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Figure 1: Overview of UP2You. Our method reconstructs high-quality, textured 3D clothed portraits from unconstrained photo collections. It
robustly handles highly diverse and unstructured inputs by rectifying them into orthogonal multi-view images and corresponding normal maps,
making them compatible with traditional reconstruction algorithms.

ABSTRACT

We present UP2You, the first tuning-free solution for reconstructing high-fidelity
3D clothed portraits from extremely unconstrained in-the-wild 2D photos. Unlike
previous approaches that require “clean” inputs (e.g., full-body images with mini-
mal occlusions, or well-calibrated cross-view captures), UP2You directly processes
raw, unstructured photographs, which may vary significantly in pose, viewpoint,
cropping, and occlusion. Instead of compressing data into tokens for slow online
text-to-3D optimization, we introduce a data rectifier paradigm that efficiently
converts unconstrained inputs into clean, orthogonal multi-view images in a single
forward pass within seconds, simplifying the 3D reconstruction. Central to UP2You
is a pose-correlated feature aggregation module (PCFA), that selectively fuses infor-
mation from multiple reference images w.r.t. target poses, enabling better identity
preservation and nearly constant memory footprint, with more observations. We
also introduce a perceiver-based multi-reference shape predictor, removing the need
for pre-captured body templates. Extensive experiments on 4D-Dress, PuzzleIOI,
and in-the-wild captures demonstrate that UP2You consistently surpasses previous
methods in both geometric accuracy (Chamfer-15%↓, P2S-18%↓ on PuzzleIOI)
and texture fidelity (PSNR-21%↑, LPIPS-46%↓ on 4D-Dress). UP2You is effi-
cient (1.5 minutes per person), and versatile (supports arbitrary pose control, and
training-free multi-garment 3D virtual try-on), making it practical for real-world
scenarios where humans are casually captured. Both models and code will be
released to facilitate future research on this underexplored task.

1 INTRODUCTION

Reconstructing 3D clothed humans from unconstrained photo collections, like the personal albums
(Fig. 2-Left), is a challenging and largely unexplored research frontier. Unlike prior tasks such
as single-image 3D reconstruction [23, 48, 65, 92, 93], monocular video-based reconstruction [18,
28, 35], or multi-view 3D reconstruction [55, 64, 101], this problem is distinguished by the highly
unstructured nature of the input: appearance information is present but scattered across photos
where subjects are often partially captured or occluded, and camera as well as body poses are rarely
synchronized. As a result, establishing accurate 2D-to-3D correspondences is extremely difficult,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

even with the help of most advanced off-the-shelf human-centric estimators (i.e., camera, body pose,
landmarks, geometric cues, etc). In contrast, traditional 3D reconstruction algorithms typically
assume “clean captures” (i.e., full-body capture with simple poses, synchronized cameras, etc), where
well-aligned 2D-to-3D correspondences can be readily established using the estimators above.

Two potential strategies to address above challenges: 1) Data Compressor: Crop and group photos
into local and global patches (e.g., head, full-body) [102], or segment input photos into multiple
assets (e.g., garments, hair, face, accessories) [94], then compress these patches or assets into
learnable tokens, and finally assemble them as text prompt to generate 3D humans via text-to-3D
techniques [62]; 2) Data Rectifier: Convert the incoming “dirty or incomplete captures” into clean
and complete ones, e.g., orthogonal orbit views with canonical poses, which are easier to reconstruct
with traditional 3D reconstruction algorithms. Essentially, the data compressor operates mainly at
the representation level, without substantially improving the generative model’s ability to ensure 3D
consistency and identity preservation — a limitation noted in PuzzleAvatar [94] as “unpredictable
hallucination.” The data rectifier, however, refines not only the input data but also the generative
model’s prior, via continued training on synthetic multi-view renderings of high-fidelity 3D clothed
humans, enabling more consistent 3D reconstruction in terms of both identity and viewpoint, from
unconstrained photographs. UP2You falls in the second category, as shown in Fig. 2.

PuzzleAvatar [94] is the representative of the first strategy, it first “decompose” the unconstrained pho-
tos into multiple asset soups, all of which are linked with unique learned tokens via DreamBooth [70],
then it “compose” these assets into a 3D full-body representation via score-distillation sampling
(SDS) [62], where the 3D reconstruction task is reformulated as a text-to-3D task, bypassing ex-
plicit canonicalization. However, this process takes hours since both DreamBooth fine-tuning and
SDS-based optimization are time-consuming and unstable, see Fig. 2. Additionally, ground-truth
SMPL-X meshes are needed for initialization, as predicting shape parameters from unconstrained
photo collections is non-trivial. Regarding the second strategy — converting inputs into orthogonal
orbit views —– some attempts [23, 48, 60] have been made. However, these methods are restricted to
single-image inputs and cannot fully leverage the multiple unconstrained photos. Essentially, these
methods act more as “data inpainters” [84] — synthesizing unseen views from seen capture — rather
than as “data rectifiers” that unify the messy observations into structured output. Designed mainly
for constrained inputs (i.e., a single image with full-body coverage), these methods cannot handle
unconstrained photos or scale up the reconstruction accuracy with the number of inputs.

To the best of our knowledge, UP2You is the first work to unlock the “data rectifier” strategy on
unconstrained photo collections, directly transforming raw unconstrained photo collections into
orthogonal views while faithfully preserving subject identity. This is not a trivial extension of prior
arts, as it 1) requires effectively aggregating information from multiple unconstrained inputs, which
may vary significantly in terms of body poses, camera viewpoints, croppings, and occlusions; 2)
must be efficient enough to process varying numbers of input photos (ranging from one to dozens)
without incurring significant computational overhead; and 3) needs to overcome the dependency on
ground-truth body shapes, which are often unavailable in real-world scenarios.

Specifically, UP2You aggregates ReferenceNet features [27], extracted from unconstrained photos
according to body poses, via the proposed Pose-Correlated Feature Aggregation (PCFA) module.
This module implicitly learns correlation weights between unconstrained reference images and target
pose conditions (i.e., SMPL-X normal maps). Guided by these correlation maps, PCFA uses an
optimized topk strategy to selectively aggregate the most informative image features for generating
each orthogonal view. As a result, the memory footprint remains nearly constant regardless of the
number of input photos, enabling effective and efficient information fusion.

To get rid of the dependence on ground-truth body shapes, we design a shape predictor based on
perceiver structure [34, 46] to regress SMPL-X shape parameters directly from unconstrained photo
collections. Lastly, with another MV-Adapter [32] to generate multi-view normal maps, followed
by mesh carving and texture baking [48], UP2You reconstructs high-quality textured meshes from
unconstrained photos in 1.5 minutes. We evaluate our generation results on PuzzleIOI, 4D-Dress, and
self-collected in-the-wild datasets. Our method surpasses other state-of-the-art approaches in both
geometric accuracy (Chamfer-15%↓, P2S-18%↓ on PuzzleIOI) and texture fidelity (PSNR-21%↑,
LPIPS-46%↓ on 4D-Dress), while also demonstrating flexibility and superior generalization for
single-image reconstruction, and enabling 3D virtual try-on application, all without extra training.
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DreamBooth
Personal Tokens

DB Weights

Personal Unconstrained Photo Collections

1 hour

SDS Optimization

3 hours

Data Rectifier

30 seconds
…

Orthogonal View
Images & Normals

Reconstruction
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Figure 2: Paradigm differences between previous works and UP2You. Top: Previous works like PuzzleAvatar [94] and AvatarBooth [102]
compress unconstrained photos into implicit personal tokens and DreamBooth weights [70] through fine-tuning, then generate 3D humans via
SDS optimization [70]. Bottom: UP2You directly rectifies unconstrained photo collections into orthogonal view images and normals, then
reconstructs textured human meshes, achieving superior quality while reducing processing time from 4 hours to 1.5 minutes.

