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Abstract
Particle-based approximate Bayesian inference approaches such as Stein Variational Gra-
dient Descent (SVGD) combine the flexibility and convergence guarantees of sampling
methods with the computational benefits of variational inference. In practice, SVGD relies
on the choice of an appropriate kernel function, which impacts its ability to model the
target distribution—a challenging problem with only heuristic solutions. We propose Neu-
ral Variational Gradient Descent (NVGD), which is based on parametrizing the witness
function of the Stein discrepancy by a deep neural network whose parameters are learned
in parallel to the inference, mitigating the necessity to make any kernel choices whatsoever.
We empirically validate our method on synthetic and real-world inference problems.

1. Introduction

This work is concerned with the problem of generating samples from an unnormalized
Bayesian posterior. In particular, we are interested in the case where the target poste-
rior is estimated from a large dataset, and only stochastic (minibatch) approximations are
available. In this setting, standard MCMC algorithms such as Hamiltonian Monte Carlo
(Neal, 2012) or MALA (Roberts and Rosenthal, 1998) face difficulties (Betancourt, 2015;
Roberts and Rosenthal, 1998). As a consequence, practitioners tend to prefer simpler meth-
ods such as variational inference (VI) and stochastic gradient Langevin dynamics (SGLD)
(Welling and Teh, 2011). A more recent method developed by Liu and Wang (2016), Stein
variational gradient descent (SVGD), has been gaining popularity.

These methods have in common that they minimize the KL divergence KL(q ∥ p) be-
tween an approximating distribution q and the target p: VI does so explicitly by optimizing
a parameterized density qθ, thus necessitating the choice of a limited variational family of
densities, which can introduce bias. SGLD and SVGD do so non-parametrically by produc-
ing samples whose distribution follows a gradient-descent-like trajectory towards the target
(Jordan et al., 1998; Liu, 2017). In particular, SGLD approximates a gradient flow in the
Wasserstein space of probability measures. This gradient flow can also be approximated
deterministically by evolving a set of particles using SVGD (Liu and Wang, 2016), which
allows to take the geometry of the target space into account. However, this geometry has to
be encoded in a kernel function within the Stein class, which is often challenging to choose
in practice.

∗ Work done while at ETH Zurich

© L. Langosco, V. Fortuin & H. Strathmann.



Langosco Fortuin Strathmann

Figure 1: Neural Variational Gradient Descent: Initialize a set of samples x1, . . . ,xn

(orange). At each iteration, update samples via xi = xi + εfθ(xi) (black arrows),
where the neural network fθ is trained s.t. the updates minimize KL divergence
from the target posterior.

In this work, we aim to overcome those limitations by learning an update function fθ
parameterized by a neural network that is trained in parallel to the inference. The samples
are then updated via x← x+ εfθ(x). This approach has the following benefits:

• Unlike VI, our method does not constrain inference to a fixed family of distributions.

• Unlike SGLD, our method is deterministic and adapts to the geometry of the target.

• Unlike SVGD, it is not dependent on a choice of kernel or kernel parameters and thus
can automatically adapt to the geometry of the target posterior.

Empirically, we observe that our method outperforms or matches SVGD for a large array of
choices of kernel parameters, while itself not relying on a kernel. In addition, we observe in
synthetic experiments that our method exhibits less asymptotic bias than Langevin dynamics
or SVGD.

2. Inference via KL-minimizing flows

Consider the problem of sampling from a posterior distribution p on Rd. We recast this as
an optimization problem, where the goal is to generate samples distributed according to the
minimizer q∗ of the KL divergence

q∗ = argmin
q∈P ′

KL(q ∥ p),

where P ′ is some appropriate space of candidate measures. Concretely, we want to move a
sample x0 ∼ q0 along a trajectory (xk)k∈N such that the k-th iterate xk ∼ qk converges to
the posterior in the sense that limk→∞KL(qk ∥ p) = 0. This is possible using the following
deterministic, gradient-descent-like process: sample x0 ∼ q0, then iteratively apply

xk+1 = xk + ε
(
∇ log p(xk)−∇ log qk(xk)

