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Abstract

Accelerated magnetic resonance imaging resorts to either Fourier-domain subsam-
pling or better reconstruction algorithms to deal with fewer measurements while
still generating medical images of high quality. Determining the optimal sampling
strategy given a fixed reconstruction protocol often has combinatorial complexity.
In this work, we apply double deep Q-learning and REINFORCE algorithms to
learn the sampling strategy for dynamic image reconstruction. We consider the
data in the format of time series, and the reconstruction method is a pre-trained
autoencoder-typed neural network (U-Net). We present a proof of concept that
reinforcement learning algorithms are effective to discover the optimal sampling
pattern which underlies the pre-trained reconstructor network (i.e., the dynam-
ics in the environment). The code for replicating experiments can be found at
https://github.com/zhishenhuang/RLsamp.

1 Introduction

Magnetic resonance imaging (MRI) is a non-radioactive, non-invasive medical imaging process to
visualize human organs and tissues for diagnostic purposes. MRI scanners sequentially collect mea-
surements in the frequency domain (or k-space), from which an image is reconstructed. A cen-
tral challenge in MRI is its time-consuming sequential acquisition process as the scanner needs to
densely sample the underlying k-space for accurate reconstruction, and during the scanning process
patients are expected to remain still. The physical nature of MRI process makes it difficult to im-
age objects in motion such as hearts, compromises image quality by motion artifacts, and incurs
patients’ discomfort and safety concerns. Hence, reconstructing high-quality images from limited
measurements is desirable. There are two core parts in the accelerated MRI pipeline: a sampling
pattern deployed to collect the (e.g., limited/undersampled) data in k-space and a corresponding
reconstruction method (reconstructor) that also enables recovering any missing information. Re-
construction methods can be motivated by mathematical theory of compressed sensing [5, 4] or
data-driven methodology. Several deep learning based approaches [17, 16, 13, 9] have been shown
to demonstrate high reconstruction quality and robust performance to various sources of artifacts
and hyperparameter settings.

The experimental design of subsampling schemes is more difficult to determine due to the combina-
torial nature of this optimization problem. For a set of images {xi}Ni=1 where xi ∈ Rm×n, we aim
to find the optimal sampling pattern in the k-space to cater for the best reconstruction outcome. Let
S be the operation of applying a sampling mask on the k-space information, G be the operator of
reconstructing the image from k-space measurements, and F [x] be the 2D-Fourier transform. With
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a choice of loss function L(·, ·), the optimization problem is formulated as

min
S

N∑
i=1

L(G ◦ S ◦ F [xi] , xi)

s.t. S satisfies designated sampling budget (1.1)

A general sampling operator S can vary with respect to each input image xi. As a simple exam-
ple, one family of sampling pattern for medical images is one-dimensional Cartesian sampling in
k-space. With one-dimensional sampling mask, the sampling takes place with respect to one dimen-
sion of the input image and meanwhile the other dimension is fully sampled. This sampling pattern
can be coded into MRI machines, and its performance is corroborated by the compressed sensing
theory. If the sampling happens to the second dimension, then S ◦F [x] = FFT[x] ·diag(m), where
m ∈ {0, 1}n is a binary vector, diag(m) is an n× n matrix with m on its diagonal. The sampling
budget in this case can be phrased as

∑n
i=1 mi ≤ b for some b ∈ N+.

In this work, we consider the data in the form of a time series {xt}. We aim to build a sampling
policy for a series of images that contains time evolution information. Specifically, the sampling
policy is realized through a policy function π(·|x̂tk−α:tk) given reconstruction history in the recent
α steps. As t increases, the sampling policy π informs the next frequency location to sample. This
is different from precedent study on adaptive sampling where the target under investigation is static.
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Figure 1: Experiment pipeline: sampling and reconstruction

We leverage deep Q-learning [22] and policy gradient method [21] respectively to show that a sam-
pling policy for collecting limited measurements in the k-space adapted to the underlying image
reconstruction method and training dataset can be learned. The major novelty of this work is that the
sampling policy is built with respect to a time series of images (such as a serial heartbeat) instead of
a set of static images. We also point out that this study is mostly a proof of concept that in the MRI
application, RL is effective in learning the sampling strategy that optimizes the performance of the
reconstructor (the environment).