Our main contributions w.r.t. the prior arts are as follows:

• Efficient. As Fig. 2 shows, unlike previous DreamBooth + SDS paradigm (>4 hours), UP2You acts
as a “data rectifier” instead, to directly generate “clean” multi-views from “dirty” unconstrained
inputs in one forward pass (<15 secs). It can process one, several, or dozens of photos with a
nearly constant memory footprint. The full pipeline, including multi-view normal generation plus
mesh carving and texture baking, completes in 1.5 minute.

• Effective. Thanks to the PCFA module, which selectively aggregates the most informative regions
from the reference images for synthesizing target views, UP2You significantly outperforms prior
SOTAs (PuzzleAvatar, AvatarBooth, PSHuman) in both geometry accuracy and texture fidelity,
and delivers consistent shape and identity regardless of input forms or pose conditions. Notably,
the reconstruction quality even scales up with more unconstrained inputs, echoing the principle of
The More You See in 2D, the More You Perceive in 3D [21].

• Versatile. PuzzleAvatar requires an A-posed body template with ground-truth shape for 3D
initialization, while UP2You is flexible to random pose control, directly regresses body shapes
from unconstrained photos, and inherently supports multi-garment 3D virtual try-on, for free.

2 RELATED WORK

2.1 3D CLOTHED HUMAN RECONSTRUCTION

The field of 3D clothed human reconstruction has been extensively studied over the past few decades.
Early methods primarily focused on reconstructing human geometry and texture from dense multi-
view image captures [35, 52, 61]. Subsequent research has broadened the scope to include full-shot
monocular video inputs [18, 19, 28, 90], enabling more flexible and accessible data acquisition.
Recent advances in generative models, particularly diffusion models [25, 42, 69, 81], and the
emergence of SDS-based 3D human generators [30, 44, 50, 53, 86, 86], have further propelled
the field. An increasing number of video-based human reconstruction approaches now leverage
learned generative priors to address common challenges in real-world video captures, such as
occlusions [19, 59], view inconsistencies [36], and poor texture details [83].

Such generative priors, learned from large-scale datasets, play a more crucial role for the inherently
ill-posed problem of 3D human reconstruction, especially when the input data is sparse or incomplete.
The most sparse input format is a single image [23, 31, 33, 48, 65, 67, 71, 72, 92, 93, 107]. In
essence, it can be regarded as a “conditional generation” problem [31], since large portions of the
geometry — such as the unseen backside and occluded regions — must be plausibly inferred or
synthesized from the visible pixels. Building on this “reconstruction as conditional generation”
paradigm, numerous works have further advanced the field [3, 15, 48, 105]. Apart from multi-view
posed captures, full-shot monocular video, and single image, numerous works have sought to expand
the range of input modalities, for example, by incorporating dual front-back captures [38, 55] or
multi-view unposed full-body images [29, 66, 97, 101, 108] to improve reconstruction fidelity and
completeness.

Despite these advances, existing methods still fall short of handling truly “unconstrained” photos
— those with partial views, occlusions, extreme camera viewpoints, dynamic body poses, and
inconsistent aspect ratios. Accurately estimating body shape [12, 43, 45, 89, 98, 104] from such
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unconstrained photo collections is nearly impossible. Moreover, given multiple “dirty” reference
images, image-based HMR methods often fail to deliver consistent results. This inconsistency
manifests as significant variations in the predicted body shapes for the same subject — some
reconstructions may appear unnaturally thin, others excessively fat, and some may completely fail,
especially in cases of partial or occluded inputs. As shown in Tab. 2 and Fig. 7, it becomes challenging
to determine which, if any, of the predicted shapes truly represent the subject.

In contrast, UP2You addresses these data format constraints by functioning as a comprehensive “data
rectifier,” directly transforming unstructured or “dirty” inputs into orthogonal “clean” views, with
consistent 3D and identity, that can be seamlessly utilized for robust 3D reconstruction.

2.2 UNCONSTRAINED PHOTOS TO 3D

Most real-world data is inherently unstructured, presenting significant challenges for 3D recon-
struction tasks that require reliable spatial correspondences. The earliest work in “Unconstrained
Photos to 3D” can be traced back to Photo Tourism [80], which reconstructs 3D scenes from large
collections of Internet photos. Recent advances in neural rendering and generative models have
further advanced this field, enabling more robust and realistic 3D reconstructions from unstructured
image collections [10, 49, 87]. However, these methods primarily focus on rigid objects or scenes
and cannot be directly applied to 3D clothed human reconstruction, which involves highly articulated
and non-rigid structures. A critical open question is how to effectively extract and aggregate identity
features from unconstrained photos — not only for general objects [41, 103, 109], but especially for
dynamic humans — and reproduce them in a 3D-consistent manner. Several works on subject-driven
image generation [2, 4, 13, 14, 16, 40, 70, 73, 85], as well as ID-consistent 2D human portrait
generation [9, 63, 75, 84, 95], are discussed in the Sup.Mat. (Appendix B). However, these methods
are primarily designed for 2D image generation and lack the mechanisms to ensure cross-view
consistency or the precise latent feature aggregation necessary for high-fidelity 3D reconstruction.

The most relevant works addressing this challenge are PuzzleAvatar [94] and AvatarBooth [102].
Both first employ few-shot personalization [4, 70], as Total Selfie [9] and RealFill [84], to distill
identity information from unconstrained photos into a customized diffusion model, as unique tokens.
Subsequently, guided by these unique tokens, they utilize Score Distillation Sampling (SDS) [7,
37, 62, 100] to optimize a neural-based 3D representation [56, 76]. In short, the entire pipeline
of these methods can be summarized as “unconstrained photos → personalized diffusion models
with learned specialized tokens → SDS-based Text-to-3D”. However, fine-tuning diffusion models
and optimization-based SDS methods are extremely time-consuming. Moreover, these fine-tuning
approaches act as a form of lossy compression: the strong priors of diffusion models often override
subject-specific features, leading to a loss of identity and fine-grained details, or even introducing
unpredictable hallucinations. In contrast, UP2You is a tuning-free method that faithfully reconstructs
3D humans from unconstrained photos in just 1.5 minutes, while well preserving human identities.

