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Abstract

Over the past two decades, there has been a tremendous increase in the growth
of representation learning methods for graphs, with numerous applications across
various fields, including bioinformatics, chemistry, and the social sciences. How-
ever, current dynamic network approaches focus on discrete-time networks or
treat links in continuous-time networks as instantaneous events. Therefore, these
approaches have limitations in capturing the persistence or absence of links that
continuously emerge and disappear over time for particular durations. To address
this, we propose a novel stochastic process relying on survival functions to model
the durations of links and their absences over time. This forms a generic new likeli-
hood specification explicitly accounting for intermittent edge-persistent networks,
namely GRAS2P: Graph Representation with Sequential Survival Process. We
apply the developed framework to a recent continuous time dynamic latent dis-
tance model characterizing network dynamics in terms of a sequence of piecewise
linear movements of nodes in latent space. We quantitatively assess the developed
framework in various downstream tasks, such as link prediction and network com-
pletion, demonstrating that the developed modeling framework accounting for link
persistence and absence well tracks the intrinsic trajectories of nodes in a latent
space and captures the underlying characteristics of evolving network structure.

1 Introduction

In diverse fields spanning physical and social sciences, entities ranging from minuscule scales like
microorganisms and proteins to larger scales such as humans to scales of celestial objects like planets
and galaxies always exert influence upon and interact with one another. These evolving and intricate
interconnections inherently translate into networks, providing a versatile framework to encapsulate
the subtle interplay of relationships. In this regard, networks (or graphs) have become essential for
investigating and comprehending the intricate dynamics of these complex systems evolving over time
[26].

Representation learning models on graphs have gained popularity due to their ability to effectively
extract knowledge from networks and achieve various objectives like predicting linkage and node
properties [11, 42]. However, their primary emphasis has been on static networks. The early works
relied either on random walks [29, 10, 36] or matrix factorization techniques [32, 31]. In recent
years, Graph Neural Network (GNN) architectures have become a prominent way to address network
embedding problems [39], and a plethora of methods has also been developed to address a variety
of network types, such as signed networks [22, 24] and knowledge graphs [5], or to serve diverse
purposes like encoding the hierarchical structure of networks in learning node embeddings [2, 25].
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Lately, there has been a growing interest in modeling and learning latent representations of temporal
networks, encompassing the transient nature of node interactions [40]. The evolving focus seeks
to unveil a richer understanding of node interactions throughout time, accounting for relationships’
complex and evolving dynamics. Importantly, dynamic network modeling can thereby reveal intricate
patterns within network structures that static approaches cannot adequately address. Initially, these
dynamic modeling approaches focused on discrete time networks [34, 18, 14, 15, 41]. However, in
recent years, substantial attention has also been devoted to the modeling of continuous-time networks.
Prominent works have utilized Poisson [7, 37, 4] and Hawkes processes [13, 12, 3, 1, 6, 43, 23]
in order to define principled learning procedures under continuous-time network likelihoods of
event-based data. Contrary to the previous studies, which work on a network block level, the HTNE
[43] extends the Hawkes process modeling to account for node-level embeddings. Furthermore, the
GNN extensions for continuous-time dynamic networks, TGN [33], and the temporal-point process
of M2DNE [23] use a case-control approach optimizing a binary cross-entropy loss. In particular,
M2DNE takes into account both pairwise interactions at the micro level and broader network-wide
dynamics at the macro level. Finally, non-likelihood-based procedures utilizing dynamic random
walks such as (CTDNE) [27] perform temporal random walks based on the observed continuous-time
interactions.

However, the currently existing approaches designed for modeling continuous-time dynamic networks
exhibit significant limitations. In particular, when utilizing the event-based Poisson Process or
extended Hawkes Process, they treat network links as instantaneous events, whereas the case-
control approach using binary cross-entropy do not explicitly account for edge persistence in the
likelihood. Nevertheless, numerous continuous-time dynamic networks in real-world scenarios
surpass these perspectives. Links within these real-world networks often showcase intermittent
patterns as interactions persist and dissipate consecutively over time. This nuanced nature of network
dynamics necessitates a more comprehensive approach to accurately account for the persistent
presence and absence of edges between nodes.

