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Abstract001

Large language models (LLMs) are increas-002
ingly evaluated on formal tasks, where strong003
reasoning abilities define the state of the art.004
However, their ability to generalize to out-of-005
distribution problems remains limited. In this006
paper, we investigate how LLMs can achieve007
a systematic understanding of deductive rules.008
Our focus is on the task of identifying the ap-009
propriate subset of premises within a knowl-010
edge base needed to derive a given hypothe-011
sis. To tackle this challenge, we propose Meta-012
learning for IN-context Deduction (MIND), a013
novel few-shot meta-learning fine-tuning ap-014
proach. The goal of MIND is to enable models015
to generalize more effectively to unseen knowl-016
edge bases and to systematically apply infer-017
ence rules. Our results show that MIND signif-018
icantly improves generalization in small LMs019
ranging from 1.5B to 7B parameters. The ben-020
efits are especially pronounced in smaller mod-021
els and low-data settings. Remarkably, small022
models fine-tuned with MIND outperform state-023
of-the-art LLMs, such as GPT-4o and o3-mini,024
on this task.025

1 Introduction026

Reasoning refers to a broad set of abilities that027

are applied not only in formal domains, such as028

mathematics and logic, but also in goal-directed029

scenarios involving problem-solving and decision-030

making (Leighton, 2004). All types of reasoning031

share a common foundation: the capacity to reach032

an abstract understanding of the problem at hand.033

With the advent of increasingly capable large lan-034

guage models (LLMs), reasoning has become a035

central domain for evaluating and comparing these036

systems (Huang and Chang, 2023; Mondorf and037

Plank, 2024).038

Despite extensive training on mathematical, pro-039

gramming, and STEM-related data, LLMs continue040

to struggle in out-of-distribution (OOD) reasoning041

scenarios. Their performance often deteriorates042

Episode T

Knowledge Base (KB)
knowledge base: All x1 are x2, All x2 are x4, All x3 are x5,
All x10 are x11, All x4 are x6, All x2 are x3, All x5 are x7,
Some x5 are not x1, All x9 are x10, All x6 are x8, All x8 are x9,
Some x11 are not x4

Study Examples (Ssupp)
<STUDY> hypothesis: All x8 are x11
premises: All x8 are x9, All x9 are x10, All x10 are x11;
hypothesis: All x1 are x3
premises: All x1 are x2, All x2 are x3; ...

Query Hypothesis (xquery)
<QUERY> hypothesis: All x3 are x7

Query Premises (yquery)
premises: All x3 are x5, All x5 are x7

In
pu

t
O

ut
pu

t

Figure 1: Overview of a MIND episode. Given a set of
premises (the knowledge base, KB), a set of task demon-
strations (or study examples, denoted by the <STUDY>
tag), and a query hypothesis xquery (denoted by the
<QUERY> tag) that is entailed from KB, models must gen-
erate the minimal subset of premises yquery from which
xquery can be derived. During each MIND episode,
models can practice on hypothesis-premise pairs before
processing the main query hypothesis. The examples
show how we frame syllogistic inferences as a premise
selection task.

on longer inference chains than those seen during 043

training (Clark et al., 2021; Saparov et al., 2023), 044

and they exhibit variability when evaluated with 045

perturbed versions of the same problems (Mirzadeh 046

et al., 2025; Gulati et al., 2024; Huang et al., 2025). 047

In particular, LLMs can get distracted by irrelevant 048

context, becoming unable to solve problems they 049

could otherwise solve (Shi et al., 2023; Yoran et al., 050

2024). These challenges relate to broader debates 051

surrounding generalization versus memorization in 052

LLMs (Balloccu et al., 2024; Singh et al., 2024). 053

Few-shot meta-learning approaches (Irie and 054
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Lake, 2024) have emerged as promising methods055

for inducing OOD generalization and rapid domain056

adaptation in LLMs. Specifically, this class of057

methods has proven effective in few-shot task gen-058

eralization (Min et al., 2022; Chen et al., 2022),059

systematic generalization (Lake and Baroni, 2023),060

and mitigating catastrophic forgetting (Irie et al.,061

2025).062

In this work, we propose Meta-learning for IN-063

context Deduction (MIND), a new few-shot meta-064

learning fine-tuning approach for deductive reason-065

ing. As illustrated in Figure 1, we evaluate the066

effectiveness of this approach using a logical rea-067

soning task grounded in syllogistic logic (Smiley,068

1973; Vargas Guzmán et al., 2024). Each prob-069

lem presents a knowledge base of atomic logical070

statements. Models are tasked with identifying the071

minimal subset of premises that logically entail a072

given test hypothesis. This premise selection task073

captures a core aspect of deductive reasoning: de-074

termining which known facts are necessary and075

sufficient to justify a conclusion. We apply MIND076

to small LMs from the Qwen-2.5 family (Qwen077

Team, 2025), ranging from 1.5B to 7B parameters.078

Specifically, we assess the generalization capabili-079

ties induced by MIND, such as systematically per-080

forming inferences over unseen sets of premises,081

as well as over more complex (longer) or simpler082

(shorter) sets of premises than those encountered083

during training.1084

Our main contributions are as follows:085

• We introduce a new synthetic dataset based086

on syllogistic logic to study reasoning gener-087

alization in LLMs.088

• We show that MIND enables LMs to better089

generalize in OOD reasoning problems with090

particularly strong performance in smaller091

models and low-data regimes.092

• We demonstrate that small LMs fine-tuned093

with MIND can outperform state-of-the-art094

LLMs such as GPT-4o and o3-mini, on our095

premise selection task.096

2 Background097

2.1 Syllogistic Logic098

In our experiments, we focus on the syllogistic frag-099

ment of first-order logic. Originally, syllogisms100

1Code and data will be made available, CC BY license,
upon acceptance.

Figure 2: Example inference. Edges labeled “All-are”
denote universal affirmatives (e.g., All cats are felines).
The solid red edge is a universal negative (No animals
are plants). From these “atomic facts” we infer No cats
are tulips (dashed red edge). Formally, this is expressed
as {Aa− b, Ac− d, Ebd} ⊨ Eac (Smiley, 1973).

have been studied by Aristotle as arguments com- 101

posed of two premises and a conclusion, such as: 102

“All dogs are mammals; some pets are not mam- 103

mals; therefore, some pets are not dogs.” This basic 104

form can be extended to include inferences involv- 105

ing more than two premises (see Łukasiewicz 1951; 106

Smiley 1973). 107

Syntax and semantics. The language of syllo- 108

gistic logic comprises a finite set of atomic terms 109

{a, b, c, . . .} and four quantifier labels A,E, I , and 110

O. Well-formed formulas consists of Aab (“All 111

a are b”), Eab (“No a are b”), Iab (“Some a are 112

b”), and Oab (“Some a are not b”). Finally, an A- 113

chain, denoted as Aa− b represents the single for- 114

mula Aab or a sequence of formulas Aac1, Ac1c2, 115

. . . , Acn−1cn, Acnb for n ≥ 1. A knowledge 116

base (KB) is defined as a finite set of formulas 117

(premises). 118

An inference F ⊨ F (i.e., deriving a conclusion 119

from a set of premises) holds when the conclusion 120

F is true in every interpretation (an assignment 121

of non-empty sets to terms) where all formulas 122

in F are true. A set of formulas is consistent if 123

there exists at least one interpretation in which all 124

formulas are simultaneously true. 125

Minimal inferences. We aim for models to iden- 126

tify the minimal set of premises in a knowledge 127

base to derive a given hypothesis. Formally, we 128

are interested in inferences F ⊨ F such that 129

F ′ ̸⊨ F for any proper subset F ′ ⊊ F . For 130

example, {Abc,Abd} ⊨ Icd is minimal, while 131

{Aab,Abc,Abd} ⊨ Icd is not because Aab is not 132

needed to infer the conclusion. 133
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There are seven types of minimal syllogistic in-134

ferences.2 To facilitate understanding, Figure 2135

provides an intuitive representation of a type 6 in-136

ference. Further details about the syllogistic logic137

can be found in Appendix A.138

2.2 Meta-learning in Autoregressive Models139

Meta-learning, or “learning to learn”, is a paradigm140

that aims to enable machine learning models to ac-141

quire transferable knowledge across multiple tasks,142

allowing rapid adaptation to new tasks with min-143

imal data. Among the numerous existing meta-144

learning frameworks (Hospedales et al., 2022),145

MIND is mainly inspired by Meta-learning Se-146

quence Learners (MSL) (Irie and Lake, 2024).147

Data organization. In standard supervised learn-148

ing, data consists of a static dataset Dtrain =149

{(xi, yi)}Ni=1 where inputs xi are mapped to tar-150

gets yi under a fixed distribution p(x, y). By con-151

trast, meta-learning organizes data into tasks (or152

episodes) T = (Ssupp, Squery) drawn from p(T ),153

where Ssupp = {(xi, yi)}Ki=1 is the support set154

containing task demonstrations, or study exam-155

ples, and Squery = {(xj , yj)}Mj=1 is the query set156

for evaluation. We consider the simplest scenario157

where |Squery| = 1, containing a single example158

(xquery, yquery). We adapt this episodic formula-159

tion to our task, as shown in Figure 1.160

Optimization. The fundamental difference be-161

tween the two paradigms appears in their optimiza-162

tion objectives. Standard supervised learning finds163

parameters θ∗ that maximize the likelihood:164

θ∗ = argmax
θ

∑
(x,y)∈Dtrain

log pθ(y | x) (1)165

while meta-learning finds parameters θ∗ that maxi-166

mize the expected likelihood across tasks:167

θ∗ = argmax
θ

ET [log pθ(y
query | xquery, Ssupp)]

(2)168

For autoregressive models, the probability169

pθ(y
query | xquery, Ssupp) is computed by condi-170

tioning on the support set Ssupp as part of the input171

context, formatted as a sequence of input-output172

pairs preceding the query. This approach forces173

the model to develop the capabilities of recogniz-174

ing and applying task patterns from the support175

examples to generate appropriate query outputs.176

2See the full list in Table 4 in Appendix A.

