraft OE LLMs 218
EgoThink (Cheng et al., 2023) Scene Reasoning, Planning Handcraft OE LLMs 700

CONSTRUCTURE(Ours) Concept Structure Reasoning Datasets/Handcraft MC Accuracy 2,064

Table 1: Comparison of recent comprehensive evaluation benchmarks of MLLMs and our proposed benchmark
M2C2-Bench.

and internalize concepts, or do they merely learn061

the superficial concept alignment through pretrain-062

ing?063

However, addressing this question requires a064

deeper investigation into the underlying mecha-065

nisms and limitations of MLLMs. As shown in066

Table 1, the deep visual concept structure cognition067

remains largely unexplored in existing benchmarks.068

On one hand, these benchmarks seldom consider069

visual cognitive capabilities. On the other hand,070

existing benchmarks for visual cognition typically071

focus solely on assessing visual reasoning ability072

related to the whole image content, overlooking073

the evaluation of deep and structural visual concept074

cognition. For example, SEED-bench ?? evalu-075

ates spatial relationships or visual reasoning tasks076

based on the content of images, while MME ?? as-077

sesses common-sense reasoning, numerical compu-078

tation, code inference, and text translation. LVLM-079

eHub ?? evaluates visual reasoning and visual com-080

mon sense. However, all these benchmarks require081

answering questions based on the entire content082

of an image. Therefore, there is a pressing need083

to construct an benchmark specifically designed to084

assess the deep visual concept structure cognition085

in MLLMs.086

In this work, we propose the novel CONSTRUC-087

TURE benchmark focusing on deep visual concept088

structure cognition. To fully uncover the deep vi-089

sual cognitive ability of MLLMs across the overall090

concept structure beyond the Figure 1, we consider091

the following four key capabilities, ranging from092

atomic concenpt understanding, concept abstrac-093

tion reasoning, concept concretization reasoning,094

to common ancestor reasoning. The first capability095

is to evaluate the atomic concept understanding at096

different levels. The last three capabilities are to097

evaluate reasoning ability on concept structure, in-098

cluding upward abstraction reasoning from child099

concepts to parent concepts, downward concretiza-100

tion reasoning from parent concepts to child con-101

cepts and multi-hop reasoning between sibling con-102

cepts or common ancestor concepts, respectively.103

Based on the our proposed CONSTRUCTURE 104

benchmark, we conduct comprehensive experi- 105

ments to evaluate concept structure cognition capa- 106

bilities of fourteen popluar MLLMs (including 6 107

api-based MLLMs and 8 open-sourced MLLMs). 108

We conclude the main findings as follows: 109

1) Current MLLMs possess a certain level of 110

conceptual understanding, but their performance 111

in concept structure reasoning is poor. The best 112

model, GPT-4o, only achieved a score of 0.621, 113

indicating significant room for improvement. 114

2)In concept structure reasoning tasks, MLLMs 115

perform the worst in common ancestor reasoning. 116

The main reasons for errors are inconsistencies 117

in the reasoning process and constraint violations. 118

This demonstrates that adhering to multiple con- 119

straints and maintaining consistency in the rea- 120

soning process are key challenges to enhancing 121

MLLMs’ concept structure cognitive abilities. 122

3) MLLMs still need to improve their ability to 123

reason about hierarchical relationships in concept 124

structures. 125

4) MLLMs’ performance deteriorates as the con- 126

cept hierarchy deepens and granularity increases. 127

Therefore, improving fine-grained concept recog- 128

nition and the ability to reason about related fine- 129

grained concept structures is crucial for enhance- 130

ment. 131

Our evaluation results reveal the limitations of 132

MLLMs in concept structure cognition, providing 133

a comprehensive and clear analysis that directs 134

further improvements for MLLMs. Furthermore, 135

we improved MLLMs’ concept structure reasoning 136

abilities through few-shot CoT prompting and fine- 137

tuning methods, and elucidated three key insights 138

in the discussion. 139

2 Related Work 140

2.1 Multimodal Large Language Models 141

Building upon the monumental achievements of 142

large language models (LLMs) (Du et al., 2022; 143

OpenAI, 2023; Zhu et al., 2023), recent advance- 144
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ments in multimodal LLMs (MLLMs) have firmly145