1.1 Related work

Early attempts to learn data-adaptive sampling patterns mostly revolve around static target objects
and the parameters of the sampling pattern are jointly updated along with those of reconstructors.
[25] considers one-dimensional Cartesian masks and uses a neural network to evaluate the impor-
tance of each unseen row in the frequency domain, so that at inference time, the evaluator network
selects the row with highest importance score to acquire. [10] encodes sampling patterns in a set
of distributions, each of which shares the same dimension as the subsampled dimension and is
parametrized by a logit. A categorical distribution governs the applicability of each sampling distri-
bution, and all logits and the categorical distribution hyperparameters are co-trained with unrolled
ISTA reconstructors [7]. This is similar to the LOUPE approach [2], where the sampling mask
is directly parameterized as Bernoulli random variables, and [24], which uses a careful threshold-
ing operation to handle gradient updates on parameters characterizing one-dimensional Cartesian
masks. [8] introduces an alternating training framework to co-train the reconstructor and a mask
predictor to achieve object-level adaptiveness with more explicit control over the mask predictor
training process.

The sequential decision making approach has been adopted to solve the optimal sampling problem
in recent studies. [3] explore the policy gradient method to train a policy network that guides a one-
dimensional sampling choice with respect to pre-trained reconstructors which are tuned to denoise
aliased images blurred by uniformly random sampling masks. [15] have applied double Q-learning
on constructing adaptive sampling policies for static magnetic resonance images, and the reconstruc-
tor in their study is pre-trained in the same manner as in [3]. [11] leverages Monte Carlo tree search
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to explore mask options, and trains the policy network with tree search selections. Meanwhile, the
reconstructor network is alternatively updated along with the policy network in the training process.

2 Methodology

We formalize the sequential selection of the sampling mask for MRI as a partially observable
Markov decision process (POMDP). The state at acquisition step t of this POMDP corresponds
to the tuple consisting of recent α reconstruction results st = (x̂t, · · · , x̂t−α) and the history
of actions (i.e., the current sampling mask Mt−1 for the time series of images). An action at
is to select a particular k-space frequency (row or column) to observe. After an action is taken,
the sampling mask Mt underlying the measurement operation St has the at-th diagonal ele-
ment changed from 0 to 1 compared to Mt−1 for St−1. The reward at each acquisition step is
rt(st, at) = max

(
L(G ◦ St ◦ F [xt],xt)− L(G ◦ St−1 ◦ F [xt],xt), 0

)
.

We consider two RL algorithms to build policies in this work: deep double Q-learning and the policy
gradient method. Both of these two policies are motivated from the Bellman optimality condition
while taking different approximations.

2.1 Deep double Q-learning (DDQN)

In deep Q-learning, we use a neural network as an evaluating function to determine the value of
each action given the current state. A greedy policy ensues by selecting the action with the largest
estimated value in the action space. The double Q-learning framework keeps two copies of the
Q-network during the training process: one Qθ for online action selection while exploring new
trajectories, the other, the target network Qeval, is the same as the online network except that its
parameters are copied every τ steps from the online network and kept fixed on all other steps.

We have used the experience replay technique to store observed state transitions and corresponding
rewards in memory M. The target network is used for offline evaluation of memorized states.
The training of deep Q learning is set up as a self-supervised problem where the loss function is to
minimize the temporal difference error over data sampled from a replay memory buffer. Specifically,
the loss function to minimize is formulated as

L(θ) =
∑

(rt+1,st+1,st,at)
∈M

∥∥Rt+1 + γQeval(st+1)[a
∗
eval]︸ ︷︷ ︸

target

−Qθ(st)[at]︸ ︷︷ ︸
online

∥∥
1

(2.1)

s.t. a∗eval = argmax
a

Qeval(st+1)[a]

2.2 Policy gradient method

Policy gradient methods aim to directly maximize the expected return of a policy parametrized by θ
on the POMDP. In this study, we use the REINFORCE algorithm [21] to train a deep policy network
that maximizes the expected sum of rewards given the designated sampling budget.

In the REINFORCE algorithm, we first collect a whole sequence of state-action pairs up to the time
horizon T in a sampling episode, then compute the Q-value q(s, a) based on the partial aggregation
of observed state-action data, and finally construct a gradient-based update to policy parameters θ.
With the log-ratio trick [21], we maximize the following utility functions:

J(θ) =

T−1∑
t=0

log πθ(st)[at] ·Gt =

T−1∑
t=0

log πθ(st)[at] ·
( T∑

k=t+1

γk−1rk

)
, (2.2)

where at = argmaxa πθ(st) .

3 Experiments

3.1 Dataset

We test the RL sampling schemes on the OCMR data [6] which is an open cardiovascular MRI
dataset containing multiple cardiac cine series. We use 62 series for training, and 32 series for
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testing. Each series in the selected OCMR data is fully sampled, and every frame is dimension
384×144. We aggregate all coils so that the dataset in this study can be considered as single-coiled.
The length of each series in the training set varies between 16 and 28, and in the testing set between
16 and 27. There are in total 1519 frames in the training time series and 642 frames in the testing
time series.