3 Method 177

3.1 Data Generation 178

In this section, we describe the methodology em- 179

ployed to construct textual datasets designed for 180

the task of logical premise selection. The process 181

begins with the random generation of graph-like 182

structures representing KBs. These are then trans- 183

lated into text using fixed syntactic templates and 184

assigning pseudowords to nodes. 185

Abstract representation. To avoid ambiguity 186

in premise selection, we use only non-redundant 187

KBs, where for each derivable hypothesis F , there 188

is a unique F ⊆ KB such that F ⊨ F is minimal. 189

We represent KBs as graphs, with constants as 190

nodes and quantifiers as edges.3 Synthetic KBs 191

are generated by constructing such graphs. To 192

ensure non-redundancy, A-formulas form disjoint 193

subgraphs with at most one path between any two 194

nodes. We created three independent sets of con- 195

sistent KBs for training, validation, and testing to 196

ensure diversity across splits.4 197

Textual translation. To translate a given KBi 198

into a textual string, we: (1) assign a unique identi- 199

fier x1, . . . , xn to each node within KBi; (2) map 200

each edge to a fixed template connecting nodes xi 201

and xj based on the quantifier represented by the 202

edge (e.g., Axixj becomes “All xi are xj”); and 203

(3) assign each unique node identifier x1, . . . , xn 204

to a random English-like pseudoword (e.g., x1 = 205

wug, x2 = blump).5 206

As illustrated in Figure 1, we structured each 207

datapoint in the three splits to begin with the to- 208

ken “knowledge base:”, followed by the full se- 209

quence of premises, separated by commas. This is 210

immediately followed by the special tag <QUERY>, 211

and then the token “hypothesis:”, which intro- 212

duces the target hypothesis. Next comes the to- 213

ken “premises:”, followed by the specific comma- 214

separated premises that entail the hypothesis. To 215

increase variability, we applied ten random pseu- 216

doword assignments and three random permuta- 217

tions of premise order for each KB, resulting in 218

multiple variants per datapoint. 219

Within each KB, valid hypotheses can be in- 220

ferred by minimal sets of premises of varying 221

3A visual representation of KBs and the seven types of
inferences as graphs can be seen in Appendix B.2.

4See Appendix B.1 for the exact algorithms used to gener-
ate KBs

5Further details on the vocabulary of pseudowords we used
are provided in Appendix B.3.
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lengths. We define the length of a inference as the222

total length of all A-chains it contains, which cor-223

responds to the total number of A-formulas among224

its premises. For a given inference type t, we de-225

note the maximum and minimum lengths as µ(t)226

and σ(t), respectively.227

We generated enough KBs to obtain 1000 train-228

ing, 5 validation, and 100 test examples for each229

inference type and length combination in the range230

from 0 to 19.6 This range was chosen to allow231

experiments with generalization to both unseen232

shorter and longer inferences. Full dataset statis-233

tics, including the number of generated KBs per234

split, are reported in Appendix B.4.235

3.2 MIND236

When applying meta-learning principles to the237

framework of syllogistic logic, we conceptualize238

the premises within a KB as atomic facts. The239

seven types of syllogism (as detailed in Table 4)240

are treated as arguments, constructed using these241

atomic facts, and the model’s task is to extract the242

minimal set of facts within a KB to produce a valid243

argument that proves the query hypothesis.244

The type of systematic generalization MIND ad-245

dresses involves applying the seven fixed syllogis-246

tic inferences to new, unseen sets of atomic facts.247

This is central to logical reasoning because logical248

rules are, by definition, formal: conclusions fol-249

low from premises based solely on the structure of250

the arguments, regardless of their specific content.251

Thus, successfully applying an inference type to a252

novel, unseen KB requires the model to recognize253

and instantiate the same formal structure with dif-254

ferent premises. This generalization also includes255

variations in the number of atomic facts needed256

to instantiate an argument. Specifically, handling257

A-chains of varying lengths requires applying the258

learned inference patterns to longer or shorter in-259

stances of the same formal type.260

Episodes organization. To induce meta-261

learning of inference types, MIND uses262

a set of episodes where each episode263

T = (KB, Ssupp, xquery, yquery). Here, KB264

is a knowledge base, Ssupp is a set of study265

valid hypothesis-premises pairs, xquery is a valid266

query hypothesis, and yquery is the minimal set of267

6Note that some inference types (e.g., type 3) span the
full range of lengths from 0 to 19, while others span only
a subrange (e.g., type 2 spans from 1 to 10). See all type-
length combinations within the generated KBs in Figure 6 in
Appendix B.4.

premises entailing xquery. Figure 1 shows a full 268

MIND episode using indexed variables in place of 269

pseudowords for improved readability. Importantly, 270

we consider study examples with inferences of 271

the same type as the query. The number of study 272

examples we set, i.e. valid hypothesis–premise 273

pairs, is three. In their textual translation, we add 274

the special tags <STUDY> to indicate the beginning 275

of the sequence of study examples. During MIND 276

fine-tuning, models are trained to minimize the 277

cross-entropy loss of the tokens in yquery given the 278

input tokens from the context (KB, Ssupp, xquery). 279

Baseline. Similarly to Lake and Baroni (2023), 280

we consider a baseline where models are not fine- 281

tuned on episodes but on single input-output pairs 282

(xquery, yquery) preceded by a KB. The base- 283

line is fine-tuned to minimize the cross-entropy 284

loss of the tokens in yquery given the input to- 285

kens from the context (KB, xquery). To en- 286

sure a fair comparison between the meta-learning 287

model and the baseline, we ensured that both 288

models were fine-tuned on the exact same ag- 289

gregate set of unique hypothesis-premises pairs. 290

Specifically, the baseline was fine-tuned using a 291

set Dbaseline consisting of (xquery, yquery) unique 292

pairs. For the meta-learning approach, the cor- 293

responding set of all unique hypothesis-premises 294

pairs encountered across all N episodes Ti = 295

(KBi, S
supp
i , xqueryi , yqueryi ) is given by Dmeta = 296⋃N

i=1(S
supp
i ∪ {(xqueryi , yqueryi )}). We verified 297

that Dbaseline = Dmeta. Moreover, since the 298

meta-learning model processes more hypothesis- 299

premises pairs within each episode (due to Ssupp
i ), 300

we counterbalanced this by training the base- 301

line model for a proportionally larger number of 302

epochs.7 303

4 Experimental Setup 304

4.1 Models 305

We run experiments using the Qwen 2.5 family 306

of decoder-only LMs (Qwen Team, 2025). More 307

specifically, we test three sizes: 1.5B, 3B, and 7B 308

parameters. This family of models is selected be- 309

cause it allows us to experiment with varying small 310

sizes (ranging from 1.5 to 7 billion parameters) and 311

achieves a better size vs. performance trade-off 312

compared to other open weights model families. 313

In addition to the Qwen 2.5 family, we also evalu- 314

7Further details on the training regime and number of
epochs for each approach are provided in Appendix C.2.
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Training Testing

Longer inferences:

“all x1 are x2, all x2 are x3, all x3 are x4, all x4 are x5,
all x5 are x6 ⊢ all x1 are x6”

Shorter inferences:

“all x1 are x2, all x2 are x3 ⊢ all x1 are x3”

Shorter inferences:

“all x1 are x2, all x2 are x3, all x3 are x4 ⊢ all x1 are
x4”

Longer inferences:

“all x1 are x2, all x2 are x3, all x3 are x4, all x4 are x5,
all x5 are x6 ⊢ all x1 are x6”