3 METHOD

Our objective is to reconstruct a high-quality textured mesh from unconstrained photos with unknown
camera parameters and human poses. To this end, we first generate orthogonal full-body images
from the unconstrained inputs, conditioned on SMPL-X normal maps that contain both camera
and pose information (Sec. 3.1). Next, we utilize these orthogonal multi-view RGB images to
generate corresponding multi-view normal maps, which serve as geometric cues for detailed mesh
reconstruction (Sec. 3.2). To handle in-the-wild images without SMPL-X annotations, we further
introduce a body shape estimator capable of inferring human body shape by integrating information
from a handful of unconstrained photos (Sec. 3.3).

3.1 ORTHOGONAL MULTI-VIEW IMAGES GENERATION

To tackle orthogonal multi-view image generation from unconstrained photo collections, we adopt
MV-Adapter [32] as our backbone (introduced in Appendix C). MV-Adapter integrates ReferenceNet
R [27] as the reference image encoder and incorporates raymaps into the diffusion UNet as view
conditions, enabling the synthesis of six orthogonal views. For our task, we use orthogonal SMPL-X
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Pose Guider

ReferenceNet

MVDiffusion Model

Unconstrained Photos I 

Target Poses P

Shape Prediction
(Sec 3.3)

Normal Maps Generation (Sec 3.2)

Rendering

Sec 3.2

Generated Normals N

Noise
Generated Images V

Feature Selection
(Sec 3.1)
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ReferenceNet
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Rendering

PCFA

Figure 3: Pipeline of UP2You. Given unconstrained input photos I, we first predict the SMPL-X shape parameters (Sec. 3.3) and initialize the
SMPL-X mesh with predefined pose and expression parameters. We then generate orthogonal view images V based on I and SMPL-X normal
rendering P with the proposed PCFA method—predict correlation maps C and select most informative features (Sec. 3.1). Finally, we produce
multi-view normal maps N from P and V, and reconstruct the final textured mesh (Sec. 3.2).

normal maps as view conditions. Unlike the original MV-Adapter, which handles only single-image
inputs, our approach extends it to process multiple unconstrained photos.

DINO Features XrefTarget Pose

Transformer
    Blocks

Pose Encoder

Query Proj. 

Correlation Map

Key Proj. 

DINO Features Xref
Target Pose

Pose Encoder

Transformer
Blocks

Query Proj. 

Key Proj. 

Correlation Map

&

Figure 4: Pose-Dependent Correlation Map.
Correlation is colored as Higher → Lower.

As shown in Fig. 3, given N unconstrained reference images
I = {I1, ..., IN} of a person in the same outfit, our goal is
to synthesize M orthogonal target views V = {V1, ...,VM},
each conditioned on a corresponding SMPL-X normal map
P = {P1, ...,PM}. To extract the most informative features
for each target view, we introduce the Pose-Correlated Feature
Aggregation (PCFA) module, which predicts correlation maps
C = {Ci

1, ...,C
i
N}Mi=1 between reference and target views

(see Fig. 4). Based on C, PCFA select features for each target
viewpoint for the generation of orthogonal views V.

Correlation Map Prediction. Using all reference features for
ortho-view generation is computationally intensive, as memory
usage grows with the number of unconstrained references. How-
ever, many reference pixels are irrelevant for a given target view
(e.g., back-view references for front-view synthesis). Therefore,
we adaptively determine each reference’s contribution based on
the target pose to reduce computational cost.

To achieve this, we disentangle human-specific identity features
from viewpoint correlation information in the unconstrained reference inputs. Drawing inspiration
from [26, 39], we predict correlation maps for reference images conditioned on target poses, as
illustrated in Fig. 4. For each target pose Pi, i ∈ {1, 2, ...,M}, we estimate a correlation map that
indicates the pixel-wise relevance of each reference image for generating the corresponding view.
Specifically, we employ a pose image encoder Epose and a DINOv2 [57] model E ref to extract features
from the target pose image and all reference images: Xpose

i = Epose(Pi) and Xref = E ref(I), where
Xref represents the concatenation of all DINOv2 outputs {Xref

j }Nj=1. Subsequently, we feed both
Xpose

i and Xref into a transformer block T that comprises layers of self-attention and cross-attention,
where Xpose

i functions as the query, key, and value in self-attention operations, and as the query
in cross-attention operations, while Xref serves as both key and value in cross-attention operations.
Through T , an output feature Oi = T (Xpose

i ,Xref) that integrates reference information relevant to
the target pose is produced. We derive the image correlation map Ci by computing the attention map
between Oi and Xref:

Ai =
WqOi ×WkX

ref⊤

√
d

, (1)

Ci = [Ci
1,C

i
2, ...,C

i
N ]

= ReLU(AvgPool(mean(Ai))),
(2)
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Here, Wq and Wk are learnable projection matrices applied to Oi and Xref, respectively. The resulting
attention map Ai ∈ Rl×Nhw captures the relevance between the target pose and reference features.
To obtain the final reference correlation scores, we compute the mean along the first dimension of
Ai using mean(·) : Rl×Nhw → RNhw. In this context, l is the token number of Oi, h and w denote
the height and width of Xref, and d is the feature dimension of WqOi and WkX

ref. We further apply
AvgPool to smooth the predicted correlation map and ReLU to suppress negative values.

The correlation maps of PCFA are based on fine-grained semantic correlation between target bodies
and DINO features of references. Unlike previous methods [26, 39] that depend on landmark
similarity, our correlation map encodes richer outfit details, enabling more accurate reconstruction.

Feature Selection. The predicted correlation maps enable PCFA to selectively aggregate the most
informative reference features for each target view. Specifically, we utilize ReferenceNet R as the
reference image encoder to extract multi-scale reference features F = {F1,F2, ...,FL}, where L
is the number of layers. For each target pose Pi and the reference feature Fk ∈ RNSk×c at layer k,
we first interpolate the corresponding correlation map Ci ∈ RNhw to get Ĉ

i
= Interpk(C

i) that
aligns with the spatial dimensions of Fk. Here Sk denotes the spatial size of Fk, and Interpk(·) :
RNhw → RNSk denotes the interpolation operator.

We then select the most relevant reference features F̂
i

k for view Pi based on Ĉ
i
. Specifically, we

employ the topk selection strategy to obtain the selected indices of Fk:

[ki1, k
i
2, ..., k

i
γSk

] = sort(topk(Ĉ
i
)[: γSk]), (3)

where [ki1, k
i
2, ..., k

i
γSk

] are the indices of the selected features, topk(·) returns the top γSk indices,
and γ controls the proportion of features retained. To preserve spatial order, we apply sort(·).
Using these indices, we extract the selected reference features F̂

i

k ∈ RγSk×c:

F̂
i

k = Fk[k
i
1, k

i
2, ..., k

i
γSk

] · Ĉi[k
i
1, k

i
2, ..., k

i
γSk

]. (4)

Given the aggregated reference features F̂ = {F̂
1

k, F̂
2

k, ..., F̂
M

k }Lk=1, we synthesize the orthogonal
multi-view images as V = Drgb(F̂,P rgb(P)), where Drgb is our multi-view image generation model
and Prgb(·) is the pose guider that encodes the pose condition into Drgb.