)
. (1)

2



Neural Variational Gradient Descent

The term ∇ log p − ∇ log qk is called the Wasserstein gradient of the KL divergence.1 Un-
fortunately, applying update (1) directly is intractable because it usually not possible to
efficiently evaluate the density qk.2 Instead, we evolve many particles in parallel, so we can
approximate the gradient term using a neural network fθ and perform the update

xk+1 = xk + εfθ(xk). (2)

3. Neural variational gradient descent

In this section, we will see how to train a neural network fθ to approximate the gradient
∇ log p −∇ log qk. We build on the method of Stein variational inference developed by Liu
and Wang (2016). In a slightly non-standard manner, let us define the Stein discrepancy
(Gorham and Mackey, 2018) given an L2(q)-measureable vector field f : Rn → Rn as

SD(q ∥ p; f) = E
x∼q

[
f(x)T

(
∇ log p(x)−∇ log q(x)

)]
= E

x∼q

[
f(x)T∇ log p(x) + div f(x)

]
, (3)

where the second equality follows via partial integration (details in Appendix B.1). Here,
div f =

∑d
i=1

∂fi
∂xi

denotes the divergence of f .

Algorithm 1: Neural variational gradient descent
Input: Learning rates η and ε, initial samples x1, . . . ,xn.
Output: Samples from the posterior.
while not converged do

θ ← θ + η∇θR̂SD(fθ;x1, . . . ,xn) // SGD update on R̂SD from Equation (6).
xi ← xi + εfθ(xi) for all 1 ≤ i ≤ n // Update samples.

end

There are two properties of the Stein discrepancy that deserve special emphasis: Firstly,
it can be estimated using only samples from q, without access to the explicit form of the
density. Secondly, a regularized Stein discrepancy is maximized by the Wasserstein gradient
from Equation (8). Indeed, following Grathwohl et al. (2020), let us define the regularized
Stein discrepancy as

RSD(q ∥ p; fθ) = SD(q ∥ p; fθ)−
1

2
∥fθ∥2L2(q), (4)

where ∥fθ∥2L2(q) = Ex∼q[fθ(x)
T fθ(x)]. Now it is easy to confirm that

f∗ = argmax
f∈L2(q)

RSD(q ∥ p; f) = ∇ log p−∇ log q. (5)

1. A short overview of Wasserstein gradient flows is available in Appendix A. For more details see the
textbooks (Villani, 2008; Ambrosio et al., 2008).

2. For an invertible, differentiable transformation T , the pushforward distribution of q under T can be
computed via the change of variables formula T#q(x) = q(T−1x) · det |JT−1(x)|. The computation of
the determinant of a general d× d matrix needs O(d3) operations; when d is large, this is too expensive.
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This choice of regularization is equivalent to bounding the total squared distance by which
the particles are moved. The regularization term is necessary because otherwise the opti-
mization could scale the update f by an arbitrarily large factor.

3.1. Computation

Let x1, . . . ,xn be a set of samples which we wish to transport towards the target posterior
p. In this section, we describe how to compute a single iteration of our method; the entire
procedure is summarized in Algorithm 1.

While it is intractable to compute RSD(q ∥ p; f) exactly, we can approximate it with
the Monte Carlo estimate

R̂SD(f ;x1, · · · ,xn) =
1

n

n∑
i=1

f(xi)
T∇ log p(xi) + div f(xi)−

1

2
f(xi)

T f(xi), (6)

If the dimension d of the sample space is large, the O(d2) computation of the divergence
div f might be too expensive. We follow Grathwohl et al. (2020) in using Hutchinson’s
estimator (Hutchinson, 1989), which gives an efficient and unbiased estimate of div f via

div f(x) ≈ zT∇f(x)z, z ∼ N (0, 1),

which is derived from the identity div f(x) = Ez∼N (0,1)

[
zT∇f(x)z

]
, and has been used in

a number of recent works (Grathwohl et al., 2020; Han et al., 2017; Grathwohl et al., 2018).
One iteration of our method then takes two steps: First update the witness function fθ

to maximize R̂SD(fθ), then update the particles via xi ← xi + εfθ(xi). Additionally, we
usually perform multiple (maximum 50) updates of fθ per particle update, and early stop
the training of fθ when validation loss stops improving.