Figure 3: Length generalization. We evaluate models on two types of length generalization: models trained on
more complex (i.e., longer) inferences are tested on simpler (i.e., shorter) ones (Top) and vice versa (Bottom). The
examples illustrate type 2 inferences.

ate the closed-source LLM GPT-4o (OpenAI, 2024)315

and the Large Reasoning Model (LRM) o3-mini316

(OpenAI, 2025) on the logical premise selection317

task.8 We conduct the evaluation both in a zero-318

shot setting and in a few-shot setting, using the319

Ssupp study pairs as examples.9320

4.2 Experiments321

We design experiments to evaluate the ability of322

MIND to teach pretrained small LMs to system-323

atically apply inferences to new, unseen sets of324

premises —that is, to reason in a formal way by325

recognizing and instantiating the same underlying326

structure independently of the KBs’ content.327

To ensure consistency, both MIND and the base-328

line receive inputs at test time in the same format329

as during training. MIND models are provided330

as context (KB, Ssupp, xquery), and are tasked331

to generate yquery, while the baseline receives332

(KB, xquery).333

Generalization. In the first experiment, models334

are evaluated on their ability to generalize to un-335

seen KBs, while all inference lengths are seen. The336

training and testing sets contain inferences of all337

lengths for each of the seven types. Since this is the338

simplest form of systematic application of syllogis-339

tic inference, we refer to it as core generalization.340

We then consider two more challenging gener-341

alizations involving inferences of unseen length.342

As illustrated in Figure 3, we examine the case343

of generalizing to longer inferences when the344

model has only learned from shorter ones (as stud-345

ied in Saparov et al. 2023), and vice versa —gen-346

eralizing to shorter inferences after seeing only347

8Note that LRMs are also LLMs, but post-trained to gener-
ate longer intermediate chains of thought, improving perfor-
mance on complex reasoning tasks (Xu et al., 2025).

9See the API details and the exact prompts used to evaluate
closed models in Appendix C.3.

longer ones. In the logic literature, they are re- 348

spectively known as recursiveness and composi- 349

tionality (Vargas Guzmán et al., 2024). To test this, 350

we train exclusively on inferences whose lengths 351

x are σ(t) ≤ x ≤ µ(t) − 5, and test on the 352

five longest inferences for each type, i.e., those 353

whose length is µ(t) − 5 < x ≤ µ(t). In the 354

second case, we train on inferences with length 355

σ(t) + 5 ≤ x ≤ µ(t), and test only on the five 356

shortest inference lengths for each type, i.e., those 357

with length σ(t) ≤ x < σ(t) + 5. An intuitive 358

representation of these generalizations is provided 359

in Figure 3. Notably, within the MIND approach, 360

we consider two varying types of study examples 361

Ssupp: the aligned and disaligned sets of study 362

examples, in which each (xsupp, ysupp) either falls 363

within or outside the range of inference lengths 364

used for testing, respectively.10 365

Figure 6, in the Appendix, shows all infer- 366

ence type-length combinations within training and 367

test split in the core and in the length general- 368

ization settings. These datasets contain 1,000 369

and 100 datapoints for each training and testing 370

type–length combination, respectively. To further 371

investigate the performance of MIND in a lim- 372

ited data regime, we also consider the case where 373

only 100 datapoints are available for each training 374

type–length combination. 375

4.3 Prediction Accuracy 376

We consider a model prediction to be correct if the 377

set of premises extracted from the generated text 378

matches the ground truth set of minimal premises. 379

10More precisely, the meanings of aligned and disaligned
depend on whether we are evaluating models on unseen shorter
or longer inferences. For longer inferences, disaligned in-
cludes inferences with lengths σ(t) ≤ x ≤ µ(t) − 5, and
aligned includes those with lengths µ(t) − 5 < x ≤ µ(t).
For shorter ones, instead, aligned includes inferences with
lengths σ(t) ≤ x < σ(t) + 5, and disaligned includes those
with lengths σ(t) + 5 ≤ x ≤ µ(t).
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Model Method All Short Long

Fi
ne

-t
un

in
g Qwen-2.5 1.5B

MIND 93.11 ± 0.61 94.28 ± 0.61 91.76 ± 0.27
Baseline 85.56 ± 1.24 91.42 ± 0.82 80.56 ± 1.78

Qwen-2.5 3B
MIND 96.16 ± 0.44 96.24 ± 0.56 95.55 ± 0.43
Baseline 93.03 ± 1.15 95.34 ± 1.18 90.92 ± 1.27

Qwen-2.5 7B
MIND 98.13 ± 0.98 98.26 ± 0.82 97.69 ± 1.40
Baseline 95.76 ± 1.10 97.27 ± 1.22 94.13 ± 0.90

Pr
om

pt
in

g

GPT-4o
Few-shot 39.76 52.91 33.51
Zero-shot 15.90 28.97 9.89

o3-mini
Few-shot 88.45 87.91 88.51
Zero-shot 67.98 73.29 64.54

Table 1: Core generalization. Accuracy (mean ± std) on test inferences across all type-length combinations (All),
plus breakdown into the five shortest (Short) and longest (Long) inferences for each of the seven types of inference.
Fine-tuned Qwen models use MIND vs. Baseline; GPT-4o and o3-mini use few-shot vs. zero-shot prompting.

Using this criterion, we measure accuracy both in380

aggregate, i.e., across an entire test set, and de-381

composed by each test type-length combination.382

All models (1.5B, 3B, and 7B) are fine-tuned three383

times and with different random seeds, thus we re-384

port mean and standard deviation of each accuracy.385

5 Results386

5.1 Core Generalization387

We first examine the performance of meta-learning388

versus the baseline on core generalization (Table389

1), with models trained and tested on all inference390

type-length combinations. The “Short” and “Long”391

columns report aggregated accuracy on the sets392

of the five shortest and longest inferences, respec-393

tively, for each type. We hypothesize that longer394

inferences are harder because, to be correct, mod-395

els must select all premises belonging to a larger396

minimal set of premises.397

Across all Qwen-2.5 model sizes (1.5B, 3B,398

7B), the meta-learning approach consistently yields399

higher accuracy than the baseline. Performance im-400

proves with model scale in both approaches. For401

example, MIND accuracy increases from 93.11%402

(1.5B) to 98.13% (7B) on all type-length combina-403

tions, with accuracy on shortest inferences rising404

from 94.28% to 98.26%, and on the longest ones in-405

creasing from 91.76% to 97.69%. In contrast, base-406

line performance rises more slowly —from 85.56%407

(1.5B) to 95.76% (7B) —and shows a wider drop408

on the longest inferences, falling as low as 80.56%409

for the smallest model. Notably, the performance410

gap between MIND and the baseline narrows as411

model size increases, suggesting that larger mod- 412

els achieve better core generalization even without 413

meta-learning. It is worth noting that with limited 414

data, MIND’s advantage over the baseline becomes 415

much wider at all sizes, as shown in Appendix D.3. 416

The closed-source models GPT-4o and o3-mini 417

still underperform compared to Qwen-2.5 mod- 418

els fine-tuned with MIND. Both models perform 419

poorly in the zero-shot setting but improve with 420

few-shot prompting: GPT-4o reaches 39.76% on all 421

type-length combinations (with 52.91% on shortest 422

and 33.51% on longest inferences), while o3-mini 423

performs substantially better (88.45% all combina- 424

tion, 87.91% on shorters, and 88.51% on longest). 425

As expected, performance on the longest inferences 426

is worse than that on the shortest ones for GPT- 427

4o, while o3-mini maintains a more robust perfor- 428

mance across inference lengths. 429

5.2 Length Generalization 430

Table 2 shows that MIND models consistently out- 431

perform baseline models in generalizing to both 432

longer and shorter inferences than those seen dur- 433

ing training. In core generalization, we observed 434

that longer inferences are more challenging than 435

shorter ones. Instead, in the case of unseen lengths, 436

an interesting and somewhat counterintuitive pat- 437

tern emerges: it is generally easier for models to 438

generalize to longer inferences than to shorter ones. 439

This is true across all model sizes and in both ap- 440

proaches; For instance, the largest model, Qwen- 441

2.5 7B, achieved 90.03% accuracy on longer infer- 442

ences (disaligned) compared to 76.23% on shorter 443
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Model Method Short → Long Long → Short

Disaligned Aligned Disaligned Aligned

Qwen-2.5 1.5B
MIND 76.42 ± 2.95 91.75 ± 1.10 70.94 ± 2.27 71.13 ± 1.83
Baseline 63.53 ± 1.16 63.53 ± 1.16 56.67 ± 1.22 56.67 ± 1.22

Qwen-2.5 3B
MIND 87.61 ± 1.97 95.86 ± 0.70 77.19 ± 3.53 78.53 ± 1.71
Baseline 76.78 ± 1.63 76.78 ± 1.63 71.88 ± 1.49 71.88 ± 1.49