There are many prominent examples in which we can observe intermittent persistent linkage structures
in real-world scenarios. For instance, consider a social media platform where users can follow or
unfollow each other and thereby form a connection with each other over different time periods
or contact and collaboration networks in which people can respectively be together or collaborate
for extended periods of time. These intermittent persistent pairwise dynamics challenge traditional
continuous-time dynamic network models that only account for the event of a tie but not its persistence
and static models that assume constant and steady relationships. There is, therefore, a need for new
continuous-time dynamic network modeling approaches that are able to explicitly account for network
connections that persist and dissipate consecutively over time.

In this paper, we introduce the continuous-time Graph Sequential Survival Process (GRAS2P).
Specifically, we extend the traditional usage of Survival analysis to the realm of network science
by developing a Sequential Survival process that can capture the dynamic persistence of links and
their absence in networks. To the best of our knowledge, this is the first approach capable of
explicitly characterizing networks featuring intermittent time-persistent linkage structures. The main
contributions can be outlined as:

• A Novel Counting Process. We introduce a novel stochastic process by leveraging the
survival analysis to model the intermittent time-persistent linkage structure of the net-
works forming the GRAS2P model. We further highlight the utility of the GRAS2P model
considering the recently proposed continuous-time node embedding procedure [4].

• Experimental Validation. We conduct extensive experiments on diverse real-world datasets
to evaluate GRAS2P. The results showcase its effectiveness in capturing intricate character-
istics of networks by explicitly accounting for intermittent edge-persistence outperforming
baseline methods in downstream tasks.

• Visualization Tool. We show that the proposed approach can embed continuous-time
edge persistent dynamic complex networks in low dimensional spaces accurately, thereby
also serving as a visualization tool to get insights into the intricate temporal dynamics of
link-persistent networks.

Implementation. The source codes, datasets, and other details can be found at the address: https:
//abdcelikkanat.github.io/projects/grassp_workshop/
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2 Proposed Model

In this section, we present our proposed approach, but before delving into the details, we will first
establish the notations used throughout the paper. Without loss of generality, we can suppose that
the timeline begins at time 0 and ends at T , and we will use [T ] to denote the time interval [0, T ).
We employ the conventional notation, G = (V, E) to indicate a graph where V = {1, . . . , N} is the
vertex set and E := [i,j2VEij refers to the edge set of the network, comprising of pairwise temporal
links, Eij , for each pair (i, j) 2 V2.

Again, it is worth emphasizing that we assume a pair of nodes consists of sequential links indicating
intermittent interactions over time. An existing link (i.e., interaction) can disappear and then emerge
again. In this regard, we will utilize tuple (i, j, tk, tk+1) to denote a link between nodes i and j for
the interval from tk 2 [T ] up to tk+1 2 [T ]. We provide the formal description of the networks
considered in this work in Definition 2.1 below:
Definition 2.1 (Continuous-time Intermittent Edge Persistent Graph). A continuous-time intermittent

edge persistent network over a timeline [T ] := [0, T ] is an ordered pair G = (V, E) where V =
{1, . . . , N} is the set of nodes and E := {(i, j, tk, tk+1) 2 V2 ⇥ [T ]2 | tk < tk+1} denotes the set
of non-overlapping temporal links, i.e. if (i, j, tk, tk+1) and (i, j, t̄k, t̄k+1) are distinct links of (i, j)
pair, then it satisfies [tk, tk+1) \ [t̄k, t̄k+1) = ;.

