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Abstract

Multimodal Large Language Models (MLLMs)
have shown promising results in various tasks,
but their ability to perceive the visual world
with deep, hierarchical understanding similar
to humans remains uncertain. To address this
gap, we introduce CONSTRUCTURE, a novel
concept-level benchmark to assess MLLMs’ hi-
erarchical concept understanding and reasoning
abilities. Our goal is to evaluate MLLMs across
four key aspects: 1) Understanding atomic con-
cepts at different levels of abstraction; 2) Per-
forming upward abstraction reasoning across
concepts; 3) Achieving downward concretiza-
tion reasoning across concepts; and 4) Con-
ducting multi-hop reasoning between sibling
or common ancestor concepts. Our findings
indicate that even state-of-the-art multimodal
models struggle with concept structure reason-
ing (e.g., GPT-40 averages a score of 62.1%).
We summarize key findings of MLLMs in con-
cept structure reasoning evaluation. Morever,
we provide key insights from experiments us-
ing CoT prompting and fine-tuning to enhance
their abilities.

1 Introduction

The basic level is the level in a taxonomy
at which things are normally named, in
the absence of reasons to the contrary.
‘Dog’ is a basic level category, ‘boxer’
a subordinate category, ‘quadruped’ a
superordinate category.

— John R. Taylor

According to the prototype theory (Taylor, 2019)
in cognitive science, humans perceive the visual
world hierarchically, with basic, subordinate, and
superordinate categories. People interpret the
world differently based on these conceptual lev-
els in diverse environments. As shown in Figure 1,
humans can not only understand basic concepts,
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Figure 1: Demo of Concept Structure.

but also have a deep concept structure cognition
in minds (Medin, 1989; Suresh et al., 2023). This
raises the question: do multimodal Al systems,
like Multimodal Large Language Models(e.g. GPT-
4V (OpenAl, 2023)), exhibit similar concept struc-
ture cognition ability?

Recently, pretrained multimodal large language
models (MLLMs) have transcended the confines of
text-only modalities, gaining a deeper conceptual
understanding of the world and demonstrating re-
markable performance across a spectrum of down-
stream tasks. As a result, there is a growing impor-
tance and challenge in conducting comprehensive
evaluations of these models to better understand
their capabilities and pinpoint areas for enhance-
ment. Inspired by the cognitive processes under-
lying human conceptual understanding, we posit
that similar deep and structured visual conceptual
cognition capabilities are pivotal for the profound
comprehension of MLLMs. This compelling ques-
tion demands exploration: Do MLLMs truly grasp



Benchmark

Assessment of cognitive related abilities

Data Source Answer Type Evaluator Size

LVLM-eHub (Xu et al., 2023)  Visual Reasoning, Visual Commonsense

Datasets MC/OE Metrics/LLMs/User 332k

MME (Fu et al.) Commonsense Reasoning, Numerical Calculating, Text Translation, Code Reasoning ~ Datasets MC Accuracy 2,194
MMBench (Liu et al., 2023) Reasoning(e.g. Phsycial Relation Reasoning, Social Relation Reasoning) Datasets/Handcraft/LLMs  MC Accuracy 2,974
SEED-Bench (Li et al., 2023a) ~ Visual Reasoning, Spacial Relation Handcraft/LLMs MC Accuracy 19k
MM-Vet (Yu et al., 2023) Spatial awareness, Knowledge, Math Datasets/Handcraft OE LLMs 218
EgoThink (Cheng et al., 2023)  Scene Reasoning, Planning Handcraft OE LLMs 700
CONSTRUCTURE(Ours) Concept Structure Reasoning Datasets/Handcraft MC Accuracy 2,064

Table 1: Comparison of recent comprehensive evaluation benchmarks of MLLMs and our proposed benchmark

M2C2-Bench.

and internalize concepts, or do they merely learn
the superficial concept alignment through pretrain-
ing?

However, addressing this question requires a
deeper investigation into the underlying mecha-
nisms and limitations of MLLMs. As shown in
Table 1, the deep visual concept structure cognition
remains largely unexplored in existing benchmarks.
On one hand, these benchmarks seldom consider
visual cognitive capabilities. On the other hand,
existing benchmarks for visual cognition typically
focus solely on assessing visual reasoning ability
related to the whole image content, overlooking
the evaluation of deep and structural visual concept
cognition. For example, SEED-bench ?? evalu-
ates spatial relationships or visual reasoning tasks
based on the content of images, while MME ?? as-
sesses common-sense reasoning, numerical compu-
tation, code inference, and text translation. LVLM-
eHub ?? evaluates visual reasoning and visual com-
mon sense. However, all these benchmarks require
answering questions based on the entire content
of an image. Therefore, there is a pressing need
to construct an benchmark specifically designed to
assess the deep visual concept structure cognition
in MLLMs.

In this work, we propose the novel CONSTRUC-
TURE benchmark focusing on deep visual concept
structure cognition. To fully uncover the deep vi-
sual cognitive ability of MLLLMs across the overall
concept structure beyond the Figure 1, we consider
the following four key capabilities, ranging from
atomic concenpt understanding, concept abstrac-
tion reasoning, concept concretization reasoning,
to common ancestor reasoning. The first capability
is to evaluate the atomic concept understanding at
different levels. The last three capabilities are to
evaluate reasoning ability on concept structure, in-
cluding upward abstraction reasoning from child
concepts to parent concepts, downward concretiza-
tion reasoning from parent concepts to child con-
cepts and multi-hop reasoning between sibling con-
cepts or common ancestor concepts, respectively.

