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Abstract

Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational
imaging. Two primary strategies have been proposed for leveraging DMs in this context:
Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations;
and specialized conditional DMs, which achieve higher accuracy and faster inference for
specific tasks through supervised training. In this work, we introduce a novel framework
that integrates deep unfolding and model distillation to transform a DM image prior into a
few-step conditional model for posterior sampling. A central innovation of our approach is
the unfolding of a Markov chain Monte Carlo (MCMC) algorithm—specifically, the recently
proposed LATINO Langevin sampler (Spagnoletti et al., 2025)—representing the first known
instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our
proposed unfolded and distilled samplers through extensive experiments and comparisons
with the state of the art, where they achieve excellent accuracy and computational efficiency,
while retaining the flexibility to adapt to variations in the forward model at inference time.

1 Introduction

We seek to infer an unknown image of interest x⋆ ∈ Rd from a noisy measurement y = y, related to x⋆ by a
statistical observation model of the form

y ∼ P (Ax⋆) , (1)

where A is a linear measurement operator describing deterministic instrumental aspects of the data acquisition
process and P is a statistical model describing measurement noise. This includes, for instance, the canonical
linear Gaussian observation model y = Ax⋆+n, where n is additive Gaussian noise with covariance σ2

nI. Such
models arise frequently in problems related to image deblurring, inpainting, super-resolution, compressive
sensing, and tomographic reconstruction (see, e.g., (Kaipio & Somersalo, 2010; Ongie et al., 2020)). Within
this context, we are particularly interested in imaging problems where recovering x⋆ from y is severely
ill-conditioned or ill-posed, leading to significant uncertainty about the solution (Kaipio & Somersalo, 2010).

Adopting a Bayesian approach, we leverage prior knowledge available in order to regularize the problem and
deliver meaningful inferences that are well-posed. This is achieved by treating x⋆ as a realization of a random
variable x0 and using Bayes’ theorem to obtain the posterior distribution of x0|y = y, with density given for
all x0 ∈ Rd by (Robert, 2007)

p(x0|y) = p(y|x0)p(x0)∫
Rd p(y|x̃0)p(x̃0)dx̃0

,

where p(y|x0) denotes the likelihood function associated to Equation 1 and p(x0) the marginal density of x0.

The choice of p(x0), so-called prior, is crucial and greatly impacts the obtained posterior p(x0|y), especially
in problems that are ill-conditioned or ill-posed. Bayesian imaging methods traditionally used analytical
priors designed to promote solutions with expected structural properties (e.g., smoothness, sparsity, piecewise
regularity). However, modern Bayesian imaging methods rely predominantly on machine learning in order to
harness vast amounts of prior knowledge available in the form of training data and deliver unprecedented
accuracy (Mukherjee et al., 2023). In particular, state-of-the-art Bayesian imaging techniques often use deep
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Figure 1: Qualitative comparison of the proposed Unfolded and Distilled Diffusion Model (UD2M) for
posterior sampling on the ImageNet 256 dataset. Tasks: Gaussian Deblurring, random inpainting (70%),
super-resolution (4×), and restoration of JPEG compression artifacts (QF=10).

generative models as image priors, notably denoising diffusion models (DMs). For an introduction to DMs,
we refer the reader to the seminal DM papers Song & Ermon (2019; 2020); Song et al. and to the recent
survey on DMs as image priors for solving inverse problems (Daras et al., 2024).

The literature on DM-based Bayesian imaging methodology has two main strands. On the one hand, Plug &
Play (PnP) methods seek to use a pretrained DM in a zero-shot manner, in combination with a likelihood
function p(y|x0) specified analytically during inference. PnP approaches are flexible by construction and
generalize robustly to new measurement models by exploiting knowledge of the likelihood function p(y|x)
explicitly. Notable examples of PnP DM techniques include, e.g., DPS (Chung et al., 2022), DDRM (Kawar
et al., 2022), DiffPIR (Zhu et al., 2023), ΠGDM (Song et al., 2023a), and mid-point (Moufad et al., 2025).

The other strand relies on fine-tuning an unconditional DM representing the prior, in order to construct
a y-conditional DM for posterior sampling. This involves modifying a DM to take the measurement y as
input and, through supervised training, specializing it for posterior sampling of x0|y = y (instead of marginal
sampling of x0). Specializing a DM for a specific imaging task enables the development of Bayesian imaging
methods that surpass PnP approaches in both accuracy and computational efficiency, assuming the task is
fully defined during training. However, in the absence of additional training, such task-specific DMs often
exhibit limited generalization to even slightly altered measurement conditions, as they are not inherently
designed to exploit the likelihood p(y|x0) during inference. For more details and comparisons with PnP
strategies, see, e.g., I2SB (Liu et al., 2023a), InDI (Delbracio & Milanfar, 2023), CDDB (Chung et al., 2023).

Moreover, the most advanced DM-based imaging methods currently available -whether zero-shot or trained for
conditional sampling- leverage model distillation to enhance computational efficiency and improve performance.
Notably, distillation techniques such as consistency models (Song et al., 2023c; Kim et al., 2024) and flow
matching (Liu et al., 2023b; Lipman et al., 2023) have significantly reduced the number of required neural
function evaluations (NFEs) per posterior sample from over 103 to fewer than 10, while concurrently improving
sampling quality and accuracy (see Spagnoletti et al. (2025); Garber & Tirer (2025); Zhao et al. (2025)).

To bridge the methodological gap between these two strands, this paper introduces a novel framework for
constructing conditional DMs which offers the computational efficiency and accuracy of conditional DMs
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obtained via finetuning and distillation, with the flexibility afforded by explicit likelihood functions in inference,
thus bringing together the advantages of finetuning and PnP strategies. This is achieved by generalizing
deep unfolding (Monga et al., 2021), a paradigm wherein iterative algorithms with a fixed number of steps
are mapped onto modular deep neural network architectures. These architectures explicitly incorporate the
likelihood function p(y|x0), for example through its gradient or proximal operator, in conjunction with a
denoiser that is subsequently fine-tuned during training. A main novelty of this work is to present the first
application of deep unfolding of a Markov chain Monte Carlo (MCMC) sampling scheme, in contrast to prior
work on deep unfolding that focused on optimization-based algorithms (which, unlike MCMC schemes, are
not inherently suitable for posterior sampling). Namely, we propose to unfold the state-of-the-art LATINO
zero-shot imaging Langevin method (Spagnoletti et al., 2025), and train the resulting unfolded LATINO
networks by using a supervised consistency trajectory models objective combining distortion, perceptual
and adversarial terms (Kim et al., 2024). This leads to distilled conditional DMs that are fast (low NFEs),
generate high-quality samples, are GPU-memory efficient during inference (due to the absence of automatic
differentiation). We refer to the proposed method as an Unfolded and Distilled Diffusion Model (UD2M).
Crucially, UD2Ms support joint training over a family of likelihoods, followed by instantaneous specialization
to specific measurement models at inference time (i.e., specific instances of A and P ). For illustration,
Figure 1 shows some examples of posterior samples obtained with the proposed unfolded and distilled diffusion
models (UD2Ms) applied to Gaussian deblurring, random inpainting, super-resolution by a factor 4, and
JPEG artifact restoration for images from ImageNet dataset.

In summary, we present the following two main methodological contributions that underpin the proposed
UD2M method:

• Deep unfolding of Monte Carlo sampling: In Section 3, we introduce a novel framework that unfolds
the LATINO Langevin Markov chain Monte Carlo sampler into a trainable neural architecture,
representing the first application of deep unfolding to a Monte Carlo sampling scheme.

• Conditional model distillation for efficient posterior sampling: In Section 3.2, we employ modern
generative model distillation techniques to fine-tune the unfolded LATINO network into a few-step
conditional sampler that achieves high accuracy and flexibility while enabling fast inference.

A summary of background material can be found in Section 2 and numerical comparisons of our method to
state-of-the-art models from the literature are presented in Section 4.

1.1 Notation

We denote by p(x|y) the posterior distribution of the random variable x given y = y. Similarly, p(y|x) denotes
the likelihood. We use the shortened notation − log p(y|x) = gy(x). For a function f : Rd → R, the operator
proxδf (x) = arg minz∈Rd f(z) + 1

2δ∥x− z∥
2
2/2 denotes the proximal operator of f . The expected value of a

random variable f(x) is denoted Ex[f(x)]; when the distribution to be integrated is clear from context, we
occasionally drop the subscript and write E[f(x)].

2 Background & related works

Diffusion models (DMs) are generative models that draw samples from a distribution of interest p(x0) by
iteratively reversing the following “noising” process

dxt = −βt2 xtdt+
√
βtdwt , (2)

which is designed to transport x0 to a standard normal random variable xT ∼ N (0, I) as T →∞, and where
βt represents a noise schedule and wt is a Brownian motion (Ho et al., 2020). The reverse process, which
allows generating samples of x0 by transporting xT ∼ N (0, I) back to x0, is given by (Song et al., 2021):

dxt =
[
−βt2 xt − βt∇xt

log pt(xt)
]
dt+

√
βtdwt, (3)
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where wt is again Brownian motion, in the reverse direction. The target distribution p(x0) is encoded in the
so-called score function xt 7→ ∇xt log pt(xt), which is approximated using Tweedie’s identity (Efron, 2011)
by a deep neural network denoiser Gθ(·, t) that is trained by weighted denoising score matching (DSM), see
Song et al. (2021).

Denoising diffusion probabilistic models (DDPM) (Ho et al., 2020) and denoising diffusion implicit models
(DDIM) (Song et al., 2021) are the two main methodologies to implement Equation 3 in a time-discrete
setting, where the process is initialized with xT ∼ N (0, I) for some large finite T and solved iteratively with
t decreasing progressively to t = 0. Accurate estimation of the scores ∇xt

log pt(xt) underpinning Equation 3
has been crucial to the success of DDPM and DDIM. This has been achieved using large training datasets,
specialized network architectures, and significant high-performance computing resources (Ho et al., 2020; Song
et al., 2021). In addition to advancing generative modeling, DMs have become central to modern strategies
for solving inverse problems in computational imaging (see, e.g., the recent survey paper (Daras et al., 2024)).

Distillation of diffusion models Conventional DM approaches produce high quality samples by pro-
gressively transporting xT to x0. However, they have a high computational cost, as generating each sample
typically requires performing between 100 and 1000 evaluations of Gθ. This drawback can be addressed by
distilling Gθ into a new model G̃ϑ requiring far fewer steps (e.g., 4-8 steps); see, e.g., Song et al. (2023c);
Liu et al. (2023b). Remarkably, modern distillation techniques combining DSM with adversarial training
are able to further improve the quality of the samples as they dramatically reduce the number of sampling
steps, while retaining the same network architecture as the original DM. This is the case, for example, of the
so-called consistency trajectory models (Kim et al., 2023), which we use in our proposed method in Section 4.