established LLMs as their foundational backbone.146

Initially, MLLMs commence pre-training using147

large-scale image-text paired datasets (Yang et al.,148

2023; Li et al., 2023b) or by integrating random vi-149

sual and textual data (Ye et al., 2023; Bai et al.,150

2023). This foundational phase is further en-151

riched by leveraging extensive image-text instruc-152

tion datasets (Dai et al., 2024). Recent studies (Liu153

et al., 2024) have increasingly employed fine-154

tuning strategies, significantly enhancing MLLMs’155

capacity to deliver superior performance in various156

downstream tasks and benchmarks.157

2.2 Evaluations of MLLMs158

Current benchmarks aim to comprehensively assess159

MLLMs’ capabilities in multimodal cognition tasks160

like reasoning. For example, Lvlm-ehub (Xu et al.,161

2023) evaluates visual reasoning and common-162

sense cognition across 47 benchmarks. MME ??163

covers inference, numerical computation, trans-164

lation, and code reasoning. SEED-bench ?? fo-165

cuses on visual and spatial reasoning, while MM-166

VET ?? evaluates spatial relationships, knowledge,167

and math abilities. EgoThink ?? assesses scene168

reasoning and planning. Our CONSTRUCTURE169

benchmark specifically targets hierarchical concept170

structure reasoning in MLLMs’ understanding of171

visual concepts.172

3 CONSTRUCTURE Benchmark173

In this section, we first elaborate on the capability174

and question sets used to assess concept structure175

cognition abilities. Following that, we outline the176

process of constructing the test dataset.177

3.1 Evaluation Capability178

As shown in Figure 2, we evaluate the following179

four key capabilities to uncover the concept struc-180

ture cognition ability of MLLMs., ranging from181

atomic concenpt understanding, concept abstrac-182

tion reasoning, concept concretization reasoning,183

to common ancestor reasoning. We explain why184

each capability is needed with a question inspired185

by human concept cognition and introduce how to186

evaluate the capability with examples.187

Atomic Concept Understanding. How can188

MLLMs understand atomic concepts at different189

levels of abstraction? Human cognition of concepts190

has different levels of abstraction, and we can not191

only understand concrete concepts like “Persian192

Cat”, but also abstract concepts like “Mammal”. 193

How is MLLMs capable of understanding concepts 194

of various levels of abstraction? As shown in upper 195

left part of Figure 2, to evaluate atomic concept 196

understanding ability, we query MLLMs with a 197

simple discriminant question (i.e. “Is the concept 198

depicted in the image a {concept_name}?”) with 199

true or false options related to specific concepts at 200

various abstraction levels. To answer this question, 201

MLLMs need to have a multi-level understanding 202

of visual concepts. 203

Concept Abstraction Reasoning. Can MLLMs 204

perform upward abstraction reasoning across con- 205

cepts at different levels of abstraction? Human 206

beings can categorize concrete concepts into upper 207

level abstract concepts, e.g. categorize “penguins” 208

and “sharks” to “birds” and “fish”, respectively. 209

How well do MLLMs perform this kind of abstrac- 210

tion reasoning process? As shown in upper right 211

part of Figure 2, to evaluate concept abstraction 212

reasoning ablity, we query MLLMs with multiple- 213

choice questions to select the most abstract and 214

general concept from candidate options. The im- 215

age is aligned correctly with several concepts in 216

candidate options, MLLMs need to recognize them 217

and figure out one has the most abstract level. To 218

answer this question, MLLMs need firstly recog- 219

nize correct options and then reason out the most 220

abstract concept aligned with the image. 221

Concept Concretization Reasoning. Can MLLMs 222

achieve downward concretization reasoning across 223

concepts at various levels of abstraction? Human 224

beings can refine abstract concepts to lower level 225

concrete concepts, e.g. recognize from the animal 226

categories (“Cats”) to fine-grained breed (“Persian 227

Cat”). How well do MLLMs perform this kind 228

of concretization reasoning process? As shown 229

in lower left part of Figure 2, to evaluate concept 230

concretization reasoning ability, we query MLLMs 231

with multiple-choice questions to select the most 232

specific and accurate concept from candidate op- 233

tions. The image is aligned correctly with several 234

concepts in candidate options, MLLMs need to rec- 235

ognize them and figure out the most concrete one. 236

To answer this question, MLLMs need firstly rec- 237

ognize correct options and then reason out the most 238

concrete concept aligned with the image. 239

Common Ancestor Reasoning. Can MLLMs per- 240

form multi-hop reasoning between sibling concepts 241

or common ancestor concepts? Human percep- 242

tion of visual concepts follows a hierarchical struc- 243
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Question: Please select a concept from the 
following options that is different from the 
concept depicted in the image but still falls 
under the category of {Mammal}.
A. Artiodactyl
B. Penguin
C. Antelope
D. Carnivora

Answer: D

Question: Please choose the most specific and 
accurate concept from the following options that 
accurately describes the concept in the image.
A. Woody Plants
B. Higher Plants
C. Herbaceous Plants
D. Plant

Answer: A

Question: Please choose the most abstract and 
general concept from the following options that 
accurately describes the concept in the image.
A. Cats
B. Domestic Cat
C. Carnivora
D. Artiodactyl

Answer: C

Atomic Concept Understanding

Common Ancestor Reasoning

Concept Abstraction Reasoning

Question: Is the concept depicted in the image a 
{Lynx}?
A. Yes
B. No

Answer: A

Question: Is the concept depicted in the image a 
{Carnivora}?
A. Yes
B. No

Answer: B

Cats
Carnivora
Mammal

Lynx
Wildcat

Image

Concept Concretization Reasoning

Cats
Carnivora
Mammal

Persian Cat
Domestic Cat

Image

Woody Plants
Higher Plants
Plant

Euphorbia Milii
Bush

Image

Bovidae
Artiodactyl

Mammal

Impala
Antelope

Carnivora

Image

Figure 2: CONSTRUCTURE Benchmark.

ture. For instance, we recognize that “dogs” and244

“cats” have a higher-level common ancestor con-245

cept “mammal”, and within the category of “dogs”,246

there are subcategories like “pet dog” and “hunt-247

ing dog”. Can MLLMs fully grasp the various248

hierarchical levels of a concept? Can they reason249

that two concepts have a common ancestor concept250

or are they in a sibling relationship? As shown251

in lower right part of Figure 2, to evaluate com-252

mon ancestor reasoning ability, we query MLLMs253

with multiple-choice questions to select a concept254

which is different from as well as share the same255

parent or common ancestor concept with the con-256

cept depicted in the image. To answer this question,257

MLLMs need have the ability to reason across sib-258

ling concepts or common ancestor concepts, which259

indicates that MLLMs need to have the structure260

cognition ability of the related concepts.261

3.2 Data collection262

In this section, we introduce details of data col-263

lection to construct our CONSTRUCTURE bench-264

mark.265

Collecting Concept Taxonomy and Construct266

Concept Chains. We use isA relations in Chinese267

Open WordNet (Wang and Bond, 2013) as our data268

source of concept structure, which encompasses269

19.7K isA relations. We remove the identity isA270

relation in the raw data and construct an isA con-271

cept tree (with a root node). During construction,272

we drop potential isA relations to avoid the circular273

dependency. After that, we recursively search for 274

the isA concept chains with a length of 5 as our 275

candidates for the next stage of sample generation. 276

Collecting Visual Concept Image with Man- 277

ual Check. Since concept in collected candi- 278

date chains may not be visual concepts, we lever- 279

age M2ConceptBase (Zha et al., 2023) (a mul- 280

timodal knowledge base has rich concept-image 281

alignments) to filter out visual concepts. Then 282

we carefully check whether the lowest concept in 283

the concept chain corresponds to the image in the 284

knowledge base correctly, and search for correct 285

images from the Internet for lower quality or wrong 286

images. We also put in considerable manual ef- 287

forts to check the correctness of the concept chains. 288

We remove all wrong candidate concept chains or 289

wrong isA relation part (rooted in raw data from 290

Chinese Open Wordnet) in candidate chains, and 291

finally get totally 646 chains with length ranging 292

from 3 to 5, each chains has correctly aligned im- 293

age with the lowest level concept. 294

Sample Construction. For each type of question, 295

we generate different options using concept chains 296

and taxonomy, including hard negative options. For 297

atomic concept understanding, we randomly assign 298

50% of concepts as "Yes" paired with correct im- 299

ages, and 50% with incorrect images from unre- 300

lated concepts. In concept abstraction reasoning, 301

for each chain of length N , we generate N − 1 302

questions with options set to current-level concept, 303

lower-level concept, positive upper-level concept, 304
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Subset Train Valid Test Total