3.2 Pre-trained reconstructors

A modest but viable option of G is the Unet [18], which was originally proposed for image segmen-
tation but later was shown to be useful for reconstruction/de-aliasing purposes. To train a Unet in a
supervised way as a reconstructor, one needs to set up a training dataset where the aliased images
are generated in a certain way. As mentioned in the Related Work section, precedent work on build-
ing sampling policies relies on pre-trained reconstructors, where the aliased images in the training
dataset are subsampled by uniformly random masks in the k-space.

In this work, we consider 1D sampling strategies in experiments. We define the uniformly random
mask as a sampling pattern where the lowest b frequencies in the dimension to be subsampled are
always collected while the rest of the sampling budget are uniformly at random allocated across the
unobserved high-frequency domain. Here b is a hyperparameter, given the sampling budget. We
define the low-frequency masks as the sampling pattern where all sampling budget is allocated to
the lowest frequencies in the dimension to be subsampled. We define the energy-distribution-based
masks as the sampling pattern where the lowest b frequencies are always sampled, while the rest
of the sampling budget are used according to the energy distribution of each high frequency in the
training images.

Before getting into the policy building step, we train three Unet reconstructors with respect to three
separate dataset whose aliased images are generated by each of the aforementioned masks respec-
tively. Every training image pair in the dataset is in the format of (aliased image x̃Ξ

i , corresponding
ground truth xi), where x̃Ξ

i = IFFT ◦ SΞ ◦ FFT[xi]. Each pre-trained Unet reconstructor intends
to de-aliase the crude IFFT images blurred by a particular sampling scheme Ξ: GΞ(x̃

Ξ
i ). We point

out that unlike static dataset where energy-distribution-based masks usually outperforms uniformly
random masks and low-frequency masks [8], with respect to the OCMR dataset, the pre-trained re-
constructors perform the best with the low-frequency mask in terms of both normalized rooted mean
squared error (NRMSE) and the structural similarity index measure (SSIM) [23] as Table 1 shows.

Subsampling schemes Ξ NRMSE:= ∥xrecon−x∗∥2

∥x∗∥2
SSIM

Uniformly random masks 0.6884 0.4380
Low-frequency masks 0.3668 0.7456
Energy-distribution-based masks 0.6323 0.4816

Table 1: Performances of pre-trained reconstructors with respect to aliased images which undergo different
sampling schemes. The acceleration ratio is 6-fold with the b = 8 lowest base frequencies to start and 16 high
frequencies to sample. The full size of the subsampled image dimension is 144.

3.3 Problem setup

In this work, we aim to solve the following optimization problem on input time series data {xi}Ti=1:

min
m

T∑
i=1

L(GΞ ◦ Sdiag(m) ◦ F [xi] , xi)

s.t.


Sdiag(m)[y] = y · diag(m)∑n

i=1 mi ≤ b+ s

mi ∈ {0, 1}
(3.1)

where GΞ is a pretrained Unet with respect to mask pattern Ξ listed in Table 1, s is a pre-designated
sampling budget, y = F [xi] and y ∈ Cm×n, diag(m) is an n × n diagonal matrix with vector m
in its diagonal, and the loss function is L(x,x∗) =

∥x−x∗∥2

∥x∗∥2
.
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3.4 Hyperparameter settings

Acceleration ratio In accelerated MRI problem, we define the acceleration ratio as
the full size of k-space dimension to be subsampled

the actual amount of frequencies to observe . In this study, we focus on 6-fold acceleration case, where
there are 8 lowest base frequencies to start with in the observation set and we continue to sample
additional 16 high frequencies to complete an episode of measurement before applying the recon-
structor. The total size of the full k-space is 384×144, where the second dimension is to be sampled.

Pre-trained reconstructors The Unet we use as reconstructor has 6 downsampling and upsam-
pling layers, and has two channels of input, each of which corresponds to the real and imaginary
part of the data collected in the Fourier domain . The loss function we use to train the Unet is
∥xrecon−x∗∥2

∥x∗∥2
+5 ·

(
1−SSIM(xrecon,x∗)

)
. We collect each image slice in the time series as the ground

truth in the training dataset for sampling policy building, and apply various sampling patterns to gen-
erate corresponding aliased images. For reconstructor tuning, with respect to each training dataset
generated by different sampling patterns Ξ, we train the Unet for 300 epochs, with learning rate as
10−5, ℓ2 regularization weight 10−5 in the Adam optimizer, and the batchsize 10.

Policy network We use a convolutional neural network coupled with fully connected feed-forward
layers as the policy network. The policy network sees the reconstruction images in the previous 8
time steps, and output the probability distribution on the remaining unobserved high frequencies to
sample.