Based on the our proposed CONSTRUCTURE
benchmark, we conduct comprehensive experi-
ments to evaluate concept structure cognition capa-
bilities of fourteen popluar MLLMs (including 6
api-based MLLMs and 8 open-sourced MLLMs).
We conclude the main findings as follows:

1) Current MLLMs possess a certain level of
conceptual understanding, but their performance
in concept structure reasoning is poor. The best
model, GPT-40, only achieved a score of 0.621,
indicating significant room for improvement.

2)In concept structure reasoning tasks, MLLMs
perform the worst in common ancestor reasoning.
The main reasons for errors are inconsistencies
in the reasoning process and constraint violations.
This demonstrates that adhering to multiple con-
straints and maintaining consistency in the rea-
soning process are key challenges to enhancing
MLLMSs’ concept structure cognitive abilities.

3) MLLMs still need to improve their ability to
reason about hierarchical relationships in concept
structures.

4) MLLMs’ performance deteriorates as the con-
cept hierarchy deepens and granularity increases.
Therefore, improving fine-grained concept recog-
nition and the ability to reason about related fine-
grained concept structures is crucial for enhance-
ment.

Our evaluation results reveal the limitations of
MLLMSs in concept structure cognition, providing
a comprehensive and clear analysis that directs
further improvements for MLLMs. Furthermore,
we improved MLLMs’ concept structure reasoning
abilities through few-shot CoT prompting and fine-
tuning methods, and elucidated three key insights
in the discussion.

2 Related Work

2.1 Multimodal Large Language Models

Building upon the monumental achievements of
large language models (LLMs) (Du et al., 2022;
OpenAl, 2023; Zhu et al., 2023), recent advance-



ments in multimodal LLMs (MLLMs) have firmly
established LLMs as their foundational backbone.
Initially, MLLMs commence pre-training using
large-scale image-text paired datasets (Yang et al.,
2023; Li et al., 2023b) or by integrating random vi-
sual and textual data (Ye et al., 2023; Bai et al.,
2023). This foundational phase is further en-
riched by leveraging extensive image-text instruc-
tion datasets (Dai et al., 2024). Recent studies (Liu
et al., 2024) have increasingly employed fine-
tuning strategies, significantly enhancing MLLMs’
capacity to deliver superior performance in various
downstream tasks and benchmarks.

2.2 Evaluations of MLLMs

Current benchmarks aim to comprehensively assess
MLLMS’ capabilities in multimodal cognition tasks
like reasoning. For example, Lvlm-ehub (Xu et al.,
2023) evaluates visual reasoning and common-
sense cognition across 47 benchmarks. MME 2?
covers inference, numerical computation, trans-
lation, and code reasoning. SEED-bench ?? fo-
cuses on visual and spatial reasoning, while MM-
VET ?? evaluates spatial relationships, knowledge,
and math abilities. EgoThink ?? assesses scene
reasoning and planning. Our CONSTRUCTURE
benchmark specifically targets hierarchical concept
structure reasoning in MLLMs’ understanding of
visual concepts.

3 CONSTRUCTURE Benchmark

In this section, we first elaborate on the capability
and question sets used to assess concept structure
cognition abilities. Following that, we outline the
process of constructing the test dataset.

3.1 Evaluation Capability

As shown in Figure 2, we evaluate the following
four key capabilities to uncover the concept struc-
ture cognition ability of MLLMs., ranging from
atomic concenpt understanding, concept abstrac-
tion reasoning, concept concretization reasoning,
to common ancestor reasoning. We explain why
each capability is needed with a question inspired
by human concept cognition and introduce how to
evaluate the capability with examples.

Atomic Concept Understanding. How can
MLLMs understand atomic concepts at different
levels of abstraction? Human cognition of concepts
has different levels of abstraction, and we can not
only understand concrete concepts like “Persian

Cat”, but also abstract concepts like “Mammal”.
How is MLLMs capable of understanding concepts
of various levels of abstraction? As shown in upper
left part of Figure 2, to evaluate atomic concept
understanding ability, we query MLLMs with a
simple discriminant question (i.e. “Is the concept
depicted in the image a {concept_name}?”’) with
true or false options related to specific concepts at
various abstraction levels. To answer this question,
MLLMs need to have a multi-level understanding
of visual concepts.

Concept Abstraction Reasoning. Can MLLMs
perform upward abstraction reasoning across con-
cepts at different levels of abstraction? Human
beings can categorize concrete concepts into upper
level abstract concepts, e.g. categorize “penguins”
and “sharks” to “birds” and “fish”, respectively.
How well do MLLMs perform this kind of abstrac-
tion reasoning process? As shown in upper right
part of Figure 2, to evaluate concept abstraction
reasoning ablity, we query MLLMs with multiple-
choice questions to select the most abstract and
general concept from candidate options. The im-
age is aligned correctly with several concepts in
candidate options, MLLMs need to recognize them
and figure out one has the most abstract level. To
answer this question, MLLMs need firstly recog-
nize correct options and then reason out the most
abstract concept aligned with the image.