Atomic Concept Understanding 2,168 313 637 3,118
Concept Abstraction Reasoning 1,738 247 490 2,475
Concept Concretization Reasoning 1,717 246 489 3,210
Common Ancestor Reasoning 1,611 225 448 2,284
Total 7,234 1,031 2,064 10,329

Table 2: Statistics of CONSTRUCTURE.

and negative upper-level concept (in random or-305

der). Similarly, in concept concretization reasoning,306

options include current-level concept, upper-level307

concept, positive lower-level concept, and negative308

lower-level concept. For common ancestor reason-309

ing in chains of length N , options cover current-310

level concept, random-level concept, and brother311

or brother-son concept (as the answer option), ar-312

ranged randomly. We conduct rigorous program-313

matic and manual checks to eliminate unreasonable314

options that might lead to multiple correct answers.315

Statistics. As shown in Table 2 , our CONSTRUC-316

TURE benchmark has totally 10, 329 samples. We317

split the benchmark into training, validation, and318

test sets in a ratio of 7:1:2, totaling 7234, 1031, and319

2064 samples, respectively. The test set is exclu-320

sively used for evaluating MLLMs, while the train-321

ing and validation sets are employed for fine-tuning322

MLLMs to enhance their conceptual structure rea-323

soning capabilities. The breakdown of question324

types is detailed in Table 2. We further elaborate on325

the details of the CONSTRUCTURE benchmark326

in Table 4. Our benchmark comprises 1315 vi-327

sual concepts, 646 concept chains, and 644 images,328

with an average concept chain length per sample329

of 4.93. The breakdown of subsets is detailed in330

Table 4. As shown in Figure 5, our CONSTRUC-331

TURE benchmark covers a wide range of topics,332

including "animal", "plant", "device", "clothing",333

"chemicals", and more.334

4 Experiments335

4.1 Experimental setups336

Multimodal Large Language Models. We evalu-337

ate six api-based Multimodal Large Language Mod-338

els (MLLMs) and eight open-source MLLMs. All339

open-source MLLMs are ~7B models. We con-340

duct zero-shot setups in overall evaluation for all341

MLLMs across our CONSTRUCTURE benchmark.342

Since our benchmark includes both Chinese and343

English versions, we evaluate MLLMs with Chi-344

nese capabilities in a Chinese context and those345

without in an English context.346

Answer: A

Question: Is the concept depicted in the image bovidae? 

A. Yes B. No

Model Predictions

Image  Question & Answer

GPT-4o: B. No, the picture shows a sheep, belonging to the family Ariidae and not belonging to the 
family Bovidae.

GPT-4V: B. No, the animal shown in the picture is a sheep, which belongs to a family other than the 
bovidae family, namely the Ovis family. Bovidae animals usually include cattle, buffalo, bison, 
rhinoceros, and so on.

Gemini-1.5-pro: B. No, the picture shows a sheep, which belongs to the Ovis family of animals, not the 
Bovidae family of animals.

Qwen-VL-Max: Yes. The picture shows a sheep, which belongs to the Bovidae family. The Bovidae 
family includes various domestic animals such as cattle, sheep, and deer. 

Qwen-VL-Chat: The animal shown in the picture is a sheep, belonging to the family Bovidae.

LLaVA-1.5-7B: Yes.

BLIP2: B.

Figure 3: Case study of Atomic Concept Understanding
Task.

Evaluation Methods. In the CONSTRUCTURE 347

benchmark, test samples are organized in a 348

multiple-choice format. The questions are divided 349

into different sets: atomic concept understanding 350

questions, which include "true" and "false" as the 351

two options, and three other reasoning question 352

sets, each offering four challenging options. Only 353

one of these options is the correct answer. We input 354

the image and the question to query MLLMs to get 355

a response. Following (Huang et al., 2024), we 356

then employ regular expression matching to parse 357

the model outputs and calculate the accuracy by 358

comparing it with the ground truth. 359

4.2 Main Results 360

Overall Results. We first present the overall results 361

of the evaluated models on our CONSTRUCTURE 362

benchmark as shown in Table 3. Current MLLMs, 363

whether open-source or proprietary, demonstrate 364

some level of concept understanding, but their abil- 365

ity to comprehend conceptual structures remains 366

limited. The top-performing model, GPT-4o-0513, 367

achieved an average score of only 0.621, with even 368

lower average scores of 0.498 across the three con- 369

ceptual structure reasoning tasks. There is signifi- 370

cant variability in performance across different rea- 371

soning tasks, and all MLLMs struggle particularly 372

with Common Ancestor Reasoning, indicating its 373

ongoing challenges. Overall, GPT-4o-0513 and 374

GPT-4-vision-preview stand out among API-based 375

models. Although API-based models generally out- 376

perform open-source models, open-source models 377

like BLIP2 and Qwen-VL-Chat achieve compet- 378

itive results, surpassing models such as Gemini. 379

This indicates that open-source approaches are ca- 380

pable of producing high-performing models in cer- 381

tain areas. 382
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Model Concept Understanding Abstraction Reasoning Concretization Reasoning Common Ancestor Avg. Score

API-based Models
gpt-4-vision-preview 0.692 0.748 0.601 0.241 0.586

gpt-4o-0513 0.896 0.657 0.663 0.145 0.621
gemini-pro-vision 0.733 0.584 0.486 0.040 0.489

gemini-1.5-pro 0.746 0.692 0.407 0.100 0.513
claude3_sonnet 0.666 0.571 0.501 0.397 0.546
Qwen-VL-Max 0.763 0.543 0.631 0.143 0.545

Open-source Models
BLIP2 0.794 0.484 0.442 0.326 0.535

InstructBLIP 0.0 0.061 0.143 0.069 0.063
MiniGPT-4 0.455 0.257 0.186 0.172 0.283

mPLUG_Owl 0.480 0.192 0.225 0.194 0.289
VisualGLM 0.281 0.027 0.045 0.016 0.107

Chinese_LLaVA 0.532 0.531 0.303 0.201 0.406
LLaVA-1.5 0.670 0.347 0.337 0.246 0.422

Qwen-VL-Chat 0.794 0.316 0.543 0.245 0.502

Table 3: Evaluation Results on CONSTRUCTURE Benchmark.

