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ABSTRACT

Auxiliary tasks improve the representations learned by deep reinforcement learning
agents. Analytically, their effect is reasonably well-understood; in practice, how-
ever, their primary use remains in support of a main learning objective, rather than
as a method for learning representations. This is perhaps surprising given that many
auxiliary tasks are defined procedurally, and hence can be treated as an essentially
infinite source of information about the environment. Based on this observation, we
study the effectiveness of auxiliary tasks for learning rich representations, focusing
on the setting where the number of tasks and the size of the agent’s network are
simultaneously increased. For this purpose, we derive a new family of auxiliary
tasks based on the successor measure. These tasks are easy to implement and have
appealing theoretical properties. Combined with a suitable off-policy learning rule,
the result is a representation learning algorithm that can be understood as extending
Mahadevan & Maggioni (2007)’s proto-value functions to deep reinforcement
learning – accordingly, we call the resulting object proto-value networks. Through
a series of experiments on the Arcade Learning Environment, we demonstrate that
proto-value networks produce rich features that may be used to obtain performance
comparable to established algorithms, using only linear approximation and a small
number (~4M) of interactions with the environment’s reward function.

1 INTRODUCTION

In deep reinforcement learning (RL), an agent maps observations to a policy or return prediction
by means of a neural network. The role of this network is to transform observations into a series
of successively refined features, which are linearly combined by the final layer into the desired
prediction. A common perspective treats this transformation and the intermediate features it produces
as the agent’s representation of its current state. Under this lens, the learning agent performs two tasks
simultaneously: representation learning, the discovery of useful state features; and credit assignment,
the mapping from these features to accurate predictions.

Although end-to-end RL has been shown to obtain good performance in a wide variety of prob-
lems (Mnih et al., 2015; Levine et al., 2016; Bellemare et al., 2020), modern RL methods typically
incorporate additional machinery that incentivizes the learning of good state representations: for
example, predicting immediate rewards (Jaderberg et al., 2017), future states (Schwarzer et al., 2021a),
or observations (Gelada et al., 2019); encoding a similarity metric (Castro, 2020; Agarwal et al.,
2021a; Zhang et al., 2021); and data augmentation (Laskin et al., 2020). In fact, it is often possible,
and desirable, to first learn a sufficiently rich representation with which credit assignment can then
be efficiently performed; in that sense, representation learning has been a core aspect of RL from
its early days (Sutton & Whitehead, 1993; Sutton, 1996; Ratitch & Precup, 2004; Mahadevan &
Maggioni, 2007; Diuk et al., 2008; Konidaris et al., 2011; Sutton et al., 2011).

An effective method for learning state representations is to have the network predict a collection of
auxiliary tasks associated with each state (Caruana, 1997; Jaderberg et al., 2017; Chung et al., 2019).
In an idealized setting, auxiliary tasks can be shown to induce a set of features that correspond to
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the principal components of what is called the auxiliary task matrix (Bellemare et al., 2019; Lyle
et al., 2021; Le Lan et al., 2022a). This makes it possible to analyze the theoretical approximation
error (Petrik, 2007; Parr et al., 2008), generalization (Le Lan et al., 2022b), and stability (Ghosh &
Bellemare, 2020) of the learned representation. Perhaps surprisingly, there is comparatively little
that is known about their empirical behaviour on larger-scale environments. In particular, the scaling
properties of representation learning from auxiliary tasks – i.e., the effect of using more tasks, or
increasing network capacity – remain poorly understood. This paper aims to fill this knowledge gap.

Our approach is to construct a family of auxiliary rewards that can be sampled and subsequently.
Specifically, we implement the successor measure (Blier et al., 2021; Touati & Ollivier, 2021), which
extends the successor representation (Dayan, 1993) by replacing state-equality with set-inclusion. In
our case, these sets are defined implicitly by a family of binary functions over states. We conduct most
of our studies on binary functions derived from randomly-initialized networks, whose effectiveness
as random cumulants has already been demonstrated (Dabney et al., 2021).