3.2 NORMAL MAP GENERATION AND MESH RECONSTRUCTION

Noise

Generated Normals N

P

V

Noise

Generated Normals N

P

MVDiffusion Model

ReferenceNet

Pose Guider

V

Figure 5: Normal Map Generation Pipeline. The main input
difference with Fig. 3 is the generated multi-view orthogonal
images V, instead of unconstrained inputs I.

For multi-view reconstruction (MVS) [51, 54, 91],
we generate multi-view clothed normal maps N from
the generated images V, conditioned on target poses
P, and reconstruct the mesh using both V and N.

Normal Map Generation. To ensure multi-view con-
sistency and provide strong geometric cues for nor-
mal map generation, we follow [93] and incorporate
SMPL-X normal renderings as additional conditions.
As Fig. 5 shows, we also adopt MV-Adapter as the
backbone of clothed normal generator Dnormal. We
utilize the generated orthogonal RGB views V as ref-
erence inputs, and employ the pose guider Pnormal(·)
to incorporate multi-view pose conditions. The multi-view clothed normal maps are then generated
via N = Dnormal(V,Pnormal(P)).

Mesh Carving and Texture Baking. Starting from the initial SMPLX mesh, we refine mesh details
using the generated N and project per-vertex colors from V, following PSHuman [48]. To better
preserve hand geometry, we replace the hand region with that from the initial mesh as in ECON [93],
and then perform texture baking using the generated multi-view RGB images.
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PuzzleIOI 4D-Dress in-the-wild
PSNR↑ SSIM↑ LPIPS↓ Chamfer↓ P2S↓ Normal↓ PSNR↑ SSIM↑ LPIPS↓ Chamfer↓ P2S↓ Normal↓ CLIP-I↑ DINO↑

AvatarBooth 16.879 0.860 0.1544 6.635 6.697 0.0274 18.186 0.850 0.1718 6.846 6.978 0.0311 0.878 0.619
PuzzleAvatar 21.664 0.916 0.0639 3.204 3.165 0.0150 21.376 0.887 0.1081 1.956 2.045 0.0170 0.907 0.742
Ours (Image) 23.896 0.926 0.0545 - - - 25.848 0.920 0.0576 - - - 0.972 0.932
Ours (Mesh) 24.539 0.940 0.0474 2.724 2.605 0.0115 25.540 0.918 0.0654 1.140 1.119 0.0122 0.971 0.916

Table 1: Quantitative Comparison with Baselines. UP2You achieves the best texture fidelity, geometry accuracy, and perception similarity.

3.3 MULTI-REFERENCE SHAPE PREDICTOR

The initial SMPL-X mesh is critical to the entire UP2You pipeline, as it provides the pose condition
P for multi-view generation and serves as the basis for mesh reconstruction. SMPL-X mesh T ∈
R10754×3 are defined as T(β, θ, ψ), where β, θ, ψ are shape, pose, and expression parameters
respectively. While the target pose and expression of the SMPL-X template can be predefined
(e.g., T-pose or A-pose with neutral expression), the body shape parameters must be estimated
from unconstrained input images. Existing shape predictors [23, 48, 65] are typically designed for
single-image scenarios and struggle to effectively leverage multiple unconstrained references.

Perceiver
Blocks

Shape Head

. . . 

DINO Features Xref

Learnable Shape Tokens

. . . 
Shape Parameters

Figure 6: Multi-reference Shape Predictor.

To address this limitation, we introduce a multi-
reference shape predictor, S , as illustrated in Fig. 6. The
prediction process is formulated as βpred = S(τ ,Xref),
where βpred denotes the predicted shape parameters, τ
are learnable query tokens, and Xref are DINOv2 fea-
tures extracted from the reference images. Our shape pre-
dictor S employs a perceiver-style architecture [34, 46]
that can use query tokens to effectively aggregate multi-
view information. The prediction head is a lightweight
transformer, similar to the camera head design in [87].

Overall, through the shape predictor, multi-view image
& normal generator, and mesh carving & texture baking steps, UP2You generates textured 3D humans
from unconstrained photo inputs. See the detailed flowchat in Sup.Mat.’s Appendix D.5.

4 EXPERIMENTS

4.1 SETTINGS

Dataset. We train our multi-view image generation, normal map generation, and shape prediction
models on the THuman2.1 [99], Human4DiT [74], 2K2K [20], and CustomHumans [24] datasets.
For evaluation, we use the PuzzleIOI [94] and 4D-Dress [88] datasets as test sets. To further validate
our approach, we collect an in-the-wild (in-the-wild) dataset comprising 12 distinct identities. Details
on dataset selection and processing procedures are provided in Appendix D.2.

Baselines. We comprehensively compare UP2You with 1) album-to-human reconstruction methods,
including PuzzleAvatar [94] and AvatarBooth [102]. Since single-view reconstruction is a special
case of the unconstrained setting, we also include the leading 2) single-view method, PSHuman [48],
in our comparisons. To ensure fair evaluation and isolate the impact of pose estimation errors,
we provide ground truth SMPL-X parameters for all baseline methods. 3) For shape prediction,
we present the first approach to estimate SMPL-X shape parameters from multiple unconstrained
inputs. We compare our shape predictor with two single-input methods: Semantify [17], which is
specifically designed for shape prediction, and PromptHMR [89], a state-of-the-art human mesh
recovery method. Unless stated otherwise, results on PuzzleIOI and 4D-Dress use 12 reference
images. 4) For in-the-wild, we use all available references (8–12) for each identity. Additional model
and training details are in Sup.Mat.’s Appendices D.1 and D.3.

Metrics. For PuzzleIOI and 4D-Dress (with textured 3D GT), we report geometric metrics (Chamfer,
P2S, Normal map L2) and image quality metrics (PSNR, SSIM, LPIPS). For in-the-wild, we use
perceptual similarity (CLIP-I, DINO) between generated and frontal reference. Shape prediction is
assessed by vertex-to-vertex (V2V) distance on all datasets. More details in Sup.Mat.’s Appendix D.4.

4.2 COMPARISONS

Quantitative Results. The quantitative results in Tab. 1 show that UP2You consistently surpasses
all baselines across both 2D and 3D evaluation metrics on the PuzzleIOI and 4D-Dress datasets.
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AvatarBooth
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Figure 8: Qualitative Comparisons on PuzzleIOI and 4D-Dress. See more 360-degree results in Sup.Mat.’s video.

Importantly, UP2You also achieves strong perceptual quality scores on the in-the-wild dataset,
demonstrating its robustness and effectiveness in real-world unconstrained scenarios.

Failed

Ours

Semantify

PromptHMR

Inputs

Low High

Figure 7: Shape Prediction Error Map.

For single-view reconstruction, Tab. 3 shows that UP2You out-
performs PSHuman on all 2D and 3D metrics. This is expected,
as single front-view input is a special case of the unconstrained
multi-view scenario for which UP2You is designed. Training
on the more challenging unconstrained task enables our model
to generalize well and excel in the simpler constrained setting.