Results on Atomic Concept Understanding.383

MLLMs generally perform well on the atomic con-384

cept understanding task. Among the API-based385

models, GPT-4o achieves nearly 90% accuracy, in-386

dicating a robust understanding of visual concepts387

across different levels. In the open-source models,388

both BLIP2 and Qwen-VL-Chat achieve a score389

of 0.794, surpassing most API-based models and390

only slightly behind GPT-4o. We observe that mod-391

els performing well in the atomic concept under-392

standing task also tend to excel in the other three393

reasoning tasks, demonstrating a positive correla-394

tion between atomic concept understanding and395

concept structure reasoning performance. Instruct-396

BLIP, however, performs poorly across most tasks,397

frequently outputting incorrect answers or gibber-398

ish. VisualGLM also struggles, often disregarding399

task instructions and merely generating descrip-400

tions of the images. Figure 3 below illustrates the401

performance of different MLLMs on an atomic con-402

cept understanding task. In the example, GPT-4o,403

GPT-4V, and Gemini-1.5-pro correctly identified404

the image as a sheep but incorrectly answered that405

a sheep is not a bovine animal (when, in fact, it is).406

However, Qwen-VL-Max and Qwen-VL-Chat cor-407

rectly identified that a sheep belongs to the bovine408

family. This indicates that not all MLLMs possess409

comprehensive knowledge of concept structures.410

Results on Concept Abstraction Reasoning. In411

the concept abstraction reasoning task, GPT-4V412

achieved the highest score of 0.748, followed by413

Gemini-1.5-pro with 0.657. Among open-source414

models, Chinese_LLaVA performed the best, scor-415

ing 0.531. Figure 6 presents the responses of dif-416

ferent MLLMs to a specific question in this task.417

In this example, GPT-4V, Qwen-VL-Chat, LLaVA-418

1.5, and BLIP2 all provided correct answers. How- 419

ever, both GPT-4o and Gemini-1.5-pro answered 420

incorrectly, misunderstanding the concept abstrac- 421

tion and hierarchical relationship (i.e. waterbirds 422

include both swimming birds and wading birds). 423

Results on Concept Concretization Reasoning. 424

In the concept concretization reasoning task, GPT- 425

4o once again achieved the highest score of 0.663, 426

followed by Qwen-VL-Max with a score of 0.631. 427

Among the open-source models, Qwen-VL-Chat 428

performed the best with a score of 0.543, with 429

BLIP2 coming in second at 0.442. Figure 7 il- 430

lustrates the performance of different MLLMs on 431

a specific question in this task. In this exam- 432

ple, Gemini-1.5-Pro and BLIP2 answered correctly. 433

Gemini-1.5-Pro provided the correct reasoning pro- 434

cess, while the other models answered incorrectly: 435

GPT-4o gave an incorrect response without engag- 436

ing in reasoning, GPT-4v misidentified the concept 437

in the image (it’s a Mahi Mahi or dolphinfish, not a 438

saury pike), and Qwen-VL-Max selected an overly 439

broad option due to conservative answering. 440

Results on Common Ancestor Reasoning. In the 441

common ancestor reasoning task, all MLLMs strug- 442

gled, indicating it as the most challenging task for 443

MLLMs in concept structure reasoning. The best 444

performer was claude3_sonnet, achieving a score 445

of 0.397. GPT-4V and GPT-4o scored 0.241 and 446

0.145, respectively. Among the open-source mod- 447

els, BLIP2 scored 0.326, surpassing both GPT-4V 448

and GPT-4o but falling short of claude3_sonnet. 449

Figure 8 illustrates the performance of different 450

MLLMs on a specific question in this task. In this 451

example, the image represents the structural for- 452

mula of a chemical compound, acetamide. The 453
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Figure 4: Distribution of Error Types for GPT-4o and
Gemini-1.5-Pro.