Qwen-2.5 7B
MIND 90.03 ± 1.09 96.84 ± 0.15 76.23 ± 2.91 83.41 ± 1.63
Baseline 80.76 ± 2.65 80.76 ± 2.65 71.08 ± 1.55 71.08 ± 1.55

Table 2: Generalization to unseen lengths. Accuracy (mean ± std) of meta-learning and baseline models when
trained on short inferences and tested on longer ones or vice versa. In both cases, we compare the settings in which
the inferences in the study examples either falls within (Aligned) or outside (Disaligned) the range of inference
lengths used for testing. Baseline models have no study examples, hence such difference does not hold for them.

ones (disaligned).444

Aligning study example lengths with the test445

condition (aligned) proves moderately to highly ef-446

fective for unseen short inferences across all MIND447

model sizes. For example, Qwen-2.5 1.5B im-448

proved from 76.42% to 91.75%, and Qwen-2.5449

3B improved from 87.61% to 95.86%. For unseen450

long inferences, this alignment is moderately ef-451

fective in larger models: Qwen-2.5 7B improved452

from 76.23% to 83.41%, while the 1.5B and 3B453

models showed smaller gains (70.94% to 71.13%454

and 77.19% to 78.53%, respectively). These results455

indicate that MIND enables models in the aligned456

condition to exploit abstract patterns in the study ex-457

amples (unseen inference lengths), allowing them458

to more effectively answer query hypotheses requir-459

ing length generalization.460

Again, MIND’s better performance in length461

generalization is especially noticeable with limited462

training data, where the difference between MIND463

and baseline models grows significantly (see Ap-464

pendix D.3 for more details).465

6 Error Analysis466

Beyond simply measuring the accuracy of MIND467

and the baseline, we additionally focus on two main468

types of errors models make when evaluated on un-469

seen lengths. First, among all errors, we consider470

the proportion of non-minimal valid set of premises471

(NVM). This means that the correct minimal set472

was generated by the model, but together with un-473

necessary premises; for this case, we also measure474

how many unnecessary premises, on average, the475

models generate. Alternatively, models may fail476

to provide the complete A-chain within the correct477

minimal set of premises, meaning that at least one 478

necessary A premise is missing (MAP); here, we 479

also track the average number of missing necessary 480

A-formulas in erroneous answers. NVM and MAP 481

are mutually exclusive. Furthermore, we consider 482

an additional type of error that can occur simulta- 483

neously with either NVM or MAP: models may 484

hallucinate premises —referred to as hallucinated 485

premises (HP) —and output a formula that is not 486

contained in the KB. 487

Table 3 presents the error analysis for Qwen- 488

2.5 7B11 on the challenging length generalization 489

settings.12 HP is a common error type across both 490

settings (often >50%). The baseline model has the 491

highest HP rate in long to short (72.78%), while 492

MIND models are generally better. 493

When generalizing to shorter inferences, a sub- 494

stantial portion of errors (28-43%) are NVM, in- 495

dicating models indeed find logical solutions but 496

include unnecessary premises. In this context, a 497

lower number of unnecessary premises is better, as 498

it is closer to the minimal set. The baseline model 499

adds the most unnecessary premises (6.19 average), 500

compared to MIND (disaligned) (4.9) and MIND 501

(aligned) (3.72). 502

For generalizations to longer inferences, errors 503

show different patterns, with few NVM errors (4- 504

14%) and predominantly MAP errors (81-90%). 505

The average number of missing premises is higher 506

in short to long (3.65-6.66) than in long to short 507

(1.76-2.1), suggesting models struggle to provide 508

the complete set of premises when evaluated on 509

11Each model was fine-tuned three times with different
random seeds, we selected the best model for each approach
for this analysis.

12See Appendix D.4 for further error analysis results.
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Method NVM [%] Avg. NVM MAP [%] Avg. MAP HP [%]

L → S
MIND (aligned) 42.94 4.9 36.68 2.1 57.5
MIND (disaligned) 28.31 3.72 52.81 1.76 66.06
Baseline 28.21 6.19 23.38 2.1 72.78

S → L
MIND (aligned) 9.76 1.66 87.54 5.08 60.94
MIND (disaligned) 14.14 6.14 81.82 3.65 35.35
Baseline 3.87 2.36 89.79 6.66 66.9

Table 3: Error analysis. Error analysis comparing MIND and baseline on long to short (L → S) and short to long
(S → L) generalization. The table shows percentages and averages for non-minimal valid sets of premises (NVM)
and missing necessary A premises (MAP), and the percentage of hallucinated premises (HP).

longer inferences than seen during training. The510

baseline model struggles most with longer infer-511

ences, with a high MAP error rate (89.79%) and a512

large number of missing premises (6.66) contribut-513

ing to its lower accuracy compared to MIND.514

7 Related Work515

7.1 LLMs’ Logical Capabilities516

Recent work has highlighted weaknesses in LLMs’517

logical reasoning. LLMs often struggle with OOD518

generalization (Clark et al., 2021; Saparov et al.,519

2023; Vargas Guzmán et al., 2024), multi-step in-520

ference (Creswell et al., 2023), and consistency521

across formal reasoning patterns (Parmar et al.,522

2024; Hong et al., 2024). Neuro-symbolic methods523

address these gaps by integrating logic modules or524

symbolic solvers, improving both performance and525

interpretability (Pan et al., 2023; Olausson et al.,526

2023; Kambhampati et al., 2024). In a different527

direction, LRMs have shown strong gains in rea-528

soning and planning tasks (Xu et al., 2025). Our529

proposed meta-learning approach offers a comple-530

mentary alternative by enabling LLMs to adapt531

across logical tasks without relying on symbolic532

modules, as our results demonstrate.533

7.2 Meta-learning534

Meta-learning enables models to rapidly adapt to535

new tasks by leveraging prior experiences across536

tasks (Thrun and Pratt, 1998; Hospedales et al.,537

2022). Foundational approaches include memory-538

augmented neural networks (Santoro et al., 2016),539

prototypical networks (Snell et al., 2017), and540

model-agnostic meta-learning (MAML) (Finn541

et al., 2017). In the context of LLMs, meta-learning542

has been explored through techniques such as meta-543

in-context learning (Coda-Forno et al., 2023), in-544

context tuning (Chen et al., 2022), and MetaICL545

(Min et al., 2022), which either train for or ex- 546

ploit the in-context learning abilities of models to 547

adapt to new tasks using few-shot examples. Our 548

proposed method draws inspiration from the MSL 549

framework (Irie and Lake, 2024), which we adapt 550

and extend to solve the logical premise selection 551

task. 552

8 Conclusion 553

In this work, we introduced MIND, a meta-learning 554

fine-tuning approach to improve deductive rea- 555

soning in LLMs, explicitly targeting the logical 556

premise selection task. Our results show that 557

MIND significantly enhances generalization com- 558

pared to the baseline, especially in small-scale and 559

low-data scenarios. Remarkably, our fine-tuned 560

small models outperform state-of-the-art LLMs on 561

this task. This demonstrates the potential of MIND 562

to advance the development of more robust and 563

reliable AI systems. 564

Future work should explore several potential av- 565

enues. First, we should investigate not only system- 566

atic generalization using fixed inference rules, as 567

we have done here, but also extend our research to 568

learning the composition of multiple logical infer- 569

ences. This approach aligns with ideas proposed 570

in other meta-learning research, such as Meta- 571

Learning for Compositionality(Lake and Baroni, 572

2023). Additionally, we should examine increas- 573

ingly complex fragments of language, where the in- 574

teractions among various inference-building blocks 575

and reasoning forms become more intricate, and 576

assess the effectiveness of MIND in helping LLMs 577

to generalize in such contexts. 578

9 Limitations 579

Despite demonstrating meaningful progress in en- 580

hancing the deductive reasoning capabilities of lan- 581
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guage models through the MIND approach, this582

study has several limitations that future research583

could address.584

Model selection. The evaluation primarily tar-585

gets small to mid-sized language models (1.5B to586

7B parameters), largely due to computational con-587

straints. This focus leaves open the question of588

whether the observed improvements from MIND589

generalize to larger-scale models.590

Meta-learning trade-offs. The gains in reason-591

ing ability achieved by MIND come with associ-592

ated costs. The meta-learning strategy adopted in-593

volves incorporating multiple study examples into594

the input context during fine-tuning. This leads595

to longer input sequences, which in turn increase596

memory usage and computational demands com-597

pared to standard fine-tuning approaches.598

Focus on a logic fragment. This work is con-599

strained to the syllogistic fragment of first-order600

logic. Future research should investigate whether601

our conclusions extend to more expressive logical602

systems or to real-world scenarios where reason-603

ing tasks are less structured. However, syllogistic604

logic is a restricted domain that allows for precise605

control over variables such as the type of inference606

considered, inference length, and the structure of607

knowledge bases. In the context of this study, it608

serves as a valuable testbed for investigating logical609

generalization in LLMs.610
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A Formal Semantics and Syllogistic818