As shown in Tab. 2 and Fig. 7, our shape predictor outperforms
single-view methods [17, 89], achieving more accurate and
consistent results. Single-input baselines show high variance
and instability, especially with partial input or failed detections.
Leveraging multiple inputs, our method delivers more robust
shape prediction, with performance further improving as more
unconstrained references are used. Furthermore, Table 2 also
shows that the perceiver transformer architecture is better than
simple MLPs for the shape predictor.

Num of Semantify PromptHMR
MLP Ours

References Mean↓ Var↓ Mean↓ Var↓
3 11.087 4.234 9.212 10.370 8.819 7.967
6 11.066 5.706 9.661 17.465 8.046 7.427
9 10.978 6.424 9.403 18.218 8.275 7.403

12 11.097 6.597 9.287 19.418 8.336 7.399

Table 2: V2V(↓) Comparions of Shape Prediction Reuslts.

PSNR↑ SSIM↑ LPIPS↓ Chamfer↓ P2S↓ Normal↓
PSHuman 24.134 0.905 0.0895 2.759 2.926 0.0189
Ours Mesh 26.651 0.935 0.0527 0.927 0.949 0.0096

Table 3: Comparison of Single-Image based Reconstruction.

Qualitative Results. The qualitative comparisons in Fig. 8 and Fig. 9 show that UP2You achieves
high-fidelity, reference-faithful 3D reconstructions with strong realism and detail preservation. In
contrast, baselines like AvatarBooth and PuzzleAvatar often fail to capture fine facial details and
produce blurrier, less realistic results with poor subject-specific consistency. Figure 10 shows single-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

…

…

…

…

Inputs Ours ReferenceAvatarBooth PuzzleAvatar

Figure 9: Qualitative Comparisons on in-the-wild Data.

Input

PSHuman

Ours

Figure 10: UP2You vs. PSHuman.

view 3D human reconstruction comparisons. Our method generalizes well to single-view inputs,
producing visually comparable results to PSHuman, but with more accurate limb reconstruction due
to consistent multi-view guidance. More visual comparisons and results are in Appendices E.1 and G.

Feature Aggregation Image Encoder PuzzleIOI 4D-Dress
Mean Concat Corr. sum topk CLIP DINOv2 Ref Net PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ 23.896 0.926 0.0545 25.848 0.920 0.0576
A. ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ 17.412 0.864 0.1227 19.614 0.876 0.1098
B. ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ 20.545 0.893 0.0949 23.366 0.901 0.0791
C. ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ 20.167 0.889 0.1002 23.412 0.904 0.0794
D. ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ 20.152 0.891 0.0976 23.405 0.903 0.0801
E. ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ 19.744 0.886 0.1415 23.393 0.904 0.0813

Table 4: Ablation Studies of our orthogonal view image generation model.

4.3 ABLATION STUDIES

Figure 11: Predicted Correlation Maps.
See dynamic illustration of correlation
maps in Sup.Mat.’s video.

Multi-View Image Generation. In Tab. 4, we analyze our multi-
view image generation model on the PuzzleIOI and 4D-Dress
datasets. For feature aggregation, we compare simple averaging
(A), concatenation (B), and our proposed PCFA, which achieves the
best results. We also test a weighted sum strategy (C) after correla-
tion map prediction. For reference feature extraction, we evaluate
CLIP (D), DINOv2 (E), and ReferenceNet. Quantitative and visual
results (Appendix F.1) show our design outperforms all alternatives.

Correlation Maps. Our correlation map prediction module identifies and prioritizes key regions
in reference images based on the target pose. As shown in Figure 11, visualizations for front- and
back-view targets confirm that our maps effectively select the most relevant areas for view generation.
This targeted focus improves generation quality and reduces GPU memory usage by retaining only
the most informative features. More visual results are shown in Appendix E.2.

Ours Concat
PSNR↑ SSIM↑ LPIPS↓ GPU↓ PSNR↑ SSIM↑ LPIPS↓ GPU↓

3 refs 24.159 0.912 0.0680 18.65 22.759 0.897 0.0894 18.02
6 refs 25.041 0.917 0.0623 19.40 23.267 0.901 0.0807 24.33
9 refs 25.646 0.918 0.0592 20.16 23.362 0.901 0.0796 30.89
12 refs 25.848 0.920 0.0576 20.88 23.366 0.901 0.0791 37.96

Table 5: Multi-View Generation with Different Number of References.

Number of References. In Tab. 5,
quality improves as more uncon-
strained references are used. PCFA
module efficiently selects informative
features, keeping GPU memory us-
age low, unlike direct concatenation,
which increases memory linearly.

Robustness to Inputs & Conditions. The generated human identity remains consistent across
different target poses and reference combinations, with detailed discussions and results presented in
Sup.Mat.’s Appendix F.2 and Appendix F.3. Notably, UP2You can effectively handle subjects with
loose clothing and complex target poses, as demonstrated in Fig. 24 of Appendix F.2.

Image Encoder of PCFA. Given that DINOv2 has been demonstrated to effectively capture 2D-to-3D
correspondences [58], we adopt it as the image encoder for our PCFA module. To further validate
this design choice, we conduct additional experiments on the 4D-Dress dataset using alternative
image encoders, including CLIP [68] and DINOv1 [8]. As presented in Tab. 6, DINOv2 consistently
outperforms both alternatives on multi-view image generation quality.
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Inputs Results

Figure 12: Generation Results on Highly Occluded Inputs.

Inputs Results

Figure 13: Generation Results on Missing Part.

PSNR↑ SSIM↑ LPIPS↓
DINOv2 25.848 0.920 0.0576

CLIP 23.876 0.904 0.0767
DINOv1 24.170 0.907 0.0745

Table 6: Comparison of Different Image Encoders for PCFA.

PSNR↑ SSIM↑ LPIPS↓ GPU↓
γ = 1.0 24.978 0.912 0.0665 18.64
γ = 2.0 25.848 0.920 0.0576 20.88
γ = 3.0 25.837 0.920 0.0569 23.12

Table 7: Comparison of Different Number of Selected Features.

Number of Selected Features. We set the default value of γ to 2.0 to control the number of reference
features selected in the topk selection. To determine the optimal configuration, we evaluate different
values of γ as shown in Table 7. The results demonstrate that γ = 2.0 achieves the best trade-off
between generation quality and GPU memory efficiency.

PSNR↑ SSIM↑ LPIPS↓
Front Back Front Back Front Back

Chamfer↓ P2S↓ Normal↓

Ours* 25.257 25.488 0.906 0.909 0.0724 0.0733 1.140 1.119 0.0122
PSHuman 25.384 23.382 0.898 0.885 0.0934 0.1121 2.756 2.926 0.0189

Human3Diff 23.335 20720 0.883 0.872 0.1118 0.1248 4.275 4.322 0.0227
ICON - - - - - - 4.352 4.331 0.0188
ECON - - - - - - 3.780 3.642 0.0178

PIFuHD - - - - - - 2.776 2.603 0.0154

Table 8: Unconstrained Photos vs. Single Front View. * indicates our method uses
unconstrained photos input, while other methods use single full-body front view input.