question requires the model to adhere to two con-454

straints: 1) it must differ from the concept shown455

in the image, and 2) it must also be a “compound”.456

Only Qwen-VL-Chat provided the correct answer457

in the example. GPT-4o and Gemini-1.5-pro cor-458

rectly identified that option B’s “solution” is a mix-459

ture rather than a “compound” (a pure substance),460

but they provided an incorrect answer in the final461

step of reasoning, revealing inconsistency in their462

reasoning process. GPT-4v gave a hallucinative463

answer, and its reasoning process was also incor-464

rect. Qwen-VL-Max’s answer did not meet the first465

requirement. Therefore, we observe that MLLMs466

perform poorly in tasks like Common Ancestor467

Reasoning due to various reasons, such as errors in468

understanding images or concepts, inconsistency469

in generation or reasoning processes, and others.470

Next, we will further analyze the types of model471

errors.472

4.3 Analysis473

Error Type Analysis. To further analyze the er-474

ror type distribution of MLLMs, we examined two475

models: GPT-4o and Gemini-1.5-Pro. As shown476

in Figure 4, we finally categorize errors into seven477

types, focusing on the capabilities of MLLMs re-478

garding images, concepts, and language. The error479

types are as follows: 1Image-Irrelevance: This480

error occurs when models provide answers that481

do not take the content of the provided images482

into account. 2)Image-Object Detection: This483

refers to models failing to recognize key objects484

or misidentifying them. For example, a cow might485

be incorrectly detected as an antelope. 3)Concept-486

Hierarchies: models have difficulties in understand-487

ing hierarchical relationships between concepts488

and identifying which one is in a higher level.489

4) Concept-Meaning: models fail to comprehend 490

the meanings of options because they don’t know 491

which concepts include the objects in the images. 492

5) Concept-Siblings: models have difficulties in 493

recognizing sibling relationships between concepts. 494

For example, the models doesn’t recognize that 495

"antelopes" and "yaks", which are hyponyms of 496

"bovine animals", are sibling nodes, distinct from 497

"deer". 6) Constraint Violation: models have diffi- 498

culties in understanding the constraints of a given 499

task. Most of errors in common ancestor reasoning 500

fall into this category. 7) Inconsistent Answers: 501

models produce conflicting answers or multiple 502

answers inside the analysis of answers, unable to 503

reach a definitive conclusion. 504

Analyzing the Impact of Concept Abstraction 505

Levels. We analyze the impact of conceptual ab- 506

straction levels on model performance in under- 507

standing conceptual structures. We find that as the 508

level of concept abstraction increases, the model 509

performance declines. See detailed analyses in Ap- 510

pendix A.3. 511

4.4 CoT Reasoning and Finetuning 512

As we know, Chain-of-Thoughts (CoT) prompting 513

and fine-tuning are two methods capable of enhanc- 514

ing the reasoning abilities of LLMs. Therefore, 515

in this section, we conducted experiments aimed 516

at enhancing the conceptual structure reasoning 517

of MLLMs using CoT prompting and fine-tuning. 518

Specifically, we focus on the last three reasoning 519

tasks in our CONSTRUCTURE benchmark. We 520

will start by presenting the overall results, followed 521

by a detailed discussion of the results for each ex- 522

perimental setting. 523

Overall Results. As shown in Table 5, across the 524

three concept structure reasoning tasks, GPT-4V 525

emerged as the top performer among all baselines, 526

achieving an average score of 0.537, followed by 527

GPT-4o at 0.498. We conducted separate experi- 528

ments with Zero-shot CoT prompting and Few-shot 529

CoT prompting based on GPT-4o. The results re- 530

vealed that Few-shot CoT significantly enhanced 531

GPT-4o’s concept structure reasoning capabilities, 532

increasing its average score from 0.498 to 0.699— 533

an improvement of over 20 points. This improve- 534

ment surpassed GPT-4v by more than 16 points. 535

Notably, in the Common Ancestor Reasoning task, 536

the score rose from 0.145 to 0.529, marking an 537

impressive increase of nearly 38 percentage points. 538

Conversely, Zero-shot CoT did not yield significant 539
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improvements.540

Furthermore, through fine-tuning on the con-541

structed training and validation sets, we achieved542

the most substantial performance enhancement543

with the open-source MLLM Qwen-VL-Chat,544

reaching a score of 0.74. This performance sur-545

passed even the best baseline, GPT-4V, which546

scored 0.537.547

Zero-shot CoT. We evaluate and report on two em-548

pirically derived Zero-shot CoT prompts. Our ex-549

periments reveal that these prompts do not enhance550

model performance on conceptual structure reason-551

ing tasks. Specifically, we randomly sample 200552

error cases from the GPT-4o conceptual structure553

reasoning tasks and apply five empirically designed554

Zero-shot CoT prompts.(see detailed prompt in555

Appendix B). Based on the error correction rate,556

we select the two best-performing Zero-shot CoT557

prompts for evaluation on the full test set and report558

the results. As shown in Table 5, although these559

Zero-shot CoT prompts achieve up to a 30% er-560

ror correction rate in the sampled error cases, they561

lead to a performance decline when applied to the562

full test set, with scores dropping from 0.498 to563

0.479 and 0.451, respectively. This indicates that564

while these prompts slightly improve performance565

on error cases, particularly in the Common An-566

cestor reasoning task (from 0.145 to 0.165), they567

negatively impact Concretization Reasoning (from568

0.662 to 0.575 and 0.495), leading to an overall569

decline in performance. This suggests that prompts570

like “Let’s think step by step.” do not significantly571

help with concept structure reasoning problems.572

Few-shot CoT. We use Few-shot CoT prompts573

written by human experts for each question type574

(detailed prompts can be found in the Appendix B).575

The human-designed Few-shot CoT samples thor-576

oughly address issues identified in previous error577

analyses, such as GPT-4o not following question578

instructions and having inconsistent reasoning pro-579

cesses. The CoT prompts instruct the model to580

answer questions according to the given instruc-581

tions and to analyze each option one by one. In582

the samples, the prompts first break down the mul-583

tiple constraints of the question and then analyze584

whether each option meets these constraints. By585

guiding GPT-4o through this reasoning paradigm,586

its ability to solve conceptual structure reasoning587

problems is significantly enhanced. This demon-588

strates that following a proper reasoning process589

and possessing strong reasoning capabilities are590

crucial for improving the model’s concept structure 591

reasoning. 592

Fine-tuning. Additionally, we conduct fine-tuning 593

experiments on the Qwen-VL-Chat model using 594

our training and validation sets. The fine-tuned 595

model, based on the specialized concept structure 596

reasoning dataset, achieves a top performance score 597

of 0.740. To further understand the impact of 598

atomic concept understanding data, we perform an 599

ablation study by removing the atomic concept un- 600

derstanding subset from the training data and train- 601

ing for the same number of epochs. This results in 602

a decrease in model performance, demonstrating 603

that the inclusion of atomic concept understanding 604

data is beneficial for enhancing the model’s concept 605

structure reasoning abilities. 606

Discussion. We summerize three key insights from 607

experiments on enhancing MLLMs’ concept struc- 608

ture reasoning abilities: 1) Zero-CoT prompting 609

does not significantly improve MLLMs’ perfor- 610

mance in concept structure reasoning. This may 611

be because step-by-step reasoning prompts can in- 612

crease the likelihood of the model focusing on er- 613

roneous interference items, leading to reasoning 614

errors. 2) Few-shot CoT prompting that integrates 615

human expert reasoning process priors can signif- 616

icantly enhance MLLMs’ concept structure rea- 617

soning abilities. 3) Fine-tuning based on concept 618

structure reasoning data can significantly improve 619

MLLMs’ performance, demonstrating the signifi- 620

cant value of our proposed concept structure rea- 621

soning dataset. 622

5 Conclusion 623

We introduce the CONSTRUCTURE benchmark, 624

which evaluates MLLMs’ cognitive and reasoning 625

abilities in tasks like atomic concept understanding, 626

concept abstraction reasoning, concept concretiza- 627

tion reasoning, and common ancestor reasoning. 628

Our findings highlight significant challenges in 629

concept structure reasoning for MLLMs. The top- 630

performing model, GPT-4o, achieved an average 631

score of 0.621, indicating room for improvement. 632

We summarize current evaluations of MLLMs in 633

concept structure reasoning, analyze reasons for 634

their underperformance, and provide key insights 635

from experiments using CoT prompting and fine- 636

tuning to enhance their abilities. Our discoveries 637

offer crucial guidance for advancing MLLMs’ cog- 638

nitive capabilities in concept structure reasoning. 639
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Limitation640