Consistency models Consistency models (CMs) are derived from a probability flow formulation of
Equation 3, given by (Song et al., 2023b)

dxt =
[
−βt2 xt −

βt
2 ∇xt

log pt(xt)
]
dt. (4)

This ODE is equivalent to Equation 3 in the sense that both have the same marginals pt(·) of xt. CMs
leverage this property by learning a so-called consistency function G̃θ that maps any point xt on a trajectory
{xt}t∈[η,T ] of Equation 4 backwards to xη, for some small given η > 0. Given G̃θ : (xt, t) → xη, CMs
are able to sample the r.v. xη = G̃ϑ(xT , T ) with xT ∼ N (0, I) in a single step, see Kim et al. (2023) for
details. Two-step CMs achieve superior quality by re-noising xη = G̃ϑ(xT , T ) following Equation 2 for some
intermediate time s ∈ (η, T ) followed by G̃ϑ(xs, s) to bring back xs close to x0. Multi-step CMs apply this
strategy recursively, in 4 to 8 steps, achieving top performance while retaining computational efficiency (Kim
et al., 2024). Recent examples of few-step Bayesian image restoration methods based on CMs include, for
instance, the fine-tuned method CoSIGN (Zhao et al., 2025), the zero-shot method CM4IR (Garber & Tirer,
2025), and the zero-shot method LATINO (Spagnoletti et al., 2025) which uses a so-called Stable Diffusion
latent CM with semantic conditioning via text prompting.

LoRA fine-tuning of diffusion models Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a technique
designed to fine-tune large attention-based architectures such as DMs in a manner that achieves comparable
performance to full fine-tuning at a fraction of the computational cost. This is achieved by adding a trainable
low-rank correction ∆θ to the model’s original attention weights, which remain frozen during fine-tuning,
and exploiting structural properties of attention layers in order to optimize the weights θ + ∆θ at a reduced
cost. LoRA fine-tuning has been widely applied to DMs. For example, in the context of DM distillation,
CM-LORA strategies distill a pre-trained DM Gθ(·, t) into a CM G̃ϑ(·, t) = Gθ+∆θ

(·, t) by adjusting ∆θ with
a CM objective combining DSM and adversarial training (Luo et al., 2023).

Deep unfolding (also known as deep unrolling) is a deep learning paradigm that transforms iterative
optimization algorithms with a fixed number of iterations into deep neural network architectures, whereby the
algorithm’s steps become trainable layers in a network that is trained end-to-end (Monga et al., 2021). This
approach, also known as deep unrolling, provides a powerful template for designing interpretable network
architectures that incorporate y and the operator A in a manner that is modular and explicit (e.g., via
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proximal operator layers), together with trainable elements (e.g. U-Net modules) that can be recognized as
data-driven regularization terms. Because A is provided explicitly during training, unfolded networks can
be easily trained to handle a range of operators (e.g., motion blurs, as represented by a database) and then
instantiated for a specific operator during inference. To date, deep unfolding has primarily been implemented
by unrolling optimization algorithms. A main innovation of this paper is the unfolding of a stochastic
Langevin sampling algorithm instead (specifically, the LATINO algorithm of Spagnoletti et al. (2025)). Also,
to the best of our knowledge, this is the first instance of deep unfolding in the context of DMs.

Langevin PnP methods for image restoration. DMs can serve as highly informative PnP priors within
Langevin Markov chain Monte Carlo posterior samplers. Notably, Kemajou Mbakam et al. incorporates a
DM within a PnP unadjusted Langevin algorithm (ULA) (Laumont et al., 2022) to estimate the posterior
mean E(x|y). Similarly, Coeurdoux et al. (2024b) embeds a DM within a split-Gibbs sampler (Vono et al.,
2019), which is equivalent to a noisy ULA (Pereyra et al., 2023). With regards to other stragies not based
on DMs, we note Coeurdoux et al. (2024a) and Melidonis et al. (2024) which explore the use of normalizing
flows as PnP priors, while Holden et al. (2022) proposes a general theoretical framework for incorporating
variational autoencoder (VAE) and generative adversarial network (GAN) priors.

LAtent consisTency INverse sOlver (LATINO) is a state-of-the-art zero-shot posterior sampling
technique derived from embedding a CM prior G̃ϑ(·, t) within an overdamped Langevin diffusion process
of the form dx0,s = ∇ log p(y|x0,s)ds+∇ log p(x0,s)ds+ dws, which converges to the posterior of interest
p(x0|y) as s → ∞, see Spagnoletti et al. (2025). In its simplest form, LATINO to sample from p(x0|y) is
based on the following recursion1: for all k ∈ N

x̃(k+1)
0 = proxδgy

(x(k)
0 ) , implicit gradient step, gy : x0 7→ − log p(y|x0)

x(k+1)
tδ

=
√
ᾱtδ x̃(k+1)

0 +
√

(1− ᾱtδ )ϵk+1 , sample xtδ,k+1 ∼ p(·|x0,k) by using forward SDE 2

x(k+1)
0 = G̃ϑ(x(k+1)

tδ
, tδ) , transport x(k+1)

tδ
back to x(k+1)

0 with ODE 4 (5)

where δ, tδ are step-sizes related to the time-discretization of the Langevin process, ϵk+1 ∼ N (0, I), and the
proximal step proxδgy

(s) = arg minx0∈Rd gy(x0) + 1
2δ∥x0 − s∥2

2/2 with gy : x0 7→ − log p(y|x0) is equivalent to
an implicit Euler step on gy, see Spagnoletti et al. (2025) and Appendix B for details . For linear Gaussian
observation models of the form y = Ax+n with noise covariance σ2I, proxδgy

(x) = (δA⊤A+σ2I)−1(δA⊤y+
σ2x), which can be computed efficiently by using a fast linear solver or a specialised scheme. Alternatively,
for challenging linear operators and non-linear problems, we use an appropriate optimizer to compute an
approximate solution of proxδgy

(s) = arg minx0∈Rd gy(x0) + 1
2δ∥x0 − s∥2

2/2, which is essentially a regularized
least squares problem. It is worth mentioning that a more general form of the LATINO recursion generalizes
Equation 5 by performing the noise and de-noise step on the latent space of a (deterministic) auto-encoder
pair (E ,D). This allows embedding CMs trained on the latent space of (E ,D), notably modern stable diffusion
CMs (Yin et al., 2024). In the present work, we consider CMs trained to denoise directly on pixel space, with
E and D both set to the identity in Spagnoletti et al. (2025).

Integrating the CM G̃ϑ within a Langevin sampler allows LATINO to use the likelihood function x0 7→ p(y|x0)
directly and exactly - through its proximal operator - without the need for approximations2. This represents
a significant advantage over prevalent alternative DM-based posterior sampling approaches, which attempt to
embed the likelihood into the DM itself — a process that is typically intractable and reliant on likelihood
approximations because of time inhomogeneity. As a result, LATINO outperforms competing zero-shot DMs
in sampling accuracy, with a computational cost comparable to state-of-the-art multi-step CMs (i.e., in the
order of 4-8 iterations). The proposed UD2M framework unfolds LATINO within a y-conditional distilled
DM, which is trained end-to-end in a supervised manner for posterior sampling.

1The steps of the recursion in Spagnoletti et al. (2025) are presented in a different order, first sampling using 2, then the CM
step, and the proximal step last. We find that starting with the proximal step performs better when unrolling few iterations.

2The Langevin diffusion is a time-homogeneous process and the resulting iterates x(k)
0 are asymptotically ergodic, converging

to a δ-neighbourhood of p(x0|y) as k → ∞. The iterates are not traveling backwards in time through an inhomogeneous process
and therefore there is no need to compute the likelihood of y w.r.t. a noisy version of x0, as is the case in conditional DMs.
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3 Proposed framework

3.1 UD2Ms: Diffusion model unfolding and distillation for multi-step posterior sampling

We are now ready to present our proposed methodology for learning a posterior sampler for (x0|y = y),
through unfolding and distillation of a DM that has been trained to sample x0 unconditionally (i.e., from the
prior p(x0)). We assume the availability of a DM Gθ(·, t) pre-trained to approximate Gθ(xt, t) ≈ E(x0|xt = xt)
with xt =

√
αtx0 +

√
1− αtϵt following Equation 2. From this DM, we seek to derive a distilled model Lϑ

that, in a single step, samples approximately from the conditional distribution p(x0|y, xt). This distilled model
Lϑ is then embedded within a multi-step sampling scheme that iteratively generates x(k)

t ∼ p(xt|x0 = x
(k−1)
0 )

exactly through the noising process of Equation 2, followed by approximate sampling of x(k)
0 ∼ p(x0|y, x(k)

t )
by using Lϑ(y, x(k)

t , t). The scheme starts at t = T by sampling from the marginal xT ∼ N (0, I), and the
timestep t is reduced across iterations to reach t = 0 in a few steps (e.g., N = 3 steps). This scheme is
summarized in Algorithm 1. Importantly, unlike zero-shot methods, here we consider that the likelihood
function p(y|x0) associated to p(x0|y, xt) belongs a pre-determined (parametrized) class of likelihood functions
of interest that is fixed during the training of Lϑ. By training over a wide range of sampled likelihoods from
the determined class, we retain flexibility to specify the exact parameters of the likelihood during inference
time. Specializing Lϑ in this manner will lead to significant accuracy and computational cost gains for
likelihood models belonging to the training distribution when compared to zero-shot strategies that are fully
likelihood agnostic during training. Note that Lϑ samples the conditional random variable (x0|y,xt), we do
not seek to sample (x0|y) directly.

Our UD2M approach to construct Lϑ combines distillation with deep-unfolding, whereby we obtain a trainable
architecture from unfolding an iterative algorithm into a sequential scheme (Monga et al., 2021). As mentioned
previously, a main novelty of this work is to unfold a Langevin sampler to construct a generative model, which
we train end-to-end. More precisely, given t ∈ [0, T ] and xt = xt, we implement Lϑ(y, xt, t) by unfolding K
iterations of the LATINO Langevin sampling algorithm of Equation 5, modified to target the conditional
distribution p(x0|y, xt). The precise construction of Lφ is illustrated in Figure 2. Within each LATINO
module, the prior is represented by a distilled DM Gθ+∆θ

derived from Gθ by LORA fine-tuning, where ∆θ

denotes LORA adaptation weights which we will train end-to-end for conditional sampling (with θ frozen),
and where the likelihood p(y, xt|x0) = p(y|x0)p(xt|x0) associated with the posterior p(x0|y, xt) is involved via
its proximal operator proxδgy,xt

(s) = arg minx0∈Rd gy,xt(x0) + 1
2δ∥x0 − s∥2

2/2 where gy,xt = − log p(y, xt|x0).
As mentioned previously, for linear Gaussian observation models of the form y = Ax+ n with noise variance
σ2, this operator is given for all x ∈ Rd by

proxδgy,xt
(x) = Σ−1

(
A⊤y

σ2 + xt√
αtσ2

t

+ x

δ

)
, (6)

where σ2
t = (1− αt)/αt and the matrix Σ is defined as follows

Σ =
(

A⊤A

σ2 + I

σ2
t

+ I

δ

)
(7)

For other models, we solve proxδgy,xt
(s) = arg minx0∈Rd gy,xt

(x0)+ 1
2δ∥x0−s∥2

2/2 with gy,xt
= − log p(y, xt|x0)

approximately by using Adam (Kingma & Ba, 2014) with x0 as warm-starting.

Because of the low-rank structure of ∆θ, and because we used tied weights across LATINO modules, the
number of trainable parameters is usually of order of 0.1% of the number contained in θ, which makes
adversarial training significantly more stable. Operating with a reduced number of parameters also greatly
simplifies learning and storing adaptations of Gθ tailored for specific classes of problems of interest, and
allows us to easily instantiate problem-specific variants of Lϑ during inference. Moreover, Equation 6 can be
computed cheaply when a singular value decomposition of A is available. Otherwise, if computing an exact
solution efficiently is not possible, we use a specialised sub-iteration, a randomized linear solver, or some
steps of a convex optimization scheme (Chambolle & Pock, 2016).