Inference Patterns819

In this section, we formally define the semantics of820

syllogistic logic by translating syllogistic formulas821

into first-order logic. We also specify a consistent822

set of such formulas and formalize a valid inference823

within this framework. Let A = {a, b, c, . . .} be824

a set of atomic terms, and let R = {R,S, T, . . .}825

be a set of unary relational symbols. We bijec-826

tively assign to every atomic term a ∈ A a re-827

lational symbol Ra ∈ R, and interpret syllogis-828

tic formulas as first-order logic sentences: Aab829

as ∀x [Ra(x) → Rb(x)], Eab as ∀x [Ra(x) →830

¬Rb(x)], Iab as ∃x [Ra(x) ∧ Rb(x)], and Oab as831

∃x [Ra(x)∧¬Rb(x)]. We say that a set F of syllo-832

gistic formulas is consistent if there exists a struc-833

ture M in signature R such that every relation RM834

is non-empty, and the interpretation of every sen-835

tence in F holds in M , denoted by M ⊨ F . For a836

syllogistic formula F , the pair (F , F ) is an infer-837

ence, denoted by F ⊨ F , if M ⊨ {F}, whenever838

M ⊨ F for a structure M in signature R.839

B Dataset840

B.1 KBs’ Generation841

Knowledge bases can be modeled as edge-labeled842

graphs, in which nodes correspond to atomic843

terms and edges are labeled with quantifiers. Our844

graph generation algorithm comprises two princi-845

pal stages: (1) We first construct all A-chains of846

Type Inference

1 {Aa− b, Ac− d,Oad} ⊨ Obc
2 {Aa− b} ⊨ Aab
3 {Aa− b, Ac− d,Aa− e, Ede} ⊨ Obc
4 {Aa− b, Aa− c} ⊨ Ibc
5 {Aa− b, Ac− d,Ae− f, Iae, Edf} ⊨ Obc
6 {Aa− b, Ac− d,Ebd} ⊨ Eac
7 {Aa− b, Ac− d, Iac} ⊨ Ibd

Table 4: Syllogistic inference types. Each row shows
a distinct logical inference pattern. Notation follows
traditional categorical logic: Aab denotes a universal
affirmative ("All a are b"), Eab a universal negative
("No a are b"), Iac a existential affirmative ("Some a
are c"), and Oad a existential negative ("Some a are not
d"). Formulas of the form Aa− b denote a sequence of
n A-formulas relating a and b.

the knowledge base, which is used as its structural 847

backbone, by generating disjoint trees—directed 848

acyclic graphs that ensure a unique path exists be- 849

tween any pair of nodes. (2) Subsequently, we 850

incorporate additional label edges corresponding 851

to E, I , and O formulas, while maintaining the 852

overall consistency of the knowledge base. 853

To construct all possible valid syllogisms from 854

each artificially generated knowledge base, we em- 855

ploy antillogisms—minimal inconsistent set of syl- 856

logistic formulas. For example, consider the set 857

{Aab,Aac,Ebc}, which forms an antilogism. By 858

negating the inconsistent formula Ebc, we obtain 859

a valid inference in which the remaining formulas 860

{Aab,Aac} entail its negation, i.e., {Aab,Aac} ⊨ 861

Ibc. This corresponds to an inference of type 4. 862

More generally, any syllogism can be derived from 863

an antilogism of the form F ∪ {¬F} by infer- 864

ring the conclusion F from the consistent set F , 865

that is, F ⊨ F . This result was formally estab- 866

lished by (Smiley, 1973), who also demonstrated 867

that there exist only three distinct types of antilo- 868

gisms. Furthermore, as shown by (Vargas Guzmán 869

et al., 2024), all valid syllogistic inferences can be 870

systematically derived from these three canonical 871

forms of antilogism (see Table 4). 872

B.2 KBs’ Visualization 873

To provide an intuitive understanding of the vari- 874

ous types of inferences and their derivation from 875

the knowledge bases employed in our framework, 876

we represent syllogistic formulas as graphs. These 877

graphs encompass the knowledge base, the corre- 878

sponding hypothesis, and the minimal inference— 879

defined as the smallest subset of premises required 880

to derive the hypothesis. 881
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Experiment Split Size # KBs # Premises (Min–Max)

Core Generalization
Train 97,000 100 26–35
Validation 485 15 26–36
Test 9,700 200 26–38

Short → Long
Train 62,000 100 26–35
Validation 310 15 26–36
Test 3,500 194 26–38

Long → Short
Train 62,000 100 26–35
Validation 310 15 26–36
Test 3,500 200 26–38

Table 5: Dataset statistics across experiments. For each experiment and split, the table reports the number of
unique query hypothesis-premises pairs (Size), the number of KBs from which the pairs are generated (# KBs), and
the range of total premises within KBs (# Premises). In the additional experiment with limited training data, the
total training size is reduced by a factor of ten.

Figure 19 illustrates a type 2 inference, charac-882

terized by a conclusion in the form of a universal883

affirmative (A-formula). The premises consist of884

a single sequence of A-formulas. This represents885

the most elementary form of syllogistic inference,886

whose structural pattern is embedded within all887

other types. Inferences of types 1, 3, and 5, which888

yield particular negative conclusions (O-formulas),889

are presented in Figures 18, 20, and 22, respectively.890

Syllogisms corresponding to types 4 and 7, both891

concluding with particular affirmative statements892

(I-formulas), are shown in Figures 21 and 24. Fi-893

nally, the type 6 inference, which concludes with894

a universal negative (E-formula), is depicted in895

Figure 23.896

B.3 Term Vocabulary897

To train and evaluate our models, we artificially898

generated 5000 unique pseudowords by randomly899

concatenating two syllables selected from a set of900

approximately 300 of the most commonly used En-901

glish syllables. Although these pseudowords are902

semantically meaningless, they remain phonolog-903

ically plausible and are generally pronounceable.904

On occasion, the generation process may yield ac-905

tual English words.906

Additionally, we constructed two substitution907

sets to support our lexical generalization evaluation908

(see Appendix D.2). The first set comprises 5000909

pseudowords generated using the Wuggy pseu-910

doword generator (Keuleers and Brysbaert, 2010).911

We selected 500 English two-syllable nouns and,912

for each, produced 10 distinct pseudowords using913

Wuggy’s default parameters. The second set con-914

sists of symbolic constants, each formed by the 915

character “X” followed by an integers ranging from 916

1 to 5000. 917

B.4 Data Statistics 918

As described in Section 3.1, we generated as many 919

KBs as necessary to obtain at least 1000 training, 920

5 validation, and 100 test examples for each in- 921

ference type and length combination in the range 922

from 0 to 19 (see all the combinations in Figure 923

6). Table 5 summarizes dataset statistics for the 924

core generalization experiment, as well as for the 925

length generalization ones (“Short → Long” and 926

“Long → Short”). For each experiment and split, 927

the table provides the total number of examples, 928

the number of KBs used to generate them, and the 929

range of premises across KBs. In the additional 930

experiment with limited training data described in 931

Appendix D.3, the total training size is reduced by 932

a factor of ten in each setting. 933

C Experiment Details 934

C.1 Implementation Details 935

All experiments were conducted using the PyTorch 936

and Hugging Face Transformers libraries. We used 937

NVIDIA A100 80GB GPUs. Due to the relatively 938

small size of the models used in the experiments, 939

each fine-tuning run, both for MIND and the base- 940

line, was able to fit on a single GPU. We estimate 941

a total compute usage of approximately 500 GPU 942

hours across all experiments. Additionally, GitHub 943

Copilot was used as an assistant tool for parts of 944

the project’s source code development. 945
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You are tasked with logical premise selection. Given:
1. A knowledge base consisting of premises.
2. A query hypothesis to solve, preceded by the token <QUERY>.
Your task is to identify the unique minimal set of premises from the
knowledge base that logically proves the query hypothesis. Since the
knowledge base is non-redundant, every valid hypothesis has exactly one
minimal set of premises that proves it.
Provide your answer in exactly this format:
### Answer: premise1, premise2, ..., premiseN

Figure 4: Zero-shot system prompt. The zero-shot system prompt used with the closed models GPT-4o and
o3-mini. The query hypothesis is subsequently provided as the first user interaction. We then extract the set of
premises returned by the model using regular expressions.