Concept Concretization Reasoning. Can MLLMs
achieve downward concretization reasoning across
concepts at various levels of abstraction? Human
beings can refine abstract concepts to lower level
concrete concepts, e.g. recognize from the animal
categories (“Cats”) to fine-grained breed (“Persian
Cat”). How well do MLLMs perform this kind
of concretization reasoning process? As shown
in lower left part of Figure 2, to evaluate concept
concretization reasoning ability, we query MLLMs
with multiple-choice questions to select the most
specific and accurate concept from candidate op-
tions. The image is aligned correctly with several
concepts in candidate options, MLLMs need to rec-
ognize them and figure out the most concrete one.
To answer this question, MLLMs need firstly rec-
ognize correct options and then reason out the most
concrete concept aligned with the image.

Common Ancestor Reasoning. Can MLLMs per-
Sform multi-hop reasoning between sibling concepts
or common ancestor concepts? Human percep-
tion of visual concepts follows a hierarchical struc-
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Figure 2: CONSTRUCTURE Benchmark.

ture. For instance, we recognize that “dogs” and
“cats” have a higher-level common ancestor con-
cept “mammal”, and within the category of “dogs”,
there are subcategories like “pet dog” and “hunt-
ing dog”. Can MLLMs fully grasp the various
hierarchical levels of a concept? Can they reason
that two concepts have a common ancestor concept
or are they in a sibling relationship? As shown
in lower right part of Figure 2, to evaluate com-
mon ancestor reasoning ability, we query MLLMs
with multiple-choice questions to select a concept
which is different from as well as share the same
parent or common ancestor concept with the con-
cept depicted in the image. To answer this question,
MLLMs need have the ability to reason across sib-
ling concepts or common ancestor concepts, which
indicates that MLLMs need to have the structure
cognition ability of the related concepts.

3.2 Data collection

In this section, we introduce details of data col-
lection to construct our CONSTRUCTURE bench-
mark.

Collecting Concept Taxonomy and Construct
Concept Chains. We use isA relations in Chinese
Open WordNet (Wang and Bond, 2013) as our data
source of concept structure, which encompasses
19.7K isA relations. We remove the identity iSA
relation in the raw data and construct an isA con-
cept tree (with a root node). During construction,
we drop potential isA relations to avoid the circular

dependency. After that, we recursively search for
the isA concept chains with a length of 5 as our
candidates for the next stage of sample generation.

Collecting Visual Concept Image with Man-
ual Check. Since concept in collected candi-
date chains may not be visual concepts, we lever-
age M2C0nceptBase (Zha et al., 2023) (a mul-
timodal knowledge base has rich concept-image
alignments) to filter out visual concepts. Then
we carefully check whether the lowest concept in
the concept chain corresponds to the image in the
knowledge base correctly, and search for correct
images from the Internet for lower quality or wrong
images. We also put in considerable manual ef-
forts to check the correctness of the concept chains.
We remove all wrong candidate concept chains or
wrong isA relation part (rooted in raw data from
Chinese Open Wordnet) in candidate chains, and
finally get totally 646 chains with length ranging
from 3 to 5, each chains has correctly aligned im-
age with the lowest level concept.

Sample Construction. For each type of question,
we generate different options using concept chains
and taxonomy, including hard negative options. For
atomic concept understanding, we randomly assign
50% of concepts as "Yes" paired with correct im-
ages, and 50% with incorrect images from unre-
lated concepts. In concept abstraction reasoning,
for each chain of length N, we generate N — 1
questions with options set to current-level concept,
lower-level concept, positive upper-level concept,



Subset Train Valid Test Total
Atomic Concept Understanding 2,168 313 637 3,118
Concept Abstraction Reasoning 1,738 247 490 2,475
Concept Concretization Reasoning 1,717 246 489 3,210
Common Ancestor Reasoning 1,611 225 448 2,284
Total 7,234 1,031 2,064 10,329

Table 2: Statistics of CONSTRUCTURE.

and negative upper-level concept (in random or-
der). Similarly, in concept concretization reasoning,
options include current-level concept, upper-level
concept, positive lower-level concept, and negative
lower-level concept. For common ancestor reason-
ing in chains of length N, options cover current-
level concept, random-level concept, and brother
or brother-son concept (as the answer option), ar-
ranged randomly. We conduct rigorous program-
matic and manual checks to eliminate unreasonable
options that might lead to multiple correct answers.

Statistics. As shown in Table 2 , our CONSTRUC-
TURE benchmark has totally 10, 329 samples. We
split the benchmark into training, validation, and
test sets in a ratio of 7:1:2, totaling 7234, 1031, and
2064 samples, respectively. The test set is exclu-
sively used for evaluating MLLMs, while the train-
ing and validation sets are employed for fine-tuning
MLLMs to enhance their conceptual structure rea-
soning capabilities. The breakdown of question
types is detailed in Table 2. We further elaborate on
the details of the CONSTRUCTURE benchmark
in Table 4. Our benchmark comprises 1315 vi-
sual concepts, 646 concept chains, and 644 images,
with an average concept chain length per sample
of 4.93. The breakdown of subsets is detailed in
Table 4. As shown in Figure 5, our CONSTRUC-
TURE benchmark covers a wide range of topics,
including "animal", "plant", "device", "clothing",
"chemicals", and more.