Unconstrained Inputs vs. Sin-
gle Front View. Compared to
single full-body front-view in-
puts, unconstrained photos are
easier to collect and capture
richer information about side and
back views. Using the compre-
hensive information from uncon-
strained photos leads to better re-
construction results. Table 8 compares UP2You against standard single front-view based methods
on 4D-Dress dataset, including ICON [92], ECON [93], PIFuHD [72], PSHuman [48], and Hu-
man3Diff [96]. Our method achieves the best performance in both rendering quality and 3D accuracy,
particularly for back-view rendering results, demonstrating the value of unconstrained inputs.

Generated Results in Extreme Situation. UP2You is robust to input variations and can effectively
extract information from highly occluded photos. Figure 12 presents an example where one input
image captures only the foot region, while other images lack this body part, demonstrating the
capability of our method to handle inputs with high occlusion ratios. Figure 13 further examines
scenarios where body parts are not fully visible across all images (e.g. the foot region). Due to
diffusion hallucination, the generated results exhibit a somewhat reasonable structure; however, the
texture is blended from other visible parts (more cases shown in Sup.Mat.’s Fig. 29). Therefore,
inputs with complete body part coverage are more suitable for UP2You to achieve optimal results.

Animation. Since we adopt the A-Pose as the default target pose, the reconstructed mesh is naturally
suited for animation. The textured mesh generated by UP2You can be easily animated using third-
party tools such as Mixamo [6]. Moreover, the aligned SMPL-X parameters provided by UP2You
enable animation based on skin weight transfer [1]. Finally, as UP2You can transform unconstrained
inputs into different target pose configurations, animated rendering results can also be directly
performed by itself, as demonstrated in Sup.Mat.’s Fig. 21.

5 CONCLUSION

…

…

Figure 14: 3D Virtual Try-On.

UP2You acts as a “data rectifier,” converting
unconstrained photos into orthogonal views suit-
able for MVS. It is efficient (1.5 minutes per per-
son on one GPU), achieves SOTA quality, and
well preserves identity and clothing style across
diverse input forms and pose conditions. It also
enables free 3D virtual try-on (Fig. 14, more in
Sup.Mat.’s Fig. 30). Limitations and future work
are discussed in Sup.Mat.’s Appendix H.
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A USE OF LARGE LANGUAGE MODELS

We used a large language model to assist with copy editing—grammar checking, wording suggestions,
and minor style and clarity improvements—after the scientific content, methodology, analyses, and
conclusions had been written by the authors.

B RELATED WORK

B.1 SUBJECT-DRIVEN AND ID-CONSISTENT IMAGE GENERATION

With the advent of powerful generative models [25, 42, 69, 81], subject-driven image generation has
made remarkable progress in recent years. Various approaches have been proposed to generate images
of specific subjects, such as optimizing specialized tokens to encode subject concepts [2, 14, 85],
learning personalized modulation vectors for each concept [16], or fine-tuning pre-trained diffusion
models [4, 13, 40, 70, 73] using a handful of reference images. Additionally, methods like JeDi [103]
and SynCD [41] utilize global self-attention mechanisms to effectively fuse information from multiple
images of a target subject, while EasyRef [109] leverages Vision-Language Models (VLMs) [5].

For human-centric generation, several methods have been developed to handle identity preservation.
For instance, Omni-ID [63], IMAGPose [75], and HiFi-Portrait [95] utilize specialized image encoders
to process multiple reference images for ID-preserving image synthesis. However, extending these
techniques to the full body is non-trivial, as the human body’s highly articulated structure and non-
rigid deformations introduce significant challenges for feature fusion. To tackle this, approaches like
Total Selfie [9], and RealFill [84] employ few-shot personalization via fine-tuning [70] to capture
consistent identities, including both facial features and overall appearance. Nevertheless, these
methods are tailored for 2D image generation and lack the mechanisms needed to ensure cross-view
consistency or the precise latent feature aggregation required for high-fidelity 3D reconstruction.

C PRILIMINARY

We review the fundamentals of multi-view diffusion models [47, 77–79], with a particular focus on
MV-Adapter [32], which serves as the foundation for the multi-view generation of UP2You.

Multi-View Diffusion Models. Multi-view diffusion models extend single-view generation by
introducing multi-view attention mechanisms, enabling the synthesis of images that are consistent
across different viewpoints. Several works [78, 79] generalize the self-attention mechanism of
standard diffusion models to operate over all pixels from multiple views. Specifically, given f in as the
input to the attention block, multi-view self-attention concatenates features from M views, allowing
the model to capture global dependencies. However, this approach incurs significant computational
overhead due to the need to process all pixels across all views. To mitigate this, row-wise self-
attention [47, 48] leverages geometric correspondences between orthogonal views. For example,
Era3D [47] restricts attention to the current view and corresponding rows from other views, which is
well-suited for orthogonal multi-view generation and substantially reduces computational cost.

Building on row-wise self-attention, MV-Adapter [32] introduces an image-to-multiview (I2MV)
generator with a parallel attention architecture. The original self-attention block is modified as:

f self = SelfAttn(f in) + MVAttn(f in) + RefAttn(f in,F) + f in, (5)

Here, MVAttn represents the row-wise self-attention mechanism, while RefAttn is a cross-
attention module that integrates the reference image feature F into f in. The feature F is extracted from
the input image I using the reference network R [27]: F = R(I). The I2MV generation process in
MV-Adapter is formulated as V = D(F,P(P)), where V = {V1,V2, . . . ,VM} denotes the set of
generated multi-view images, D represents the multi-view diffusion model, P = {P1,P2, . . . ,PM}
specifies the target viewpoint conditions, and P is the condition encoder that fuses viewpoint con-
ditions into D. In MV-Adapter, only MVAttn, RefAttn, and P are trained for I2MV generation.
Each P is encoded as a camera ray representation, referred to as a “raymap”. Typically,M = 6 orthog-
onal views are generated, corresponding to the target view angles {0°, 45°, 90°, 135°, 180°, 270°}.
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Given the efficient plug-and-play adapter training mechanism of MV-Adapter, combined with the
robust feature extraction capabilities of ReferenceNet for processing unconstrained photographs, we
adopt MV-Adapter as our multi-view diffusion model architecture. Furthermore, considering our
focus on human-centric tasks, we utilize SMPL-X normal rendering as the viewpoint condition P.

D IMPLEMENTATION DETAILS

D.1 MODEL STRUCTURE

We adopt the framework architecture of MV-Adapter [32] with the
stable-diffusion-2-1-base version [82] as the foundation for both multi-view im-
age and normal generation. The number of selected reference features γ is set to 2.0 during both
training and inference phases. We employ the DINOv2-Large [11] variant of the DINOv2 encoder
E ref. For the pose image encoder E ref, we implement a lightweight ResNet [22] architecture. The
learnable shape tokens τ ∈ R10×1024 are configured to align with the dimensions of E ref, and the
perceiver blocks in S comprise 6 layers of cross-attention.