Although our results may hold for other types of auxiliary rewards, our method has a number of
benefits: it can be trivially scaled by sampling more random networks to serve as auxiliary tasks, it
directly relates to the binary reward functions common of deep RL benchmarks, and can to some
extent be theoretically understood. The actual auxiliary tasks consist in predicting the expected return
of the random policy for their corresponding auxiliary rewards; in the tabular setting, this corresponds
to proto-value functions (Mahadevan & Maggioni, 2007; Stachenfeld et al., 2014; Machado et al.,
2018). Consequently, we call our method proto-value networks (PVN).

We study the effectiveness of this method on the Arcade Learning Environment (ALE) (Bellemare
et al., 2013). Overall, we find that PVN produces state features that are rich enough to support linear
value approximations that are comparable to those of DQN (Mnih et al., 2015) on a number of games,
while only requiring a fraction of interactions with the environment reward function. We explore the
features learned by PVN and show that they capture the temporal structure of the environment, which
we hypothesize contributes to their utility when used with linear function approximation.

In an ablation study, we find that increasing the value network’s capacity improves the performance
of our linear agents substantially, and that larger networks can accommodate more tasks. Perhaps
surprisingly, we also find that our method performs best with what might seem like small number of
auxiliary tasks: the smallest networks we study produce their best representations from 10 or fewer
tasks, and the largest, from 50 to 100 tasks. In a sense, this finding corroborates the result of Lyle
et al. (2021, Fig. 5), where optimal performance (on a small set of Atari 2600 games and with the
standard DQN network) was obtained with a single auxiliary task. From this finding we hypothesize
that individual tasks may produce much richer representations than expected, and the effect of any
particular task on fixed-size networks (rather than the idealized, infinite-capacity setting studied in
the literature) remains incompletely understood.

2 RELATED WORK

Deep RL algorithms have employed auxiliary prediction tasks to learn representations with various
emergent properties (Schaul et al., 2015; Jaderberg et al., 2017; Machado et al., 2018; Bellemare
et al., 2019; Gelada et al., 2019; Fedus et al., 2019; Dabney et al., 2021; Lyle et al., 2022). While most
of these papers optimize auxiliary tasks in support of reward maximization from online interactions,
our work investigates learning representations solely from auxiliary tasks on offline datasets. Closely
related to our work is the study of random cumulants (Dabney et al., 2021; Lyle et al., 2021),
both of which identify random cumulant auxiliary tasks as being especially useful in sparse-reward
environments. Our work differs from these prior works in both motivation and implementation.
Notably absent in prior work on random cumulants is the study of representational capacity as a
function of the number of tasks.

Another body of related work on decoupling representation learning from RL primarily revolves
around the use of contrastive learning (Anand et al., 2019; Wu et al., 2019; Stooke et al., 2021;
Schwarzer et al., 2021b; Erraqabi et al., 2022). Anand et al. (2019) proposed ST-DIM, a collection of
temporal contrastive losses operating on image patches from environmental observations. Although
the representations learned by ST-DIM are able to predict annotated state-variables in Atari 2600
games, their pretraining method was never evaluated for control. Stooke et al. (2021) uses contrastive
learning for learning the temporal dynamics, resulting in minor improvements in online control from
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a �xed representation. Additionally, Schwarzer et al. (2021b) augments next-state prediction with
goal-conditioned RL and inverse dynamics modelling, enabling strong performance on Atari 100k
benchmark (Kaiser et al., 2020). Our work is complementary to these prior works and investigates
the utility of scaling auxiliary tasks for learning good representations, which in principle can be
easily combined with existing approaches. Additionally, recent work on using state-similarity metrics
tackles the representation learning problem through the lens of behavioral similarity (Castro et al.,
2021; Zhang et al., 2021; Agarwal et al., 2021a). We note that, in contrast to our method, the
behavioral metrics used in these works are heavily based on the reward structure of the environment.

Related to our method, Touati & Ollivier (2021) consider representation learning with the successor
measure (see also Touati, 2021, Algorithm 7). Algorithmically, their approach differs from ours in a
number of ways, including the use of a learned state density function in lieu of indicator functions, the
decomposition of the successor measure into its so-called forward and backward representations, and
a bespoke sampling procedure to generate sample trajectories from which the representation is learned.
By comparison, our approach directly constructs a relevant set of auxiliary tasks, which results in
a signi�cantly simpler algorithm that is more easily scaled according to available computational
resources and to the full gamut of Atari 2600 games, as we will demonstrate.