Lastly, to keep the number of LATINO modules K small without compromising accuracy, we warm-start
the first LATINO module by using auxiliary neural estimator x̂0 = fψ(y,xt) as input module, parametrized
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Figure 2: Diagram of the proposed conditional sampling architecture, Lϑ(y, xt, t) derived by deep unfolding K
LATINO iterations (Spagnoletti et al., 2025). The prior is introduced via a pre-trained unconditional DM Gθ
with LoRA adaptation ∆θ, while the observation model, measurement y and noisy state xt are involved via
gy,xt

= − log p(y, xt|x0). The first module is initialized by an estimator fψ such as RAM (Terris et al., 2025),
or by setting fψ(xt, y) = A†y. The unfolded network is finetuned and distilled to sample from (x0|y, xt).

by a set of weights ψ. For example, in our experiments we use the recently proposed foundational model
RAM (Terris et al., 2025), with stacked operators (A, I) to take (y, xt) as input. Alternatively, one can also
initialize with A†y. Accordingly, the set of trainable parameters of Lϑ is ϑ = (∆θ, ψ) if fψ is finetuned for
additional performance; otherwise we have ϑ = ∆θ if ψ is frozen or if the first LATINO module is initialized
directly with A†y. The proposed architecture is summarized in Figure 2 below.

Before discussing our strategy for training Lϑ, it is worth noting that one could in principle design Lϑ to
target the posterior p(x0|y) directly, by using unfolding and distillation but bypassing fully the multi-step
scheme. However, one-step samplers are notoriously harder to train, and the resulting samples are often of
inferior quality (Luhman & Luhman, 2021; Meng et al., 2023; Song et al., 2023c; Salimans & Ho, 2022). Also,
sampling p(x0|y) directly with LATINO would require unfolding a larger number of iterations compared to
sampling p(x0|y, xt), hence offsetting the computational benefits of targeting p(x0|y) directly. This is due to
the fact that the additional information provided by xt = xt leads to a posterior distribution that is much
better conditioned and thus easier to sample by Langevin sampling. By using multi-step sampling, we obtain
excellent sample quality with a reduced number of NFEs (e.g., we use K = 3 and N = 3 steps).

Algorithm 1 Conditional Diffusion Sampling
Require: Observation y, Time-grid 0 = t0 < t1 < · · · < tN = T ,

1: Sample xtN ∼ N (0, I) ▷ Initialize reversed diffusion
2: for n = N, . . . , 1 do
3: Set x̂0 ← x̃∆θ

tn,K
(xtn , y) using Lϑ (see Figure 2) ▷ Unfolded sample targeting p0(x0 |xtn , y)

4: Sample xtn−1 ∼ ptn−1(xtn−1 | x̂0, xtn) ▷ Reverse DDIM step
5: end for
6: return xt0

3.2 Training objective

To train our network to sample the conditional random variable (x0|y,xt), we take inspiration from Kim
et al. (2024); Bendel et al. (2023) and combine reconstruction and adversarial losses, which has been shown to
greatly improve for sample generation quality as opposed to using a reconstruction loss alone. More precisely,
we adapt the objective of Kim et al. (2024) and use the following objective based on an additional adversarial
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loss with jointly-optimized weights ϕ

arg min
∆θ,ψ

LG(∆θ, ψ) ≜ LAdv(∆θ, ψ, ϕ) + ωℓ2Lℓ2(∆θ, ψ) + ωPSLPS(∆θ, ψ) , (8)

arg max
ϕ

LD(ϕ) ≜ LAdv(∆θ, ϑ, ϕ) + ωGSLGS(ϕ) , (9)

where ωℓ2 , ωPS, ωGS > 0 are regularization hyper-parameters and the remaining loss terms are defined as
follows, where we let t be uniformly distributed on [1, T ]. First, Lℓ2(∆θ, ϑ) is the ℓ2

2-regression loss commonly
encountered in DSM on the pixel space,

Lℓ2(∆θ, ψ) = Et,xt,y,x0

[
||x0 − L∆θ,ψ(xt,y)||22

]
. (10)

Second, LPS(∆θ, ϑ) promotes perceptual quality via the Learned Perceptual Image Patch Similarity (LPIPS)
loss (Zhang et al., 2018)

LPS(∆θ, ψ) = Et,xt,y,x0

[
LPIPS(x0, L∆θ,ψ(xt,y))

]
. (11)

Third, the adversarial loss, LAdv, is based on Goodfellow et al. (2014)

LAdv(∆θ, ϑ, ϕ) = Ex0,y

[
log
(
ς(Dϕ(x0; y))

)]
+ Et,xt,y

[
log
(
1− ς(Dϕ(L∆θ,ψ(xt,y),y))

)]
(12)

where ς : R → R is the sigmoid function. The discrimination Dϕ is a CNN adapted from Radford et al.
(2016); Bendel et al. (2023), which we train to maximize the discriminator loss LD(ϕ). To regularize the
discriminator, we follow Mescheder et al. (2018) and introduce a gradient-sparsity regularizer designed to
promote Lipschitz regularity of Dϕ, defined by

LGS(ϕ) = Et,xt,y,x0,u

[∥∥∥∇xDϕ

(
ux + (1− u)L∆θ,ψ(xt,y),y

)∥∥∥2
]
, (13)

where u ∼ U(0, 1) is independent of x0 and y. Note that our presentation of the training objective assumes
RAM initialization, so the trainable parameters of Lϑ are ϑ = (∆θ, ψ). If ψ is frozen or if the first LATINO
module is initialized directly with A†y and xt, then we use the same training objective reduced to ϑ = ∆θ.

As mentioned previously, using Equation 8 is closely related to training L∆θ,ψ as a consistency trajectory
model (Kim et al., 2024) to sample from p(x|y, xt). Similarly to CMs, our distilled model is trained for
sampling, not for denoising. However, CMs are deterministic whereas L∆θ,ψ is a stochastic map, and we do
not seek to enforce consistency of paths as a result. Also, we use a discriminator Dϕ that conditions on y only,
whereas training a CM for (x0|y,xt) by following Kim et al. (2024) would require using a discriminator that
conditions on both y and xt. This would also require a larger and more complex discriminator architecture
with a time embedding, which we do not consider here, as we find that a lighter discriminator that conditions
on y only suffices for correctly training the proposed UD2M sampler.

Before concluding this section, we present two alternative interpretations of the proposed deep unfolded
architecture. Both are based on deep unfolding of discretizations of the same overdamped Langevin process
that underlies LATINO, specifically the PnP-ULA scheme introduced by Laumont et al. (2022). In the
first interpretation, our architecture is viewed as a deep unfolding of PnP-ULA using a pre-trained SNORE
denoiser (Renaud et al., 2024) adapted via LoRA. In the second, it is interpreted as a deep unfolding of the
DM-within-ULA scheme proposed by Mbakam et al. (2024). In both cases, the likelihood is incorporated
through its proximal operator (Durmus et al., 2018), rather than through the more conventional gradient-based
approach. Among these interpretations, we find the deep unfolding of LATINO to be the most meaningful.
LATINO is itself a distilled few-step scheme that incorporates the likelihood through its proximal operator
and generalizes naturally to image-text latent DMs such as Stable Diffusion (Yin et al., 2024), which are
seeing increasing adoption. Developing UD2M samplers by finetuning latent DMs is a natural extension of
this work and main direction for future research.

8
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4 Experiments

4.1 Experimental setup.

Preliminaries. To demonstrate the effectiveness of the proposed method, we now report a series numerical
experiments and comparisons with competing approaches from the state of the art. In our experiments, we
consider three forms of image deblurring (Gaussian, uniform and motion deblurring), two forms of image
inpainting (box and uniformly randomly missing pixels), image super-resolution (SR) by a factor 4, as well
as the removal of artifacts from aggressive JPEG compression (as an example of a non-linear restoration
problem). Moreover, we assess the performance of our method qualitatively and quantitatively by computing
the following quantitative metrics: the Peak Signal-to-Noise Ratio (PSNR) as distortion metric (Wang et al.,
2004), the Learned Perceptual Image Patch Similarity (LPIPS) for perceptual quality (Zhang et al., 2018),
and the Frechet Inception Distance (FID) with inception-v3 embeddings for sampling accuracy (Heusel et al.,
2017).

Datasets and experimental conditions. We use the following two public datasets in our experiments -
ImageNet (Russakovsky et al., 2015) and LSUN Bedroom (Yu et al., 2015) - which have been used extensively
in prior work related to image restoration with DMs and CMs in particular. For both datasets, we crop images
to a size of 256× 256 pixels and normalize their pixel amplitude to the range of [0, 1]. For our experiments
with the ImageNet dataset, we used one million images from the training set for model training, whereas for
the LSUN Bedroom dataset, we used 1.2 million images for training. For computing performance metrics, we
use a test set of 1500 images from ImageNet and a test set of 300 images from LSUN bedroom. Regarding
the parameters of each experiment, for ImageNet restoration tasks we follow Chung et al. (2023), with the
exception of motion deblurring where we follow Zhu et al. (2023). For LSUN bedroom restoration tasks, for
random inpainting, Gaussian deblurring and SR (×4), we use the setup as Garber & Tirer (2025) with a
noise-level σ = 0.025; we follow Zhao et al. (2025) for box inpainting. For more details about the considered
experiments, please see Appendix C.3.

Comparisons with the state of the art We compare our proposed method with an extensive selection
of zero-shot and fine-tuned diffusion models from the state of the art. For the experiments with ImageNet,
we compare with the diffusion bridges I2SB (Liu et al., 2023a) and CDDB (Chung et al., 2023), which are
trained specifically for posterior sampling for ImageNet and for particular tasks. In addition, we compare
with the two zero-shot methods DiffPIR (Zhu et al., 2023) and DDRM (Kawar et al., 2022), which rely on the
same pretrained DM for ImageNet as our method, but differ in how they incorporate the data fidelity term.

For the experiments with LSUN bedroom, we use the same methods mentioned previously and two additional
ones that rely on a CM trained and distilled for this dataset: the zero-shot method CM4IR (Garber &
Tirer, 2025), and CoSIGN (Zhao et al., 2025), a learning-based method which upgrades an unconditional CM
into a conditional CM for posterior sampling by learning an operator-specific ControlNet guidance that is
attached onto the CM (Zhao et al., 2025). Our experiments show that CoSIGN’s ControlNet guidance is
more computationally efficient than our unfolding approach, but lacks flexibility and leads to less accurate
results as it does not use an explicit likelihood function.

Implementation of the proposed method We implement our method as follows. For our deep unfolded
architecture, we use K = 3 LATINO modules with a pre-trained diffusion model denoiser3; we use the
U-NET architecture of Ho et al. (2020) with time-embeddings and attention layers trained on a linear noise
schedule β1 = 10−4 up to β1000 = 0.02. With regards to training, we use the training objective detailed in
Section 3.2 and LoRA adaptation with rank 5, while keeping original weights θ frozen. Moreover, for each
experiment, with the exception of JPEG artifact removal, we implement and train two versions of our model.
In one version, the first LATINO module is initialized directly with a weighted average of the inputs A†y
and xt. In the other, the first LATINO module is initialized by a RAM module (Terris et al., 2025) with
stacked operators (I,A) that take xt and y as input, and which we train end-to-end together with he LoRA

3For ImageNet, we use the un-(class)conditional model https://github.com/openai/guided-diffusion/ and for LSUN
bedroom the model https://github.com/pesser/pytorch_diffusion/
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adaptation ∆θ by using the objective of Section 3.2. We do not consider RAM initialization for the JPEG
artifact removal task because RAM is not suitable for non-linear image restoration problems. For more details
about the model’s architecture, training parameters, GPU and time consumption, please see Appendix C.