We call the initial and the last time of each link period as an event time, and for practical purposes,
we always suppose 0 is also an event time for each node pair. In addition, we introduce the state

function, s : V2 ⇥ [T ] ! S as an indicator of the presence or absence of a link for a given time
t 2 [T ] where S := {1,�1} is the state space (+1 symbolizes the existence of the link and �1 its
absence). Note that the state of each pair is constant until the next event time, thereby, we omit the
input variable from the state function, s(t), for convenience, and we write s to denote the state of the
interaction for the corresponding interval. In this regard, we can partition the timeline with respect to
the values of the state function for each node pair (i.e., depending on whether a link exists or not), so
if a pair consists of M events e0 = 0 < e1 < · · · < em < · · · < eM�1 < T then there must exist M
consecutive intervals, {[em, em+1) ✓ [T ] : 8m 2 {0, . . . ,M � 1}}, having different states.

Even though networks with sporadic interactions over time are prevalent in real-world contexts such
as contact or social networks, to the best of our knowledge, they have not been studied previously.

2.1 Sequential Survival Process

Many research fields have a strong emphasis on modeling the time duration required for an event to
unfold, such as investigating the lifespan of living organisms or analyzing the reliability of mechanical
systems. The term "survival" is mostly employed in those works to describe the duration leading up
to the occurrence of death or failure, which is a measure that encapsulates the essence of lifetime
estimation and plays a fundamental role in understanding the dynamics of complex systems. More
formally, for a given continuous random variable, T , representing the lifetime of an object or a system,
the survival function is given by

S(t) := P{T > t} =

Z 1

t
f(u)du = 1 � F (t)

where F (t) and f(t) indicate the cumulative distribution and probability density functions, respec-
tively. It can also be reparameterized using an associated hazard function � : [0,1) ! R+ as
follows:

S(t) = exp

 
�
Z t

0
�(t0)dt0

!
.

For further details on survival analysis, we recommend that unfamiliar readers refer to the work of
[19] for in-depth details.

Our approach characterizes node interactions by utilizing the power of survival functions. As
mentioned before, we always assume that the state of the model alters after each event time point.
Therefore, we design our Sequential Survival process as consecutive survival functions denoting
"surviving" and "dying" events. In other words, for a given initial state, s0 2 S , we define the process,
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{M(t) : t � 0} as a counting process showing the total number of occurrences or events that have
happened up to time t. Hence, we write the probability of the random variable M(t) being equal to
m as follows:

pM (m) =

Z

⇠2R

mY

n=1

R ⇠n
⇠n�1

�(sn, t0)dt0

exp
⇣R ⇠n

⇠n�1
�(sn, t0)dt0

⌘d⇠ (1)

where �(sn, t) is the hazard rate for given time t 2 [T ] and state sn 2 S , and R := {(t1, . . . , tM ) 2
[T ]M : 0  t1 < t2 < · · · tM < T )} is the domain of the integration.

We can also write the likelihood function of the process from the probability given in Eq. (1). Let
⌅ = (�,M) be a random variable where M(t) denotes the number of events up to time t, and � is
the corresponding ordered event sequence. Then, we can write the marginal distribution of M by
integrating over all possible ordered sequences in the set R. In other words,

pM (m) =

Z

⇠2R
p(�,M)(⇠,m)d⇠,

and by using the fundamental theorem of calculus we can obtain the probability density function of
the random variable, ⌅ = (�,M), evaluated at ((e1, . . . , em),m) as follows:

p(�,M)((e1, . . . , em),m)=
mY

k=1

�(sk, ek)

exp
⇣R ek

ek�1
�(sk, t0)dt0

⌘ . (2)

2.2 Problem Formulation

Our objective is to learn continuous-time node representations in a metric space (X, dX) to uncover
underlying temporal patterns of a network so the pairwise distances among nodes in a latent space
should acquire the temporal changes within the network. We will use, r(i, t) or simply ri(t), to
denote the embedding of node i 2 V at time t 2 [T ] in a D-dimensional space (D ⌧ |V|). More
specifically, we desire to obtain a map r : V ⇥ [T ] ! X satisfying

Z eu

el

 s
⇣
dX
�
r(i, t), r(j, t)

�⌘
dt ⇡

Z eu

el

�ij(s, t
0)dt0 (3)

for all (i, j, s) 2 V2 ⇥ S where �(s, t) indicates the true hazard rate between i and j at time t 2 [T ]
and state s 2 S .