Since our concept chains are based on a Chinese641

taxonomy, there may be some language bias during642

translation into English. Despite extensive manual643

checks, our data annotations might still contain a644

few inaccuracies due to errors in the raw data, in-645

fluenced by the annotators’ understanding of the646

correct answers. Additionally, we primarily eval-647

uate the capabilities of MLLMs within a Chinese648

context. Given the varying proficiency of different649

models in Chinese and English, the results may650

exhibit some variations.651

References652

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,653
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,654
and Jingren Zhou. 2023. Qwen-vl: A frontier large655
vision-language model with versatile abilities. arXiv656
preprint arXiv:2308.12966.657

Sijie Cheng, Zhicheng Guo, Jingwen Wu, Kechen Fang,658
Peng Li, Huaping Liu, and Yang Liu. 2023. Can659
vision-language models think from a first-person per-660
spective? arXiv preprint arXiv:2311.15596.661

Wenliang Dai, Junnan Li, Dongxu Li, Anthony662
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,663
Boyang Li, Pascale N Fung, and Steven Hoi.664
2024. Instructblip: Towards general-purpose vision-665
language models with instruction tuning. Advances666
in Neural Information Processing Systems, 36.667

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,668
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm:669
General language model pretraining with autoregres-670
sive blank infilling. In Proc. of ACL.671

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,672
Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jin-673
rui Yang, Xiawu Zheng, Ke Li, Xing Sun, Rongrong674
Ji, and TencentYoutu Lab. Mme: A comprehensive675
evaluation benchmark for multimodal large language676
models.677

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei678
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,679
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. 2024.680
C-eval: A multi-level multi-discipline chinese evalua-681
tion suite for foundation models. Advances in Neural682
Information Processing Systems, 36.683

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-684
iao Ge, and Ying Shan. 2023a. Seed-bench: Bench-685
marking multimodal llms with generative compre-686
hension. arXiv preprint arXiv:2307.16125.687

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.688
2023b. Blip-2: Bootstrapping language-image pre-689
training with frozen image encoders and large lan-690
guage models. In International conference on ma-691
chine learning, pages 19730–19742. PMLR.692

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 693
Lee. 2024. Visual instruction tuning. Advances in 694
neural information processing systems, 36. 695

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, 696
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi 697
Wang, Conghui He, Ziwei Liu, et al. 2023. Mm- 698
bench: Is your multi-modal model an all-around 699
player? arXiv preprint arXiv:2307.06281. 700

Douglas L Medin. 1989. Concepts and conceptual struc- 701
ture. American psychologist, 44(12):1469. 702

OpenAI. 2023. Gpt-4 technical report. ArXiv. 703

Siddharth Suresh, Kushin Mukherjee, Xizheng Yu, Wei- 704
Chun Huang, Lisa Padua, and Timothy Rogers. 2023. 705
Conceptual structure coheres in human cognition but 706
not in large language models. In Proceedings of the 707
2023 Conference on Empirical Methods in Natural 708
Language Processing, pages 722–738. 709

John R. Taylor. 2019. 2. prototype theory. In Claudia 710
Maienborn, Klaus Heusinger, and Paul Portner, edi- 711
tors, Semantics - Theories, pages 29–56. De Gruyter 712
Mouton, Berlin, Boston. 713

Shan Wang and Francis Bond. 2013. Building the chi- 714
nese open wordnet (cow): Starting from core synsets. 715
In Proceedings of the 11th Workshop on Asian Lan- 716
guage Resources, pages 10–18. 717

Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, 718
Shuo Liu, Meng Lei, Fanqing Meng, Siyuan Huang, 719
Yu Qiao, and Ping Luo. 2023. Lvlm-ehub: A com- 720
prehensive evaluation benchmark for large vision- 721
language models. arXiv preprint arXiv:2306.09265. 722

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng 723
Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan 724
Wang. 2023. The dawn of lmms: Preliminary 725
explorations with gpt-4v (ision). arXiv preprint 726
arXiv:2309.17421, 9(1):1. 727

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, 728
Ming Yan, Yiyang Zhou, Junyang Wang, An- 729
wen Hu, Pengcheng Shi, Yaya Shi, et al. 2023. 730
mplug-owl: Modularization empowers large lan- 731
guage models with multimodality. arXiv preprint 732
arXiv:2304.14178. 733

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, 734
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan 735
Wang. 2023. Mm-vet: Evaluating large multimodal 736
models for integrated capabilities. arXiv preprint 737
arXiv:2308.02490. 738

Zhiwei Zha, Jiaan Wang, Zhixu Li, Xiangru Zhu, Wei 739
Song, and Yanghua Xiao. 2023. M2conceptbase: A 740
fine-grained aligned multi-modal conceptual knowl- 741
edge base. arXiv preprint arXiv:2312.10417. 742

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and 743
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing 744
vision-language understanding with advanced large 745
language models. arXiv preprint arXiv:2304.10592. 746

9

https://doi.org/10.1515/9783110589245-002


0 25 50 75 100 125 150 175
quantity

animal
animal kingdom

fish
carnivore

biont
chemicals
arthropod

device
food

bird species
plant kingdom

artiodactyl
biological world

bony fish
attire

utensil
machinery

mechanical device
compound

ruminant
hoofed animals

aquatic mammal
aquatic vertebrate

others

to
p-

le
ve

l c
on

ce
pt

27
6

18
28

34
42

38
31

12
14

9
17

6
8
8

12
9

8
8

6
13

10
11

188

Figure 5: Top-level Concept Frequency Distribution.

Subset # of Concepts # of Chains Avg. Chain Length # of Images

Train 1,312 638 4.94 636
Valid 1,144 534 4.93 521
Test 1,280 615 4.91 604
Total 1,315 646 4.93 644

Table 4: Detail Statistics of CONSTRUCTURE.

A Appendix747

A.1 Dataset Statistics748

Dataset statistics details are shown in Table 4. The749

top-level concept frequency distribution is shown750

in Figure 5.751

A.2 Case Study of Zero-shot Evaluation752

See case study of concept abstraction reasoning753

task in Figure 6. See case study of concept con-754

cretization reasoning task in Figure 7. See case755

study of common ancestor reasoning task in Fig-756

ure 7.757

A.3 Evaluation Analylis Details.758

Since each question in our benchmark is gener-759

ated based on concepts within a conceptual chain,760

effectively examining the conceptual structure sur-761

rounding a specific level of abstraction, including762

superordinate, subordinate, and sibling concepts.763

To quantify this, we designate the most abstract764

concept level as 0, with subsequent subordinate765

levels labeled as 1, 2, 3, and so on, up to a maxi-766

mum of 5. Based on this framework, we categorize767

the questions into five types, each corresponding768

to a different level of conceptual abstraction. We769

then evaluate and compare the performance of both770

api-based models and open-source models across771

these abstraction levels. Figures 9 and 10 show772

the performance of API-based MLLMs and open-773

source MLLMs on questions at different levels of774

conceptual abstraction, respectively. We observed775

a consistent trend across both types of models: as776

Answer: A

Please choose the most abstract and general concept from the following options that 
accurately describes the concept in the image. 