Extension to non-linear inverse problems Similarly to Spagnoletti et al. (2025), to apply our method
to JPEG artifact restoration and other non-linear image restoration problems we solve proxδgy

(s) =
arg minx0∈Rd gy(x0) + 1

2δ∥x0 − s∥2
2/2 with gy,xt

= − log p(y, xt|x0) approximately by using an optimizer
-we use Adam (Kingma & Ba, 2014) with s as warm-starting. We do not use RAM initialization.

4.2 Results

Table 1 and Table 2 below summarize the performance metrics for our proposed method, with (w/) and
without (wo) RAM initialization, for the considered ImageNet and LSUN Bedroom experiments respectively.
For comparison, we also report the performance metrics for the alternative approaches from the state of the
art. The results for the ImageNet motion deblurring task are reported separately in Table 7, as there are
no publicly available finetuned models for posterior sampling for that task for comparison. As mentioned
previously, we do not use RAM initialization for JPEG artifact removal because RAM does not support
non-linear problems, and we do not use RAM initialization for box inpainting because it is a lightweight
model with a receptive field that is not sufficiently large to meaningfully inpaint large regions.

We observe from Table 1 and Table 2 that the proposed approach performs very strongly relative to the
state of the art across all tasks and all metrics, especially when RAM initialization is used. Notably, our
approach very clearly outperforms the alternative methods from the state-of-the-art in terms of FID and
LPIPS scores, indicating excellent perceptual and sampling quality. For example, for the SR (×4) task, our
method with RAM initialization achieves a FID score of 11.9 for ImageNet and 19.48 for LSUN Bedrooms,
largely outperforming the second best methods (CDDB and CoSIGN respectively) which achieve scores of
19.88 and 40.48. In addition, the proposed approach is highly computationally efficient, as it only requires in
the order of 10 NFEs per posterior sample, a key computational advantage relative to non-distilled methods.
This illustrates the benefit of training with the CM objective of Equation 8 that induces distillation. Having
said that, out method is not as efficient as CoSIGN, which does not have the cost of evaluating K = 3
unfolded LATINO modules per step of the multi-step scheme.

Table 1: Quantitative results for the deblurring and super-resolution tasks. PSNR [dB] (↑), LPIPS (↓) and
FID (↓) results on ImageNet dataset with noise level 0.01. Comparisons with I2SB and CDDB are taken
from Chung et al. (2023).

Deblurring SR JPEG
Gaussian Uniform ×4 QF=10

Methods NFEs PSNR LPIPS FID PSNR LPIPS FID PSNR LPIPS FID PSNR LPIPS FID

Ours (wo RAM) 9 38.77 0.02 4.61 35.57 0.02 11.14 24.42 0.15 20.69 27.52 0.18 35.16
Ours (w/ RAM) 12 35.97 0.01 3.30 36.96 0.01 2.69 26.70 0.08 11.9 - - -
CDDB 1000 37.02 0.06 5.01 31.26 0.19 23.15 26.41 0.2 19.88 26.34 0.26 19.48
I2SB 1000 36.01 0.07 5.8 30.75 0.2 23.01 25.22 0.26 24.13 26.12 0.27 20.35
DiffPIR 100 28.10 0.13 21.53 31.44 0.10 20.20 20.39 0.36 70.45 - - -
DDRM 20 36.73 0.07 4.34 29.21 0.21 19.97 26.05 0.27 46.49 26.33 0.33 47.02

For illustration and qualitative evaluation, Figure 3, Figure 4, and Figure 5 depict examples of posterior
samples for the ImageNet SR (×4), Gaussian deblurring and JPEG restoration tasks, respectively. We
observe that our proposed approach (w/ RAM initialization) delivers sharp posterior samples that recover
a significant amount of the fine detail in the ground truth images, and without noticeable noise or color
bias. With regards to the LSUN experiments, Figure 6 and Figure 7 present results for the SR (×4) and
box inpainting tasks, respectively. Again, we observe that our proposed approach (w/ RAM initialization)
delivers sharp posterior samples with fine detail and no noticeable noise or color bias, in agreement with the
strong performance metrics reported in Table 2.
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Table 2: Deblurring, inpainting and super-resolution. PSNR [dB] (↑), LPIPS (↓) and FID (↓) results on
LSUN bedroom dataset with noise level 0.025. Comparisons with I2SB and, CDDB and CoSIGN on the Box
inpainting and SR (×4) problems are taken from Zhao et al. (2025). The remaining comparisons are obtained
from Garber & Tirer (2025).

Inpainting Deblurring SR
Box Random Gaussian ×4

Methods NFEs PSNR LPIPS FID PSNR LPIPS FID PSNR LPIPS FID PSNR LPIPS FID

Ours (wo RAM) 9a 22.22 0.11 8.45 22.32 0.19 43.3 26.73 0.26 88.97 24.51 0.19 32.71
Ours (w/ RAM) 12 - - - 27.75 0.06 8.61 29.67 0.08 13.23 25.48 0.12 19.48
CoSIGN 2 22.61 0.14 38.64 23.22 0.37 - 19.74 0.342 - 26.13 0.22 40.84
CDDB 1000 23.74 0.13 45.20 - - - - - - 27.31 0.24 54.20
I2SB 1000 23.21 0.28 55.10 - - - - - - 27.23 0.24 53.40
DiffPIR 100 13.42 0.34 66.79 23.8 0.36 97.69 27.48 0.32 64.81 23.83 0.45 101.92
DDRM 20 18.90 0.22 51.50 19.16 0.55 - 28.94 0.22 - 25.09 0.37 -
CM4IR 4 21.98 0.24 42.83 25.28 0.33 159.43 29.00 0.21 53.19 26.14 0.30 124.22

aWe have implemented our method with K = 3 and N = 3 (so 9 NFEs) for all experiments, except for box inpainting where
we have used N = 5 instead of N = 3 (so 20 NFEs), as this is a more challenging task.

DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)

DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)

Figure 3: Comparison of posterior samples for the task SR (×4) with noise level σ = 0.01 on ImageNet 256.

DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)

DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM)

Figure 4: Comparison of posterior samples for the task Gaussian deblurring with noise level σ = 0.01 on
ImageNet 256.
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DegradedGround Truth CDDB Ours (wo RAM)
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Figure 5: Comparison of posterior samples for the task JPEG artifact removal (QF=10) with noise level
σ = 0.01 on ImageNet 256.

DegradedGround Truth CM4IR CoSIGN Ours (wo RAM) Ours (w/ RAM)

DegradedGround Truth CM4IR CoSIGN Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth CM4IR CoSIGN Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth CM4IR CoSIGN Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth CM4IR CoSIGN Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth CM4IR CoSIGN Ours (wo RAM) Ours (w/ RAM)DegradedGround Truth CM4IR CoSIGN Ours (wo RAM) Ours (w/ RAM)

Figure 6: Comparison of posterior samples for the task SR (×4) with noise level σ = 0.025 on LSUN Bedroom.

4.3 Ablation Studies

We now proceed to examine and quantify the role of different key elements of our proposed method. This is
achieved by appropriately modifying or deactivating these elements and quantifying changes in performance.

4.3.1 Choice of the number of sampling steps N

First we assess the effect of modifying the number of sampling steps N in the multi-step scheme. Note that
N is specified during test time, so modifying it does not requires retraining the model. Table 3(a) shows
the performance metrics for N ∈ {1, 3, 9, 27} for the LSUN SR (×4) model with K = 3 LATINO modules
and RAM initialization (recall that in our previous SR (×4) experiments we have used K = 3 and N = 3).
We observe in Table 3(a) that the performance metrics do not change significantly with variations of N ,
indicating that the proposed approach is robust to different choices of N . Low values of N lead to some small
amount of estimation bias towards the mean, and hence to a small increase in PNSR at the expense of LPIPS
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DegradedGround Truth DDRM CDDB CoSIGN Ours (wo RAM)
Figure 7: Comparison of posterior samples for the task box inpainting with noise level σ = 0.025 on LSUN
Bedroom.

Table 3: Reconstruction metrics for varying number of conditional diffusion steps (N) and unfolded iterations
(K).

N PSNR ↑ LPIPS ↓ FID ↓ NFEs ↓
1 25.93 0.11 14.07 4
3 25.88 0.10 13.15 12
9 25.54 0.10 15.10 36
27 25.02 0.11 17.47 108

(a) K=3

N PSNR ↑ LPIPS ↓ FID ↓ NFEs ↓
1 25.60 0.11 17.95 2
3 25.61 0.11 16.59 6
9 24.72 0.12 20.42 18
27 22.82 0.12 21.93 54

(b) K=1

and FID performance, whereas larger values of N lead to a mild decrease in overall performance due to
accumulation of errors (see Kim et al. (2023) for details) as well as to an increase in computational cost from
additional NFEs. As mentioned previously, in our experiments we used N = 3, which we found to reliably
provide good performance with a low computational cost across all the considered tasks (with the exception
of box inpainting, when we use N = 5 as the task is challenging and we don’t use RAM initialization).

4.3.2 Effect of unfolding

We now assess the benefit of unfolding multiple LATINO modules per sampling step, as opposed to using a
single LATINO module, with the same or possibly a larger number of sampling steps. Table 3(b) reports
the performance metrics when retraining the network with a single LATINO module (K = 1) and RAM
initialization. By comparing Table 3(b) with Table 3(a), we observe a noticeable deterioration in performance
sampling quality as measured by FID, even if the reduction the number of LATINO modules per step is
compensated by additional sampling steps. We conclude that there is a clear benefit in distilling conditional
DM architectures from deep unfolding, which is consistent with the literature on deep unfolding of optimization
algorithms (Monga et al., 2021). It is also worth mentioning that modifying K without retraining the DM
leads to severe visual artifacts (results not reported here), so it is not possible to modify K during inference.

4.3.3 The choice of the rank of the LoRA adaptation ∆θ

We now assess the effect of the LoRA fine-tuning rank parameter. As explained previously, rather than
fine-tuning the full model, we use a LoRA approach whereby we train a low-rank correction ∆θ that is
added to the original model weights θ, which remain frozen. The number of trainable parameters in ∆θ is
directly related to the choice of the rank of ∆θ. Setting the rank too low deteriorates performance because
it constrains the model too much, whereas setting the rank too high increases the computational cost of
fine-tuning the model and can lead to some overfitting. In order to illustrate this, we train again our model
for ImageNet SR (×4) by setting the rank to 2 and to 20 (in our previous results we have used rank 5).
The number of trainable parameters in ∆θ is 165888 when the rank of ∆θ is 2, 414720 when the rank is 5,
and 1658880 when it is 20; this represents 0.03%, 0.08% and 0.3% of the total number of parameters in θ,
respectively. The results for this study are summarized in Table 4. We observe that the model’s performance,
as measured by PSNR and LPIPS, is robust to large variations in the rank of ∆θ. However, the rank of ∆θ
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σ = 0.125 σ = 0.025 σ = 0.05︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Ground Truth Observation Sample Observation Sample Observation Sample

Figure 8: Comparison of posterior samples for the task SR (×4) on LSUN Bedroom, for three levels of noise.

has a noticeable effect on FID performance, which drops significantly if it is set too low, indicating a clear
deterioration in sampling quality (e.g., in Table 4 the FID for rank 2 is almost twice that of rank 5).