Recently, there have also been efforts to cast the representation learning problem in RL as a min-max
objective where you learn state features that can linearly represent a speci�c class of value-functions
(Bellemare et al., 2019) or the Bellman backup itself (Modi et al., 2021; Zhang et al., 2022). Although
we do not frame our method in terms of a min-max formulation, we do seek to learn a representation
that can linearly predict the value function of the random policy for any given reward function. These
previous works are primarily theoretical in nature and often require speci�c assumptions about the
underlying MDP. In contrast, our class of auxiliary prediction tasks allows us to learn representations
in environments with large, high-dimensional state-spaces, without any prior assumptions.

3 BACKGROUND

The RL problem can be modeled as a Markov Decision Process (MDP) de�ned by the5-tuple
M = hX; A ; R; P;  i , in which X is a set of states,A is a set of actions,R : X � A 7! R is a
scalar reward function,P : X � A 7! P (X ) is a transition function that maps state-action pairs
to a distribution over next states, and 2 [0; 1) is a discount factor. A policy� : X 7! P (A) is a
function that maps states to a distribution over actions.

The goal of an RL agent is to learn a policy that maximizes the cumulative discounted rewards from
the environment, also known as the discounted return. The state-action value function is de�ned as
the expected discounted return when starting in a state and following the policy� :

Q� (x; a) := E
A t � �; P

"
1X

t =0

 t R(X t ; A t ) j X 0 = x; A 0 = a

#

:

In this paper, we consider approximating the value functionQ� using a linear combination of features.
We call the map� : X ! Rk ak-dimensional state representation; � (x) is the feature vector for a
statex 2 X . The value function approximant at(x; a) is

Q̂(x; a) = � (x)> wa ;

wherewa 2 Rk is a weight vector associated with actiona. In deep RL, the state representation is
parameterized by a neural network. Often, the representation is learned end-to-end by optimizing the
parameters to make more accurate predictions about the value function. Additional predictions that
further shape the state representation are calledauxiliary tasks(Jaderberg et al., 2017). In this work,
we writeT for the set of auxiliary tasks.

Thesuccessor representation(SR; Dayan, 1993) encodes the temporal structure of the MDP in terms
of which states can be reached from any other state under a given policy. It is given by

 �
SR(x; a; ~x) =

1X

t =0

 t Pf X t = ~x j X 0 = x; A 0 = a; At> 0� � g:

A convenient, recursive form expresses the SR in terms of an indicator function, highlighting that for
each~x, the SR is the value function associated with the reward functionR(x; a) = 1f x = ~xg:

 �
SR(x; a; ~x) = 1f x = ~xg +  E�

�
 SR(X 0; A0; ~x) j X = x; A = a

�
:
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4 PROTO-VALUE NETWORKS

In this section, we derive ourproto-value networksalgorithm. At a high level, this algorithm learns a
state representation that approximates the singular vectors associated with the successor measure, the
extension of the SR to continuous state spaces. We do this in order to derive an algorithm that is more
suitably tailored to the large state spaces of deep RL domains, where many states are encountered
once or never at all, and some notion of distance between states must be accounted for.

To gain some understanding into this process, let us consider how the method of auxiliary tasks
(Jaderberg et al., 2017) can be used to obtain a state representation that approximates the SR. In the
tabular setting, whereX andT are of �nite sizesn andm respectively, we write the feature matrix
� 2 Rn � d, so that each statex is associated with a feature vector� (x) 2 Rd. Given an auxiliary
task matrix	 2 Rn � m , the method of auxiliary tasks can be shown to be equivalent to minimizing
the loss function

L (� ; W) = k� W � 	 k2
F =

X

x 2X ;i 2T

�
� (x)> wi �  i (x)

� 2

jointly with respect to� andW. Here,W 2 Rd� m is a weight matrix with columns(wi )m
i =1 and

 i (x) is the entry of	 corresponding to statex and taski . In the sequel, we will assume that a
near-optimalW can be obtained easily and simply consider the loss

L (�) = min
W

L (� ; W);

to be minimized over� . It is known (e.g., Bellemare et al., 2019) that any feature matrix that
minimizes this loss function must have columns that lie in the subspace spanned by the topd left
singular vectors of	 . In particular, when	 is square and symmetric the auxiliary task method
recovers the subspace spanned by its topd eigenvectors.