You are tasked with logical premise selection. Given:
1. A knowledge base consisting of premises.
2. Example hypotheses along with their correct minimal premise sets,
preceded by the token <STUDY>.
3. A query hypothesis to solve, preceded by the token <QUERY>.
Your task is to identify the unique minimal set of premises from the
knowledge base that logically proves the query hypothesis. Since the
knowledge base is non-redundant, every valid hypothesis has exactly one
minimal set of premises that proves it.
Examine the provided examples carefully to understand how to select
the correct minimal set of premises. The examples demonstrate correct
premise selections for various hypotheses.
Provide your answer in exactly this format:
### Answer: premise1, premise2, ..., premiseN

Figure 5: Few-shot system prompt. The Few-shot system prompt used with the closed models GPT-4o and o3-mini.
The set of study examples provided as few-shot examples, along with the query hypothesis are provided as the first
user interaction. We then extract the set of premises returned by the model using regular expressions.

C.2 Fine-tuning Details946

All models were fine-tuned using Low-Rank Adap-947

tation (LoRA) (Hu et al., 2022) with a rank r = 64,948

alpha value α = 128, and dropout probability949

p = 0.05. The adaptation was applied to all atten-950

tion and linear weight matrices, excluding the em-951

bedding and unembedding layers. Baseline models952

were loaded in bfloat16 precision, while MIND953

fine-tuned models employed QLoRA (Dettmers954

et al., 2023) with 4-bit quantization to accommo-955

date memory constraints from longer sequences.956

Despite the lower precision, the meta-learning mod-957

els outperformed the baseline.958

Training hyperparameters included a learning959

rate of 5×10−5, zero weight decay, and no learning960

rate warmup (steps=0, ratio=0.0). Batch sizes were961

4 (training), 8 (validation), and 32 (testing). We 962

used the AdamW optimizer (Kingma and Ba, 2015) 963

with a linear learning rate scheduler. Although we 964

experimented with a range of other hyperparameter 965

configurations, we found this setup to be the most 966

stable across tasks and random seeds. Baseline 967

models were trained for 4 epochs, whereas meta- 968

learning models were trained for only 1 epoch to 969

account for differences in per-sample data exposure 970

(see Section 3.2). We performed 10 validations per 971

epoch and selected the model with the highest vali- 972

dation accuracy. Each fine-tuning run was repeated 973

with three different random seeds: 1048, 512, and 974

1056. 975
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C.3 Closed Source Models976

API details. We accessed OpenAI’s closed-977

source models GPT-4o (OpenAI, 2024) and o3-978

mini (OpenAI, 2025) through the Azure Ope-979

nAI Service’s Batch API. The API version980

used was 2025-03-01-preview, and the specific981

model versions were gpt-4o-2024-08-06 and982

o3-mini-2025-01-31. The total cost of the ex-983

periments was approximately 250 USD. For both984

models, we employed the default API settings. In985

the case of o3-mini, this corresponds to a “medium”986

reasoning effort. We did not experiment with a high987

reasoning effort in order to limit API usage costs.988

Prompts. We provide the exact system prompts989

used in the experiments involving GPT-4o and990

o3-mini in both the zero-shot (Figure 4) and few-991

shot (Figure 5) settings. In both cases, the system992

prompt instructs the models on how to perform the993

task and specifies the exact format of the answer994

they should provide. This format facilitates the995

extraction of the set of premises generated by the996

models. We then present the query hypothesis as997

the first user interaction. In the few-shot setting, ex-998

ample interactions are included in the user message999

prior to the query.1000

D Additional Results1001

D.1 Accuracies by Type and Length1002

In this section, we present the complete set of1003

accuracies broken down by type and length for1004

both MIND and baseline models, as well as closed1005

source models.1006

MIND and baseline. We report the average ac-1007

curacy for each inference type and length combi-1008

nation in both the core and length generalization1009

settings for the Qwen-2.5 models. Figures 7, 8, and1010

9 show the accuracies for core generalization for1011

the 1.5B, 3B, and 7B models, respectively, in both1012

the MIND and baseline settings. Figures 13, 14,1013

and 15 show the accuracies for short to long gen-1014

eralization, while Figures 10, 11, and 12 show the1015

accuracies for long to short generalization for the1016

same models, again in both the MIND and baseline1017

settings.1018

Across model sizes and approaches, the easiest1019

types of inferences are type 2 and type 6. In con-1020

trast, types 1, 3, and 4 are typically the most chal-1021

lenging. A notable difference between the MIND1022

and baseline models is that the latter consistently1023

struggle with type 5 inferences, whereas the former1024

show stronger performance. However, apart from 1025

type 5 inferences, MIND models generally perform 1026

better but still tend to struggle or excel in similar 1027

type and length combinations as the baseline mod- 1028

els. 1029

These patterns also hold in the length general- 1030

ization setting, with the additional observation that 1031

performance tends to degrade as the distance be- 1032

tween the lengths used for training and those used 1033

for testing increases. 1034

Closed models. Figures 16 and 17 show the ac- 1035

curacies for zero-shot and few-shot prompting of 1036

GPT-4o and o3-mini, respectively. Both models 1037

show substantial improvement in the few-shot set- 1038

ting. GPT-4o is the lowest-performing model ac- 1039

cording to Table 1, a result further supported by the 1040

detailed breakdown in this section. It consistently 1041

achieves high accuracy only on type 2 inferences, 1042

which are the easiest and rely primarily on simple 1043

transitivity. o3-mini struggles more with types 3 1044

and 4. Additionally, a clear difference in perfor- 1045

mance on type 5 inferences is observed between 1046

the zero-shot and few-shot settings. This resembles 1047

the difference seen in Qwen-2.5 models between 1048

MIND and baseline. These results show that even 1049

pretrained models tend to struggle with the same 1050

types of syllogistic inferences as fine-tuned models, 1051

with a few exceptions, such as type 5 inferences. 1052

D.2 Lexical Generalization 1053

In the main body of the paper, we evaluated core 1054

and length generalization. Here, we report an ad- 1055

ditional set of results related to lexical general- 1056

ization. By lexical generalization, we mean the 1057

manipulation of the vocabulary assigned to each of 1058

the terms appearing in the formulas within KBs. 1059

Section 5.1 presents results using the same vo- 1060

cabulary of pseudowords employed during training, 1061

tested on unseen KBs. Here, we explore two more 1062

challenging settings: one using a new vocabulary of 1063

pseudowords, and another using abstract symbols 1064

(e.g., x2435) in place of pseudowords. This latter 1065

setting is distributionally the most distant from the 1066

training data. 1067

Table 6 presents the results of this lexical gener- 1068

alization experiment. Across all Qwen-2.5 model 1069

sizes (1.5B, 3B, 7B) and conditions, the MIND ap- 1070

proach consistently yields higher accuracy than the 1071

baseline, with performance improving with model 1072

scale for both approaches. Notably, for both known 1073

and unseen pseudowords, performance is similar in 1074
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Model Type Core Unseen Pseudowords Unseen Constants

Qwen-2.5 1.5B
MIND 93.11 ± 0.61 93.15 ± 0.11 74.24 ± 1.07
Baseline 85.56 ± 1.24 83.34 ± 1.90 38.49 ± 1.06

Qwen-2.5 3B
MIND 96.16 ± 0.44 96.09 ± 0.30 83.21 ± 1.19
Baseline 93.03 ± 1.15 91.49 ± 0.68 53.12 ± 2.03

Qwen-2.5 7B
MIND 98.13 ± 0.98 98.03 ± 1.19 86.87 ± 0.31
Baseline 95.76 ± 1.10 94.89 ± 1.55 57.81 ± 2.17

Table 6: Lexical generalization. Accuracy (mean ± std) of MIND and Baseline models in core generalization as in
the main paper (Core) and with novel unseen terms (Unseen Pseudowords, Unseen Constants).

Model Type Core Long → Short Short → Long

Qwen-2.5 1.5B
MIND 76.67 ± 0.38 50.40 ± 3.45 45.81 ± 1.13
Baseline 55.14 ± 0.53 29.37 ± 1.85 30.22 ± 1.52

Qwen-2.5 3B
MIND 84.68 ± 0.54 64.77 ± 0.73 53.95 ± 3.46
Baseline 66.51 ± 0.19 43.66 ± 1.93 43.67 ± 2.05

Qwen-2.5 7B
MIND 88.01 ± 1.11 69.24 ± 9.79 60.90 ± 2.94
Baseline 68.54 ± 2.25 45.27 ± 0.95 43.94 ± 2.82

Table 7: Generalization in limited data regime. Accuracy (mean ± std) of meta-learning and baseline models
trained and tested on all inference types and lengths (Core), as well as tested for longer or shorter inferences than
those seen during training. The models are trained on only 100 examples for each combination of inference type
and inference length.