Table 4: Ablation study evaluating the impact of varying LoRA ranks on the ImageNet dataset for the
super-resolution task.

rank(∆θ) 2 5 20
PSNR 26.05 26.70 26.32
LPIPS 0.11 0.08 0.09
FID 19.75 11.9 13.03
|∆θ| 165888 414720 1658880

4.3.4 Generalization w.r.t. to the noise variance σ2

Models obtained by deep unfolding often generalize better to different levels of measurement noise, by
comparison to other end-to-end training strategies that are not aware of the value of the noise variance σ2

during test time. To demonstrate this capability, we follow (Garber & Tirer, 2025) and evaluate our LSUN
bedroom SR (×4) model trained for σ = 0.025 (with N = 3 and K = 3) in a more challenging situation
(σ = 0.05). The results are summarized in Table 5. For comparison, we also report the results obtained with
the CoSIGN and CM4IR models applied to the same problem (results from (Garber & Tirer, 2025, Table
2)), where CoSIGN is also finetuned for σ = 0.025 and where CM4IR, as a zero-shot method, is provided
the correct value of σ = 0.05 during test time. We observe that our proposed method is able to use the
value of σ = 0.05 effectively during test time, even if training was performed using σ = 0.025, similarly to
zero-shot methods like CM4IR. Conversely, CoSIGN struggles to generalize to the higher noise level and
exhibits poor PSNR and LPIPS metrics as a result. Again, by comparison to CM4IR, we achieve significantly
better perceptual quality as reflected by a lower LPIPS metric. For completeness, Figure 8 depicts examples
of observations and samples for our method when σ = 0.0125, σ = 0.025 (in-distribution), and σ = 0.05.

Table 5: Reconstruction statistics for our model applied to the SR (×4) task on LSUN bedroom, with varying
noise level in the observation space.

Ours CoSIGN CM4IR
Noise level σ PSNR LPIPS PSNR LPIPS PSNR LPIPS
0.025 (in-distribution) 25.12 0.178 26.10 0.205 26.14 0.295
0.05 (out-of-distribution) 24.11 0.214 20.35 0.509 25.60 0.320
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Table 6: Reconstruction metrics computed on the LSUN Bedroom validation set using out-of-distribution
forward operators for the model trained on LSUN Bedroom SR (×4).

CoSIGN Ours
Task / Operator PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
SR (×8) - out-of-distribution 20.11 0.55 20.40 0.32
SR (×4) - in-distribution 26.13 0.22 25.40 0.12

4.3.5 Generalization w.r.t. to more challenging degradations

We now explore the capacity of our proposed approach to deal with more challenging forward models not
seen during training. For this exploratory analysis, we apply our LSUN Bedroom SR (×4) model to a more
challenging SR ×8 task (we keep σ = 0.025, as in training). Again, we report comparisons with the LSUN
Bedroom SR ×4 CoSIGN model. Although both models are trained for SR (×4), our method receives the
correct SR (×8) forward operator during inference. Conversely, CoSIGN does not have access to the SR (×8)
forward operator, as it relies on a pre-trained ControlNet guidance. Through this exploratory experiment,
we seek to show that models obtained by deep unfolding are more robust to challenging degradations (or
forward operators) not encountered during training, by comparison to other end-to-end training strategies.
A summary of these results is presented in Table 6 and an example in Figure 9. We observe that, while
both methods struggle with this difficult restoration task, our method clearly outperforms CoSIGN which
is unable to use the forward operator A during test time and exhibits strong reconstruction artifacts as a
result. For completeness, Figure 9 also presents the result obtained with the CM4IR zero-shot method, which
also outperforms CoSIGN by using the forward operator A, but suffers from some smoothing because of the
approximations involved in zero-shot inference.

Ground Truth Degraded CoSIGN CM4IR Ours (w/ RAM)

Ground Truth Degraded CoSIGN CM4IR Ours (w/ RAM)Ground Truth Degraded CoSIGN CM4IR Ours (w/ RAM)Ground Truth Degraded CoSIGN CM4IR Ours (w/ RAM)Ground Truth Degraded CoSIGN CM4IR Ours (w/ RAM)Ground Truth Degraded CoSIGN CM4IR Ours (w/ RAM)

Figure 9: Comparison of posterior samples for the task SR (×8), with noise level σ = 0.025, on LSUN
Bedroom with models trained for LSUN Bedroom SR (×4), to illustrate the models’ capacity to generalize to
more challenging tasks.

4.3.6 Task specific versus universal image restoration models

In our previous experiments, we considered that A is unique and known a priori, or it is not unique but
belongs to a known class of operators specific for the considered task (e.g., motion blurs). In principle,
one could also consider training a single common model for a much wider range of tasks. In particular,
it would be interesting to train a “universal" Bayesian image restoration model, as considered in Terris
et al. (2025) for MMSE estimation. Unfortunately, developing such general models requires using a much
more sophisticated architecture than the one we consider here. For example, Terris et al. (2025) combines
unfolding with several additional key elements not considered here (e.g., a multiscale decomposition of the
operators, Krylov updates). Without these substantial improvements, our proposed approach suffers from
a drop in performance when we try to generalize too widely. To illustrate this phenomenon, we trained a
single posterior sampling model for the ImageNet dataset, simultaneously on Gaussian, uniform and motion
deblurring, random inpainting and super-resolution tasks. The corresponding results are summarized in
Table 7, where we also report the results obtained with our task specific models for comparison. We observe
that the task specific models outperform the model trained jointly on all the considered tasks, and in all the
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considered performance metrics (the difference is most noticeable for FID performance). The extension of
the UD2Ms framework to support the development of general purpose posterior samplers that can tackle
a wide range of image restoration tasks and a wide range of datasets, without retraining or compromising
performance, is a main perspective for future work.

Table 7: Qualitative results of generalized models evaluated on the ImageNet dataset. The reported metrics
include the FID score, average PSNR, and average LPIPS.

Gaussian Deb Motion Deb Uniform Deb Inp 70% SR (×4)
Spec Univ DiffPIR Spec Univ Spec Univ DiffPIR Spec Univ Spec Univ DiffPIR

PSNR 35.97 34.80 28.1 33.40 31.10 36.96 31.35 31.44 31.15 30.16 26.70 25.74 20.39
LPIPS 0.01 0.03 0.13 0.04 0.04 0.01 0.08 0.1 0.03 0.06 0.08 0.12 0.36
FID 3.30 4.94 21.53 4.08 6.56 2.69 19.6 20.2 7.87 13.21 11.9 21.34 70.45

5 Conclusion

5.1 Concluding remarks and perspectives for future work

Diffusion models are powerful image priors for Bayesian computational imaging (Daras et al., 2024). The
literature offers two main strategies to construct Bayesian imaging techniques based on diffusion models: Plug
& Play methods that are zero-shot and hence highly flexible but reliant on approximations, and y-conditional
diffusion models that achieve superior accuracy and speed through supervised specialization for a particular
task. The framework introduced in this paper, unfolded and distilled diffusion models (UD2Ms), leverages
deep unfolding and distillation in order to upgrade a diffusion model representing the image prior into
a few-step consistency model for posterior sampling. UD2M samplers offer excellent accuracy and high
computational efficiency, while retaining the flexibility required to generalize to variations in the forward
operator and noise distribution during inference. A main novelty of UD2M is to unfold a Markov chain Monte
Carlo algorithm, namely the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025), the first
example of deep unfolding of a Monte Carlo scheme.

With regards to limitations of our proposed framework and perspectives for future work. We are cognizant
that diffusion models can reproduce biases stemming from unbalanced or biased training data and distribution
shift, diminishing the reliability of our framework. Future work should develop appropriate guardrails so that
DM-based posterior samplers can be deployed safely and reliably. Also, we hope and anticipate that these
issues will be partially mitigated by progress and democratization of deep generative modeling technology
and the advancement of self-supervised deep generative models. Moreover, while our samplers are more
computationally efficient than some alternatives, they still rely on very large models and therefore consume
a significant amount of energy and compute resources. The development of more frugal architectures and
sampling strategies is an important perspective for future work. Furthermore, as mentioned previously, it
would be interesting to study architectures and training strategies to develop UD2M samplers that can be
applied to a wide range of image restoration tasks and datasets without the need for additional training, or
in a few-shot manner, as is the case of the foundational image reconstruction model of Terris et al. (2025). In
addition, as mentioned previously, many state-of-the-art DMs leverage the latent space representation of
an autoencoder. For example, Stable Diffusion models (Yin et al., 2024) that allow semantic conditioning
through text prompting. Extending UD2M samplers to these DMs is a promising direction for future work.

Lastly, in parallel with this work, the concurrent works Wang et al. (2025); Elata et al. (2025) also seek to
bridge supervised and zero-shot strategies for Bayesian imaging with diffusion models. Wang et al. (2025)
relies on unfolding a conventional proximal gradient optimization scheme and uses an ℓ2 loss in order to
obtain a conditional diffusion model, without distillation. Elata et al. (2025) proposes a novel approach to
incorporate the forward operator A and the measurement y directly within Transformer or UNet architectures
commonly used for diffusion models. Contrasting and combining UD2M with these alternative strategies is
an important perspective for future work.
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5.1.1 Broader impact statement

Computational imaging research generally poses some ethical dilemmas, especially when it involves significant
methodological innovation. Although the innovations studied in the project do not raise any direct concerns,
we are aware that the proposed Bayesian imaging framework could be adapted and transferred towards
military applications by a hostile actor and for violating citizen privacy, for example. In addition, our
framework relies on deep generative modeling technology that currently suffers from biases, which could
lead to leading to unfair or discriminatory outcomes. We hope that these critical issues will be resolved by
progress and democratization of generative modeling technology.

Moreover, the innovations presented in this paper fall within the “limited risk” level of the EU AI Act. We
have followed the Act’s recommendations for this level; i.e., a focus on the full transparency of the training
data and the methods used. This also links in with our open research philosophy - we will release publicly
available open-source implementations for research codes, with clear documentation and demonstrations. We
see this as an essential requirement for conducting research in a democratic knowledge society.

References
Matthew Bendel, Rizwan Ahmad, and Philip Schniter. A regularized conditional GAN for posterior sampling

in image recovery problems. Advances in neural information processing systems, 36:68673–68684, 2023.

Antonin Chambolle and Thomas Pock. An introduction to continuous optimization for imaging. Acta
Numerica, 25:161–319, 2016.

Mostafa Cherif, Tobías I Liaudat, Jonathan Kern, Christophe Kervazo, and Jérôme Bobin. Uncertainty
quantification for fast reconstruction methods using augmented equivariant bootstrap: Application to radio
interferometry. arXiv preprint arXiv:2410.23178, 2024.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. In The Eleventh International Conference on
Learning Representations, 2022.

Hyungjin Chung, Jeongsol Kim, and Jong Chul Ye. Direct diffusion bridge using data consistency for
inverse problems. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=497CevPdOg.

Florentin Coeurdoux, Nicolas Dobigeon, and Pierre Chainais. Normalizing flow sampling with Langevin dy-
namics in the latent space. Machine Learning, 113(11):8301–8326, 2024a. doi: 10.1007/s10994-024-06623-x.
URL https://doi.org/10.1007/s10994-024-06623-x.