Here, we are interested in the setting in which	 � r is the SR matrix for theuniformly random policy.
In the symmetric case, the eigenvectors of	 � r form what is called theproto-value functionsof the
MDP (Mahadevan & Maggioni, 2007). These eigenvectors are of special importance because they
encode the spatial structure of the MDP in terms of a diffusion process, and have been shown to
correlate with neural encodings of spatial location in mammals (Stachenfeld et al., 2014).

4.1 EXTENSION TO THE RANDOM SUCCESSOR MEASURE

Let � be a policy and� the power set ofX . The successor measure � : X � A � � ! R extends
the SR to quantify the discounted visitation frequency of an agent, in expectation over trajectories
and forvarious subsets of the state space(Blier et al., 2021). Given a setS � X , we write

 � (x; a; S) =
1X

t =0

 t Pf X t 2 S j X 0 = x; A 0 = a; At> 0 � � g :

As with the SR, this can be expressed in terms of an expectation over an indicator function, and
further decomposed in a Bellman equation:

 � (x; a; S) =
1X

t =0

E�
�
 t 1f X t 2 Sg j X 0 = x; A 0 = a; At> 0 � �

�

= 1f x 2 Sg +  E�
�
 � (X 0; A0; S) j X = x; A = a

�
:

The passage from state equality to set inclusion is particularly appealing in deep RL: �rst, because
states rarely repeat along a trajectory or between episodes, the indicator1f x = yg is almost always
zero. Second, set inclusion allows us to incorporate a notion of closeness to � , e.g. by focusing on
subsetsS that include semantically similar states. We will return to this point later in the section.

By analogy with the tabular setting, let us now de�ne a loss function which, if suitably minimized,
should produce a useful state representation. For ease of exposition, we continue to assume thatX is

Behzadian & Petrik (2018) gives the singular-vector extension for the asymmetric case. Because this
extension is straightforward and symmetry rarely holds, in this paper we use the term proto-value networks to
describe state representations learned in both the symmetric and asymmetric settings.
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�nite, although perhaps very large; the reader interested in a proper mathematical treatment of the
full continuous-state setting is invited to consult Blier et al. (2021) and Pfau et al. (2019).

Let � be a distribution over subsets of states and� 2 Rn � n is a diagonal matrix with entries
f � (x) : x 2 X g on the diagonal. TheMonte Carlo successor measure lossis

L MCSM (�) = min
wS;a 2 Rd

E
S� �

h� X

x 2X ;a2A

(� (x)> wS;a �  � (x; a; S)
� 2

i
:

Theorem 1. If � � is a feature matrix minimizingL MCSM (�) , then its column space spans the topd
left singular vectors of the (in�nite-dimensional) successor measure matrix	 � with respect to the
inner product(x; y) � = y> � x, for all x; y 2 Rn .

In practice, samples of � (x; a; S) (which must be estimated from complete trajectories) are not
available; instead, it is preferable to learn an approximation by bootstrapping (Sutton & Barto, 2018).
The corresponding temporal-difference successor measure loss is

min
wS;a 2 Rd

E
S� �

h� X

x 2X ;a2A

(1f x 2 Sg +  E
�

�
� (X 0)> wS;A 0 j X = x; A = a

�
� � (x)> wS;a

� 2
i
; (1)

we will use this form in the derivations that follow.

4.2 A PRACTICAL IMPLEMENTATION

Our algorithm aims to approximate the loss in Equation 1 using tools from deep RL. We �rst
approximate the expectation over� by sampling a collection of sets(Si )m

i =1 from � . These sets are
kept �xed throughout learning. With this in mind, each set corresponds to an indicator function that
we treat as a binary reward functionr i (x) = 1f x 2 Si g. The actual auxiliary task is then the value
function of the random policy associated with this reward.

Denote by ̂ i (x; a) the prediction made by our neural network for statex, actiona, and the setSi .
Given a sample transition(x; a; x0), we de�ne the sample target

r i (x) + 
1

jAj

X

a02A

 ̂ i (x0; a0) :

Notice that the average over the next-actiona0 arises as a consequence of taking the policy� to be
uniformly random. We then train the neural network by performing stochastic gradient descent on
the loss derived from this sample target:

�
r i (x) + 

1
jAj

X

a02A

 ̂ i (x0; a0) �  ̂ i (x; a)
� 2

:

Following common usage, the actual gradient estimate is obtained by aggregating multiple transitions
into a minibatch and applying the Adam optimizer (Kingma & Ba, 2015).