A. waterbirds B. crane

C. wader D. singing birds

Model Predictions

Image  Question & Answer

GPT-4o: The most abstract and general concept that can accurately describe the concept in the picture is: C. [[wader]] 

wader include various birds living in shallow water environments, such as cranes, storks, egrets, etc. They are more abstract and general than 
waterbirds or specific bird species (such as cranes). The singing birds is a type of bird that attracts mates or declares its territory by singing, which 
is not completely corresponding to the wading bird in the picture.

GPT-4V: The picture shows a bird species. From the given options, it is important to choose a concept that accurately describes the concepts in the 
diagram while also being the most abstract and broad. According to the image content: 

- Option A ”Waterbirds" is a general classification that refers to birds living by the water's edge. 

- Option B "Crane" specifically refers to a specific bird belonging to the crane family. 

- Option C " wader" refers to birds that forage in shallow water areas. This classification is broader than "cranes" but more specific than " wader". 

- Option D " singing bird" refers to birds that emit a chirping sound, and this description is not specific to any specific living environment or 
family genus. 

Considering this point, although there is not enough information to determine whether the bird is making a sound, it can be considered that 
"waterbirds" (option A) is the most general category.

Gemini-1.5-pro: Answer: C. wader \nExplanation:

Wader is the most abstract and general concept because it covers all birds that are adapted to wading in shallow water to feed.

Waterbirds is a more limited category than wader referring to all birds that live near or in water.

Cranes are a specific type of wader, belonging to the order Gruiformes.

Singing birds describe a behavioral trait of birds, not a category, and many species of birds sing.

Therefore, wader is the most abstract and general description of the concept in the picture.

Qwen-VL-Max: C. wader.

Qwen-VL-Chat: A. waterbirds.

LLaVA-1.5-7B: A.

BLIP2: A.

Figure 6: Case study of Concept Abstraction Reasoning
Task.

the level of concept abstraction increases, model 777

performance declines. This result indicates that 778

MLLMs perform better in understanding and rea- 779

soning about more abstract concepts compared to 780

more concrete ones. Based on prior analysis, mod- 781

els struggle with recognizing and reasoning about 782

the hierarchical structure of fine-grained, concrete 783

concepts, often lacking the necessary knowledge 784

or understanding of these detailed concepts. This 785

finding highlights a direction for further improving 786

MLLMs by enhancing their capability to perceive 787

and comprehend the structure of fine-grained con- 788

cepts. 789

A.4 Experimental Results of CoT 790

See Experimental Results of Chain-of-Thoughts 791

Reasoning in Table 5. 792

B Prompts 793

We present specific CoT reasoning prompts. For 794

Zero-shot CoT in Table 5, prompt_1 is the first one 795

in the list, and prompt_2 is the last one in the list. 796

Zero CoT Prompts. 797

1. Let’s think step by step. 798

2. Let’s analyze each option one by one. 799

3. Let’s analyze each option according to the 800

requirements of the question. 801

4. Let’s first identify the possible concepts in the 802

image, and then analyze them one by one. 803
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Model Abstraction Reasoning Concretization Reasoning Common Ancestor Avg. Score

Zero-shot Baselines
gpt-4-vision-preview 0.748 0.602 0.241 0.537
gpt-4o-0513 0.657 0.662 0.145 0.498
Qwen-VL-Max 0.543 0.631 0.143 0.444
Qwen-VL-Chat 0.316 0.543 0.245 0.372
BLIP2 0.484 0.442 0.326 0.419

Zero-shot CoT
gpt-4o-0513 + prompt_1 0.669 0.575 0.165 0.479
gpt-4o-0513 + prompt_2 0.669 0.495 0.165 0.451

Few-shot CoT
gpt-4o-0513(1-shot) 0.859 0.695 0.529 0.699
gpt-4o-0513(2-shot) 0.826 0.723 0.493 0.686

Finetuning
Qwen-VL-Chat-sft 0.859 0.716 0.636 0.740
Qwen-VL-Chat-sft wo. atomic 0.857 0.720 0.622 0.737

Table 5: Results of Chain-of-Thoughts Experiments.

Answer: C

Please choose the most specific and accurate concept from the 
following options that accurately describes the concept in the 
image. 

A. bony fish B. fish 

C. Acanthopterus fish D. saury pike

Model Predictions

Image  Question & Answer

GPT-4o: Based on the characteristics of the fish in the picture, the most specific and accurate description should be: 
A. Bony fish.

GPT-4V: Answer: D. Saury pike 

This picture shows a saury pike, which is judged based on its unique body shape and characteristics.

Gemini-1.5-pro: Answer:  C. Acanthopterus fish

Explanation: 

A. Bony fish: Too broad. The fish in the picture is indeed a bony fish, but bony fish contain a wide variety 
of species. 

B. Fish: is too broad. Similar to bony fish, the range is too large. 

C. Acanthopterus fish: This is the most specific and accurate answer. Acanthopterus fish is an order 
under the order Perciformes, which includes most common fish. The fish in the picture have typical 
characteristics of Acanthopterus fish. 

D. saury pike : Error. The saury pike belongs to the order Nototheniformes, with a slender body shape that 
differs greatly from the fish in the picture. \Therefore, C. Acanthopterus fish is the most specific and accurate 
option to describe the concept in the figure.

Qwen-VL-Max: Based on the content of the picture, it can be determined that this is an image of a fish. However, it 
is impossible to determine the specific species or classification position of this fish. Therefore, the most 
specific and accurate concept should be "fish", which is option B. 

Qwen-VL-Chat: D. saury pike 

LLaVA-1.5-7B: A.

BLIP2: C.

Figure 7: Case study of Concept Concretization Rea-
soning Task.