Florentin Coeurdoux, Nicolas Dobigeon, and Pierre Chainais. Plug-and-play split Gibbs sampler: Embedding
deep generative priors in Bayesian inference. IEEE Transactions on Image Processing, 2024b.

Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsufuji, Jong Chul Ye, Peyman Milanfar, Alexan-
dros G. Dimakis, and Mauricio Delbracio. A survey on diffusion models for inverse problems, 2024. URL
https://arxiv.org/abs/2410.00083.

Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising
diffusion for image restoration. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=VmyFF5lL3F. Featured Certification, Outstanding Certification.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Advances in
neural information processing systems, 34:8780–8794, 2021.

Alain Durmus, Eric Moulines, and Marcelo Pereyra. Efficient Bayesian computation by proximal Markov
chain Monte Carlo: When Langevin meets Moreau. SIAM Journal on Imaging Sciences, 11(1):473–506,
2018.

17

https://openreview.net/forum?id=497CevPdOg
https://doi.org/10.1007/s10994-024-06623-x
https://arxiv.org/abs/2410.00083
https://openreview.net/forum?id=VmyFF5lL3F


Under review as submission to TMLR

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Association, 106
(496):1602–1614, 2011.

Noam Elata, Hyungjin Chung, Jong Chul Ye, Tomer Michaeli, and Michael Elad. Invfussion: Bridging
supervised and zero-shot diffusion for inverse problems, 2025. URL https://arxiv.org/abs/2504.01689.

Tomer Garber and Tom Tirer. Zero-shot image restoration using few-step guidance of consistency models
(and beyond). arXiv preprint arXiv:2412.20596, 2025.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Information processing
systems, 27, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs trained
by a two time-scale update rule converge to a local Nash equilibrium. Advances in neural information
processing systems, 10, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information processing systems, 33:6840–6851, 2020.

Matthew Holden, Marcelo Pereyra, and Konstantinos C. Zygalakis. Bayesian imaging with data-driven
priors encoded by neural networks. SIAM Journal on Imaging Sciences, 15(2):892–924, 2022. doi:
10.1137/21M1406313. URL https://doi.org/10.1137/21M1406313.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Jari Kaipio and E Somersalo. Statistical and computational inverse problems. Applied Mathematical Sciences.
Springer, New York, NY, October 2010.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models.
Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

Charlesquin Kemajou Mbakam, Marcelo Pereyra, and Jean-Francois Giovannelli. A stochastic optimisation
unadjusted Langevin method for empirical Bayesian estimation in semi-blind image deblurring problems.
SIAM Journal on Imaging Sciences. to appear.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong
He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode
trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong
He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow
ODE trajectory of diffusion. In 12th International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=ymjI8feDTD.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, and Marcelo Pereyra.
Bayesian imaging using Plug & Play priors: When Langevin meets Tweedie. SIAM Journal on Imaging
Sciences, 15(2):701–737, 2022.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for
generative modeling. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=PqvMRDCJT9t.

G.H. Liu, A. Vahdat, D.A. Huang, E. Theodorou, W. Nie, and A. Anandkumar. I2SB: Image-to-image
Schrödinger bridge. In 40th International Conference on Machine Learning (ICML), 2023a.

18

https://arxiv.org/abs/2504.01689
https://doi.org/10.1137/21M1406313
https://openreview.net/forum?id=ymjI8feDTD
https://openreview.net/forum?id=PqvMRDCJT9t


Under review as submission to TMLR

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations, 2023b.
URL https://openreview.net/forum?id=XVjTT1nw5z.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved sampling
speed, 2021.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo Huang,
Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module, 2023. URL https:
//arxiv.org/abs/2311.05556.

Pierluigi Maponi. The solution of linear systems by using the Sherman–Morrison formula. Linear algebra and
its applications, 420(2-3):276–294, 2007.

S. Martin, A. Gagneux, P. Hagemann, and G. Steidl. PnP-Flow: Plug-and-play image restoration with flow
matching. In International Conference for Learning Representations, 2025 (to appear).

Charlesquin Kemajou Mbakam, Jean-Francois Giovannelli, and Marcelo Pereyra. Empirical Bayesian
image restoration by Langevin sampling with a denoising diffusion implicit prior, 2024. URL https:
//arxiv.org/abs/2409.04384.

S Melidonis, M Holden, Y Altmann, M Pereyra, and K C Zygalakis. Empirical Bayesian imaging with
large-scale push-forward generative priors. IEEE Signal Process. Lett., 31:631–635, 2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 14297–14306, 2023. doi: 10.1109/CVPR52729.2023.01374.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for GANs do actually
converge? In International conference on machine learning, pp. 3481–3490. PMLR, 2018.

Vishal Monga, Yuelong Li, and Yonina C. Eldar. Algorithm unrolling: Interpretable, efficient deep learning
for signal and image processing. IEEE Signal Processing Magazine, 38:18–44, 3 2021. ISSN 15580792. doi:
10.1109/MSP.2020.3016905.

Badr Moufad, Yazid Janati, Lisa Bedin, Alain Oliviero Durmus, randal douc, Eric Moulines, and Jimmy
Olsson. Variational diffusion posterior sampling with midpoint guidance. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=6EUtjXAvmj.

Subhadip Mukherjee, Andreas Hauptmann, Ozan Öktem, Marcelo Pereyra, and Carola-Bibiane Schönlieb.
Learned reconstruction methods with convergence guarantees: A survey of concepts and applications. IEEE
Signal Processing Magazine, 40(1):164–182, 2023. doi: 10.1109/MSP.2022.3207451.

Gregory Ongie, Ajil Jalal, Christopher A. Metzler, Richard G. Baraniuk, Alexandros G. Dimakis, and Rebecca
Willett. Deep learning techniques for inverse problems in imaging. IEEE Journal on Selected Areas in
Information Theory, 1(1):39–56, 2020. doi: 10.1109/JSAIT.2020.2991563.

Marcelo Pereyra. Proximal Markov Chain Monte Carlo algorithms. Statistics and Computing, 26(4):745–760,
2016.

Marcelo Pereyra, Luis A. Vargas-Mieles, and Konstantinos C. Zygalakis. The split Gibbs sampler revisited:
Improvements to its algorithmic structure and augmented target distribution. SIAM Journal on Imaging
Sciences, 16(4):2040–2071, 2023. doi: 10.1137/22M1506122. URL https://doi.org/10.1137/22M1506122.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. In Proceedings of the International Conference on Learning Representations,
2016.

19

https://openreview.net/forum?id=XVjTT1nw5z
https://arxiv.org/abs/2311.05556
https://arxiv.org/abs/2311.05556
https://arxiv.org/abs/2409.04384
https://arxiv.org/abs/2409.04384
https://openreview.net/forum?id=6EUtjXAvmj
https://doi.org/10.1137/22M1506122


Under review as submission to TMLR

Marien Renaud, Jean Prost, Arthur Leclaire, and Nicolas Papadakis. Plug-and-play image restoration
with stochastic denoising regularization. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Christian P. Robert. The Bayesian choice: From decision-theoretic foundations to computational implemen-
tation, volume Second edition. Springer, 2007.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In The Tenth
International Conference on Learning Representations, 2022.

C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. Learning to deblur. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 38(7):1439–1451, July 2016. doi: 10.1109/TPAMI.2015.2481418.

Michael Soloveitchik, Tzvi Diskin, Efrat Morin, and Ami Wiesel. Conditional Frechet inception distance.
arXiv preprint arXiv:2103.11521, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=St1giarCHLP.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion models
for inverse problems. In International Conference on Learning Representations, 2023a. URL https:
//api.semanticscholar.org/CorpusID:259298715.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In Neural
Information Processing Systems, 2019. URL https://api.semanticscholar.org/CorpusID:196470871.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. Advances in
neural information processing systems, 33:12438–12448, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 32211–32252. PMLR, 23–29 Jul 2023c.

A. Spagnoletti, J. Prost, A. Amansa, N. Papadakis, and M. Pereyra. LATINO-PRO: LAtent consisTency
INverse sOlver with PRompt Optimization. arXiv preprint (arXiv:2503.12615), 2025.

Julian Tachella and Marcelo Pereyra. Equivariant bootstrapping for uncertainty quantification in imaging
inverse problems. arXiv preprint arXiv:2310.11838, 2023.

Matthieu Terris, Samuel Hurault, Maxime Song, and Julian Tachella. Reconstruct anything model: A
lightweight foundation model for computational imaging. arXiv preprint arXiv:2503.08915, 2025.

Maxime Vono, Nicolas Dobigeon, and Pierre Chainais. Split-and-augmented Gibbs sampler - Application to
large-scale inference problems. IEEE Transactions on Signal Processing, 67(6):1648–1661, 2019.

Yuanhao Wang, Shirin Shoushtari, and Ulugbek S. Kamilov. Diff-unfolding: A model-based score learning
framework for inverse problems, 2025. URL https://arxiv.org/abs/2505.11393.

20

https://openreview.net/forum?id=St1giarCHLP
https://api.semanticscholar.org/CorpusID:259298715
https://api.semanticscholar.org/CorpusID:259298715
https://api.semanticscholar.org/CorpusID:196470871
https://arxiv.org/abs/2505.11393


Under review as submission to TMLR

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: From error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and William T
Freeman. Improved distribution matching distillation for fast image synthesis. In NeurIPS, 2024.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: Construction of a large-scale
image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-play image
restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44
(10):6360–6376, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 586–595, 2018.

Jiankun Zhao, Bowen Song, and Liyue Shen. CoSIGN: Few-step guidance of consistency model to solve
general inverse problems. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler,
and Gül Varol (eds.), Computer Vision – ECCV 2024, pp. 108–126. Springer Nature Switzerland, 2025.

Ningning Zhao, Qi Wei, Adrian Basarab, Nicolas Dobigeon, Denis Kouamé, and Jean-Yves Tourneret. Fast
Single Image Super-Resolution Using a New Analytical Solution for ℓ2−−ℓ2 Problems. IEEE Transactions
on Image Processing, 25(8):3683–3697, 2016.

Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc Van Gool.
Denoising Diffusion Models for Plug-and-Play Image Restoration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1219–1229, 2023.

21



Under review as submission to TMLR

A Solving the proximal step in Figure 2

This section outlined the approach for solving the proximal step in Figure 2 tailored to each image restoration
task in our study.

Deblurring The degradation model for deblurring is generally express as y = Ax + n, where y is the
observation, n is zero mean Gaussian noise with variance σ2. The forward operator A represents a circular
block matrix, and can be transformed as A = F†ΣAF , where F and F† denote the fast Fourier transform
(FFT) and its inverse, respectively, while ΣA is a diagonal matrix containing the Fourier coefficients of the
blurring kernel. A fast solution of the proximal step in Figure 2 is given by

x̂t,k = F†

([
Σ⊤

AFy
σ2
y

+ Fxt√
αtσ2

t

+
F x̃∆θ

t,k

δ

]/[
Σ2

A

σ2 + I

σ2
t

+ 1
δ

])
. (14)

Inpainting For inpainting task, the degradation process is formulated as y = A ◦ x+ n, where A denotes
the mask operator and ◦ represents the elementwise multiplication operator. By using the well known
Sherman–Morrison formula (Maponi, 2007), we obtain the following fast solution for the proximal step in
Figure 2

x̂t,k = κk

(
I − κk

A

σ3 + κk

)
◦
(

A⊤y

σ2 +
x̃∆θ

t,k

δ
+ xt√

αtσ2
t

)
, (15)

where κk = δσ2
t

δ+σ2
t

and ◦ denotes the elementwise multiplication operator.