both the MIND and baseline settings, that is, chang-1075

ing the pseudoword vocabulary has little impact on1076

model performance.1077

In contrast, for the most challenging generaliza-1078

tion setting—unseen constants—both approaches1079

exhibit a significant drop in performance, but the1080

performance gap between MIND and the base-1081

line becomes more pronounced: MIND achieves1082

86.87% at 7B, compared to just 57.81% for the1083

baseline.1084

D.3 Generalization with Limited Data1085

Table 7 presents the performance of the models1086

when trained in a low data regime, using only 1001087

examples for each combination of inference type1088

and length. Consistent with the findings in Table1089

6 and Table 2, MIND significantly outperforms1090

the baseline across all model sizes and evaluation1091

metrics. For the core generalization performance,1092

the MIND models achieve substantially higher ac-1093

curacy (e.g., 88.01% for Qwen-2.5 7B MIND vs.1094

68.54% for baseline). Similarly, when evaluating1095

generalization to shorter and longer inferences than1096

seen during training, MIND models demonstrate a1097

clear advantage.1098

Crucially, the performance gap between the 1099

meta-learning and baseline approaches is notably 1100

wider in this limited data setting compared to the 1101

standard data setting. This highlights the enhanced 1102

generalization capabilities on limited data induced 1103

by meta-learning. 1104

D.4 Additional Error Analysis 1105

In this section, we present the additional error anal- 1106

ysis results for Qwen-2.5 7B both in MIND and 1107

baseline setting on the core generalization experi- 1108

ment. Additionally, we also show the error analysis 1109

results for GPT-4o and o3-mini. The detailed break- 1110

down of these errors is presented in Table 8. 1111

MIND and baseline. For the Qwen-2.5 7B 1112

model, MIND shows a higher percentage of 1113

non-minimal valid set of premises (NVM) errors 1114

(17.86%) compared to the baseline (6.67%) on core 1115

generalization. However, when these NVM errors 1116

occur, MIND includes fewer unnecessary premises 1117

on average (Avg. NVM of 2.80) than the base- 1118

line (Avg. NVM of 5.19). Conversely, the base- 1119

line model exhibits a higher proportion of errors 1120

due to missing necessary A premises (MAP) at 1121

91.43%, with an average of 5.39 missing premises. 1122
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Model Method NVM [%] Avg. NVM MAP [%] Avg. MAP HP [%]

Qwen-2.5 7B
MIND 17.86 2.80 80.36 3.32 75.00
Baseline 6.67 5.19 91.43 5.39 80.95

GPT-4o
Few-shot 28.13 2.92 70.54 5.76 22.76
Zero-shot 14.46 3.50 83.01 6.45 17.15

o3-mini
Few-shot 84.57 2.38 14.23 2.65 7.21
Zero-shot 76.60 2.61 22.55 7.09 2.62

Table 8: Error analysis. Error analysis on core generalization in Qwen-2.5 7B, and the closed models GPT-4o and
o3-mini. The table shows percentages and averages for non-minimal valid sets of premises (NVM) and missing
necessary A premises (MAP), and the percentage of hallucinated premises (HP).

This is higher than MIND, which has a MAP per-1123

centage of 80.36% and an average of 3.32 missing1124

premises. Both methods show high rates of halluci-1125

nated premises (HP), with MIND at 75.00% and the1126

baseline slightly higher at 80.95%. These results1127

suggest that not only MIND has generally a higher1128

core generalization performance than the baseline,1129

but also that MIND errors tend to be closer to the1130

correct set of premises.1131

Closed models. The error analysis for closed1132

models reveals distinct patterns for GPT-4o and o3-1133

mini. For GPT-4o, MAP errors are predominant in1134

both few-shot (70.54%) and zero-shot (83.01%) set-1135

tings. The average number of missing A premises1136

is also high (5.76 for few-shot and 6.45 for zero-1137

shot) and indicates that the model struggles to pro-1138

vide all the necessary premises to derive hypothe-1139

ses.1140

In contrast, o3-mini primarily struggles with1141

NVM errors, which constitute 84.57% of errors1142

in the few-shot setting and 76.60% in the zero-1143

shot setting. The average number of unnecessary1144

premises is relatively low and similar in both set-1145

tings (2.38 for few-shot, 2.61 for zero-shot). This1146

shows that the model is capable of providing logi-1147

cally valid set of premises from which hypotheses1148

can be derived but, on the other hand, struggles1149

with the concept of minimality. An interesting1150

characteristic of o3-mini is its very low HP rate, at1151

7.21% for few-shot and an even lower 2.62% for1152

zero-shot, which is considerably better than both1153

Qwen-2.5 7B and GPT-4o.1154
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Train/Val Test

Figure 6: Combination of inference type and length within generated KBs. In each heatmap, rows represent
Inference Types (1–7), while columns represent Lengths (0–19). The train, validation, and test splits use fixed
values of 1000 or 100, 5, and 100 samples respectively for all non-zero entries (Colored). Entries with values equal
to 0 indicate non-existing combinations of length and type within the split that is considered (White).
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Figure 7: Accuracy of MIND (Top) and Baseline (Bottom) Qwen-2.5 1.5B on core generalization decomposed by
inference type and length.

Figure 8: Accuracy of MIND (Top) and Baseline (Bottom) Qwen-2.5 3B on core generalization decomposed by
inference type and length.
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Figure 9: Accuracy of MIND (Top) and Baseline (Bottom) Qwen-2.5 7B on core generalization decomposed by
inference type and length.

Figure 10: Accuracy of MIND (Left) and Baseline (Right) Qwen-2.5 1.5B on long to short generalization decom-
posed by inference type and length.

Figure 11: Accuracy of MIND (Left) and Baseline (Right) Qwen-2.5 3B on long to short generalization decomposed
by inference type and length.
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Figure 12: Accuracy of MIND (Left) and Baseline (Right) Qwen-2.5 7B on long to short generalization decomposed
by inference type and length.

Figure 13: Accuracy of MIND (Left) and Baseline (Right) Qwen-2.5 1.5B on short to long generalization decom-
posed by inference type and length.

Figure 14: Accuracy of MIND (Left) and Baseline (Right) Qwen-2.5 3B on short to long generalization decomposed
by inference type and length.

Figure 15: Accuracy of MIND (Left) and Baseline (Right) Qwen-2.5 7B on short to long generalization decomposed
by inference type and length.
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Figure 16: Accuracy of Few-shot (Top) and Zero-shot (Bottom) GPT-4o on core generalization decomposed by
inference type and length.

Figure 17: Accuracy of Few-shot (Top) and Zero-shot (Bottom) o3-mini on core generalization decomposed by
inference type and length.
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KB with Query Hypothesis and Type 1 Inference:

Textual Translation:

knowledge base: All x1 are x2, All x2 are x3, All x2 are x4, All x3 are x5, All x4 are x6, All
x5 are x7, All x6 are x8, All x8 are x9, All x9 are x10, All x10 are x11, All x11 are x12, All
x13 are x14, All x13 are x15, All x14 are x16, All x15 are x17, All x16 are x18, All x17 are
x19, All x18 are x20, All x19 are x21, All x21 are x22, All x22 are x23, All x23 are x24, All
x24 are x25, All x24 are x26, All x26 are x27, No x20 are x12, Some x15 are x1, Some x11 are not
x4, Some x5 are not x1, Some x20 are not x16

hypothesis: Some x12 are not x1

premises: All x1 are x2, All x2 are x4, All x11 are x12, Some x11 are not x4

Figure 18: Type 1 syllogistic inference on graphs. Visualization of a type 1 syllogistic inference using a graph
representation of an example KB, alongside the corresponding textual translation. In the graph (top), nodes represent
predicates. Black edges indicate A-formulas (“All As are Bs”), blue edges indicate I-formulas (“Some As are Bs”),
red edges indicate E-formulas (“No As are Bs”), and yellow edges indicate O-formulas (“Some As are not Bs”).
The query hypothesis is represented by a dashed green edge, and the edges that prove the hypothesis are highlighted
in green. The text translation illustrates how the abstract graph representation is converted into a text format suitable
for LM processing by applying fixed templates that represent logical formulas.
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KB with Query Hypothesis and Type 2 Inference:

Textual Translation:

knowledge base: All x1 are x2, All x2 are x3, All x2 are x4, All x3 are x5, All x4 are x6, All
x5 are x7, All x6 are x8, All x8 are x9, All x9 are x10, All x10 are x11, All x11 are x12, All
x13 are x14, All x13 are x15, All x14 are x16, All x15 are x17, All x16 are x18, All x17 are
x19, All x18 are x20, All x19 are x21, All x21 are x22, All x22 are x23, All x23 are x24, All
x24 are x25, All x24 are x26, All x26 are x27, No x20 are x12, Some x15 are x1, Some x11 are not
x4, Some x5 are not x1, Some x20 are not x16

hypothesis: All x2 are x11

premises: All x2 are x4, All x4 are x6, All x6 are x8, All x8 are x9, All x9 are x10, All x10
are x11