D.2 DATASET

We train our multi-view image generation, normal map generation, and shape prediction models
using the THuman2.1 [99], Human4DiT [74], 2K2K [20], and CustomHumans [24] datasets. Since
our task requires handling scenarios where individuals with the same identity appear in different
poses, we manually filter the data and group samples by identity. The final training dataset com-
prises 6,921 scans spanning 2,091 distinct identities. For each scan, we render 6 orthogonal views
({0°, 45°, 90°, 135°, 180°, 270°}) of both images and normal maps, along with the corresponding
SMPL-X normal rendering. Additionally, we render 8 views of each scan using randomly selected
perspective cameras to provide “unconstrained photos”. During orthogonal image generation training,
for each case, we randomly select 3 to 8 reference images from other cases sharing the same identity.

For evaluation, we select 40 identities from PuzzleIOI [94] and additionally choose “A-pose” con-
figurations from all 68 identities in 4D-Dress [88], while utilizing the remaining poses as reference
views. To ensure that SMPL-X camera normal rendering accurately represents viewpoint information,
we rotate all scans so that the front view corresponds to zero azimuth. Beyond synthetic data, we
also collect an in-the-wild dataset comprising 12 identities for further evaluation, ensuring robust
evaluation in diverse scenarios.

D.3 TRAINING DETAILS

We train the image and normal generation models end-to-end using denoising losses Lrgb
d and Lnormal

d ,
respectively. During training, Lrgb

d jointly optimizes the components Epose, T , Wq, Wk, AvgPool,
P rgb, and Drgb. In normal maps generation training, Lnormal

d optimizes Pnormal and Dnormal. For shape
prediction, we employ the loss function Lv = |T(βpred) − T(βgt)| to compute the vertex-wise
distance between SMPL-X meshes generated from the predicted shape parameters βpred and the
ground-truth shape parameters βgt.

The complete training process for the image and normal generation models requires approximately 3
and 2 days, respectively, on 8 NVIDIA 5880 GPUs. We employ a batch size of 1 per GPU under
bfloat16 mixed precision and train for 50,000 iterations. All pose, input, and output image resolutions
are consistently set to 768× 768. The reference images for both image and normal generation are
also configured at 768 × 768 resolution, while the target orthogonal view angles follow the same
configuration as MV-Adapter. The shape prediction model undergoes training for 100,000 iterations
on 8 NVIDIA 5880 GPUs with a batch size of 8 per GPU, requiring approximately 10 hours. We
apply a constant learning rate of 5× 10−5 with warm-up for training all models.

D.4 EVALUATION METRICS

We employ three complementary metrics to assess geometric accuracy: (1) Chamfer distance
(bidirectional point-to-surface distance in cm), which measures overall geometric similarity; (2) P2S
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distance (unidirectional point-to-surface distance in cm), which captures reconstruction completeness;
and (3) L2 error for Normal maps rendered from four canonical views ({0°, 90°, 180°, 270°}),
which evaluates fine-grained surface detail preservation.

We render multi-view color images from the same four canonical viewpoints and evaluate appearance
fidelity using three established image quality metrics: PSNR (Peak Signal-to-Noise Ratio) for
pixel-level accuracy, SSIM (Structural Similarity) for structural consistency, and LPIPS (Learned
Perceptual Image Patch Similarity) for perceptual similarity.

For the in-the-wild dataset, which lacks 3D ground truth, we assess reconstruction quality using
perceptual similarity metrics CLIP-I and DINO computed between the generated front view and the
captured reference front view image with A-pose.

We further evaluate shape prediction accuracy by computing vertex-to-vertex (V2V) distances between
predicted and ground truth SMPL-X meshes under canonical T-pose (zero pose and expression).

Unconstrained 
Photos I 

Shape
Prediction
(Sec 3.3)

Rendering Target Pose
P 

MV Images 
Generation
(Sec 3.1)

Generated
Images V

Normal Maps 
Generation
(Sec 3.2)

Generated
Normals N

Mesh
Reconstruction

(Sec 3.2)

Target
Textured Mesh

Figure 15: Inference Process of UP2You. Given only unconstrained photos I as inputs, UP2You can generate a high-quality textured mesh.

D.5 INFERENCE PROCESS

The inference process of UP2You for unconstrained photo inputs I is illustrated in Fig. 15, which
mainly consists of four steps as follows:

(1) Use S to estimate SMPL-X shape parameters βpred from I, and initialize the SMPL-X mesh with
βpred and a predefined pose (e.g., A-pose with zero expression) to obtain the pose condition P.

(2) Generate multi-view images V using Drgb, conditioned on I and P.

(3) Generate multi-view normal maps N using Dnormal, conditioned on V and P.
(4) Reconstruct the textured mesh using the initialized SMPL-X mesh, V, and N.

For data pre- and post-processing, we employ [106] to remove backgrounds from input unconstrained
photos. Additionally, the reference masks are resized and adapted to the correlation maps C to
enhance the model’s focus on foreground regions.

Inference Time. The complete pipeline requires approximately 1.5 minutes to generate a textured
mesh from a single unconstrained input. Specifically, the shape prediction step takes about 1 second,
multi-view image generation requires approximately 15 seconds, normal map generation takes
about 15 seconds, and mesh reconstruction, along with other processing steps (e.g., foreground
segmentation, data postprocessing, and file saving), takes nearly 1 minute.
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E ADDITIONAL VISUAL COMPARISONS

E.1 QUALITATIVE COMPARISONS

We present additional qualitative comparison results in Figs. 16 to 19, including mesh reconstruction,
front-view 3D human reconstruction, and shape prediction comparisons. Please zoom in for details.

…

…

…

Inputs Ours GTAvatarBooth PuzzleAvatar

…

…

…

…

…

Figure 16: More Qualitative Comparisons on 4D-Dress and PuzzleIOI datasets.
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Figure 17: More Qualitative Comparisons on in-the-wild dataset.
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Input

PSHuman
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Figure 18: More Qualitative Comparisons of Single Image 3D Human Reconstruction with PSHuman.
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Figure 19: Error Maps of Shape Prediction.
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E.2 CORRELATION MAPS

Pose-dependent correlation maps generation is an important module of UP2You, as the first part
of the proposed PCFA, it predicts the most relevant regions of input unconstrained photos for the
conditioned pose. With the latter feature selection strategy, PCFA can focus on informative features
for viewpoint generation. In Fig. 20, we provide more results of the generated correlation maps.

Figure 20: Visualize Results of Correlation Maps. Given the input reference images and target pose for multi-view image generation, the
predicted correlation maps can effectively identify and discriminate correlated regions within the reference inputs. For example, when generating
images in the front-view, reference regions that correspond to front-facing views exhibit higher correlation values, demonstrating the model’s
ability to selectively attend to relevant spatial information.
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E.3 ANIMATION RESULTS

We present an animation sample generated by UP2You using the same reference with different target
poses, as shown in Fig. 21. Notably, UP2You maintains identity consistency well across different
target poses. However, since this approach just reconstructs a textured mesh independently for
each frame, temporal consistency of the rendered images and mesh topology is not guaranteed. For
production-quality animated sequences, we recommend using professional animation methods and
tools [1, 6] for textured mesh animation.