Since we assume that a node pair has connections of alternating states (i.e., link or non-link periods)
over time, we utilize the Sequential Survival process introduced in the previous part to characterize
these intermittent persistent edges. In this regard, by using Eq (2), we can write the log-likelihood
function for the whole network as follows:

L(⌦|G) := log p(G|⌦) =
X

i,j2V

|Eij |X

m=1

 
log �ij(sm, em)�

em+1Z

em

�ij(sm, t)dt

!
(4)

where ⌦ refers to the set of model hyper-parameters.

To learn continuous-time node dynamics, we consider the latent distance modeling framework
[16]. We leverage the hazard functions to define the latent representations uncovering the evolving
relationships between nodes in the network. Based on our assumption, when a pair of nodes has
a link or interaction at a particular time, it is expected to dissolve eventually. As a result, their
latent positions should also naturally drift apart from each other over time to reflect their temporal
connection strength. Conversely, when they do not have any connection, they might interact in the
future, so their latent positions should also approach each other to reflect the potential for a coming
link. In this regard, we define the hazard function, �ij(s, t) as follows:

�ij(s, t) := exp
⇣
�(s) + skri(t) � rj(t)k2

⌘
. (5)

for node pair (i, j) 2 V2 and state s 2 S := {�1, 1}. We incorporate bias terms (�(s)) for each state
value in the definition of the hazard function given in Eq. (5), and they are responsible for capturing
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the global information in the network [21, 4]. We further use the squared Euclidean metric [35, 28].
Using this formulation, Lemma 2.1 ensures the latent representations of nodes will be positioned
close enough or significantly distant from each other depending on the state (i.e., link or non-link
periods) of the node pairs.
Lemma 2.1. Let e0 = 0 < e1 < · · · < eM�1 < T be a sequence following a Sequential Survival

process for node pair (i, j) 2 V2
. Then, the average squared distance between nodes during interval

[em, em+1) associated with survival function Sm(·) and state sm 2 {�1, 1} can be bounded by

bm(�1)  1

(em+1�em)

em+1Z

em

kri(t) � rj(t)k2dt  bm(+1)

where bm(s) := �2s log(em+1 � em) + logS(em+1) � s�(s).

Proof. Please refer to the supplementary materials for the proof.

2.3 Continuous-time Node Representations using Piecewise Linear Approximations

For the embedding vectors {ri(t) : i 2 V, t 2 [T ]} we consider the continuous-time extension of
the latent distance model proposed in [4] in the context of event-based (Poisson Process likelihood)
graphs using analytically tractable piecewise linear approximations of latent dynamics. Specifically,
we define each node embedding as a linear function depending on time:

ri(t) := xi + vit (6)
The definition can be understood as assigning the initial position (xi) and velocity (vi) to each node,
enabling us to locate the node’s position in the latent space at any given time. However, it also
constrains the motion capacity of nodes in the embedding space, as they are limited to moving in a
single direction. To overcome this limitation, the model is extended by dividing the timeline into B
equal-sized bins introducing bin-specific velocity vectors. More specifically, the latent position of
node i 2 V at time t 2 [T ] is given by

ri(t) := x(0)
i +�Bv

(1)
i +�Bv

(2)
i + · · · +�Bv

(b)
i + · · · + mod(t,�B)v

(bt/�Bc+1)
i (7)

where �B is the bin width (i.e. T/B), and mod(·, ·) is the modulo operation giving the remaining
time. Importantly, employing such a piecewise interpretation of the timeline enables tracking the
paths of nodes in the embedding space effectively, and by augmenting the number of bins, more
accurate trajectories can be obtained. In particular, the use of finer-grained divisions in the timeline
allows for a more detailed and precise representation of node movements, leading to improved
accuracy in capturing their dynamics within the embedding space [4].