4. Related work

SVGD. Our method is based on the SVGD algorithm (Liu and Wang, 2016). It has
been previously noted that this algorithm often fails when the target distribution is high-
dimensional and has a complex shape. Attempted remedies include projections (Zhuo et al.,
2018; Gong et al., 2020; Chen and Ghattas, 2020) or modifications to the update equations
(Gallego and Insua, 2018; Chewi et al., 2020; D’Angelo and Fortuin, 2021a). The main
difference between our method and these ones is that they only consider perturbations
within an RKHS, thus requiring the explicit choice of a kernel function and restricting the
flexibility of the method, while our method does not require any kernel choice whatsoever.

Learning the witness function. Our approach for learning the witness function is mod-
eled after the work of Grathwohl et al. (2020), who learn a witness function in order to train
energy-based-models by minimizing a Stein discrepancy. Similarly, Ranganath et al. (2016)
and Hu et al. (2018) minimize a Stein discrepancy to train a variational approximation. In
contrast, we minimize the KL divergence—not the Stein discrepancy—via relation (5).

Extensions. Many extensions have been proposed for SVGD, including using projections
(Chen and Ghattas, 2020), stochastic disrepancies (Gorham et al., 2020), and more. While
we focus on the simplest setting as a proof of concept, most of these ideas do not rely on
the kernelized form of the update and could also be readily applied to our method.
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5. Experiments
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(a) Sampling from the 2-D funnel.
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(b) Sampling the funnel in dimensions 2–40.

Figure 2: We compare NVGD, SVGD, and Langevin dynamics on the funnel density. We
plot the mean and standard deviation of the MMD error across ten runs. Lower
is better.

In this section, we test our NVGD on various synthetic benchmarks and one large-
data logistic regression task. 3 For most experiments we choose fθ to be a simple neural
network with two linear hidden layers of size 32 and an output layer of size d, where d is
the dimensionality of the sample space. More information on the technical setup as well as
further experiments are detailed in Appendix C and D.

We will compare NVGD with two closely related sampling algorithms: SVGD (Liu and
Wang, 2016) and the unadjusted Langevin algorithm (ULA). Both are approximations of
the Wasserstein gradient flow of the KL divergence: SVGD is a particle-based algorithm
that at every step applies the particle transformation in a reproducing kernel Hilbert space
that locally minimizes the KL divergence. ULA is an MCMC algorithm that has been
shown to also minimize the KL divergence. When estimating the posterior density using
minibatches, ULA is referred to as stochastic gradient Langevin dynamics (SGLD) Welling
and Teh (2011).

For SVGD, one has to choose a kernel. The most frequent choice in the literature is
the squared-exponential kernel k(x,y) = exp(−∥x − y∥2/(2h2)) with bandwidth h chosen
according to the median heuristic

h2 =
med2

2 log n
,

where med2 is the median of all squared pairwise distances ∥xi − xj∥2 between samples
x1, . . . ,xn. We follow this choice in all experiments.

3. Code for all experiments is available at https://github.com/langosco/
neural-variational-gradient-descent
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NVGD (ours) Langevin
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Figure 3: Samples generated for the Funnel density (same setting as Figure 2(a)). The
difficulty arises from the funnel geometry: too wide at the top, and too narrow at
the bottom. In particular, Langevin dynamics (pULA) is not able to sample from
the narrow strait if the step size is too large.