4 Experiments
4.1 Experimental setups

Multimodal Large Language Models. We evalu-
ate six api-based Multimodal Large Language Mod-
els (MLLMs) and eight open-source MLLMs. All
open-source MLLMs are ~7B models. We con-
duct zero-shot setups in overall evaluation for all
MLLMs across our CONSTRUCTURE benchmark.
Since our benchmark includes both Chinese and
English versions, we evaluate MLLMs with Chi-
nese capabilities in a Chinese context and those
without in an English context.

Image Question & Answer

Question: Is the concept depicted in the image bovidae?

A. Yes B. No

Answer: A

animal shown in the picture is a sheep, which be
bov amely the Ovis family. Bovidac animals usua
thinoceros, and so on

Gemini-1.5-pro: B. No, the picture shows a sheep, which belongs to the Ovis family of animals, not the
Bov e family of animals.

Qwen-VL-Max: Yes. The picture shows a sheep, which belongs to the Bovidac family. The Bovidae
family includes various domestic animals such as cattle, sheey

Qwen-VL-Chat: The animal shown in the picture is a sheep, bel
LLaVA-1.5-7B: Yes.
BLIP2: B.

Figure 3: Case study of Atomic Concept Understanding
Task.

Evaluation Methods. In the CONSTRUCTURE
benchmark, test samples are organized in a
multiple-choice format. The questions are divided
into different sets: atomic concept understanding
questions, which include "true" and "false" as the
two options, and three other reasoning question
sets, each offering four challenging options. Only
one of these options is the correct answer. We input
the image and the question to query MLLMs to get
a response. Following (Huang et al., 2024), we
then employ regular expression matching to parse
the model outputs and calculate the accuracy by
comparing it with the ground truth.

4.2 Main Results

Overall Results. We first present the overall results
of the evaluated models on our CONSTRUCTURE
benchmark as shown in Table 3. Current MLLMs,
whether open-source or proprietary, demonstrate
some level of concept understanding, but their abil-
ity to comprehend conceptual structures remains
limited. The top-performing model, GPT-40-0513,
achieved an average score of only 0.621, with even
lower average scores of 0.498 across the three con-
ceptual structure reasoning tasks. There is signifi-
cant variability in performance across different rea-
soning tasks, and all MLLMs struggle particularly
with Common Ancestor Reasoning, indicating its
ongoing challenges. Overall, GPT-40-0513 and
GPT-4-vision-preview stand out among API-based
models. Although API-based models generally out-
perform open-source models, open-source models
like BLIP2 and Qwen-VL-Chat achieve compet-
itive results, surpassing models such as Gemini.
This indicates that open-source approaches are ca-
pable of producing high-performing models in cer-
tain areas.



Model Concept Understanding | Abstraction Reasoning | Concretization Reasoning | Common Ancestor | Avg. Score
API-based Models
gpt-4-vision-preview 0.692 0.748 0.601 0.241 0.586
gpt-40-0513 0.896 0.657 0.663 0.145 0.621
gemini-pro-vision 0.733 0.584 0.486 0.040 0.489
gemini-1.5-pro 0.746 0.692 0.407 0.100 0.513
claude3_sonnet 0.666 0.571 0.501 0.397 0.546
Qwen-VL-Max 0.763 0.543 0.631 0.143 0.545
Open-source Models

BLIP2 0.794 0.484 0.442 0.326 0.535
InstructBLIP 0.0 0.061 0.143 0.069 0.063
MiniGPT-4 0.455 0.257 0.186 0.172 0.283
mPLUG_Owl 0.480 0.192 0.225 0.194 0.289
Visual GLM 0.281 0.027 0.045 0.016 0.107
Chinese_LLaVA 0.532 0.531 0.303 0.201 0.406
LLaVA-1.5 0.670 0.347 0.337 0.246 0.422
Qwen-VL-Chat 0.794 0.316 0.543 0.245 0.502

Table 3: Evaluation Results on CONSTRUCTURE Benchmark.

Results on Atomic Concept Understanding.
MLLMs generally perform well on the atomic con-
cept understanding task. Among the API-based
models, GPT-40 achieves nearly 90% accuracy, in-
dicating a robust understanding of visual concepts
across different levels. In the open-source models,
both BLIP2 and Qwen-VL-Chat achieve a score
of 0.794, surpassing most API-based models and
only slightly behind GPT-40. We observe that mod-
els performing well in the atomic concept under-
standing task also tend to excel in the other three
reasoning tasks, demonstrating a positive correla-
tion between atomic concept understanding and
concept structure reasoning performance. Instruct-
BLIP, however, performs poorly across most tasks,
frequently outputting incorrect answers or gibber-
ish. VisualGLM also struggles, often disregarding
task instructions and merely generating descrip-
tions of the images. Figure 3 below illustrates the
performance of different MLLMs on an atomic con-
cept understanding task. In the example, GPT-40,
GPT-4V, and Gemini-1.5-pro correctly identified
the image as a sheep but incorrectly answered that
a sheep is not a bovine animal (when, in fact, it is).
However, Qwen-VL-Max and Qwen-VL-Chat cor-
rectly identified that a sheep belongs to the bovine
family. This indicates that not all MLLMs possess
comprehensive knowledge of concept structures.