Super-resolution In super-resolution task, we formulate the problem by assuming that the low-resolution
image is a blurred, downsampled, and noisy version of the high-resolution image. Mathematically, the model
is given by y = SsAx+ n, where Ss represents the downsampler operator with factor s and A represents the
circular blur operator. According to Zhao et al. (2016); Zhang et al. (2021) a fast solution for the proximal
step in Figure 2 is given by

x̂t,k = F†

(
1
κk

(
r − (Σ⊤

A) ↓s ◦s(
ΣAr) ↓s

(Σ2
A) ↓s +κk

))
, (16)

where r = Σ⊤
AS⊤y + κk

(
δxt +

√
αtσ

2
t x̃

∆θ

t,k

)
, κk = σ2

αtσ2
t δ

and ◦s represents distinct block processing operator
with element-wise multiplication. The operator ↓s denotes distinct block downsampler. For more details, see
Zhao et al. (2016); Zhang et al. (2021).

Extension to non-linear tasks: JPEG For the non-linear JPEG restoration task, the observation
model is given by y = A(x) + n, where A denotes the non-linear compression operator and n is the zero-
mean Gaussian noise with variance σ2. In this case, computing the exact solution of the proximal step
proxδgy

(s) = arg minx0∈Rd gy(x0) + 1
2δ∥x0 − s∥2

2/2 with gy,xt
= − log p(y, xt|x0) is not feasible. To address

this challenge, we approximate the solution by using Adam optimizer (Kingma & Ba, 2014) with s as
warm-starting and we do not use RAM initialization.

B Relation to Langevin Dynamics

In this appendix, we present a derivation of the LATINO kernel equation 5 as a small-timestep discretisation
with a score-based prior of the regularized Langevin SDE:

dx0,s = ∇ log p(y|x0,s)ds+∇ log p(x0,s)ds+ dws,

which is ergodic with respect to the posterior distribution p(x|y). An alternative derivation, based on a large
timestep approximation of the Langevin diffusion with a consistency model prior can be found in Spagnoletti
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et al. (2025). Following Pereyra et al. (2023), we consider an auxiliary variable z such that, conditioned on
z = z, we have x ∼ N (z, δ). The marginal process z0,s ∼ (z|x = E[x0,s|y, z0,s]) then follows the diffusion

dz0,s = −∥x0,s − z0,s∥2

2δ ds+∇ log p(z0,s)ds+ dws,

x0,s = E[x0,s|y, z0,s],
(17)

where we express the augmented likelihood ∇ log p(y|z, δ) in terms of x0,s and z0,s through Fisher’s Identity
as in Pereyra et al. (2023). The short-time continuous dynamics of z0,h for h≪ 1 can be estimated through
the proximal splitting scheme

z0,h ≈ Prox−h log p

(
z0,h

(
1− h

δ

)
+ h

δ
x0,h +

√
2hϵ
)

ϵ ∼ N (0, I).

Setting h = δ and approximating the proximal operator by a minimum mean-square denoiser Dδ for the
convolution of p(z) with N (0, δ) additive noise as in Laumont et al. (2022), we obtain the stochastic
noise-and-denoise step

z0,h ≈ Dδ(x0,h +
√

2δϵ).

Ergodic convergence guarantees for plug-and-play discretisation of the Langevin diffusion can be found in
Laumont et al. (2022). In a related work, Martin et al. (2025 (to appear) consider the use of an identical
noise-and-denoise within stochastic gradient descent algorithms with provable convergence guarantees to a
maximum-a-posteriori estimate. Setting δ =

√
(1− ᾱtδ )/2ᾱtδ and multiplying by a factor of √ᾱtδ within the

denoiser we have
z0,h ≈ D(1−ᾱtδ

)/2(
√
ᾱtδ x0,s +

√
1− ᾱtδϵ).

Applying this kernel iteratively, approximating the MMSE denoiser D(1−ᾱtδ
)/2 by the score-based prior

Ḡθ(·, tδ), we obtain the updates

x̄(k+1)
0 = E[x|y, z = z(k), δ]

= Proxδgy
(z(k))

z(k+1) = Ḡθ(
√
ᾱtδ x̄(k+1)

0 +
√

1− ᾱtδ , tδ),

where we relate the conditional mean of x given y and z to the proximal operator of gy since p(x|z) defines a
conjugate Gaussian prior for p(x|y, z). This recovers the LATINO algorithm equation 5 under the mapping
√
ᾱtδ x̄(k+1)

0 +√1− ᾱtδ = x(k+1)
tδ

and z(k+1) = x(k+1)
0 . The kernel equation 5 can thus be understood as a

proximal split-Gibbs timestep for the Langevin diffusion with a score-based plug-and-play prior. A closely
related approach was employed in Mbakam et al. (2024) based an explicit gradient discretisation of the
marginal diffusion Equation 17 and using a small number of DDIM iterations to formulate a stochastic
plug-and-play denoising prior. Following Pereyra et al. (2023); Laumont et al. (2022); Martin et al. (2025 (to
appear), the parameter δ (equivalently, tδ) can be tuned to provide asymptotic convergence to the posterior
distribution. However, as observed empirically in Appendix D.1, when applied as a zero-shot method the
MCMC chain arising from the LATINO updates requires a significant number of NFEs to reach stationarity.
Following the successful unfolding of optimization procedures for imaging illustrated in Monga et al. (2021),
we aim in this work to generate accurate posterior samples unfolding a small number K LATINO iterations
as a likelihood-aware neural network. By designing a network in this manner, we obtain a modular and
interpretable model with a natural embedding of the forward observation model.

In Spagnoletti et al. (2025), the same algorithm is derived for large time approximations h ≈ 1. This
derivation relies on the use of a pre-distilled consistency model prior to construct a kernel which contracts to
the same invariant measure as equation 17. A key difference for the proposed approach in Section 3 is that
we start with a diffusion model designed for small time-steps. Several iterations of LATINO are then distilled
to construct a conditional consistency model for a determined class of image restoration problems.
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C Implementation details

C.1 Models

In this work, we used two distinct pre-trained models for our experiments. The first model is derived from
ADM (Dhariwal & Nichol, 2021), originally pre-trained on the ImageNet dataset at the resolution of 256×256.
The second model is based on a pre-trained model from DDPM (Ho et al., 2020), which was pre-trained
on LSUN dataset at the resolution of 256×256. The architectures of these models differ significantly and a
detailed comparison of their architecture, parameter counts and computational requirements is provided in
Table 8.

Regarding LoRA configuration, we implemented exclusively on the attention layers of the pre-trained model
to improved its adaptability for specific image restoration tasks while reducing the computational overhead.

Table 8: Models summarize: |θ| denotes the total number of frozen parameters, |∆θ| indicates the total LoRA
parameters and |ψ| represents the total RAM parameters. Model 1 refers to the ADM pre-trained on the
ImageNet dataset, while Model 2 denotes the DDPM pre-trained on the LSUN dataset.

Models rank(∆θ)
#Attn
layers |θ| |∆θ|

Model 1 - 16 552814086 0
Model 2 - 5 113673219 0
Model 1 w/ LoRA 5 16 552814086 414720
Model 2 w/ LoRA 5 5 113673219 122880
RAM - 0 35618953 0

C.2 Training procedure

We adopted a training procedure that is carefully designed to ensure robust performance across tasks such as
deblurring, inpainting and super-resolution. The training objective integrates reconstruction and adversarial
losses to enhance sample generation quality. For the reconstruction loss, we used a consistency term to enforce
data fidelity and a LPIPS term to enhance perceptual quality. Conversely, the adversarial term is designed to
promote the model to generate realistic sample. Additionally, the training loss incorporates gradient penalty
term to stabilize training by enforcing Lipschitz continuity on the discriminator. To facilitate reproducibility,
comprehensive details regarding batch size (bs), learning rate (lr), optimizer and specific weights for loss
term are summarized in Table 9.

Table 9: Model 1 refers to the ADM pre-trained on the ImageNet dataset, while Model 2 denotes the
DDPM pre-trained on the LSUN dataset.

lr bs optimizer weight decay ωℓ2 ωGP ωGS
Model 1 1e−4 2 AdamW 0.01 1 0.1 0.01
Model 2 1e−4 4 AdamW 0.01 1 0.1 0.01
RAMψ 1e−5 - AdamW 0.01 - - -

C.3 Setting experiments

Box inpainting We consider a fixed and centered square mask of size 128 × 128 pixels, K = 5 and
σ = 0.025.

Random inpainting In this experiment, a random binary mask is applied with missing pixel rates of 80%
and 70%. We use K = 3 iterations for algorithm unrolling and a noise level of σ = 0.025.
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Super-resolution: For SR experiments with a scaling factor m, images from the LSUN dataset are
downsampled by convolving with a bicubic filter of size m2 ×m2. In contrast, for the ImageNet dataset,
images are first convolved with a 3× 3 Gaussian kernel4 and bandwidth of 10, followed by a downsampling
operation with factor m. Unless otherwise stated, we consider downsampling factor m = 4. The number
of iterations in algorithm unrolling is set to K = 3, and experiments are conducted with noise levels
σ ∈ {0.01, 0.025}.

Deblurring For this experiment, consider 3 types of blur.

• Gaussian blur: On Imagenet experiments, we consider kernel sizes of 5× 5 and 25× 25 pixels and
a bandwidth of 10. For the LSUN bedroom dataset, we use consider the anisotropic Gaussian blur
used in Garber & Tirer (2025); Kawar et al. (2022) of size 9× 9 and with bandwidth (20, 1).

• Motion blur: We generate random motion blur kernels with kernel sizes of 5× 5 using the approach
described in Schuler et al. (2016)5,

• Uniform blur with kernel sizes of 9× 9.

We conduct experiments under noise levels σ ∈ {0.01, 0.025, 0.05} and using K = 3 iterations for algorithm
unrolling.

JPEG restoration For this experiment, we applied JPEG compression with a quality factor of QF=10
and introduced Gaussian noise with variance 0.012.

C.4 Memory and time consumption

Table 10 presents a comparative analysis of memory consumption and computational time for the models
evaluated in this work. The results demonstrate that fine-tuning pre-trained models using LoRA technique
reduces GPU memory usage and inference time. The table also includes the memory usage and inference
time for RAM.

For the JPEG restoration task, we obtained an inference time of 4.01 seconds. This increased computational
time is because the proposed method requires a sub-iterative method to solve the proximal step in Figure 2.

Table 10: Models summarize: K denotes the number of unfolding steps. Model 1 refers to the ADM
pre-trained on the ImageNet dataset, while Model 2 denotes the DDPM pre-trained on the LSUN dataset.

Models K GPU (GB) Time (s) Resolution
Model 1 - 16.49 - 2562

Model 2 - 3.39 - 2562

Model 1 w/ LoRA 3 0.013 0.89 2562

Model 2 w/ LoRA 3 0.004 0.53 2562

RAM 1 1.06 0.31 2562

D Additional results

In this appendix, we provide additional qualitative results between UD2M applied to the problems in Section 4.
Qualitative comparisons to similar methods for deblurring and super-resolution on ImageNet may be found
in Figures 12 and 13. Qualitative reconstructions obtained via the universal UD2M scheme discussed in
Section 4.3.6 can be found in Figure 14.