Figure 19: Type 2 syllogistic inference on graphs. Visualization of a type 2 syllogistic inference using a graph
representation of an example KB, alongside the corresponding textual translation. In the graph (top), nodes represent
predicates. Black edges indicate A-formulas (“All As are Bs”), blue edges indicate I-formulas (“Some As are Bs”),
red edges indicate E-formulas (“No As are Bs”), and yellow edges indicate O-formulas (“Some As are not Bs”).
The query hypothesis is represented by a dashed green edge, and the edges that prove the hypothesis are highlighted
in green. The text translation illustrates how the abstract graph representation is converted into a text format suitable
for LM processing by applying fixed templates that represent logical formulas.
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KB with Query Hypothesis and Type 3 Inference:

Textual Translation:

knowledge base: All x1 are x2, All x2 are x3, All x2 are x4, All x3 are x5, All x4 are x6, All
x5 are x7, All x6 are x8, All x8 are x9, All x9 are x10, All x10 are x11, All x11 are x12, All
x13 are x14, All x13 are x15, All x14 are x16, All x15 are x17, All x16 are x18, All x17 are
x19, All x18 are x20, All x19 are x21, All x21 are x22, All x22 are x23, All x23 are x24, All
x24 are x25, All x24 are x26, All x26 are x27, No x20 are x12, Some x15 are x1, Some x11 are not
x4, Some x5 are not x1, Some x20 are not x16

hypothesis: Some x3 are not x16

premises: All x2 are x3, All x2 are x4, All x4 are x6, All x6 are x8, All x8 are x9, All x9 are
x10, All x10 are x11, All x11 are x12, All x16 are x18, All x18 are x20, No x20 are x12

Figure 20: Type 3 syllogistic inference on graphs. Visualization of a type 3 syllogistic inference using a graph
representation of an example KB, alongside the corresponding textual translation. In the graph (top), nodes represent
predicates. Black edges indicate A-formulas (“All As are Bs”), blue edges indicate I-formulas (“Some As are Bs”),
red edges indicate E-formulas (“No As are Bs”), and yellow edges indicate O-formulas (“Some As are not Bs”).
The query hypothesis is represented by a dashed green edge, and the edges that prove the hypothesis are highlighted
in green. The text translation illustrates how the abstract graph representation is converted into a text format suitable
for LM processing by applying fixed templates that represent logical formulas.
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KB with Query Hypothesis and Type 4 Inference:

Textual Translation:

knowledge base: All x1 are x2, All x2 are x3, All x2 are x4, All x3 are x5, All x4 are x6, All
x5 are x7, All x6 are x8, All x8 are x9, All x9 are x10, All x10 are x11, All x11 are x12, All
x13 are x14, All x13 are x15, All x14 are x16, All x15 are x17, All x16 are x18, All x17 are
x19, All x18 are x20, All x19 are x21, All x21 are x22, All x22 are x23, All x23 are x24, All
x24 are x25, All x24 are x26, All x26 are x27, No x20 are x12, Some x15 are x1, Some x11 are not
x4, Some x5 are not x1, Some x20 are not x16

hypothesis: Some x7 are x8

premises: All x2 are x4, All x2 are x3, All x4 are x6, All x6 are x8, All x3 are x5, All x5 are
x7

Figure 21: Type 4 syllogistic inference on graphs. Visualization of a type 4 syllogistic inference using a graph
representation of an example KB, alongside the corresponding textual translation. In the graph (top), nodes represent
predicates. Black edges indicate A-formulas (“All As are Bs”), blue edges indicate I-formulas (“Some As are Bs”),
red edges indicate E-formulas (“No As are Bs”), and yellow edges indicate O-formulas (“Some As are not Bs”).
The query hypothesis is represented by a dashed green edge, and the edges that prove the hypothesis are highlighted
in green. The text translation illustrates how the abstract graph representation is converted into a text format suitable
for LM processing by applying fixed templates that represent logical formulas.

25



KB with Query Hypothesis and Type 5 Inference:

Textual Translation:

knowledge base: All x1 are x2, All x2 are x3, All x2 are x4, All x4 are x6, All x3 are x5, All
x6 are x8, All x5 are x7, All x8 are x9, All x9 are x10, All x10 are x11, All x11 are x12, All
x13 are x14, All x13 are x15, All x14 are x16, All x15 are x17, All x16 are x18, All x17 are
x19, All x18 are x20, All x19 are x21, All x21 are x22, All x22 are x23, All x23 are x24, All
x24 are x25, All x24 are x26, All x26 are x27, No x20 are x12, Some x15 are x1, Some x11 are not
x4, Some x5 are not x1, Some x20 are not x16

hypothesis: Some x17 are not x14

premises: All x1 are x2, All x2 are x4, All x4 are x6, All x6 are x8, All x8 are x9, All x9 are
x10, All x10 are x11, All x11 are x12, All x14 are x16, All x15 are x17, All x16 are x18, All
x18 are x20, No x20 are x12, Some x15 are x1,

Figure 22: Type 5 syllogistic inference on graphs. Visualization of a type 5 syllogistic inference using a graph
representation of an example KB, alongside the corresponding textual translation. In the graph (top), nodes represent
predicates. Black edges indicate A-formulas (“All As are Bs”), blue edges indicate I-formulas (“Some As are Bs”),
red edges indicate E-formulas (“No As are Bs”), and yellow edges indicate O-formulas (“Some As are not Bs”).
The query hypothesis is represented by a dashed green edge, and the edges that prove the hypothesis are highlighted
in green. The text translation illustrates how the abstract graph representation is converted into a text format suitable
for LM processing by applying fixed templates that represent logical formulas.
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KB with Query Hypothesis and Type 6 Inference:

Textual Translation:

knowledge base: All x1 are x2, All x2 are x3, All x2 are x4, All x3 are x5, All x4 are x6, All
x5 are x7, All x6 are x8, All x8 are x9, All x9 are x10, All x10 are x11, All x11 are x12, All
x13 are x14, All x13 are x15, All x14 are x16, All x15 are x17, All x16 are x18, All x17 are
x19, All x18 are x20, All x19 are x21, All x21 are x22, All x22 are x23, All x23 are x24, All
x24 are x25, All x24 are x26, All x26 are x27, No x20 are x12, Some x15 are x1, Some x11 are not
x4, Some x5 are not x1, Some x20 are not x16

hypothesis: No x1 are x13

premises: All x1 are x2, All x2 are x4, All x4 are x6, All x6 are x8, All x8 are x9, All x9 are
x10, All x10 are x11, All x11 are x12, All x13 are x14, All x14 are x16, All x16 are x18, All
x18 are x20, No x20 are x12,

Figure 23: Type 6 syllogistic inference on graphs. Visualization of a type 6 syllogistic inference using a graph
representation of an example KB, alongside the corresponding textual translation. In the graph (top), nodes represent
predicates. Black edges indicate A-formulas (“All As are Bs”), blue edges indicate I-formulas (“Some As are Bs”),
red edges indicate E-formulas (“No As are Bs”), and yellow edges indicate O-formulas (“Some As are not Bs”).
The query hypothesis is represented by a dashed green edge, and the edges that prove the hypothesis are highlighted
in green. The text translation illustrates how the abstract graph representation is converted into a text format suitable
for LM processing by applying fixed templates that represent logical formulas.
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KB with Query Hypothesis and Type 7 Inference:

Textual Translation:

knowledge base: All x1 are x2, All x2 are x3, All x2 are x4, All x3 are x5, All x4 are x6, All
x5 are x7, All x6 are x8, All x8 are x9, All x9 are x10, All x10 are x11, All x11 are x12, All
x13 are x14, All x13 are x15, All x14 are x16, All x15 are x17, All x16 are x18, All x17 are
x19, All x18 are x20, All x19 are x21, All x21 are x22, All x22 are x23, All x23 are x24, All
x24 are x25, All x24 are x26, All x26 are x27, No x20 are x12, Some x15 are x1, Some x11 are not
x4, Some x5 are not x1, Some x20 are not x16

hypothesis: Some x25 are x12

premises: All x1 are x2, All x2 are x4, All x4 are x6, All x6 are x8, All x8 are x9, All x9 are
x10, All x10 are x11, All x11 are x12, All x15 are x17, All x17 are x19, All x19 are x21, All
x21 are x22, All x22 are x23, All x23 are x24, All x24 are x25, Some x15 are x1

Figure 24: Type 7 syllogistic inference on graphs. Visualization of a type 7 syllogistic inference using a graph
representation of an example KB, alongside the corresponding textual translation. In the graph (top), nodes represent
predicates. Black edges indicate A-formulas (“All As are Bs”), blue edges indicate I-formulas (“Some As are Bs”),
red edges indicate E-formulas (“No As are Bs”), and yellow edges indicate O-formulas (“Some As are not Bs”).
The query hypothesis is represented by a dashed green edge, and the edges that prove the hypothesis are highlighted
in green. The text translation illustrates how the abstract graph representation is converted into a text format suitable
for LM processing by applying fixed templates that represent logical formulas.
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