2.3.1 Regularization.

In order to control the nodes’ mobility in the latent space, we incorporate a prior distribution for the
velocity vectors. Imagine a situation for a pair of nodes only interacting with each other during a
period; the model situates them closely in the embedding space when they have a link. Nevertheless,
their distance in the latent space tends towards infinity as the link is inactive. Therefore, we assume
the velocity vectors, v 2 RB⇥N⇥D, follow a multivariate normal distribution with zero mean:

vect(v) ⇠ N (0,�2⌃)

where � is the scaling coefficient, and ⌃ 2 RBND⇥BND is a diagonal matrix defined as a Kronecker
product of three other vectors. In other words, ⌃ := diag(�B ⌦ �N ⌦ �D) where the vectors,
�B , �N and �D are responsible for the influence of the model’s bins, nodes, and dimensions,
respectively. Here, the notation, ⌦, symbolizes the Kronecker product, and vect(z) represents the
vectorization operator converting the given tensor into a vector form. We constrain �B and �N within
the standard (B � 1) and (N � 1)-simplex sets, and we define �D as 1D = (1, 1, . . . , 1) 2 RD to
have uncorrelated dimensions. To sum up, we can restrain the embedding space by utilizing the prior
distribution since it allows us to control the motions of nodes. For higher values of the scaling factor
�, the model can have more flexibility, enabling more dynamic node movements in the latent space,
whereas lower values restrict node mobility, resulting in more static node representations. Notably,
with this regularization the model can be considered a continuous-time extension of the discrete-time
latent distance model based on diffusion considered in [34] in which the diffusion between time-bins
propagate continuously.
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(a) t = 350 (b) t = 400 (c) t = 450 (d) t = 500 (e) t = 550 (f) t = 600

Figure 1: Snapshots of the continuous-time embeddings for various timestamps over Synthetic-�.

3 Experimental Evaluation

We will examine the performance of the proposed model over a diverse range of networks varying in
size and characteristics, but before delving into the experimental evaluations, we will first present
details regarding the experimental setup.

Experimental Setup. We first split the networks into two sets, such that the events taking place
within the last 10% of the timeline are considered for the future prediction task. Furthermore, we
randomly choose 20% node pairs among all possible dyads in the initial first part, and they are divided
into two equal-sized groups to design the validation and testing sets. The residual network does not
contain any link from these dyads, and it forms the training set. If there is any node pair without any
link period during the training but included in the prediction set, it is also excluded from the network.

We need to generate the labeled data to perform link prediction tasks. For this purpose, we divide the
timeline of each dyad into segments based on the state values. Within these segments, we randomly
select time t to define a sample interval [t� ✏, t+ ✏], and ✏ is set to 10�2 ⇥T where T is the dataset’s
timeline length. We deliberately exclude samples containing the event times where the state of the
corresponding dyad changes since it is impractical to predict whether a link exists for the periods
with multiple states.

We further organized these generated samples into two categories as “simple” and “hard” sets. The
“hard” set consists of samples for the node pairs having at least one linked and non-linked period
over time. On the other hand, dyads having stable states throughout the timeline produce “simple”
sets of samples since predicting the labels (i.e., state) of these instances is relatively straightforward.
Additionally, the samples generated for the future link prediction task are categorized based on the
dyads’ linkage structure during the training time by following the study [30].