4The Gaussian kernel act as a low-pass filter to reduce aliasing before downsampling.
5An implementation of this operator can be found in Deepinverse.
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Additional qualitative comparisons of UD2M (with RAM) on the LSUN bedroom validation set can be found
in Figures 15 and 16 for the gaussian deblurring and random inpainting tasks, each with in-distribution noise
level σ = 0.025. To illustrate qualitatively the extensibility of the unfolded architecture to out-of-distribution
noise, additional comparisons are presented in Figure 17 using noise level σ = 0.05 which was not used in
training UD2M. For the comparison methods on LSUN bedroom, we use the reconstructed images provided in
Garber & Tirer (2025). To illustrate the generative capabilities of the UD2M prior, additional reconstructions
for box inpainting on LSUN bedroom are provided in Figure 18

D.1 Ablation Study on MNIST

We consider further ablation studies for inverse problems on MNIST digits, with 60,000 training and 10,000
test images. For ease of computation, we add a 2× 2 zero-padding to resize each image to shape 32× 32.
The small size of these images allows for efficient training of several models for extensive ablation studies and
for many posterior samples to be generated, allowing for accurate exploration of the learned posterior data.
We test UD2M on a challenging inverse problem on this data, to benchmark the convergence of our method
for a small number of NFEs.

Model For our deep unfolded UD2M architecture, we use a score-based denoiser with the same architecture
as Dhariwal & Nichol (2021). The score-based denoiser is downsized to take as input grayscale images of size
32×32. We pre-train the score model to generate images from the 32 × 32 MNIST dataset using 220,000
training iterations with a batch-size of 64. The final model contains 16,761,409 parameters.

Through adversarial distillation, we fine-tune the score-model into a conditional consistency model, generating
conditional samples of x0 given xt and an observation y by unfolding K iterations of the LATINO kernel. To
compare models with different number of unfolded iterations, we train 4 separate models with K = 1, 2, 4
and K = 8, respectively. For each model, we use the same approach as above and freeze the weights in the
pre-trained score and apply a learnable low-rank correction only to weights within the attention layers. We
apply LoRA with rank r = 5, resulting in 65,280 trainable weights representing 0.39% of the original model.

Experiment We consider the SR (×4) problem, using additive Gaussian noise with variance of size
σ2 = 0.052. Due to the small size of MNIST digits, down-sampling by a factor of 4 represents a significant
degradation in the quality of the image (see 10). By considering a highly ill-conditioned problem, we aim to
highlight the efficiency of UD2M to converge to an accurate posterior distribution with only a small number
of NFEs. This allows an effective demonstration of the enhanced convergence rate of the unfolded LATINO
iterates over K = 8 iterations, which is in contrast to the large K ≫ 1 number of iterations typically required
for MCMC sampling (Pereyra, 2016).

Comparison To benchmark against a state-of-the art zero-shot MCMC sampler, we compare our method
to the long-term dynamics of the LATINO kernel equation 5. Using the same pre-trained denoiser as
discussed above, we run K ≈ 50, 000 iterations of the LATINO algorithm. To evaluate the performance
gain by embedding LATINO within a distilled diffusion loop through UD2M, we do not apply fine-tuning or
distillation to the kernel. Instead, interpreting LATINO as a plug-and-play discretisation of the Langevin
diffusion, we tune the step-size by hand using the theoretical bounds in Laumont et al. (2022).

Evaluation Metrics For the evaluation, we consider the PSNR and LPIPS metrics used above. The
FID metric implicitly assumes that the Inception-v3 network accurately maps the prior distribution to a
Gaussian in the encoding space. Due to limitations with the Inception-v3 network mapping MNIST images to
a Gaussian distribution, we replace this network with a VAE encoder EMNIST pre-trained explicitly in Holden
et al. (2022) to encode the MNIST dataset into a 12-dimensional Gaussian distribution. The Frechet distance
is then computed between VAE-encoded MNIST digits and VAE-encoded digits reconstructed through our
model. Following Bendel et al. (2023), we compute posterior approximation quality using the conditional
Frechet inception distance (CFID) Soloveitchik et al. (2021). For approximations x̂ of the ground truth x,
the CFID computes the conditional Frechet distance between the embeddings p(EMNIST(x)|EMNIST(y)) and
p(EMNIST(x̂)|EMNIST(y)), averaged over many observations y.
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K
N 1 2 4 8 16

1 14.8 15.5 15.5 15.7 15.9
2 16.3 17.1 17.3 17.5 17.5
4 18.1 18.2 18.2 18.2 18.2
8 18.5 18.6 18.6 18.6 18.6

(a) PSNR

K
N 1 2 4 8 16

1 0.18 0.28 0.22 0.14 0.11
2 0.07 0.10 0.07 0.05 0.05
4 0.05 0.04 0.04 0.04 0.04
8 0.04 0.04 0.04 0.04 0.04

(b) LPIPS

K
N 1 2 4 8 16

1 4.87 3.82 3.44 2.86 2.49
2 2.81 1.86 1.16 0.78 0.73
4 0.31 0.24 0.24 0.23 0.22
8 0.15 0.15 0.15 0.15 0.15

(c) FID

K
N 1 2 4 8 16

1 6.91 5.16 4.83 4.08 3.53
2 3.65 2.25 1.47 1.01 0.94
4 0.47 0.38 0.37 0.36 0.35
8 0.22 0.22 0.22 0.22 0.22

(d) CFID

Table 11: Comparison of reconstruction metrics for UD2M models trained on the MNIST dataset for a range
of unfolded steps K and DDIM steps N . For each observation y, the PSNR is computed between the average
of 16 samples from the estimated posterior distribution. Since the remaining metrics quantify sample quality,
they are computed between a single posterior sample and the ground truth.

Results We train 4 instances of the unfolded LATINO architecture, with K = 1, 2, 4, 8 respectively. For
each model, we run the unfolded UD2M sampler for N = 1, 2, 4, 8, 16 iterations for a total of NK NFEs. The
evaluation metrics for each instance are shown in Table 11. For the PSNR, we compare the ground truth
to an average of 16 UD2M samples to approximate the MMSE estimator for the problem. The remaining
metrics use a single posterior sample. For each metric, we notice fast convergence within K ≈ 4 iterations.
For this ill-conditioned problem, we find a small improvement by additionally using K = 8 unfolded steps.
Qualitative results are shown for a sample observation in Figure 10. For each K, N pair, we plot a single
UD2M sample, along with the mean and standard deviation estimated from 16 UD2M samples. The standard
deviation plots are amplified by a factor of 3× to facilitate visual comparison and align with approximately
99% credible intervals. For each shown standard deviation, we indicate in the upper left corner the correlation
to the corresponding absolute error. We observe sharper images and greater sample diversity for K ≥ 4.
Using K = 8, we observe around 10% increase in correlation between the posterior variance and the absolute
error. In each instance, deviations of individual samples from the sample mean illustrate the ability of our
method to avoid mode collapse in the learned posterior distribution, providing a wide exploration of viable
samples. Reference reconstructions are shown for the long-time average of the zero-shot LATINO algorithm
over 50,000 NFEs. The convergence of LATINO to an invariant measure is summarized in Figure 11 (left)
For our unrolled model, we observe similar qualitative performance to LATINO with K ≥ 4 iterations with
16KN ≪ 50, 000 NFEs to compute the mean and standard deviation, along with better correlation of the
standard deviation to the true error. In all metrics and qualitative comparison, we observe a greater benefit
from increasing K opposed to N . This highlights the effectiveness of unfolding a small number of LATINO
iterations to distill the conditional diffusion model to require only a small number of iterations.

To benchmark the uncertainty quantification properties of UD2M from accurate posterior coverage, we plot
empirical coverage probabilities in Figure 11 (right). To focus on important search directions, we compute
the empirical coverage on the latent space of the encoder EMNIST. The coverage is computed for K = 1, 2, 4, 8
unfolded iterations, with N scaled to a fixed number of 16 NFEs. For this calculation, following Tachella
& Pereyra (2023); Cherif et al. (2024), we improve sample diversity in directions corresponding to small
eigenvalues of the super-resolution operator by bootstrapping our reconstructed samples through equivariant
transformations of the reconstructions as in Cherif et al. (2024). We notice that increasing K has a positive
impact on the empirical coverage probabilities, with accurate results for K ≥ 4. This highlights the usefulness
of UD2M as a tool for accurate uncertainty quantification.
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LATINO Baseline (K = 50, 000, N = 1):

Sample Mean
0.64

Sample St. Dev

Samples Sample Mean

Sample Standard Deviation

0.73 0.70 0.70 0.72

0.70 0.77 0.70 0.68

0.72 0.66 0.71 0.63

0.80 0.84 0.83 0.78

Figure 10: Example reconstructions for the MNIST SR (×4) problem for K,N ∈ {1, 2, 4, 8}. Top: The
ground truth image x and observation y. Middle: Samples (left) and mean estimate (right) from the learned
UD2M posterior distribution with K unfolded LATINO iterations using N DDIM steps. Bottom: The
corresponding posterior standard deviation, computed using 16 conditionally independent samples given
y. The correlation of the standard deviation to the absolute error is indicated in the upper left of each
standard deviation plot. A reference mean and standard deviation of the zero-shot LATINO kernel after
50,000 iterations are shown in the bottom right.
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Figure 11: Left: Empirical convergence of the zero-shot LATINO algorithm against number of iterations.
The PSNR of a single sample and of the Markov Chain mean are shown. Additionally, the LPIPS of a
single posterior sample is shown. Results are averaged over 32 independent test images. Right: Empirical
coverage probabilities for UD2M for K = 1, 2, 4, 8 and N scaled to fix a total of 16 NFEs. The dashed line
represents perfect posterior coverage.
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Degraded DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM) GT

Figure 12: Examples of posterior samples for the task Gaussian deblurring on ImageNet with noise level
σ = 0.05 and Gaussian kernel bandwidth of 10.
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Degraded DiffPIR DDRM CDDB Ours (wo RAM) Ours (w/ RAM) GT

Figure 13: Examples of posterior samples for the task SR(×4) with noise level σ = 0.05 on ImageNet 256
.
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Figure 14: Examples of posterior samples generated by a “universal” UD2M sampler on the following tasks on
ImageNet 256: Gaussian Deblurring with a kernel bandwidth of 10, random inpainting (70%), super-resolution
(×4). Noise level σ = 0.01.
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Degraded DiffPIR DDRM CM4IR CoSIGN Ours (w/ RAM) GT

Figure 15: Qualitative results from the LSUN bedroom validation set applied to anisotropic Gaussian
deblurring with bandwidth (20, 1) and additive Gaussian noise with standard deviation σ = 0.025.

Degraded DiffPIR DDRM CM4IR CoSIGN Ours (w/ RAM) GT

Figure 16: Qualitative results from the LSUN bedroom validation set applied to random inpainting with 80%
masked pixels and additive Gaussian noise with standard deviation σ = 0.025.

Degraded DiffPIR CM4IR CoSIGN Ours (w/ RAM) GT

Figure 17: Qualitative results from the LSUN bedroom validation set applied to anisotropic Gaussian
deblurring with bandwidth (20, 1) (top) and random inpainting with 80% masked pixels (bottom). Each with
additive Gaussian noise with standard deviation σ = 0.05, which is out of the training distribution for our
model which was trained for σ = 0.025.
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Figure 18: Examples of posterior samples for the task box inpainting with noise level σ = 0.05 on LSUN
Bedroom. From top to bottom: Ground truth, degraded observation, UD2M reconstruction (without RAM).
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