Results on Concept Abstraction Reasoning. In
the concept abstraction reasoning task, GPT-4V
achieved the highest score of 0.748, followed by
Gemini-1.5-pro with 0.657. Among open-source
models, Chinese_LLaVA performed the best, scor-
ing 0.531. Figure 6 presents the responses of dif-
ferent MLLMs to a specific question in this task.
In this example, GPT-4V, Qwen-VL-Chat, LLaVA-

1.5, and BLIP2 all provided correct answers. How-
ever, both GPT-40 and Gemini-1.5-pro answered
incorrectly, misunderstanding the concept abstrac-
tion and hierarchical relationship (i.e. waterbirds
include both swimming birds and wading birds).

Results on Concept Concretization Reasoning.
In the concept concretization reasoning task, GPT-
40 once again achieved the highest score of 0.663,
followed by Qwen-VL-Max with a score of 0.631.
Among the open-source models, Qwen-VL-Chat
performed the best with a score of 0.543, with
BLIP2 coming in second at 0.442. Figure 7 il-
lustrates the performance of different MLLMs on
a specific question in this task. In this exam-
ple, Gemini-1.5-Pro and BLIP2 answered correctly.
Gemini-1.5-Pro provided the correct reasoning pro-
cess, while the other models answered incorrectly:
GPT-40 gave an incorrect response without engag-
ing in reasoning, GPT-4v misidentified the concept
in the image (it’s a Mahi Mahi or dolphinfish, not a
saury pike), and Qwen-VL-Max selected an overly
broad option due to conservative answering.

Results on Common Ancestor Reasoning. In the
common ancestor reasoning task, all MLLMs strug-
gled, indicating it as the most challenging task for
MLLMs in concept structure reasoning. The best
performer was claude3_sonnet, achieving a score
of 0.397. GPT-4V and GPT-40 scored 0.241 and
0.145, respectively. Among the open-source mod-
els, BLIP2 scored 0.326, surpassing both GPT-4V
and GPT-40 but falling short of claude3_sonnet.
Figure 8 illustrates the performance of different
MLLMs on a specific question in this task. In this
example, the image represents the structural for-
mula of a chemical compound, acetamide. The
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Figure 4: Distribution of Error Types for GPT-40 and
Gemini-1.5-Pro.

question requires the model to adhere to two con-
straints: 1) it must differ from the concept shown
in the image, and 2) it must also be a “compound”.
Only Qwen-VL-Chat provided the correct answer
in the example. GPT-40 and Gemini-1.5-pro cor-
rectly identified that option B’s “solution” is a mix-
ture rather than a “compound” (a pure substance),
but they provided an incorrect answer in the final
step of reasoning, revealing inconsistency in their
reasoning process. GPT-4v gave a hallucinative
answer, and its reasoning process was also incor-
rect. Qwen-VL-Max’s answer did not meet the first
requirement. Therefore, we observe that MLLMs
perform poorly in tasks like Common Ancestor
Reasoning due to various reasons, such as errors in
understanding images or concepts, inconsistency
in generation or reasoning processes, and others.
Next, we will further analyze the types of model
eITorS.

4.3 Analysis

Error Type Analysis. To further analyze the er-
ror type distribution of MLLMs, we examined two
models: GPT-40 and Gemini-1.5-Pro. As shown
in Figure 4, we finally categorize errors into seven
types, focusing on the capabilities of MLLMs re-
garding images, concepts, and language. The error
types are as follows: 1Image-Irrelevance: This
error occurs when models provide answers that
do not take the content of the provided images
into account. 2)Image-Object Detection: This
refers to models failing to recognize key objects
or misidentifying them. For example, a cow might
be incorrectly detected as an antelope. 3)Concept-
Hierarchies: models have difficulties in understand-
ing hierarchical relationships between concepts
and identifying which one is in a higher level.

4) Concept-Meaning: models fail to comprehend
the meanings of options because they don’t know
which concepts include the objects in the images.
5) Concept-Siblings: models have difficulties in
recognizing sibling relationships between concepts.
For example, the models doesn’t recognize that
"antelopes" and "yaks", which are hyponyms of
"bovine animals", are sibling nodes, distinct from
"deer". 6) Constraint Violation: models have diffi-
culties in understanding the constraints of a given
task. Most of errors in common ancestor reasoning
fall into this category. 7) Inconsistent Answers:
models produce conflicting answers or multiple
answers inside the analysis of answers, unable to
reach a definitive conclusion.

Analyzing the Impact of Concept Abstraction
Levels. We analyze the impact of conceptual ab-
straction levels on model performance in under-
standing conceptual structures. We find that as the
level of concept abstraction increases, the model
performance declines. See detailed analyses in Ap-
pendix A.3.

4.4 CoT Reasoning and Finetuning

As we know, Chain-of-Thoughts (CoT) prompting
and fine-tuning are two methods capable of enhanc-
ing the reasoning abilities of LLMs. Therefore,
in this section, we conducted experiments aimed
at enhancing the conceptual structure reasoning
of MLLMs using CoT prompting and fine-tuning.
Specifically, we focus on the last three reasoning
tasks in our CONSTRUCTURE benchmark. We
will start by presenting the overall results, followed
by a detailed discussion of the results for each ex-
perimental setting.