We consider an equal number of k link and non-link samples, and the maximum sample size is limited
to 103. Each link or non-link category contains h/2 elements picked up from the hard set consisting
of h elements, and we randomly select k � h/2 samples from the residual hard instances and the
simple set. We report both AUC-ROC and AUC-PR scores to comprehensively evaluate the models’
performances across different aspects of true and false positives and precision-recall characteristics.

Datasets and Baselines. Due to the constraints on the page number, we provide the details regarding
the datasets and baselines in the supplementary materials.

3.1 Link Prediction

We perform three different tasks with hyperparameters set with respect to values showing the best
performance on the validation sets.

Network Reconstruction. Our goal is to see how effectively the models can capture the temporal
structural changes within the network over time. In pursuit of this objective, we seek to reconstruct
both link and non-link periods. As depicted in Table 2, our method, GRAS2P, exhibits notably
superior performance compared to the baseline approaches. This marked improvement is attributed to
the incapability of the other models to represent intermittent persistent linkage structures accurately.

Network Completion. Many real networks often contain noisy or missing links for various reasons,
such as problems in the data collection processes or privacy concerns preventing the full disclosure of
ties. In this regard, our aim is to evaluate the models’ capacity to generalize the linkage structure in
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Table 1: The models’ performances for the network completion task across diverse datasets.
LDM NODE2VEC CTDNE HTNE M2DNE PIVEM GRAS2P

Synthetic-↵
ROC .711 ± .004 .743 ± .002 .692 ± .007 .698 ± .021 .558 ± .008 .744 ± .002 .810± .009
PR .630 ± .006 .667 ± .009 .650 ± .007 .645 ± .019 .582 ± .004 .653 ± .004 .751± .011

Synthetic-�
ROC .491 ± .020 .534 ± .008 .502 ± .008 .525 ± .004 .517 ± .013 .593 ± .006 .677± .018
PR .486 ± .016 .498 ± .007 .502 ± .010 .517 ± .006 .522 ± .015 .587 ± .011 .646± .022

Contacts
ROC .508 ± .008 .584 ± .004 .564 ± .034 .472 ± .024 .486 ± .013 .493 ± .006 .680± .013
PR .490 ± .004 .555 ± .023 .543 ± .036 .477 ± .023 .500 ± .008 .492 ± .016 .641± .023

HyperText
ROC .541 ± .015 .533 ± .012 .462 ± .016 .441 ± .017 .461 ± .021 .426 ± .013 .692± .010
PR .503 ± .010 .490 ± .013 .477 ± .016 .449 ± .009 .479 ± .023 .437 ± .007 .656± .024

Infectious
ROC .689 ± .007 .671 ± .003 .639 ± .006 .653 ± .013 .554 ± .005 .669 ± .004 .742± .026
PR .615 ± .007 .601 ± .005 .593 ± .005 .596 ± .010 .560 ± .009 .598 ± .004 .673± .024

Facebook
ROC .717 ± .004 .675 ± .001 .539 ± .005 .608 ± .001 .570 ± .010 .710 ± .002 .723± .010
PR .659 ± .006 .603 ± .005 .538 ± .013 .575 ± .001 .562 ± .009 .662 ± .002 .671± .012

NeurIPS
ROC .679 ± .010 .697 ± .005 .558 ± .020 .654 ± .025 .531 ± .005 .748± .010 .735 ± .029
PR .618 ± .016 .606 ± .020 .552 ± .025 .613 ± .026 .553 ± .011 .761± .020 .749 ± .021

Table 2: The models’ performances for the network reconstruction task across diverse datasets.
LDM NODE2VEC CTDNE HTNE M2DNE PIVEM GRAS2P

Synthetic-↵
ROC .702 ± .002 .693 ± .003 .638 ± .006 .675 ± .011 .507 ± .002 .749 ± .002 .845± .006
PR .654 ± .006 .627 ± .011 .596 ± .009 .639 ± .007 .566 ± .003 .665 ± .002 .782± .009