DDQN algorithm setup We set the size of the memory buffer as 100. We use the Adam optimizer
with 10−5 as the constant learning rate. We run DDQN training for 600 epochs with the discount
factor set as 0.8 and batch size 3.

REINFORCE algorithm setup We add an entropy regularization term [12] to the loss function
in order to encourage the learning process to explore larger trajectory space, and we set the weight
of this penalty term to be 0.01. We use the Adam optimizer with 10−5 as the constant learning rate.
We run REINFORCE training for 600 epochs with discount factor set as 0.1 and batch size 3.

3.5 Validation for the proof of concept

3.5.1 Convergence results

The following figures show the convergence of the reinforcement learning training paradigm. Fig-
ures 2a and 2b show that the masks predicted by the policy network trained by DDQN and RE-
INFORCE, respectively, demonstrate improved performance in terms of the image reconstruction
error compared to the fixed pre-trained reconstructor. Both DDQN and REINFORCE can recover
the sampling scheme under which the reconstructor is trained. In this case, the underlying sampling
scheme is low-frequency sampling policy.

Figures 3 and 4 show the evolution of predicted masks returned by the policy network. Both policies
converge to the low-frequency sampling policy, while the DDQN paradigm takes more iterations to
discover ultimate target.

Subsampling schemes/Policies NRMSE:= ∥xrecon−x∗∥2

∥x∗∥2
SSIM

DDQN trained policy 0.3948 0.7522
REINFORCE trained policy 0.3943 0.7521
Uniformly random masks 0.5638 0.5793
Low-frequency masks 0.3948 0.7522
Energy-based masks 0.6160 0.4825

Table 2: Reconstruction accuracy on the testing dataset by different policies. Note that the set of testing images
are different from that in Table 1 in the sense that only frames in time series after the initial base observations
are taken into account. In other words, for each time series in a test file, we consider reconstructions on frames
xbase + 1, · · · ,xend where “base” is the count of base frequencies we use as basic observations.

5



0 100 200 300 400 500 600

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed
` 2

er
ro

r

DDQN

rand.

lowfreq.

(a) DDQN RMSE convergence curve
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(b) REINFORCE RMSE convergence curve

Figure 2: Convergence curve of image reconstruction error (normalized ℓ2 error) during training.

Figure 3: Mask evolution history as DDQN training proceeds. The horizontal axis shows the direction of time,
and the vertical axis is the frequency grid of the subsampled dimension in k-space. We put the low frequency
in the middle of the vertical axis and the high frequencies on the upper and lower end of the vertical axis. Each
vertical cross section is a sampling mask at a given iteration step returned by the policy network trained through
DDQN algorithm.

3.5.2 Reconstruction examples

In Figure 5, we show a set of reconstruction examples in the testing set as sampling proceeds. The
time series characterizes a cardiac cycle where the diastole is followed by the systole. We show the
ground truth images in the cardiac cycle, their corresponding reconstruction images, and error maps.
When generating reconstructions on the testing time sequences, we first assemble the sampling
masks according to policies under comparison and the designated sampling budget before applying
corresponding reconstructors. After masks are generated regarding a testing time series, they remain
fixed for the rest of frames in that time series. The sampling masks used for measurement in k-space
starts from the base b = 8 low frequencies, and garner additional s = 16 high frequencies according
to sampling policies. The mask used for each frame in Figure 5 consists of both base low frequencies
and policy-informed high frequencies.

4 Conclusion

In this work, we present a synthetic study where with prior knowledge on the performance of candi-
date reconstructors, reinforcement learning techniques can effectively uncover the underlying mask
patterns with which the reconstructor is trained to denoise undersampled dynamic cardiac cine se-
quences. This study also shows that such dynamic MRI datasets like OCMR data lead to new chal-
lenges as the conventional reconstructors and energy-based sampling schemes do not demonstrate
the same performance as in the static setting.

Future work Several aspects of using RL algorithms can be further investigated:

1. How can we accelerate the training process or improve the reconstruction quality through
more sophisticated RL optimization practice [19] or leverage prior information of data
distribution in the training process?
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Figure 4: Mask evolution history as REINFORCE training proceeds. The horizontal axis shows the direction
of time elapses, and the vertical axis is the frequency grid of the subsampled dimension in k-space. We put
the low frequency in the middle of the vertical axis and the high frequencies on the upper and lower end of
the vertical axis. Each vertical cross section is a sampling mask at a given iteration step returned by the policy
network trained through REINFORCE algorithm.

2. Do reconstructors such as MoDL [1] or unrolling based reconstructors [14, 20] with higher
complexity improve the reconstruction accuracy for the dynamic dataset?

3. How can we develop a self-supervised training process to either simultaneously or alterna-
tively train the policy network and the reconstructor network such that the final reconstruc-
tion performance can outperform the starting baseline?
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