Overall Results. As shown in Table 5, across the
three concept structure reasoning tasks, GPT-4V
emerged as the top performer among all baselines,
achieving an average score of 0.537, followed by
GPT-40 at 0.498. We conducted separate experi-
ments with Zero-shot CoT prompting and Few-shot
CoT prompting based on GPT-40. The results re-
vealed that Few-shot CoT significantly enhanced
GPT-40’s concept structure reasoning capabilities,
increasing its average score from 0.498 to 0.699—
an improvement of over 20 points. This improve-
ment surpassed GPT-4v by more than 16 points.
Notably, in the Common Ancestor Reasoning task,
the score rose from 0.145 to 0.529, marking an
impressive increase of nearly 38 percentage points.
Conversely, Zero-shot CoT did not yield significant



improvements.

Furthermore, through fine-tuning on the con-
structed training and validation sets, we achieved
the most substantial performance enhancement
with the open-source MLLM Qwen-VL-Chat,
reaching a score of 0.74. This performance sur-
passed even the best baseline, GPT-4V, which
scored 0.537.

Zero-shot CoT. We evaluate and report on two em-
pirically derived Zero-shot CoT prompts. Our ex-
periments reveal that these prompts do not enhance
model performance on conceptual structure reason-
ing tasks. Specifically, we randomly sample 200
error cases from the GPT-40 conceptual structure
reasoning tasks and apply five empirically designed
Zero-shot CoT prompts.(see detailed prompt in
Appendix B). Based on the error correction rate,
we select the two best-performing Zero-shot CoT
prompts for evaluation on the full test set and report
the results. As shown in Table 5, although these
Zero-shot CoT prompts achieve up to a 30% er-
ror correction rate in the sampled error cases, they
lead to a performance decline when applied to the
full test set, with scores dropping from 0.498 to
0.479 and 0.451, respectively. This indicates that
while these prompts slightly improve performance
on error cases, particularly in the Common An-
cestor reasoning task (from 0.145 to 0.165), they
negatively impact Concretization Reasoning (from
0.662 to 0.575 and 0.495), leading to an overall
decline in performance. This suggests that prompts
like “Let’s think step by step.” do not significantly
help with concept structure reasoning problems.

Few-shot CoT. We use Few-shot CoT prompts
written by human experts for each question type
(detailed prompts can be found in the Appendix B).
The human-designed Few-shot CoT samples thor-
oughly address issues identified in previous error
analyses, such as GPT-40 not following question
instructions and having inconsistent reasoning pro-
cesses. The CoT prompts instruct the model to
answer questions according to the given instruc-
tions and to analyze each option one by one. In
the samples, the prompts first break down the mul-
tiple constraints of the question and then analyze
whether each option meets these constraints. By
guiding GPT-40 through this reasoning paradigm,
its ability to solve conceptual structure reasoning
problems is significantly enhanced. This demon-
strates that following a proper reasoning process
and possessing strong reasoning capabilities are

crucial for improving the model’s concept structure
reasoning.

Fine-tuning. Additionally, we conduct fine-tuning
experiments on the Qwen-VL-Chat model using
our training and validation sets. The fine-tuned
model, based on the specialized concept structure
reasoning dataset, achieves a top performance score
of 0.740. To further understand the impact of
atomic concept understanding data, we perform an
ablation study by removing the atomic concept un-
derstanding subset from the training data and train-
ing for the same number of epochs. This results in
a decrease in model performance, demonstrating
that the inclusion of atomic concept understanding
data is beneficial for enhancing the model’s concept
structure reasoning abilities.

Discussion. We summerize three key insights from
experiments on enhancing MLLMs’ concept struc-
ture reasoning abilities: 1) Zero-CoT prompting
does not significantly improve MLLMs’ perfor-
mance in concept structure reasoning. This may
be because step-by-step reasoning prompts can in-
crease the likelihood of the model focusing on er-
roneous interference items, leading to reasoning
errors. 2) Few-shot CoT prompting that integrates
human expert reasoning process priors can signif-
icantly enhance MLLMs’ concept structure rea-
soning abilities. 3) Fine-tuning based on concept
structure reasoning data can significantly improve
MLLMs’ performance, demonstrating the signifi-
cant value of our proposed concept structure rea-
soning dataset.

5 Conclusion

We introduce the CONSTRUCTURE benchmark,
which evaluates MLLMSs’ cognitive and reasoning
abilities in tasks like atomic concept understanding,
concept abstraction reasoning, concept concretiza-
tion reasoning, and common ancestor reasoning.
Our findings highlight significant challenges in
concept structure reasoning for MLLMs. The top-
performing model, GPT-40, achieved an average
score of 0.621, indicating room for improvement.
We summarize current evaluations of MLLMs in
concept structure reasoning, analyze reasons for
their underperformance, and provide key insights
from experiments using CoT prompting and fine-
tuning to enhance their abilities. Our discoveries
offer crucial guidance for advancing MLLMs’ cog-
nitive capabilities in concept structure reasoning.



Limitation

Since our concept chains are based on a Chinese
taxonomy, there may be some language bias during
translation into English. Despite extensive manual
checks, our data annotations might still contain a
few inaccuracies due to errors in the raw data, in-
fluenced by the annotators’ understanding of the
correct answers. Additionally, we primarily eval-
uate the capabilities of MLLMs within a Chinese
context. Given the varying proficiency of different
models in Chinese and English, the results may
exhibit some variations.
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Figure 5: Top-level Concept Frequency Distribution.