Synthetic-�
ROC .564 ± .009 .507 ± .006 .512 ± .008 .544 ± .007 .511 ± .002 .680 ± .006 .744± .019
PR .553 ± .006 .494 ± .005 .511 ± .007 .528 ± .007 .513 ± .002 .652 ± .008 .701± .013

Contacts
ROC .593 ± .004 .556 ± .004 .534 ± .018 .528 ± .004 .534 ± .002 .496 ± .006 .825± .008
PR .541 ± .003 .523 ± .015 .528 ± .017 .510 ± .008 .537 ± .004 .465 ± .002 .754± .014

HyperText
ROC .550 ± .002 .535 ± .004 .477 ± .012 .473 ± .011 .489 ± .003 .430 ± .002 .760± .004
PR .513 ± .003 .507 ± .007 .488 ± .010 .470 ± .008 .479 ± .004 .431 ± .001 .689± .007

Infectious
ROC .701 ± .006 .688 ± .003 .667 ± .005 .676 ± .009 .579 ± .002 .666 ± .005 .788± .015
PR .626 ± .008 .602 ± .007 .606 ± .008 .613 ± .008 .584 ± .005 .577 ± .006 .697± .013

Facebook
ROC .682 ± .005 .645 ± .003 .544 ± .007 .624 ± .002 .582 ± .009 .673 ± .003 .731± .010
PR .615 ± .009 .589 ± .008 .535 ± .008 .590 ± .009 .573 ± .009 .617 ± .004 .667± .013

NeurIPS
ROC .760 ± .007 .720 ± .003 .598 ± .004 .731 ± .008 .594 ± .001 .698 ± .002 .889± .013
PR .687 ± .010 .631 ± .007 .590 ± .010 .659 ± .006 .599 ± .003 .711 ± .002 .819± .020

Table 3: The models’ performances for the future link prediction task across diverse datasets.
LDM NODE2VEC CTDNE HTNE M2DNE PIVEM GRAS2P

Synthetic-↵
ROC .748 ± .007 .756 ± .005 .652 ± .012 .784 ± .013 .654 ± .011 .740 ± .007 .902± .011
PR .719 ± .012 .700 ± .020 .636 ± .019 .800 ± .016 .745 ± .008 .741 ± .005 .918± .008

Synthetic-�
ROC .515 ± .018 .538 ± .004 .503 ± .020 .560 ± .006 .519 ± .012 .894± .005 .880 ± .012
PR .525 ± .021 .501 ± .007 .494 ± .016 .548 ± .004 .554 ± .014 .845± .007 .843 ± .014

Contacts
ROC .821± .004 .703 ± .002 .635 ± .013 .727 ± .002 .590 ± .002 .692 ± .005 .793 ± .013
PR .773± .005 .648 ± .006 .599 ± .014 .689 ± .004 .610 ± .006 .675 ± .004 .752 ± .019

HyperText
ROC .663± .004 .553 ± .003 .503 ± .010 .530 ± .018 .548 ± .004 .559 ± .003 .654 ± .005
PR .609 ± .003 .516 ± .008 .503 ± .006 .518 ± .014 .529 ± .008 .534 ± .002 .612± .010

Infectious
ROC .958± .004 .869 ± .002 .847 ± .008 .893 ± .013 .655 ± .008 .945 ± .006 .943 ± .017
PR .943± .008 .818 ± .007 .820 ± .014 .853 ± .007 .698 ± .009 .932 ± .006 .923 ± .025

Facebook
ROC .781± .007 .694 ± .003 .564 ± .005 .626 ± .003 .609 ± .015 .775 ± .002 .705 ± .009
PR .765 ± .009 .653 ± .004 .557 ± .004 .599 ± .011 .603 ± .011 .766± .003 .648 ± .009

NeurIPS
ROC .682 ± .019 .695 ± .012 .637 ± .007 .676 ± .014 .661 ± .006 .623 ± .010 .820± .008
PR .634 ± .024 .621 ± .018 .615 ± .015 .635 ± .025 .674 ± .014 .628 ± .006 .788± .018

the training set. Table 1 illustrates that our model once more demonstrates a substantial performance
advantage over the baselines, except for the NeurIPS dataset. Given the network’s yearly time
resolution, the event-based approach, PIVEM, effectively captures its temporal structure. Importantly,
our approach also displays a comparable level of performance in this scenario.