5. Let’s analyze by comparing the image with804

each option.805

6. Let’s analyze by comparing the image with806

each option according to the requirements of807

the question.808

Few CoT Prompt for Concept Abstraction Rea-809

soning.810

"<img>This is an image of a silver fox.</img>811

Prompt: Please select from the following options812

the one that correctly describes the concept in the813

image and is the most abstract and general con-814

cept.. Bear . Fox . Vixen . Canid: Let’s analyze815

each option according to the prompt requirements.816

Answer: C

Please select a concept from the following options that is different from the concept 
depicted in the image but still falls under the category of \"compound\". 

A. explosive compound B. solution 

C. carbon tetrachloride D. organic compound

Image  Question & Answer

GPT-4o: The chemical structure shown in the picture is a molecule (compound), specifically acetamide, an organic compound. Based on this, the option that is similar to acetamide is 
"organic compound". 

A. Explosive compound - still a compound, but with different properties

B. Solution - not a single compound

C. Carbon tetrachloride - a compound, but not an organic compound

D. Organic compound - similar to the chemical structure in the picture

Therefore, the correct answer should be B. Solution.

GPT-4V: The picture shows the structural formula of an organic compound, specifically a compound containing an amino group (-NH2) and a carbonyl group (>C=O), which looks 
similar to the structure of an amino acid. Among the options, explosive compounds, carbon tetrachloride, and organic compounds are all specific types of compounds, while 
a solution is a uniform mixture of two or more substances, and it is not a compound. Therefore, the concept that is different from the picture but also belongs to the category 
of “compound” is Solution. 

Answer: B. Solution.

Gemini-1.5-pro: Correct answer: B. Solution \nExplanation: \nThe chemical structure in the figure represents a specific compound, which is a pure substance composed of different 
elements in a fixed ratio. 

A. Explosive compound is a class of explosive compounds, but this describes the properties of the compound, not a different concept from the compound in the figure. 

B. Solution is a uniform mixture of two or more substances, which is not a pure substance, so it is different from the concept of the compound in the figure. 

C. Carbon tetrachloride is a specific compound, which, like the compound in the figure, belongs to the general concept of "compound". 

D. Organic compound is a class of compounds mainly composed of carbon and hydrogen elements, and the compound in the figure also belongs to organic compounds. 

Therefore, the concept that is different from the concept in the figure but belongs to "compound" is **B. Solution**.

Qwen-VL-Max: According to the picture content, we can determine that the molecular formula in the picture is CH3CONH2, that is, acetamide. Therefore, the concept that is different 
from it but also belongs to "compound" is D. organic compound.. 

Qwen-VL-Chat: C. Carbon tetrachloride

LLaVA-1.5-7B: A.

BLIP2: D

Model Predictions

Figure 8: Case study of Common Ancestor Reasoning
Task.

First, the prompt requires 1) selecting an option 817

that correctly describes the concept in the image, 818

and 2) is the most abstract and general concept. 819

Next, we analyze each option:. Bear - The concept 820

in the image is a silver fox, which is different from a 821

bear, so this option does not meet the requirements.. 822

Fox - The concept in the image is a silver fox, which 823

is a type of fox, so this option meets the first require- 824

ment.. Vixen - The concept in the image is a fox, but 825

it’s difficult to determine if it’s a vixen or a male fox, 826

so this option does not meet the first requirement.. 827

Canid - The concept in the image is a fox, which 828

belongs to the Canidae family, so this option meets 829

the first requirement. Now, between option B. Fox 830

and option D. Canid, we select the most abstract 831
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Figure 9: Level-wise Accuracy of Api-based MLLMs.

and general concept. A fox belongs to the Canidae832

family, so Canid is the more abstract concept., the833

correct answer is D. Canid."834

Few CoT Prompt for Concept Concretization835

Reasoning.836

"<img>This is an image of a humpback837

whale.</img> Please select from the following op-838

tions the one that correctly describes the concept839

in the image and is the most specific and accurate840

concept.. Sirenians . Cetaceans . Aquatic mam-841

mals . Baleen whales: Let’s analyze each option842

according to the prompt requirements. First, the843

prompt requires 1) selecting an option that cor-844

rectly describes the concept in the image, and 2)845

is the most specific and accurate concept. Next,846

we analyze each option:. Sirenians - The concept847

in the image is a humpback whale, not a sirenian,848

so this option does not meet the first requirement..849

Cetaceans - The concept in the image is a hump-850

back whale, which is a cetacean, so this option851

meets the first requirement.. Aquatic mammals -852

The concept in the image is a humpback whale,853

which is an aquatic mammal, so this option meets854

the first requirement.. Baleen whales - The con-855

cept in the image is a humpback whale, which is a856

type of baleen whale, so this option meets the first857

requirement. Now, between options B. Cetaceans,858

C. Aquatic mammals, and D. Baleen whales, the859

most specific concept is Baleen whales., the correct860

answer is D. Baleen whales." 861

Few CoT Prompt for Common Ancestor Rea- 862

soning. 863

"<img>This is an image of a butterfly- 864

fish.</img> Please select from the following op- 865

tions the concept that is different from the image 866

but belongs to the same ’Perciformes’ group.. Stur- 867

geon . Surgeonfish . Crocodile . Perciformes: Let’s 868

analyze each option according to the prompt re- 869

quirements. First, the prompt requires selecting a 870

concept that 1) is different from the image, and 2) 871

belongs to the ’Perciformes’ group. Next, we an- 872

alyze each option:. Sturgeon - The concept in the 873

image is a butterflyfish, which is different from a 874

sturgeon, so this option meets the first requirement, 875

but sturgeon belongs to the order Acipenseriformes, 876

not Perciformes, so this option does not meet the 877

second requirement.. Surgeonfish - The concept in 878

the image is a butterflyfish, not a surgeonfish, so 879

this option meets the first requirement. Surgeon- 880

fish belong to the order Acanthuriformes, which 881

is not Perciformes, so this option does not meet 882

the second requirement.. Crocodile - Crocodiles 883

are reptiles and do not belong to Perciformes, so 884

this option does not meet the second requirement.. 885

Perciformes - The concept in the image is a but- 886

terflyfish, which belongs to the Perciformes order, 887

so this option meets the second requirement. Now, 888

between options A. Sturgeon and D. Perciformes, 889
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Figure 10: Level-wise Accuracy of Open-source MLLMs.

we select the concept that is different but belongs890

to the same group, which is D. Perciformes., the891

correct answer is B. Surgeonfish."892
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