Before explaining how the setsSi are de�ned, let us remark on a number of appealing properties
of these auxiliary tasks, when viewed from a deep RL perspective. First, the use of a random
policy means that learning usually proceeds in an off-policy manner. However, we expect this to
be a relatively mild form of off-policy learning, one that is in general much more stable than one
derived by maximization, as in a Bellman optimality equation. Although one could also learn the
value function associated with the current policy (as in SARSA (Rummery & Niranjan, 1994)), this
precludes the use of of�ine datasets for learning the representation, or at least makes the learned
representation strongly dependent on the behaviour policy. By contrast, the representation learned
by PVN only depends on the availability of data. In effect, these auxiliary tasksdepend only on the
structure of the environment, and not on the agent's behaviour.

We also expect binary reward functions to be easier to tune than, say, those derived from a distance
function (dependent on getting the scale parameter correct) or real-valued random rewards (dependent
on the underlying distribution). Binary rewards are particularly appealing in domains where the
reward function is itself binary or ternary (i.e., Atari 2600 video games), in which case they can be
adjusted to have similar statistics to the true reward function. We will demonstrate how to do this in
the following section.
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(a) One-Hot Encoding. (b) Random Network Indicator.

Figure 1: (a) State equality indicator implemented as a one-hot encoding overX , as in the Successor
Representation, while (b) Random Network Indicators parameterize the setsSi in PVN. Each panel
shows a grid world with a reward functionr (x) derived from the associated indicator. The transition
arrow is the process of learning the value function from the preceding reward function.

4.3 GENERATING INDICATOR FUNCTIONS

Thus far we have described our algorithm as sampling sets of states(Si )m
i =1 which are then converted

into a reward function by means of an indicator. In deep RL, this is inconvenient for two reasons: �rst,
because it is not clear from what distribution of states should be sampled (how should one generate
arbitrary video-game states?); second, because testing for set inclusion may also be brittle, effectively
reducing to repeated equality tests. Instead, we opt here for animplied set, de�ned directly by its
indicator function.

Let F be a family of functions mappingX to f 0; 1g. Then, for any functionf 2 F , its implied set is

Sf = f x 2 X : f (x) = 1 g:

Of course, this is equivalent to
f (x) = 1f x 2 Sf g:

Sampling functions fromF according to some distribution� f and using them in lieu of the indicator
is therefore equivalent to sampling sets of states for some distribution� implied by� f . The advantage
is that testing for inclusion inSf only requires the evaluation off at x, which for carefully-chosen
functions can be done at little computational cost.

The simplest scenario occurs when the familyF is parametrized by some weight vector� , so that the
random functionf � corresponds to a random set of states. In this paper we consider two such families
of functions: universal hash functions and random network indicators. Both families aretunable, in
the sense that they are parametrized so that the implied setsSf each cover a desired fraction of the
overall state space. In probabilistic terms, tunable means that we can with minimal or no computation
�nd parameters such that for any given statex,

Pf x 2 Sf g = p :

Here, the probabilistic statement is with respect to the draw off from F . For universal hash functions,
the tuning is immediate from the algorithm, and so we describe it �rst.

A Carter-Wegmanfamily of hash functionsF CW (Carter & Wegman, 1979) consists of functions
mapping each integerx 2 N to the setf 0; : : : ; k � 1g, with the property that

Pf h(x) = ig = 1
k for i = 0 ; : : : ; k � 1;

where the probabilistic statement is over the random draw ofh from F CW. One may think of a CW
family as deterministically assigning labels to integersx (in the sense thatf is deterministic), but
randomly (in the sense thatf is random). See Appendix D.1 for full implementation details.

We construct our tunable indicator function as

f (x) = 1f h(x) = 0 g:

By construction, choosingk = 1
p yields the desired tuning (up to integer rounding). In our setting,

x is a high-dimensional observation (for example, an image) rather than an integer; yet we will
see that, perhaps surprisingly, encoding each image as a unique integer is suf�cient to produce
better-than-random state representations.
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