Neal’s Funnel (Neal, 2003) is a distribution on Rd defined via the density

p(x) = N(x1; 0, 3) ·
d∏

i=2

N(xi; 0, exp(x1)). (7)

This density is a common benchmark for sampling algorithms because it is easy to sample
from directly (and thus easy to track convergence) but also challenging due to its geometry.

We choose d = 2 and initialize a set of 100 particles by sampling from a standard
Gaussian and develop them along the approximate gradient flows given by the different
methods. Figure 2(a) shows how the methods converge, measured by MMD, and Figure 3
is a scatterplot that shows how NVGD and SGLD perform, thus demonstrating why the
funnel is a challenging target.

Higher-dimensional funnels. We test performance of NVGD for the Funnel distribution
across 40 dimensions. Figure 2(b) shows how the performance of SVGD degrades as the
dimensionality increases.

5.1. Bayesian logistic regression

We sample from a Bayesian logistic regression model trained on the binary Covertype
dataset(Dua and Graff, 2017). As previously, we compare the three methods SVGD, SGLD,
and NVGD, sampling 100 particles for each method. All three methods perform similarly.
Test accuracy averaged over ten runs is reported in Appendix C.

6. Conclusion

We introduced NVGD, a novel particle-based variational inference method.We have per-
formed comparisons to the two most relevant competitor methods (SVGD and SGLD), and
have demonstrated that our method performs as well as (or better than) them across differ-
ent tasks, while not requiring the choice of a kernel function.
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Appendix A. Wasserstein gradient flows

Consider the space P of probability measures on Rn equipped with the 2-Wasserstein metric.
On this space it is possible to define a Wasserstein gradient flow : a continuous trajectory
(qt)t≥0 in P that locally (with respect to the Wasserstein metric) minimizes a functional
F (qt).4 We are interested in the case where this functional is the KL divergence: F (q) =
KL(q ∥ p), where p is a fixed target posterior distribution. In terms of samples Xt ∼ qt, this
KL-minimizing flow is characterized by the deterministic Markov process (Xt)t≥0 given by

dXt

dt
= ∇ log p(Xt)−∇ log qt(Xt), (8)

where X0 ∼ q0 is initialized according to some initial distribution q0, and qt denotes
the density of Xt. Under reasonable conditions, this process converges in the sense that
limt→∞KL(qt ∥ p) = 0 (Vempala and Wibisono, 2019). Thus for large t, the sample Xt is
approximately distributed as p.

To generate such a sample we need to discretize the differential equation (8). The direct
application of the Euler discretization

xk+1 = xk + ε
(
∇ log p(xk)−∇ log qk(xk)

)
as a sampling method is unfortunately intractable because it is usually not possible to effi-
ciently compute qk(x).5 Instead, the discretization that is usually used is Langevin dynamics
(SGLD), which Jordan et al. (1998) have shown to be equivalent (in the limit of infinitesi-
mal step-size) to the flow (8) in the sense that the marginal distributions (qt)t≥0 are equal.
Langevin dynamics requires adding Gaussian noise to the samples. In contrast, our method
(based on approximating the Euler discretization (1)) is entirely deterministic.

Appendix B. Proofs

B.1. The Stein Discrepancy

In Equation 3 we defined the Stein discrepancy given f as

SD(q ∥ p; f) =Ex∼q[f(x)
T (∇ log p(x)−∇ log q(x))]

=Ex∼q[f(x)
T∇ log p(x) + div f(x)]. (9)

We will now provide the assumptions under which the second equality holds, and show how
it follows from integration by parts.

Proposition 1 Let q be a probability density on X and f : X → Rd, f ∈ L2(q) a differen-
tiable function. Assume that ∫

∂X
f(x)q(x) dx = 0, (10)

4. For details on Wasserstein gradient flows we refer to the textbooks (Villani, 2008; Ambrosio et al., 2008).
5. For an invertible, differentiable transformation T , the pushforward distribution of q under T can be

computed via the change of variables formula T#q(x) = q(T−1x) ·det |JT−1(x)|. The computation of the
determinant of a general d× d matrix needs O(d3) operations; when d is large, this is too expensive.
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where ∂X denotes the boundary of X . If X is instead all of Rd, then the condition must hold
in the limit r →∞ for integral over the ball Br of radius r centered at the origin. Then

Ex∼q[div f(x)] = −Ex∼q[f(x)
T∇ log q(x)].