Subset # of Concepts # of Chains Avg. Chain Length # of Images
Train 1,312 638 4.94 636
Valid 1,144 534 4.93 521
Test 1,280 615 4.91 604
Total 1,315 646 4.93 644

Table 4: Detail Statistics of CONSTRUCTURE.

A Appendix

A.1 Dataset Statistics

Dataset statistics details are shown in Table 4. The
top-level concept frequency distribution is shown
in Figure 5.

A.2 Case Study of Zero-shot Evaluation

See case study of concept abstraction reasoning
task in Figure 6. See case study of concept con-
cretization reasoning task in Figure 7. See case
study of common ancestor reasoning task in Fig-
ure 7.

A.3 [Evaluation Analylis Details.

Since each question in our benchmark is gener-
ated based on concepts within a conceptual chain,
effectively examining the conceptual structure sur-
rounding a specific level of abstraction, including
superordinate, subordinate, and sibling concepts.
To quantify this, we designate the most abstract
concept level as 0, with subsequent subordinate
levels labeled as 1, 2, 3, and so on, up to a maxi-
mum of 5. Based on this framework, we categorize
the questions into five types, each corresponding
to a different level of conceptual abstraction. We
then evaluate and compare the performance of both
api-based models and open-source models across
these abstraction levels. Figures 9 and 10 show
the performance of API-based MLLMs and open-
source MLLMs on questions at different levels of
conceptual abstraction, respectively. We observed
a consistent trend across both types of models: as
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Question & Answer

Please choose the most abstract and general concept from the following options that
accurately describes the concept in the image.
A. waterbirds B. crane

D. singing birds

tract and g
eclares its teritory b

- Option € " wader” refers

- Option D" singing bird

Opt ers to birds that emit a chirping sound, and this description is not
family genus.

Gemini-1.5-pro: Answer: C
Wader is th oncept because it covers all birds that are adapted to wading in shallow water to feed.
Waterbirds is a more limited category than wader referring to all birds that live near or in water

Cranes are a specific type of wader, belonging to the order Gruiformes,

Singing birds describe a b trait of birds, not a categs

wany species of birds sing.

Theref stract and cept in the picture.
Qwen-VL-Max: €
Qwen-VL-Chat: A. waterbirds.

LLAVA-L5-7B: A

BLIP2: A

Figure 6: Case study of Concept Abstraction Reasoning
Task.

the level of concept abstraction increases, model
performance declines. This result indicates that
MLLMs perform better in understanding and rea-
soning about more abstract concepts compared to
more concrete ones. Based on prior analysis, mod-
els struggle with recognizing and reasoning about
the hierarchical structure of fine-grained, concrete
concepts, often lacking the necessary knowledge
or understanding of these detailed concepts. This
finding highlights a direction for further improving
MLLMs by enhancing their capability to perceive
and comprehend the structure of fine-grained con-
cepts.

A.4 Experimental Results of CoT

See Experimental Results of Chain-of-Thoughts
Reasoning in Table 5.

B Prompts

We present specific CoT reasoning prompts. For
Zero-shot CoT in Table 5, prompt_1 is the first one
in the list, and prompt_2 is the last one in the list.

Zero CoT Prompts.
1. Let’s think step by step.
Let’s analyze each option one by one.

. Let’s analyze each option according to the
requirements of the question.

. Let’s first identify the possible concepts in the
image, and then analyze them one by one.



Model Abstraction Reasoning | Concretization Reasoning | Common Ancestor | Avg. Score
Zero-shot Baselines

gpt-4-vision-preview 0.748 0.602 0.241 0.537

gpt-40-0513 0.657 0.662 0.145 0.498

Qwen-VL-Max 0.543 0.631 0.143 0.444

Qwen-VL-Chat 0.316 0.543 0.245 0.372

BLIP2 0.484 0.442 0.326 0.419
Zero-shot CoT

gpt-40-0513 + prompt_1 0.669 0.575 0.165 0.479

gpt-40-0513 + prompt_2 0.669 0.495 0.165 0.451
Few-shot CoT

gpt-40-0513(1-shot) 0.859 0.695 0.529 0.699

gpt-40-0513(2-shot) 0.826 0.723 0.493 0.686

Finetuning
Qwen-VL-Chat-sft 0.859 0.716 0.636 0.740
Qwen-VL-Chat-sft wo. atomic 0.857 0.720 0.622 0.737

Table 5: Results of Chain-of-Thoughts Experiments.

Image Question & Answer

Please choose the most specific and accurate concept from the
following options that accurately describes the concept in the
image.

A. bony fish B. fish

C. Acanthopterus fish
Answer: C

D. saury pike

GPT-40: Based on |Ihe characteristics of the fish in the picture, the most specific and accurate description should be:
A. Bony fish.

GPT-4V: Answer: D. Saury pike

This picture shows a saury pike, which is judged based on its unique body shape and characteristics.
Gemini-1.5-pro: Answer: C. Acanthopterus fish

Explanation:

A. Bony fish: Too broad. The fish in the picture is indeed a bony fish, but bony fish contain a wide variety
of species.

B. Fish: is too broad. Similar to bony fish, the range is too large.

C. Acanthopterus fish: This is the most specific and accurate answer. Acanthopterus fish is an order
under the order Perciformes, which includes most common fish. The fish in the picture have typical
characteristics of Acanthopterus fish.

