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Abstract

Multi-channel data in medial imaging where each modality encodes distinct and comple-
mentary information is critical for accurate 3D segmentation. The UNetR architecture
has demonstrated success in 3D medical image segmentation by integrating transformer-
based encoder with a convolutional decoder. However, full fine-tuning of UNetR for new
multi-channel tasks is computationally expensive and prone to over-fitting, especially with
limited data and large transformer backbones. Moreover conventional transformer models,
such as Vision Transformers are typically pre-trained on single channel images, limiting
their direct applicability in multi-modal imaging tasks. To address this, we propose a
parameter-efficient fine-tuning strategy using channel-wise Low-Rank Adaptation adapters
within the UNetR encoder framework, enabling scalable multi-channel adaptation with
reduced parameter overhead.
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1. Introduction

Medical image segmentation is increasingly leveraging large pre-trained foundation models,
such as Vision Transformers (ViTs) (Dosovitskiy et al., 2020), for their powerful learned
representations (Zhang et al., 2024). However, applying these pre-trained models to multi-
channel volumetric medical data (e.g., multi-sequence MRI or PET/CT) is challenging, as
conventional ViTs is designed to handle 2D images with fixed channel structures. Adapt-
ing transformers to effectively ingest multi-modal medical imaging data typically requires
significant architectural modifications and substantial computational resources necessitat-
ing the need for parameter-efficient fine-tuning (PEFT) methods that enable large models
to be adapted with only minimal changes. In this work we have explored low-rank adap-
tation (LoRA) based adapters for pre-trained ViT based UNetR framework in context of
multi-channel medical image segmentation.
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2. Methodology

2.1. Datasets and Preprocessing

We utilized two multi-channel datasets from the MedDecathlon challenge (Antonelli et al.,
2022): ProstateX and BraTS. ProstateX includes 48 multi-parametric MRI studies (T2-
weighted and ADC maps) with annotations for peripheral (PZ) and transition zones (TZ).
BraTS comprises 750 MRI scans with four modalities (T1, T1-Gd, T2, FLAIR) from glioma
patients with labels for whole tumor (WT), tumor core (TC), and enhancing tumor (ET).

2.2. Model Implementation

We implemented the UNetR framework, combining a pre-trained ViT-Base encoder with a
CNN-based decoder for effective 3D medical image segmentation (Hatamizadeh et al., 2021).
The ViT was pre-trained in a self-supervised mechanism using a masked auto-encoder (He
et al., 2022) approach on an internal dataset of 0.5 million MR and CT image volumes.
We introduced rank-stabilized, channel-wise LoRA adapters into the UNetR transformer

Figure 1: Architecture of our proposed multi-channel framework of our pre-trained ViT
model with LoRA adapters.

encoder, by injecting low-rank trainable matrices specific to each image modality(Hu et al.,
2021). Furthermore, a dynamic adapter-switching mechanism was implemented to alternate
between modality-specific adapters during training and inference, facilitating efficient multi-
modal feature extraction. The resulting latent representations from each LoRA adapters
are concatenated and passed through an MLP block to reduce dimensionality before CNN-
decoding block.
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2.3. Implementation Details

We trained and evaluated the UNetR model under four configurations: (1) training from
scratch (Baseline), (2) full fine-tuning with pre-trained ViT weights (Finetune), (3) decoder-
only fine-tuning with a frozen encoder (Frozen), and (4) our proposed method using channel-
wise LoRA adapters (LoRA). We evaluated the effect of LoRA rank (r=16, 32, 64) on
performance and parameter efficiency. All models were trained for 200 epochs, using Adam
optimizer with OneCycleLR scheduler (max LR = 0.005) and optimized using a combined
Dice and cross-entropy loss. Model performance for segmentation was assessed using Dice
Score thresholded at 0.5.

3. Results & Conclusion

The experimental results from different configurations are summarized in Table 1. UNetR-
LoRA achieves performance comparable to full fine-tuning, while significantly reducing the
number of trainable parameters (Table 2) and outperforming decoder-only and baseline
configurations.

Table 1: Performance Comparison with Percentage Changes w.r.t. Baseline. Best values in
bold, second-best underlined. Arrows indicate improvement (↑) or drop (↓).

Region Baseline Finetune Frozen LoRA-16 LoRA-32 LoRA-64

BRaTS

TC 0.8325 0.8482 (↑1.9) 0.8149 (↓2.1) 0.8284 (↓0.5) 0.8376 (↑0.6) 0.8128 (↓2.4)
WT 0.8873 0.8998 (↑1.4) 0.8932 (↑0.7) 0.8918 (↑0.5) 0.8941 (↑0.8) 0.8894 (↑0.2)
ET 0.6593 0.6651 (↑0.9) 0.6342 (↓3.8) 0.6482 (↓1.7) 0.6491 (↓1.5) 0.6316 (↓4.2)
Overall 0.8546 0.8693 (↑1.7) 0.8562 (↑0.2) 0.8564 (↑0.2) 0.8602 (↑0.7) 0.8499 (↓0.5)

ProstateX
PZ 0.5412 0.5958 (↑10.1) 0.5284 (↓2.4) 0.5645 (↑4.3) 0.5877 (↑8.6) 0.5669 (↑4.7)
TZ 0.7226 0.7364 (↑1.9) 0.7164 (↓0.9) 0.6967 (↓3.6) 0.7167 (↓0.8) 0.7314 (↑1.2)
Overall 0.6369 0.6661 (↑4.6) 0.6224 (↓2.3) 0.6452 (↑1.3) 0.6522 (↑2.4) 0.6492 (↑1.9)

Table 2: Parameter Comparison of different UNetR configurations
Baseline Finetune Frozen LoRA-16 LoRA-32 LoRA-64

Params
Total 142.89 M 142.9 M 142.9 M 150.13 M 157.35 M 171.81 M
Train. 142.89 M 142.9 M 54.58 M 58.71 M 62.84 M 71.09 M

(100.0%) (100.0%) (38.16%) (39.09%) (39.93%) (41.33%)
Non-Train. 0 M 0 M 88.32 M 91.42 M 94.52 M 100.72 M

4. Conclusion

This paper proposes integrating channel-wise LoRA adapters into the transformer encoder of
the UNetR framework to enable efficient multi-channel image segmentation. Experimental
results demonstrate that the LoRA-based approach outperforms baseline and frozen encoder
configurations, while achieving performance comparable to full fine-tuning with a 40%
reduction in trainable parameters—highlighting its suitability for leveraging pre-trained
models in downstream medical imaging tasks.
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