Pose A Pose B Pose C Pose D

Figure 21: Animation Results of Textured Mesh Generated by UP2You.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F ADDITIONAL ABLATION STUDIES

F.1 VISUAL RESULTS OF DIFFERENT ORTHOGONAL IMAGES GENERATION DESIGNS

Here, we present the generated visual results in Fig. 22 for different design choices in the multi-view
image generation model. As indicated earlier, approach A directly concatenates all reference features
for viewpoint generation, which may provide irrelevant features during generation and lead to poor
results. Approach B averages all reference features as global guidance. This method is time-efficient
but loses important color features and generates suboptimal results. Approach C uses a weighted sum
strategy to aggregate reference features after computing the correlation map, which loses details in
some regions since regions with high correlation values may overlap. Approaches D and E utilize
CLIP and DINOv2 features, respectively, rather than ReferenceNet as in our method. CLIP features
have low resolution and are difficult to preserve details such as facial and clothing textures, while
DINOv2 is texture-insensitive and thus difficult to restore reference textures accurately.

Ours

A.

B.

C.

D.

E.

GT

Figure 22: Visual Comparisons of Different Multi-View Image Generation Designs.
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F.2 ROBUSTNESS OF TARGET POSE CONDITION.

PSNR↑ SSIM↑ LIPIPS↓
Pose A 24.983 0.911 0.0664
Pose B 24.400 0.902 0.0744
Pose C 24.519 0.904 0.0715

Table 9: ID Consistency. UP2You achieves high-
quality multi-view image generation results in
4D-Dress dataset in three different pose condition.

While previous experiments highlight the strong generation
ability of UP2You, most target poses are in the “A-pose” con-
figuration. Since 4D-Dress provides ground-truth multi-view
images of persons with different poses, we further test robust-
ness by randomly selecting three diverse target poses per iden-
tity from the 4D-Dress dataset and evaluating our multi-view
image generation performance. As shown in Tab. 9, UP2You
maintains high-quality results across varied target poses using
the same unconstrained photo inputs. Figure 23 further demonstrates the visual results, where identity
is consistently preserved across different poses. In addition, Figure 24 shows the generation results
on subjects with loose clothing and complex target poses, further validating the generation capability
and robustness of UP2You.

Pose A

Pose B

Pose C

Pose A

Pose B

Pose C

Figure 23: Robustness of target pose conditions. Our method can generate high-quality multi-view images under different pose conditions
with the same reference inputs, demonstrating that identity information is effectively disentangled from pose conditions in our approach.
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Figure 24: Generation Results with Loose Clothing and Complex Target Pose.
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F.3 ANALYSIS OF SHAPE PREDICTOR.

Ref Group A Ref Group B Ref Group C
V2V↓ (mm) 7.485 7.503 7.443

Table 10: Shape prediction consistency on the 4D-Dress
dataset. We input three different groups of 12 reference
images of the same person into our shape predictor. The
vertex-to-vertex (V2V) error of the predicted results shows
stable values with low variance, demonstrating that our
shape predictor is robust to unconstrained reference in-
puts.

To evaluate whether our shape predictor can regress con-
sistent shape parameters, we assess our shape prediction
model using different groups of unconstrained reference
inputs from the same identity. As shown in Tab. 10, our
method achieves stable shape predictions across all input
groups. Since the aggregated pixel-level features from
reference inputs may contain information about personal
shape characteristics, the multi-view image generation
model in UP2You exhibits some degree of robustness to
shape variations. However, in extreme cases, more accu-
rate shape predictions can significantly enhance the quality
of the final 3D human generation. We evaluate the impact of our shape predictor on the overall
inference pipeline of UP2You and find that incorporating the proposed shape predictor leads to mea-
surable improvements in generation quality on the in-the-wild dataset. As demonstrated in Fig. 25,
our shape predictor enables more identity-consistent results for individuals with extreme body shapes,
while Tab. 11 provides quantitative evidence that the proposed shape predictor improves performance
on the in-the-wild dataset.

w/  Shape Predictor w/o  Shape Predictor Referernce

Figure 25: Shape Predictor Helps to Generate More Identity-Consistent
Results for People in Extreme Shape.

w/ Shape Predictor w/o Shape Predictor
Ours Image Ours Mesh Ours Image Ours Mesh

CLIP-I↑ 0.972 0.971 0.969 0.969
DINO↑ 0.932 0.916 0.927 0.911

Table 11: Effects of Shape Predictor on the in-the-wild
Dataset. Generation results with the aid of shape predictor
have better performance.
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F.4 VISUAL RESULTS WITH DIFFERENT NUMBER OF INPUTS

In UP2You, as more unconstrained photos are provided as input, additional details can be extracted
and refined in orthogonal views, thereby improving the reliability of the generated results. We
demonstrate this principle through an illustrative example in Fig. 26.

3 Refs 6 Refs 9 Refs

12 Refs GT

Figure 26: Generated Multi-View Image Results with Different Number of References. With more references input, more results are noticed
and generated by our model, like facial details and clothing patterns.
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G MORE GENERATION RESULTS OF UP2YOU

Figures 27 and 28 present comprehensive generation results of UP2You on two representative cases,
including the reference images, generated multi-view images and normal maps, as well as the rendered
images and normal maps after mesh reconstruction. Figure 29 demonstrates that UP2You is robust to
diverse inputs, performing well even in extreme scenarios such as inputs missing the face, lower body,
or upper body. Additionally, Figure 30 provides further examples of 3D virtual try-on applications.

Inputs

Ours Image
Generate

Ours Normal
Generate

Ours Image
Rendering

Ours Normal
Rendering

Figure 27: Generated Results of UP2You.
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Figure 28: Generated Results of UP2You.
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No Face

Inputs Results
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Figure 29: More Generation Cases with Invisible Parts. UP2You generates reasonable results with different kinds of invisible scenarios.
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Figure 30: More examples of 3D Virtual Try-On.
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H LIMITATIONS AND FUTURE WORKS

While our method shows promising results in generating high-quality 3D human avatars from
unconstrained photos, there are still some limitations that we plan to address in future work:

• Dependence on 3D Data for Training: Our method relies on a dataset of 3D human
models for training the diffusion model. Acquiring high-quality 3D data can be challenging
and may limit the diversity of the generated avatars. In future work, we aim to explore
semi-supervised or unsupervised approaches that can leverage large-scale 2D image or video
datasets to reduce this dependence on 3D data.

• Texture Misalignment: Our method generates 6 orthogonal views for mesh reconstruction
and texturing, which is insufficient for high-quality texture baking. Texture misalignment
issues may arise in some cases (Fig. 31). In future work, we plan to adopt video generation
models as the base framework for dense view synthesis to address this limitation.

• Multiple Inference Stages: When processing in-the-wild photos, our mesh reconstruction
pipeline involves four sequential stages: shape prediction, multi-view image generation,
multi-view normal map generation, and mesh reconstruction. This multi-stage inference
approach slows down the generation process and may introduce cumulative errors. We plan
to develop a feed-forward model that directly predicts the final results.

Figure 31: Failure Cases of UP2You. Since only 6 orthogonal views {0°, 45°, 90°, 135°, 180°, 270°} are generated, the backside texture of
generated humans is lacking in guidance, making the problem of texture misalignment.
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