D. saury pike : Error. The saury pike belongs to the order Nototheniformes, with a slender body shape that
differs greatly from the fish in the picture. \Therefore, C. Acanthopterus fish is the most specific and accurate
option to describe the concept in the figure.

Qwen-VL-Max: Based on the content of the picture, it can be determined that this is an image of a fish. However, it
is impossible to determine the specific species or classification gmm(m of this fish. Therefore, the most
specific and accurate concept should be "fish”, which is option

Qwen-VL-Chat: D. saury pike
LLaVA-1.5-7B: A,
BLIP2: C.

Figure 7: Case study of Concept Concretization Rea-
soning Task.

5. Let’s analyze by comparing the image with
each option.

6. Let’s analyze by comparing the image with
each option according to the requirements of
the question.

Few CoT Prompt for Concept Abstraction Rea-
soning.

"<img>This is an image of a silver fox.</img>
Prompt: Please select from the following options
the one that correctly describes the concept in the
image and is the most abstract and general con-
cept.. Bear. Fox . Vixen . Canid: Let’s analyze
each option according to the prompt requirements.
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Image Question & Answer
CH,  Please select a concept from the following options that is different from the concept
3 depicted in the image but still falls under the category of \"compound\".
H2N A. explosive compound B. solution
o C. carbon tetrachloride D. organic compound

Answer: C

Based on this,the option that i smilar o

{ Therefore, the concept that s diffrent from the pict

s **B. Solution®.

is CHICONH2, tht s, acetamide. Thercfore, the concept that s different

LLaVA-LS.7B: A

BLIP2: D

Figure 8: Case study of Common Ancestor Reasoning
Task.

First, the prompt requires 1) selecting an option
that correctly describes the concept in the image,
and 2) is the most abstract and general concept.
Next, we analyze each option:. Bear - The concept
in the image is a silver fox, which is different from a
bear, so this option does not meet the requirements..
Fox - The concept in the image is a silver fox, which
is a type of fox, so this option meets the first require-
ment.. Vixen - The concept in the image is a fox, but
it’s difficult to determine if it’s a vixen or a male fox,
so this option does not meet the first requirement..
Canid - The concept in the image is a fox, which
belongs to the Canidae family, so this option meets
the first requirement. Now, between option B. Fox
and option D. Canid, we select the most abstract
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Figure 9: Level-wise Accuracy of Api-based MLLMs.

and general concept. A fox belongs to the Canidae
Sfamily, so Canid is the more abstract concept., the
correct answer is D. Canid."

Few CoT Prompt for Concept Concretization
Reasoning.

"<img>This is an image of a humpback
whale.</img> Please select from the following op-
tions the one that correctly describes the concept
in the image and is the most specific and accurate
concept.. Sirenians . Cetaceans . Aquatic mam-
mals . Baleen whales: Let’s analyze each option
according to the prompt requirements. First, the
prompt requires 1) selecting an option that cor-
rectly describes the concept in the image, and 2)
is the most specific and accurate concept. Next,
we analyze each option:. Sirenians - The concept
in the image is a humpback whale, not a sirenian,
so this option does not meet the first requirement..
Cetaceans - The concept in the image is a hump-
back whale, which is a cetacean, so this option
meets the first requirement.. Aquatic mammals -
The concept in the image is a humpback whale,
which is an aquatic mammal, so this option meets
the first requirement.. Baleen whales - The con-
cept in the image is a humpback whale, which is a
type of baleen whale, so this option meets the first
requirement. Now, between options B. Cetaceans,
C. Aquatic mammals, and D. Baleen whales, the
most specific concept is Baleen whales., the correct
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answer is D. Baleen whales."

Few CoT Prompt for Common Ancestor Rea-
soning.

"<img>This is an image of a butterfly-
fish.</img> Please select from the following op-
tions the concept that is different from the image
but belongs to the same ’Perciformes’ group.. Stur-
geon . Surgeonfish . Crocodile . Perciformes: Let’s
analyze each option according to the prompt re-
quirements. First, the prompt requires selecting a
concept that 1) is different from the image, and 2)
belongs to the ’Perciformes’ group. Next, we an-
alyze each option:. Sturgeon - The concept in the
image is a butterflyfish, which is different from a
sturgeon, so this option meets the first requirement,
but sturgeon belongs to the order Acipenseriformes,
not Perciformes, so this option does not meet the
second requirement.. Surgeonfish - The concept in
the image is a butterflyfish, not a surgeonfish, so
this option meets the first requirement. Surgeon-
fish belong to the order Acanthuriformes, which
is not Perciformes, so this option does not meet
the second requirement.. Crocodile - Crocodiles
are reptiles and do not belong to Perciformes, so
this option does not meet the second requirement..
Perciformes - The concept in the image is a but-
terflyfish, which belongs to the Perciformes order,
so this option meets the second requirement. Now,
between options A. Sturgeon and D. Perciformes,
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Figure 10: Level-wise Accuracy of Open-source MLLMs.

we select the concept that is different but belongs
to the same group, which is D. Perciformes., the
correct answer is B. Surgeonfish.”
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