Proof The proposition follows directly from integration by parts. If n(x) is the outward-
pointing unit vector on the boundary of X , then

E[f(x)T∇ log q(x)] =

∫
X
f(x)T∇q(x) dx

=

∫
∂X

f(x)Tn(x)q(x) dx−
∫
X
div f(x)q(x) dx

= −E[div f(x)].

Our desired equality follows.

Proposition 1 is used in many problems throughout statistics and deep learning. It is the
basis of the policy gradient algorithm in reinforcement learning and the score matching
algorithm for density estimation Hyvärinen (2005).

Appendix C. Experiment details

C.1. Synthetic benchmark distributions

ULA and NVGD are discretizations (stochastic and deterministic, respectively) of the Wasser-
stein gradient flow (8). It is known that in the limit of infinitesimally small step-size, ULA
perfectly approximates this flow. Any hope of outperforming ULA must therefore lie in a
better approximation of the flow relative to the step-size, that is, we need to show that ULA
with a step-size η > 0 is either more biased than NVGD (if η is too large) or takes more
steps to converge than NVGD (if η is too small).

When comparing the methods on this task, where it is possible to track convergence
exactly, we find that NVGD outperforms ULA. In particular, we compare with two versions
of ULA: the standard single-chain ULA, and a parallel version pULA where n chains are
initialized and evolved simultaneously. The parallel version is more similar to NVGD, which
also transports a number of particles in parallel.

To reduce correlation between sequential ULA samples, most are discarded (e.g., only
every 100th sample is retained). We develop a single chain for 5000 · 100 = 5 · 105 steps,
corresponding to the same number of likelihood evaluations as 5000 steps for 100 parallel
chains. However, even after discarding all but every 100th sample, the resulting samples are
still correlated. This results in a high MMD error (Figure 2(a)). For sequential ULA, we
use the same learning rate as the pULA run that achieved lower MMD error. When using
a higher learning rate instead, we found that the samples were less correlated at the cost of
worse coverage of the posterior.

In many applications, ULA is augmented with an accept/reject step that adjusts for its
asymptotic bias. We compare to the unadjusted version because the accept/reject step is
not used in large-data applications (recent work by Garriga-Alonso and Fortuin (2021) has
shown it possible to do so using custom integrators, but this is beyond the scope of this
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Figure 4: Bayesian logistic regression on the Covertype dataset. We use 100 particles and
a mini-batch size of 128, so 4000 steps corresponds to one epoch. Results are
averaged over ten runs.

work). Instead, the stochastic gradient variant of ULA (SGLD) is preferred, as for instance
in Wenzel et al. (2020). Where an accept/reject step is feasible, NVGD can be similarly
augmented, though we do not study this here.

Higher-dimensional funnels In other settings, it has already been shown that high-
dimensional sample spaces are often challenging for SVGD (Zhuo et al., 2018; Gong et al.,
2020), though in general this depends on the choice of kernel function. Figure 2(b) also seems
to show that the SGLD and NVGD are immune to the difficulties of increasing dimension-
ality. Unfortunately, visual inspection of samples shows that this is just an artefact of the
MMD measure, and the performance of the methods does get worse as the dimensionality
increases.

One thing that is surprising about Figure 2(b) is that ULA performs equally or better
than NVGD, which seems to contradict the results in Figure 2(a). This discrepancy likely
stems from two sources: 1) ideally, the learning rate of fθ and the size of its hidden layers
should be adapted as the dimension increases, but we keep it fixed; and 2) the advantage of
NVGD—better coverage along the narrow end of the y-axis—becomes less relevant for the
MMD measure as the dimension increases, since all d− 1 other axes are symmetric.