Future Link Prediction. The absence of a predictable periodic linkage pattern in the networks
poses a significant challenge in forecasting future connections, particularly those at more distant
time points. This complexity is evident in Table 3, where our model consistently surpasses all
baselines on the Synthetic-↵ dataset, but its performance for Synthetic-� is not optimal. It can be
explained by the fact that the links in the Synthetic-↵ network are sampled from the Sequential

Survival process, but the temporal clusters in the Synthetic-� network are randomly formed (please
see the supplementary materials for details). For specific network structures, static embedding models
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(a) Impact of dimension (b) Impact of bin count

Figure 2: Influence of the hyper-parameters for the network reconstruction task over Synthetic-↵.

also showcase satisfactory performance since they are able to capture the global network information
due to the aggregation of the links over time. Similarly, by choosing small values for the covariance
factor, �, we can restrict the dynamics of our approach.

Impact of dimension size. Figure 2(a) shows a clear correlation between the increase in dimension
size and performance improvement over the synthetic-↵ network. With the introduction of each new
dimension, the model’s capacity augments, and the model becomes more adept at capturing intricate
patterns within the network. For smaller dimensions, the model demonstrates performance on par with
more high dimensions. It is important to highlight that the two-dimensional representations sustain
competitive performance enabling easy visualization and extraction of insights into the complex and
dynamic nature of networks.

Impact of bin count. The impact of the number of bins on performance improvements is evident in
Figure 2(b), as the model’s capacity to capture subtle temporal changes increases at finer granularity
levels. Notably, the model’s performance nearly reaches near-optimal performance around B = 64,
after which it demonstrates saturation.

Continuous-time Dynamic Visualization. Network visualization offers valuable insights for prac-
titioners into the intricate architectures of complex networks. Nonetheless, numerous methods
necessitate high-dimensional spaces to achieve satisfactory results for downstream tasks. Therefore,
practitioners must utilize dimension-reduction techniques to generate visualizations conducive to
human comprehension. Furthermore, many temporal models yield static embeddings, lacking the
capacity to produce continuous-time node representations. In this regard, our model proves to be a
versatile tool, effectively balancing the tradeoff between performance and dimension sizes.

Figure 1 showcases the acquired embeddings across various selected time instances over the Synthetic-

� dataset. The network takes an entirely new structural form for each time point t = 100k
(k 2 {4, . . . , 6}), including 10 new clusters appearing randomly. Our model learns these tem-
poral structures, particularly when interconnections between clusters remain relatively sparse. As
time progresses, nodes within the latent space gradually adjust their positions to align with the
evolving new random connections, making the clusters indistinguishable (t = 100k � 50 where
k 2 {4, . . . , 6}). Additional visualizations are included in the supplementary materials.

4 Conclusion

In this study, we introduced a novel representation learning model, GRAS2P, designed specifically
for continuous-time networks exhibiting intermittent persistent linkage patterns over time. Our
proposed approach characterizes node connections using the proposed Sequential Survival process.
Our experimental results clearly demonstrate the superiority of GRAS2P over established baseline
methods across multiple networks of varying properties. Notably, our model effectively balances the
trade-off between dimensionality and performance, making it a valuable tool for visualizations.

We aim to extend the methodology for diverse forms of temporal graphs, including weighted and
signed networks. Moreover, we plan to tailor our approach to address large-scale networks while
also capturing potentially recurring periodic structures within the networks considering also different
model specifications beyond piecewise linear dynamics.
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