C.2. Bayesian logistic regression

The Covertype dataset consists of 581, 012 observations of 55 features and a binary label.
We split off a proportion of 0.2 for use as test set. We follow Liu and Wang (2016) in using
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Figure 5: The Stein discrepancy over the course of gradient descent on θ. Larger is better,
since the Stein discrepancy is proportional to the amount that one particle iter-
ation reduces the KL divergence (Equation 3). Our proposed NVGD converges
closely to the optimal Stein discrepancy.

a hierarchical prior on β:

α ∼ Gamma(a0, b0),

β ∼ N (0, α−1),

choosing the rate and inverse scale parameters as a0 = 1 and b0 = 0.01. The logistic model
for (x, y) is then

y ∼ Bernoulli
(

exp(x⊤β)

1 + exp(x⊤β)

)
.

To test our method in the stochastic gradient setting, we estimate the likelihood using
minibatches of size 128 and train for one epoch (4085 steps).

We compare again the three methods NVGD, SGLD, and SVGD. For all methods, we
sample 100 particles and choose the particle step-size via tuning on a validation set of size
0.1 subsampled from the training set. We see in Figure 4 that all three methods perform
similarly. The test accuracy is averaged over ten runs.

Appendix D. Further experiments

D.1. Minimizing the KL in one step

Our first experiment is a sanity check: we confirm that, on a synthetic task, our method
approximates the true gradient of the KL, that is fθ(x) ≈ f∗(x) = ∇ log p(x)−∇ log q(x).

In the synthetic examples below we have access to both p and q (which is not the
case in real applications) and can thus compute f∗ directly. We confirm that our method
successfully learns to approximate f∗.
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Figure 6: Bayesian neural network inference on MNIST. The vanilla version of our method
(NVGD) performs poorly; when combined with the Adam optimizer, it performs
better, but still converges more slowly than either SVGD and SGLD. One epoch
corresponds to 420 iterations.

Results are shown in Figure 5. For comparison, we also plot the kernelized Stein discrep-
ancy, rescaled such that the kernelized (SVGD) update has L2-norm equal to f∗ (rescaling
is necessary because the scale of the update, which corresponds to the particle step size, is
a priori arbitrary).

We choose the target posterior p to be an ill-conditioned Gaussian in R50 with mean
zero and a diagonal covariance matrix with entries spaced logarithmically from 10−4 to 1.

We sample a batch of 1000 particles from a ‘proposal’ distribution q, here chosen to
be a standard Gaussian, and train the network fθ to maximize the rescaled Stein discrep-
ancy (4) for 1000 iterations. As visible in Figure 5, the network quickly learns to match the
Wasserstein gradient.

D.2. Bayesian neural network inference

While Bayesian neural networks (BNNs) (MacKay, 1992; Neal, 1992) have gained a lot of
popularity recently (Immer et al., 2021b,a; Fortuin et al., 2021b,a; Fortuin, 2021; Izmailov
et al., 2021; Wenzel et al., 2020), SVGD has been used for their inference on only few
occasions (Wang et al., 2018; Hu et al., 2019; D’Angelo et al., 2021; D’Angelo and Fortuin,
2021b), possibly due to the difficulty to adapt to their high-dimensional posterior geometry.
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We train a BNN on the MNIST dataset and again compare against SVGD and SGLD. The
Bayesian classifier network consists of two convolutional and one fully-connected layer with
4594 parameters in total. Results are shown in Figure 6.

For MNIST we use a batch size of 128. We tune the BNN learning rate to maximize ac-
curacy on a validation set comprising 10% of the training set, and apply the Adam optimizer
to the SVGD and NVGD updates (this cannot easily be done for the SGLD gradients, so we
use vanilla SGLD; for comparison, we also include results for vanilla SVGD and NVGD).

While all three methods reach similar accuracy, NVGD (our method) converges more
slowly. Closer observation suggests that the gradient learner fθ underfits; future work will
consider architectures other than the simple linear feedforward network used here.
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